1 | !> @file radiation_model.f90 |
---|
2 | !--------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
7 | ! either version 3 of the License, or (at your option) any later version. |
---|
8 | ! |
---|
9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
12 | ! |
---|
13 | ! You should have received a copy of the GNU General Public License along with |
---|
14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
15 | ! |
---|
16 | ! Copyright 1997-2015 Leibniz Universitaet Hannover |
---|
17 | !--------------------------------------------------------------------------------! |
---|
18 | ! |
---|
19 | ! Current revisions: |
---|
20 | ! ----------------- |
---|
21 | ! Added parameter unscheduled_radiation_calls. Bugfix: interpolation of sounding |
---|
22 | ! profiles for pressure and temperature above the LES domain. |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: radiation_model.f90 1757 2016-02-22 15:49:32Z maronga $ |
---|
27 | ! |
---|
28 | ! 1709 2015-11-04 14:47:01Z maronga |
---|
29 | ! Bugfix: set initial value for rrtm_lwuflx_dt to zero, small formatting |
---|
30 | ! corrections |
---|
31 | ! |
---|
32 | ! 1701 2015-11-02 07:43:04Z maronga |
---|
33 | ! Bugfixes: wrong index for output of timeseries, setting of nz_snd_end |
---|
34 | ! |
---|
35 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
36 | ! Added option for spin-up runs without radiation (skip_time_do_radiation). Bugfix |
---|
37 | ! in calculation of pressure profiles. Bugfix in calculation of trace gas profiles. |
---|
38 | ! Added output of radiative heating rates. |
---|
39 | ! |
---|
40 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
41 | ! Code annotations made doxygen readable |
---|
42 | ! |
---|
43 | ! 1606 2015-06-29 10:43:37Z maronga |
---|
44 | ! Added preprocessor directive __netcdf to allow for compiling without netCDF. |
---|
45 | ! Note, however, that RRTMG cannot be used without netCDF. |
---|
46 | ! |
---|
47 | ! 1590 2015-05-08 13:56:27Z maronga |
---|
48 | ! Bugfix: definition of character strings requires same length for all elements |
---|
49 | ! |
---|
50 | ! 1587 2015-05-04 14:19:01Z maronga |
---|
51 | ! Added albedo class for snow |
---|
52 | ! |
---|
53 | ! 1585 2015-04-30 07:05:52Z maronga |
---|
54 | ! Added support for RRTMG |
---|
55 | ! |
---|
56 | ! 1571 2015-03-12 16:12:49Z maronga |
---|
57 | ! Added missing KIND attribute. Removed upper-case variable names |
---|
58 | ! |
---|
59 | ! 1551 2015-03-03 14:18:16Z maronga |
---|
60 | ! Added support for data output. Various variables have been renamed. Added |
---|
61 | ! interface for different radiation schemes (currently: clear-sky, constant, and |
---|
62 | ! RRTM (not yet implemented). |
---|
63 | ! |
---|
64 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
65 | ! Initial revision |
---|
66 | ! |
---|
67 | ! |
---|
68 | ! Description: |
---|
69 | ! ------------ |
---|
70 | !> Radiation models and interfaces |
---|
71 | !> @todo move variable definitions used in init_radiation only to the subroutine |
---|
72 | !> as they are no longer required after initialization. |
---|
73 | !> @todo Output of full column vertical profiles used in RRTMG |
---|
74 | !> @todo Output of other rrtm arrays (such as volume mixing ratios) |
---|
75 | !> @todo Adapt for use with topography |
---|
76 | !> |
---|
77 | !> @note Many variables have a leading dummy dimension (0:0) in order to |
---|
78 | !> match the assume-size shape expected by the RRTMG model. |
---|
79 | !------------------------------------------------------------------------------! |
---|
80 | MODULE radiation_model_mod |
---|
81 | |
---|
82 | |
---|
83 | USE arrays_3d, & |
---|
84 | ONLY: dzw, hyp, pt, q, ql, zw |
---|
85 | |
---|
86 | USE cloud_parameters, & |
---|
87 | ONLY: cp, l_d_cp, nc_const, rho_l, sigma_gc |
---|
88 | |
---|
89 | USE constants, & |
---|
90 | ONLY: pi |
---|
91 | |
---|
92 | USE control_parameters, & |
---|
93 | ONLY: cloud_droplets, cloud_physics, g, initializing_actions, & |
---|
94 | large_scale_forcing, lsf_surf, phi, pt_surface, rho_surface, & |
---|
95 | surface_pressure, time_since_reference_point |
---|
96 | |
---|
97 | USE indices, & |
---|
98 | ONLY: nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb_s_inner, nzb, nzt |
---|
99 | |
---|
100 | USE kinds |
---|
101 | |
---|
102 | #if defined ( __netcdf ) |
---|
103 | USE netcdf |
---|
104 | #endif |
---|
105 | |
---|
106 | USE netcdf_control, & |
---|
107 | ONLY: dots_label, dots_num, dots_unit |
---|
108 | |
---|
109 | #if defined ( __rrtmg ) |
---|
110 | USE parrrsw, & |
---|
111 | ONLY: naerec, nbndsw |
---|
112 | |
---|
113 | USE parrrtm, & |
---|
114 | ONLY: nbndlw |
---|
115 | |
---|
116 | USE rrtmg_lw_init, & |
---|
117 | ONLY: rrtmg_lw_ini |
---|
118 | |
---|
119 | USE rrtmg_sw_init, & |
---|
120 | ONLY: rrtmg_sw_ini |
---|
121 | |
---|
122 | USE rrtmg_lw_rad, & |
---|
123 | ONLY: rrtmg_lw |
---|
124 | |
---|
125 | USE rrtmg_sw_rad, & |
---|
126 | ONLY: rrtmg_sw |
---|
127 | #endif |
---|
128 | |
---|
129 | |
---|
130 | |
---|
131 | IMPLICIT NONE |
---|
132 | |
---|
133 | CHARACTER(10) :: radiation_scheme = 'clear-sky' ! 'constant', 'clear-sky', or 'rrtmg' |
---|
134 | |
---|
135 | ! |
---|
136 | !-- Predefined Land surface classes (albedo_type) after Briegleb (1992) |
---|
137 | CHARACTER(37), DIMENSION(0:16), PARAMETER :: albedo_type_name = (/ & |
---|
138 | 'user defined ', & ! 0 |
---|
139 | 'ocean ', & ! 1 |
---|
140 | 'mixed farming, tall grassland ', & ! 2 |
---|
141 | 'tall/medium grassland ', & ! 3 |
---|
142 | 'evergreen shrubland ', & ! 4 |
---|
143 | 'short grassland/meadow/shrubland ', & ! 5 |
---|
144 | 'evergreen needleleaf forest ', & ! 6 |
---|
145 | 'mixed deciduous evergreen forest ', & ! 7 |
---|
146 | 'deciduous forest ', & ! 8 |
---|
147 | 'tropical evergreen broadleaved forest', & ! 9 |
---|
148 | 'medium/tall grassland/woodland ', & ! 10 |
---|
149 | 'desert, sandy ', & ! 11 |
---|
150 | 'desert, rocky ', & ! 12 |
---|
151 | 'tundra ', & ! 13 |
---|
152 | 'land ice ', & ! 14 |
---|
153 | 'sea ice ', & ! 15 |
---|
154 | 'snow ' & ! 16 |
---|
155 | /) |
---|
156 | |
---|
157 | INTEGER(iwp) :: albedo_type = 5, & !< Albedo surface type (default: short grassland) |
---|
158 | day, & !< current day of the year |
---|
159 | day_init = 172, & !< day of the year at model start (21/06) |
---|
160 | dots_rad = 0 !< starting index for timeseries output |
---|
161 | |
---|
162 | |
---|
163 | |
---|
164 | |
---|
165 | |
---|
166 | |
---|
167 | LOGICAL :: unscheduled_radiation_calls = .TRUE., & !< flag parameter indicating whether additional calls of the radiation code are allowed |
---|
168 | constant_albedo = .FALSE., & !< flag parameter indicating whether the albedo may change depending on zenith |
---|
169 | force_radiation_call = .FALSE., & !< flag parameter for unscheduled radiation calls |
---|
170 | lw_radiation = .TRUE., & !< flag parameter indicating whether longwave radiation shall be calculated |
---|
171 | radiation = .FALSE., & !< flag parameter indicating whether the radiation model is used |
---|
172 | sun_up = .TRUE., & !< flag parameter indicating whether the sun is up or down |
---|
173 | sw_radiation = .TRUE. !< flag parameter indicing whether shortwave radiation shall be calculated |
---|
174 | |
---|
175 | |
---|
176 | REAL(wp), PARAMETER :: d_seconds_hour = 0.000277777777778_wp, & !< inverse of seconds per hour (1/3600) |
---|
177 | d_hours_day = 0.0416666666667_wp, & !< inverse of hours per day (1/24) |
---|
178 | sigma_sb = 5.67037321E-8_wp, & !< Stefan-Boltzmann constant |
---|
179 | solar_constant = 1368.0_wp !< solar constant at top of atmosphere |
---|
180 | |
---|
181 | REAL(wp) :: albedo = 9999999.9_wp, & !< NAMELIST alpha |
---|
182 | albedo_lw_dif = 9999999.9_wp, & !< NAMELIST aldif |
---|
183 | albedo_lw_dir = 9999999.9_wp, & !< NAMELIST aldir |
---|
184 | albedo_sw_dif = 9999999.9_wp, & !< NAMELIST asdif |
---|
185 | albedo_sw_dir = 9999999.9_wp, & !< NAMELIST asdir |
---|
186 | decl_1, & !< declination coef. 1 |
---|
187 | decl_2, & !< declination coef. 2 |
---|
188 | decl_3, & !< declination coef. 3 |
---|
189 | dt_radiation = 0.0_wp, & !< radiation model timestep |
---|
190 | emissivity = 0.98_wp, & !< NAMELIST surface emissivity |
---|
191 | lambda = 0.0_wp, & !< longitude in degrees |
---|
192 | lon = 0.0_wp, & !< longitude in radians |
---|
193 | lat = 0.0_wp, & !< latitude in radians |
---|
194 | net_radiation = 0.0_wp, & !< net radiation at surface |
---|
195 | skip_time_do_radiation = 0.0_wp, & !< Radiation model is not called before this time |
---|
196 | sky_trans, & !< sky transmissivity |
---|
197 | time_radiation = 0.0_wp, & !< time since last call of radiation code |
---|
198 | time_utc, & !< current time in UTC |
---|
199 | time_utc_init = 43200.0_wp !< UTC time at model start (noon) |
---|
200 | |
---|
201 | REAL(wp), DIMENSION(0:0) :: zenith !< solar zenith angle |
---|
202 | |
---|
203 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: & |
---|
204 | alpha, & !< surface broadband albedo (used for clear-sky scheme) |
---|
205 | rad_lw_out_change_0, & !< change in LW out due to change in surface temperature |
---|
206 | rad_net, & !< net radiation at the surface |
---|
207 | rad_net_av !< average of rad_net |
---|
208 | |
---|
209 | ! |
---|
210 | !-- Land surface albedos for solar zenith angle of 60° after Briegleb (1992) |
---|
211 | !-- (shortwave, longwave, broadband): sw, lw, bb, |
---|
212 | REAL(wp), DIMENSION(0:2,1:16), PARAMETER :: albedo_pars = RESHAPE( (/& |
---|
213 | 0.06_wp, 0.06_wp, 0.06_wp, & ! 1 |
---|
214 | 0.09_wp, 0.28_wp, 0.19_wp, & ! 2 |
---|
215 | 0.11_wp, 0.33_wp, 0.23_wp, & ! 3 |
---|
216 | 0.11_wp, 0.33_wp, 0.23_wp, & ! 4 |
---|
217 | 0.14_wp, 0.34_wp, 0.25_wp, & ! 5 |
---|
218 | 0.06_wp, 0.22_wp, 0.14_wp, & ! 6 |
---|
219 | 0.06_wp, 0.27_wp, 0.17_wp, & ! 7 |
---|
220 | 0.06_wp, 0.31_wp, 0.19_wp, & ! 8 |
---|
221 | 0.06_wp, 0.22_wp, 0.14_wp, & ! 9 |
---|
222 | 0.06_wp, 0.28_wp, 0.18_wp, & ! 10 |
---|
223 | 0.35_wp, 0.51_wp, 0.43_wp, & ! 11 |
---|
224 | 0.24_wp, 0.40_wp, 0.32_wp, & ! 12 |
---|
225 | 0.10_wp, 0.27_wp, 0.19_wp, & ! 13 |
---|
226 | 0.90_wp, 0.65_wp, 0.77_wp, & ! 14 |
---|
227 | 0.90_wp, 0.65_wp, 0.77_wp, & ! 15 |
---|
228 | 0.95_wp, 0.70_wp, 0.82_wp & ! 16 |
---|
229 | /), (/ 3, 16 /) ) |
---|
230 | |
---|
231 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE, TARGET :: & |
---|
232 | rad_lw_cs_hr, & !< longwave clear sky radiation heating rate (K/s) |
---|
233 | rad_lw_cs_hr_av, & !< average of rad_lw_cs_hr |
---|
234 | rad_lw_hr, & !< longwave radiation heating rate (K/s) |
---|
235 | rad_lw_hr_av, & !< average of rad_sw_hr |
---|
236 | rad_lw_in, & !< incoming longwave radiation (W/m2) |
---|
237 | rad_lw_in_av, & !< average of rad_lw_in |
---|
238 | rad_lw_out, & !< outgoing longwave radiation (W/m2) |
---|
239 | rad_lw_out_av, & !< average of rad_lw_out |
---|
240 | rad_sw_cs_hr, & !< shortwave clear sky radiation heating rate (K/s) |
---|
241 | rad_sw_cs_hr_av, & !< average of rad_sw_cs_hr |
---|
242 | rad_sw_hr, & !< shortwave radiation heating rate (K/s) |
---|
243 | rad_sw_hr_av, & !< average of rad_sw_hr |
---|
244 | rad_sw_in, & !< incoming shortwave radiation (W/m2) |
---|
245 | rad_sw_in_av, & !< average of rad_sw_in |
---|
246 | rad_sw_out, & !< outgoing shortwave radiation (W/m2) |
---|
247 | rad_sw_out_av !< average of rad_sw_out |
---|
248 | |
---|
249 | |
---|
250 | ! |
---|
251 | !-- Variables and parameters used in RRTMG only |
---|
252 | #if defined ( __rrtmg ) |
---|
253 | CHARACTER(LEN=12) :: rrtm_input_file = "RAD_SND_DATA" !< name of the NetCDF input file (sounding data) |
---|
254 | |
---|
255 | |
---|
256 | ! |
---|
257 | !-- Flag parameters for RRTMGS (should not be changed) |
---|
258 | INTEGER(iwp), PARAMETER :: rrtm_inflglw = 2, & !< flag for lw cloud optical properties (0,1,2) |
---|
259 | rrtm_iceflglw = 0, & !< flag for lw ice particle specifications (0,1,2,3) |
---|
260 | rrtm_liqflglw = 1, & !< flag for lw liquid droplet specifications |
---|
261 | rrtm_inflgsw = 2, & !< flag for sw cloud optical properties (0,1,2) |
---|
262 | rrtm_iceflgsw = 0, & !< flag for sw ice particle specifications (0,1,2,3) |
---|
263 | rrtm_liqflgsw = 1 !< flag for sw liquid droplet specifications |
---|
264 | |
---|
265 | ! |
---|
266 | !-- The following variables should be only changed with care, as this will |
---|
267 | !-- require further setting of some variables, which is currently not |
---|
268 | !-- implemented (aerosols, ice phase). |
---|
269 | INTEGER(iwp) :: nzt_rad, & !< upper vertical limit for radiation calculations |
---|
270 | rrtm_icld = 0, & !< cloud flag (0: clear sky column, 1: cloudy column) |
---|
271 | rrtm_iaer = 0, & !< aerosol option flag (0: no aerosol layers, for lw only: 6 (requires setting of rrtm_sw_ecaer), 10: one or more aerosol layers (not implemented) |
---|
272 | rrtm_idrv = 1 !< longwave upward flux calculation option (0,1) |
---|
273 | |
---|
274 | LOGICAL :: snd_exists = .FALSE. !< flag parameter to check whether a user-defined input files exists |
---|
275 | |
---|
276 | REAL(wp), PARAMETER :: mol_mass_air_d_wv = 1.607793_wp !< molecular weight dry air / water vapor |
---|
277 | |
---|
278 | REAL(wp), DIMENSION(:), ALLOCATABLE :: hyp_snd, & !< hypostatic pressure from sounding data (hPa) |
---|
279 | q_snd, & !< specific humidity from sounding data (kg/kg) - dummy at the moment |
---|
280 | rrtm_tsfc, & !< dummy array for storing surface temperature |
---|
281 | t_snd !< actual temperature from sounding data (hPa) |
---|
282 | |
---|
283 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: aldif, & !< longwave diffuse albedo solar angle of 60° |
---|
284 | aldir, & !< longwave direct albedo solar angle of 60° |
---|
285 | asdif, & !< shortwave diffuse albedo solar angle of 60° |
---|
286 | asdir, & !< shortwave direct albedo solar angle of 60° |
---|
287 | rrtm_ccl4vmr, & !< CCL4 volume mixing ratio (g/mol) |
---|
288 | rrtm_cfc11vmr, & !< CFC11 volume mixing ratio (g/mol) |
---|
289 | rrtm_cfc12vmr, & !< CFC12 volume mixing ratio (g/mol) |
---|
290 | rrtm_cfc22vmr, & !< CFC22 volume mixing ratio (g/mol) |
---|
291 | rrtm_ch4vmr, & !< CH4 volume mixing ratio |
---|
292 | rrtm_cicewp, & !< in-cloud ice water path (g/m²) |
---|
293 | rrtm_cldfr, & !< cloud fraction (0,1) |
---|
294 | rrtm_cliqwp, & !< in-cloud liquid water path (g/m²) |
---|
295 | rrtm_co2vmr, & !< CO2 volume mixing ratio (g/mol) |
---|
296 | rrtm_emis, & !< surface emissivity (0-1) |
---|
297 | rrtm_h2ovmr, & !< H2O volume mixing ratio |
---|
298 | rrtm_n2ovmr, & !< N2O volume mixing ratio |
---|
299 | rrtm_o2vmr, & !< O2 volume mixing ratio |
---|
300 | rrtm_o3vmr, & !< O3 volume mixing ratio |
---|
301 | rrtm_play, & !< pressure layers (hPa, zu-grid) |
---|
302 | rrtm_plev, & !< pressure layers (hPa, zw-grid) |
---|
303 | rrtm_reice, & !< cloud ice effective radius (microns) |
---|
304 | rrtm_reliq, & !< cloud water drop effective radius (microns) |
---|
305 | rrtm_tlay, & !< actual temperature (K, zu-grid) |
---|
306 | rrtm_tlev, & !< actual temperature (K, zw-grid) |
---|
307 | rrtm_lwdflx, & !< RRTM output of incoming longwave radiation flux (W/m2) |
---|
308 | rrtm_lwdflxc, & !< RRTM output of outgoing clear sky longwave radiation flux (W/m2) |
---|
309 | rrtm_lwuflx, & !< RRTM output of outgoing longwave radiation flux (W/m2) |
---|
310 | rrtm_lwuflxc, & !< RRTM output of incoming clear sky longwave radiation flux (W/m2) |
---|
311 | rrtm_lwuflx_dt, & !< RRTM output of incoming clear sky longwave radiation flux (W/m2) |
---|
312 | rrtm_lwuflxc_dt,& !< RRTM output of outgoing clear sky longwave radiation flux (W/m2) |
---|
313 | rrtm_lwhr, & !< RRTM output of longwave radiation heating rate (K/d) |
---|
314 | rrtm_lwhrc, & !< RRTM output of incoming longwave clear sky radiation heating rate (K/d) |
---|
315 | rrtm_swdflx, & !< RRTM output of incoming shortwave radiation flux (W/m2) |
---|
316 | rrtm_swdflxc, & !< RRTM output of outgoing clear sky shortwave radiation flux (W/m2) |
---|
317 | rrtm_swuflx, & !< RRTM output of outgoing shortwave radiation flux (W/m2) |
---|
318 | rrtm_swuflxc, & !< RRTM output of incoming clear sky shortwave radiation flux (W/m2) |
---|
319 | rrtm_swhr, & !< RRTM output of shortwave radiation heating rate (K/d) |
---|
320 | rrtm_swhrc !< RRTM output of incoming shortwave clear sky radiation heating rate (K/d) |
---|
321 | |
---|
322 | ! |
---|
323 | !-- Definition of arrays that are currently not used for calling RRTMG (due to setting of flag parameters) |
---|
324 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: rad_lw_cs_in, & !< incoming clear sky longwave radiation (W/m2) (not used) |
---|
325 | rad_lw_cs_out, & !< outgoing clear sky longwave radiation (W/m2) (not used) |
---|
326 | rad_sw_cs_in, & !< incoming clear sky shortwave radiation (W/m2) (not used) |
---|
327 | rad_sw_cs_out, & !< outgoing clear sky shortwave radiation (W/m2) (not used) |
---|
328 | rrtm_aldif, & !< surface albedo for longwave diffuse radiation |
---|
329 | rrtm_aldir, & !< surface albedo for longwave direct radiation |
---|
330 | rrtm_asdif, & !< surface albedo for shortwave diffuse radiation |
---|
331 | rrtm_asdir, & !< surface albedo for shortwave direct radiation |
---|
332 | rrtm_lw_tauaer, & !< lw aerosol optical depth |
---|
333 | rrtm_lw_taucld, & !< lw in-cloud optical depth |
---|
334 | rrtm_sw_taucld, & !< sw in-cloud optical depth |
---|
335 | rrtm_sw_ssacld, & !< sw in-cloud single scattering albedo |
---|
336 | rrtm_sw_asmcld, & !< sw in-cloud asymmetry parameter |
---|
337 | rrtm_sw_fsfcld, & !< sw in-cloud forward scattering fraction |
---|
338 | rrtm_sw_tauaer, & !< sw aerosol optical depth |
---|
339 | rrtm_sw_ssaaer, & !< sw aerosol single scattering albedo |
---|
340 | rrtm_sw_asmaer, & !< sw aerosol asymmetry parameter |
---|
341 | rrtm_sw_ecaer !< sw aerosol optical detph at 0.55 microns (rrtm_iaer = 6 only) |
---|
342 | |
---|
343 | #endif |
---|
344 | |
---|
345 | INTERFACE init_radiation |
---|
346 | MODULE PROCEDURE init_radiation |
---|
347 | END INTERFACE init_radiation |
---|
348 | |
---|
349 | INTERFACE radiation_clearsky |
---|
350 | MODULE PROCEDURE radiation_clearsky |
---|
351 | END INTERFACE radiation_clearsky |
---|
352 | |
---|
353 | INTERFACE radiation_rrtmg |
---|
354 | MODULE PROCEDURE radiation_rrtmg |
---|
355 | END INTERFACE radiation_rrtmg |
---|
356 | |
---|
357 | INTERFACE radiation_tendency |
---|
358 | MODULE PROCEDURE radiation_tendency |
---|
359 | MODULE PROCEDURE radiation_tendency_ij |
---|
360 | END INTERFACE radiation_tendency |
---|
361 | |
---|
362 | SAVE |
---|
363 | |
---|
364 | PRIVATE |
---|
365 | |
---|
366 | PUBLIC albedo, albedo_type, albedo_type_name, albedo_lw_dif, albedo_lw_dir,& |
---|
367 | albedo_sw_dif, albedo_sw_dir, constant_albedo, day_init, dots_rad, & |
---|
368 | dt_radiation, emissivity, force_radiation_call, init_radiation, & |
---|
369 | lambda, lw_radiation, net_radiation, rad_net, rad_net_av, radiation,& |
---|
370 | radiation_clearsky, radiation_rrtmg, radiation_scheme, & |
---|
371 | radiation_tendency, rad_lw_in, rad_lw_in_av, rad_lw_out, & |
---|
372 | rad_lw_out_av, rad_lw_out_change_0, rad_lw_cs_hr, rad_lw_cs_hr_av, & |
---|
373 | rad_lw_hr, rad_lw_hr_av, rad_sw_in, rad_sw_in_av, rad_sw_out, & |
---|
374 | rad_sw_out_av, rad_sw_cs_hr, rad_sw_cs_hr_av, rad_sw_hr, & |
---|
375 | rad_sw_hr_av, sigma_sb, skip_time_do_radiation, sw_radiation, & |
---|
376 | time_radiation, time_utc_init, unscheduled_radiation_calls |
---|
377 | |
---|
378 | |
---|
379 | #if defined ( __rrtmg ) |
---|
380 | PUBLIC rrtm_aldif, rrtm_aldir, rrtm_asdif, rrtm_asdir, rrtm_idrv |
---|
381 | #endif |
---|
382 | |
---|
383 | CONTAINS |
---|
384 | |
---|
385 | !------------------------------------------------------------------------------! |
---|
386 | ! Description: |
---|
387 | ! ------------ |
---|
388 | !> Initialization of the radiation model |
---|
389 | !------------------------------------------------------------------------------! |
---|
390 | SUBROUTINE init_radiation |
---|
391 | |
---|
392 | IMPLICIT NONE |
---|
393 | |
---|
394 | ! |
---|
395 | !-- Allocate array for storing the surface net radiation |
---|
396 | IF ( .NOT. ALLOCATED ( rad_net ) ) THEN |
---|
397 | ALLOCATE ( rad_net(nysg:nyng,nxlg:nxrg) ) |
---|
398 | rad_net = 0.0_wp |
---|
399 | ENDIF |
---|
400 | |
---|
401 | ! |
---|
402 | !-- Allocate array for storing the surface net radiation |
---|
403 | IF ( .NOT. ALLOCATED ( rad_lw_out_change_0 ) ) THEN |
---|
404 | ALLOCATE ( rad_lw_out_change_0(nysg:nyng,nxlg:nxrg) ) |
---|
405 | rad_lw_out_change_0 = 0.0_wp |
---|
406 | ENDIF |
---|
407 | |
---|
408 | ! |
---|
409 | !-- Fix net radiation in case of radiation_scheme = 'constant' |
---|
410 | IF ( radiation_scheme == 'constant' ) THEN |
---|
411 | rad_net = net_radiation |
---|
412 | radiation = .FALSE. |
---|
413 | ! |
---|
414 | !-- Calculate orbital constants |
---|
415 | ELSE |
---|
416 | decl_1 = SIN(23.45_wp * pi / 180.0_wp) |
---|
417 | decl_2 = 2.0_wp * pi / 365.0_wp |
---|
418 | decl_3 = decl_2 * 81.0_wp |
---|
419 | lat = phi * pi / 180.0_wp |
---|
420 | lon = lambda * pi / 180.0_wp |
---|
421 | ENDIF |
---|
422 | |
---|
423 | |
---|
424 | IF ( radiation_scheme == 'clear-sky' ) THEN |
---|
425 | |
---|
426 | ALLOCATE ( alpha(nysg:nyng,nxlg:nxrg) ) |
---|
427 | |
---|
428 | IF ( .NOT. ALLOCATED ( rad_sw_in ) ) THEN |
---|
429 | ALLOCATE ( rad_sw_in(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
430 | ENDIF |
---|
431 | IF ( .NOT. ALLOCATED ( rad_sw_out ) ) THEN |
---|
432 | ALLOCATE ( rad_sw_out(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
433 | ENDIF |
---|
434 | |
---|
435 | IF ( .NOT. ALLOCATED ( rad_sw_in_av ) ) THEN |
---|
436 | ALLOCATE ( rad_sw_in_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
437 | ENDIF |
---|
438 | IF ( .NOT. ALLOCATED ( rad_sw_out_av ) ) THEN |
---|
439 | ALLOCATE ( rad_sw_out_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
440 | ENDIF |
---|
441 | |
---|
442 | IF ( .NOT. ALLOCATED ( rad_lw_in ) ) THEN |
---|
443 | ALLOCATE ( rad_lw_in(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
444 | ENDIF |
---|
445 | IF ( .NOT. ALLOCATED ( rad_lw_out ) ) THEN |
---|
446 | ALLOCATE ( rad_lw_out(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
447 | ENDIF |
---|
448 | |
---|
449 | IF ( .NOT. ALLOCATED ( rad_lw_in_av ) ) THEN |
---|
450 | ALLOCATE ( rad_lw_in_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
451 | ENDIF |
---|
452 | IF ( .NOT. ALLOCATED ( rad_lw_out_av ) ) THEN |
---|
453 | ALLOCATE ( rad_lw_out_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
454 | ENDIF |
---|
455 | |
---|
456 | rad_sw_in = 0.0_wp |
---|
457 | rad_sw_out = 0.0_wp |
---|
458 | rad_lw_in = 0.0_wp |
---|
459 | rad_lw_out = 0.0_wp |
---|
460 | |
---|
461 | ! |
---|
462 | !-- Overwrite albedo if manually set in parameter file |
---|
463 | IF ( albedo_type /= 0 .AND. albedo == 9999999.9_wp ) THEN |
---|
464 | albedo = albedo_pars(2,albedo_type) |
---|
465 | ENDIF |
---|
466 | |
---|
467 | alpha = albedo |
---|
468 | |
---|
469 | ! |
---|
470 | !-- Initialization actions for RRTMG |
---|
471 | ELSEIF ( radiation_scheme == 'rrtmg' ) THEN |
---|
472 | #if defined ( __rrtmg ) |
---|
473 | ! |
---|
474 | !-- Allocate albedos |
---|
475 | ALLOCATE ( rrtm_aldif(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
476 | ALLOCATE ( rrtm_aldir(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
477 | ALLOCATE ( rrtm_asdif(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
478 | ALLOCATE ( rrtm_asdir(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
479 | ALLOCATE ( aldif(nysg:nyng,nxlg:nxrg) ) |
---|
480 | ALLOCATE ( aldir(nysg:nyng,nxlg:nxrg) ) |
---|
481 | ALLOCATE ( asdif(nysg:nyng,nxlg:nxrg) ) |
---|
482 | ALLOCATE ( asdir(nysg:nyng,nxlg:nxrg) ) |
---|
483 | |
---|
484 | IF ( albedo_type /= 0 ) THEN |
---|
485 | IF ( albedo_lw_dif == 9999999.9_wp ) THEN |
---|
486 | albedo_lw_dif = albedo_pars(0,albedo_type) |
---|
487 | albedo_lw_dir = albedo_lw_dif |
---|
488 | ENDIF |
---|
489 | IF ( albedo_sw_dif == 9999999.9_wp ) THEN |
---|
490 | albedo_sw_dif = albedo_pars(1,albedo_type) |
---|
491 | albedo_sw_dir = albedo_sw_dif |
---|
492 | ENDIF |
---|
493 | ENDIF |
---|
494 | |
---|
495 | aldif(:,:) = albedo_lw_dif |
---|
496 | aldir(:,:) = albedo_lw_dir |
---|
497 | asdif(:,:) = albedo_sw_dif |
---|
498 | asdir(:,:) = albedo_sw_dir |
---|
499 | ! |
---|
500 | !-- Calculate initial values of current (cosine of) the zenith angle and |
---|
501 | !-- whether the sun is up |
---|
502 | CALL calc_zenith |
---|
503 | ! |
---|
504 | !-- Calculate initial surface albedo |
---|
505 | IF ( .NOT. constant_albedo ) THEN |
---|
506 | CALL calc_albedo |
---|
507 | ELSE |
---|
508 | rrtm_aldif(0,:,:) = aldif(:,:) |
---|
509 | rrtm_aldir(0,:,:) = aldir(:,:) |
---|
510 | rrtm_asdif(0,:,:) = asdif(:,:) |
---|
511 | rrtm_asdir(0,:,:) = asdir(:,:) |
---|
512 | ENDIF |
---|
513 | |
---|
514 | ! |
---|
515 | !-- Allocate surface emissivity |
---|
516 | ALLOCATE ( rrtm_emis(0:0,1:nbndlw+1) ) |
---|
517 | rrtm_emis = emissivity |
---|
518 | |
---|
519 | ! |
---|
520 | !-- Allocate 3d arrays of radiative fluxes and heating rates |
---|
521 | IF ( .NOT. ALLOCATED ( rad_sw_in ) ) THEN |
---|
522 | ALLOCATE ( rad_sw_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
523 | rad_sw_in = 0.0_wp |
---|
524 | ENDIF |
---|
525 | |
---|
526 | IF ( .NOT. ALLOCATED ( rad_sw_in_av ) ) THEN |
---|
527 | ALLOCATE ( rad_sw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
528 | ENDIF |
---|
529 | |
---|
530 | IF ( .NOT. ALLOCATED ( rad_sw_out ) ) THEN |
---|
531 | ALLOCATE ( rad_sw_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
532 | rad_sw_out = 0.0_wp |
---|
533 | ENDIF |
---|
534 | |
---|
535 | IF ( .NOT. ALLOCATED ( rad_sw_out_av ) ) THEN |
---|
536 | ALLOCATE ( rad_sw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
537 | ENDIF |
---|
538 | |
---|
539 | IF ( .NOT. ALLOCATED ( rad_sw_hr ) ) THEN |
---|
540 | ALLOCATE ( rad_sw_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
541 | rad_sw_hr = 0.0_wp |
---|
542 | ENDIF |
---|
543 | |
---|
544 | IF ( .NOT. ALLOCATED ( rad_sw_hr_av ) ) THEN |
---|
545 | ALLOCATE ( rad_sw_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
546 | rad_sw_hr_av = 0.0_wp |
---|
547 | ENDIF |
---|
548 | |
---|
549 | IF ( .NOT. ALLOCATED ( rad_sw_cs_hr ) ) THEN |
---|
550 | ALLOCATE ( rad_sw_cs_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
551 | rad_sw_cs_hr = 0.0_wp |
---|
552 | ENDIF |
---|
553 | |
---|
554 | IF ( .NOT. ALLOCATED ( rad_sw_cs_hr_av ) ) THEN |
---|
555 | ALLOCATE ( rad_sw_cs_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
556 | rad_sw_cs_hr_av = 0.0_wp |
---|
557 | ENDIF |
---|
558 | |
---|
559 | IF ( .NOT. ALLOCATED ( rad_lw_in ) ) THEN |
---|
560 | ALLOCATE ( rad_lw_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
561 | rad_lw_in = 0.0_wp |
---|
562 | ENDIF |
---|
563 | |
---|
564 | IF ( .NOT. ALLOCATED ( rad_lw_in_av ) ) THEN |
---|
565 | ALLOCATE ( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
566 | ENDIF |
---|
567 | |
---|
568 | IF ( .NOT. ALLOCATED ( rad_lw_out ) ) THEN |
---|
569 | ALLOCATE ( rad_lw_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
570 | rad_lw_out = 0.0_wp |
---|
571 | ENDIF |
---|
572 | |
---|
573 | IF ( .NOT. ALLOCATED ( rad_lw_out_av ) ) THEN |
---|
574 | ALLOCATE ( rad_lw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
575 | ENDIF |
---|
576 | |
---|
577 | IF ( .NOT. ALLOCATED ( rad_lw_hr ) ) THEN |
---|
578 | ALLOCATE ( rad_lw_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
579 | rad_lw_hr = 0.0_wp |
---|
580 | ENDIF |
---|
581 | |
---|
582 | IF ( .NOT. ALLOCATED ( rad_lw_hr_av ) ) THEN |
---|
583 | ALLOCATE ( rad_lw_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
584 | rad_lw_hr_av = 0.0_wp |
---|
585 | ENDIF |
---|
586 | |
---|
587 | IF ( .NOT. ALLOCATED ( rad_lw_cs_hr ) ) THEN |
---|
588 | ALLOCATE ( rad_lw_cs_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
589 | rad_lw_cs_hr = 0.0_wp |
---|
590 | ENDIF |
---|
591 | |
---|
592 | IF ( .NOT. ALLOCATED ( rad_lw_cs_hr_av ) ) THEN |
---|
593 | ALLOCATE ( rad_lw_cs_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
594 | rad_lw_cs_hr_av = 0.0_wp |
---|
595 | ENDIF |
---|
596 | |
---|
597 | ALLOCATE ( rad_sw_cs_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
598 | ALLOCATE ( rad_sw_cs_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
599 | rad_sw_cs_in = 0.0_wp |
---|
600 | rad_sw_cs_out = 0.0_wp |
---|
601 | |
---|
602 | ALLOCATE ( rad_lw_cs_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
603 | ALLOCATE ( rad_lw_cs_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
604 | rad_lw_cs_in = 0.0_wp |
---|
605 | rad_lw_cs_out = 0.0_wp |
---|
606 | |
---|
607 | ! |
---|
608 | !-- Allocate dummy array for storing surface temperature |
---|
609 | ALLOCATE ( rrtm_tsfc(1) ) |
---|
610 | |
---|
611 | ! |
---|
612 | !-- Initialize RRTMG |
---|
613 | IF ( lw_radiation ) CALL rrtmg_lw_ini ( cp ) |
---|
614 | IF ( sw_radiation ) CALL rrtmg_sw_ini ( cp ) |
---|
615 | |
---|
616 | ! |
---|
617 | !-- Set input files for RRTMG |
---|
618 | INQUIRE(FILE="RAD_SND_DATA", EXIST=snd_exists) |
---|
619 | IF ( .NOT. snd_exists ) THEN |
---|
620 | rrtm_input_file = "rrtmg_lw.nc" |
---|
621 | ENDIF |
---|
622 | |
---|
623 | ! |
---|
624 | !-- Read vertical layers for RRTMG from sounding data |
---|
625 | !-- The routine provides nzt_rad, hyp_snd(1:nzt_rad), |
---|
626 | !-- t_snd(nzt+2:nzt_rad), rrtm_play(1:nzt_rad), rrtm_plev(1_nzt_rad+1), |
---|
627 | !-- rrtm_tlay(nzt+2:nzt_rad), rrtm_tlev(nzt+2:nzt_rad+1) |
---|
628 | CALL read_sounding_data |
---|
629 | |
---|
630 | ! |
---|
631 | !-- Read trace gas profiles from file. This routine provides |
---|
632 | !-- the rrtm_ arrays (1:nzt_rad+1) |
---|
633 | CALL read_trace_gas_data |
---|
634 | #endif |
---|
635 | ENDIF |
---|
636 | |
---|
637 | ! |
---|
638 | !-- Perform user actions if required |
---|
639 | CALL user_init_radiation |
---|
640 | |
---|
641 | |
---|
642 | ! |
---|
643 | !-- Add timeseries for radiation model |
---|
644 | dots_rad = dots_num + 1 |
---|
645 | dots_num = dots_num + 5 |
---|
646 | |
---|
647 | dots_label(dots_rad) = "rad_net" |
---|
648 | dots_label(dots_rad+1) = "rad_lw_in" |
---|
649 | dots_label(dots_rad+2) = "rad_lw_out" |
---|
650 | dots_label(dots_rad+3) = "rad_sw_in" |
---|
651 | dots_label(dots_rad+4) = "rad_sw_out" |
---|
652 | dots_unit(dots_rad:dots_rad+4) = "W/m2" |
---|
653 | |
---|
654 | ! |
---|
655 | !-- Output of albedos is only required for RRTMG |
---|
656 | IF ( radiation_scheme == 'rrtmg' ) THEN |
---|
657 | dots_num = dots_num + 4 |
---|
658 | dots_label(dots_rad+5) = "rrtm_aldif" |
---|
659 | dots_label(dots_rad+6) = "rrtm_aldir" |
---|
660 | dots_label(dots_rad+7) = "rrtm_asdif" |
---|
661 | dots_label(dots_rad+8) = "rrtm_asdir" |
---|
662 | dots_unit(dots_num+5:dots_num+8) = "" |
---|
663 | |
---|
664 | ENDIF |
---|
665 | |
---|
666 | ! |
---|
667 | !-- Calculate radiative fluxes at model start |
---|
668 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
669 | IF ( radiation_scheme == 'clear-sky' ) THEN |
---|
670 | CALL radiation_clearsky |
---|
671 | ELSEIF ( radiation_scheme == 'rrtmg' ) THEN |
---|
672 | CALL radiation_rrtmg |
---|
673 | ENDIF |
---|
674 | ENDIF |
---|
675 | |
---|
676 | RETURN |
---|
677 | |
---|
678 | END SUBROUTINE init_radiation |
---|
679 | |
---|
680 | |
---|
681 | !------------------------------------------------------------------------------! |
---|
682 | ! Description: |
---|
683 | ! ------------ |
---|
684 | !> A simple clear sky radiation model |
---|
685 | !------------------------------------------------------------------------------! |
---|
686 | SUBROUTINE radiation_clearsky |
---|
687 | |
---|
688 | USE indices, & |
---|
689 | ONLY: nbgp |
---|
690 | |
---|
691 | IMPLICIT NONE |
---|
692 | |
---|
693 | INTEGER(iwp) :: i, j, k !< loop indices |
---|
694 | REAL(wp) :: exn, & !< Exner functions at surface |
---|
695 | exn1, & !< Exner functions at first grid level |
---|
696 | pt1 !< potential temperature at first grid level |
---|
697 | |
---|
698 | ! |
---|
699 | !-- Calculate current zenith angle |
---|
700 | CALL calc_zenith |
---|
701 | |
---|
702 | ! |
---|
703 | !-- Calculate sky transmissivity |
---|
704 | sky_trans = 0.6_wp + 0.2_wp * zenith(0) |
---|
705 | |
---|
706 | ! |
---|
707 | !-- Calculate value of the Exner function |
---|
708 | exn = (surface_pressure / 1000.0_wp )**0.286_wp |
---|
709 | ! |
---|
710 | !-- Calculate radiation fluxes and net radiation (rad_net) for each grid |
---|
711 | !-- point |
---|
712 | DO i = nxlg, nxrg |
---|
713 | DO j = nysg, nyng |
---|
714 | k = nzb_s_inner(j,i) |
---|
715 | |
---|
716 | exn1 = (hyp(k+1) / 100000.0_wp )**0.286_wp |
---|
717 | |
---|
718 | rad_sw_in(0,j,i) = solar_constant * sky_trans * zenith(0) |
---|
719 | rad_sw_out(0,j,i) = alpha(j,i) * rad_sw_in(0,j,i) |
---|
720 | rad_lw_out(0,j,i) = emissivity * sigma_sb * (pt(k,j,i) * exn)**4 |
---|
721 | |
---|
722 | IF ( cloud_physics ) THEN |
---|
723 | pt1 = pt(k+1,j,i) + l_d_cp / exn1 * ql(k+1,j,i) |
---|
724 | rad_lw_in(0,j,i) = 0.8_wp * sigma_sb * (pt1 * exn1)**4 |
---|
725 | ELSE |
---|
726 | rad_lw_in(0,j,i) = 0.8_wp * sigma_sb * (pt(k+1,j,i) * exn1)**4 |
---|
727 | ENDIF |
---|
728 | |
---|
729 | rad_net(j,i) = rad_sw_in(0,j,i) - rad_sw_out(0,j,i) & |
---|
730 | + rad_lw_in(0,j,i) - rad_lw_out(0,j,i) |
---|
731 | |
---|
732 | ENDDO |
---|
733 | ENDDO |
---|
734 | |
---|
735 | END SUBROUTINE radiation_clearsky |
---|
736 | |
---|
737 | |
---|
738 | !------------------------------------------------------------------------------! |
---|
739 | ! Description: |
---|
740 | ! ------------ |
---|
741 | !> Implementation of the RRTMG radiation_scheme |
---|
742 | !------------------------------------------------------------------------------! |
---|
743 | SUBROUTINE radiation_rrtmg |
---|
744 | |
---|
745 | USE indices, & |
---|
746 | ONLY: nbgp |
---|
747 | |
---|
748 | USE particle_attributes, & |
---|
749 | ONLY: grid_particles, number_of_particles, particles, & |
---|
750 | particle_advection_start, prt_count |
---|
751 | |
---|
752 | IMPLICIT NONE |
---|
753 | |
---|
754 | #if defined ( __rrtmg ) |
---|
755 | |
---|
756 | INTEGER(iwp) :: i, j, k, n !< loop indices |
---|
757 | |
---|
758 | REAL(wp) :: s_r2, & !< weighted sum over all droplets with r^2 |
---|
759 | s_r3 !< weighted sum over all droplets with r^3 |
---|
760 | |
---|
761 | ! |
---|
762 | !-- Calculate current (cosine of) zenith angle and whether the sun is up |
---|
763 | CALL calc_zenith |
---|
764 | ! |
---|
765 | !-- Calculate surface albedo |
---|
766 | IF ( .NOT. constant_albedo ) THEN |
---|
767 | CALL calc_albedo |
---|
768 | ENDIF |
---|
769 | |
---|
770 | ! |
---|
771 | !-- Prepare input data for RRTMG |
---|
772 | |
---|
773 | ! |
---|
774 | !-- In case of large scale forcing with surface data, calculate new pressure |
---|
775 | !-- profile. nzt_rad might be modified by these calls and all required arrays |
---|
776 | !-- will then be re-allocated |
---|
777 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
778 | CALL read_sounding_data |
---|
779 | CALL read_trace_gas_data |
---|
780 | ENDIF |
---|
781 | ! |
---|
782 | !-- Loop over all grid points |
---|
783 | DO i = nxl, nxr |
---|
784 | DO j = nys, nyn |
---|
785 | |
---|
786 | ! |
---|
787 | !-- Prepare profiles of temperature and H2O volume mixing ratio |
---|
788 | rrtm_tlev(0,nzb+1) = pt(nzb,j,i) * ( surface_pressure & |
---|
789 | / 1000.0_wp )**0.286_wp |
---|
790 | |
---|
791 | DO k = nzb+1, nzt+1 |
---|
792 | rrtm_tlay(0,k) = pt(k,j,i) * ( (hyp(k) ) / 100000.0_wp & |
---|
793 | )**0.286_wp + l_d_cp * ql(k,j,i) |
---|
794 | rrtm_h2ovmr(0,k) = mol_mass_air_d_wv * (q(k,j,i) - ql(k,j,i)) |
---|
795 | |
---|
796 | ENDDO |
---|
797 | |
---|
798 | ! |
---|
799 | !-- Avoid temperature/humidity jumps at the top of the LES domain by |
---|
800 | !-- linear interpolation from nzt+2 to nzt+7 |
---|
801 | DO k = nzt+2, nzt+7 |
---|
802 | rrtm_tlay(0,k) = rrtm_tlay(0,nzt+1) & |
---|
803 | + ( rrtm_tlay(0,nzt+8) - rrtm_tlay(0,nzt+1) ) & |
---|
804 | / ( rrtm_play(0,nzt+8) - rrtm_play(0,nzt+1) ) & |
---|
805 | * ( rrtm_play(0,k) - rrtm_play(0,nzt+1) ) |
---|
806 | |
---|
807 | rrtm_h2ovmr(0,k) = rrtm_h2ovmr(0,nzt+1) & |
---|
808 | + ( rrtm_h2ovmr(0,nzt+8) - rrtm_h2ovmr(0,nzt+1) )& |
---|
809 | / ( rrtm_play(0,nzt+8) - rrtm_play(0,nzt+1) )& |
---|
810 | * ( rrtm_play(0,k) - rrtm_play(0,nzt+1) ) |
---|
811 | |
---|
812 | ENDDO |
---|
813 | |
---|
814 | !-- Linear interpolate to zw grid |
---|
815 | DO k = nzb+2, nzt+8 |
---|
816 | rrtm_tlev(0,k) = rrtm_tlay(0,k-1) + (rrtm_tlay(0,k) - & |
---|
817 | rrtm_tlay(0,k-1)) & |
---|
818 | / ( rrtm_play(0,k) - rrtm_play(0,k-1) ) & |
---|
819 | * ( rrtm_plev(0,k) - rrtm_play(0,k-1) ) |
---|
820 | ENDDO |
---|
821 | |
---|
822 | |
---|
823 | ! |
---|
824 | !-- Calculate liquid water path and cloud fraction for each column. |
---|
825 | !-- Note that LWP is required in g/m² instead of kg/kg m. |
---|
826 | rrtm_cldfr = 0.0_wp |
---|
827 | rrtm_reliq = 0.0_wp |
---|
828 | rrtm_cliqwp = 0.0_wp |
---|
829 | rrtm_icld = 0 |
---|
830 | |
---|
831 | DO k = nzb+1, nzt+1 |
---|
832 | rrtm_cliqwp(0,k) = ql(k,j,i) * 1000.0_wp * & |
---|
833 | (rrtm_plev(0,k) - rrtm_plev(0,k+1)) & |
---|
834 | * 100.0_wp / g |
---|
835 | |
---|
836 | IF ( rrtm_cliqwp(0,k) > 0.0_wp ) THEN |
---|
837 | rrtm_cldfr(0,k) = 1.0_wp |
---|
838 | IF ( rrtm_icld == 0 ) rrtm_icld = 1 |
---|
839 | |
---|
840 | ! |
---|
841 | !-- Calculate cloud droplet effective radius |
---|
842 | IF ( cloud_physics ) THEN |
---|
843 | rrtm_reliq(0,k) = 1.0E6_wp * ( 3.0_wp * ql(k,j,i) & |
---|
844 | * rho_surface & |
---|
845 | / ( 4.0_wp * pi * nc_const * rho_l ) & |
---|
846 | )**0.33333333333333_wp & |
---|
847 | * EXP( LOG( sigma_gc )**2 ) |
---|
848 | |
---|
849 | ELSEIF ( cloud_droplets ) THEN |
---|
850 | number_of_particles = prt_count(k,j,i) |
---|
851 | |
---|
852 | IF (number_of_particles <= 0) CYCLE |
---|
853 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
854 | s_r2 = 0.0_wp |
---|
855 | s_r3 = 0.0_wp |
---|
856 | |
---|
857 | DO n = 1, number_of_particles |
---|
858 | IF ( particles(n)%particle_mask ) THEN |
---|
859 | s_r2 = s_r2 + particles(n)%radius**2 * & |
---|
860 | particles(n)%weight_factor |
---|
861 | s_r3 = s_r3 + particles(n)%radius**3 * & |
---|
862 | particles(n)%weight_factor |
---|
863 | ENDIF |
---|
864 | ENDDO |
---|
865 | |
---|
866 | IF ( s_r2 > 0.0_wp ) rrtm_reliq(0,k) = s_r3 / s_r2 |
---|
867 | |
---|
868 | ENDIF |
---|
869 | |
---|
870 | ! |
---|
871 | !-- Limit effective radius |
---|
872 | IF ( rrtm_reliq(0,k) > 0.0_wp ) THEN |
---|
873 | rrtm_reliq(0,k) = MAX(rrtm_reliq(0,k),2.5_wp) |
---|
874 | rrtm_reliq(0,k) = MIN(rrtm_reliq(0,k),60.0_wp) |
---|
875 | ENDIF |
---|
876 | ENDIF |
---|
877 | ENDDO |
---|
878 | |
---|
879 | ! |
---|
880 | !-- Set surface temperature |
---|
881 | rrtm_tsfc = pt(nzb,j,i) * (surface_pressure / 1000.0_wp )**0.286_wp |
---|
882 | |
---|
883 | IF ( lw_radiation ) THEN |
---|
884 | CALL rrtmg_lw( 1, nzt_rad , rrtm_icld , rrtm_idrv ,& |
---|
885 | rrtm_play , rrtm_plev , rrtm_tlay , rrtm_tlev ,& |
---|
886 | rrtm_tsfc , rrtm_h2ovmr , rrtm_o3vmr , rrtm_co2vmr ,& |
---|
887 | rrtm_ch4vmr , rrtm_n2ovmr , rrtm_o2vmr , rrtm_cfc11vmr ,& |
---|
888 | rrtm_cfc12vmr , rrtm_cfc22vmr, rrtm_ccl4vmr , rrtm_emis ,& |
---|
889 | rrtm_inflglw , rrtm_iceflglw, rrtm_liqflglw, rrtm_cldfr ,& |
---|
890 | rrtm_lw_taucld , rrtm_cicewp , rrtm_cliqwp , rrtm_reice ,& |
---|
891 | rrtm_reliq , rrtm_lw_tauaer, & |
---|
892 | rrtm_lwuflx , rrtm_lwdflx , rrtm_lwhr , & |
---|
893 | rrtm_lwuflxc , rrtm_lwdflxc , rrtm_lwhrc , & |
---|
894 | rrtm_lwuflx_dt , rrtm_lwuflxc_dt ) |
---|
895 | |
---|
896 | ! |
---|
897 | !-- Save fluxes |
---|
898 | DO k = nzb, nzt+1 |
---|
899 | rad_lw_in(k,j,i) = rrtm_lwdflx(0,k) |
---|
900 | rad_lw_out(k,j,i) = rrtm_lwuflx(0,k) |
---|
901 | ENDDO |
---|
902 | |
---|
903 | ! |
---|
904 | !-- Save heating rates (convert from K/d to K/h) |
---|
905 | DO k = nzb+1, nzt+1 |
---|
906 | rad_lw_hr(k,j,i) = rrtm_lwhr(0,k) * d_hours_day |
---|
907 | rad_lw_cs_hr(k,j,i) = rrtm_lwhrc(0,k) * d_hours_day |
---|
908 | ENDDO |
---|
909 | |
---|
910 | ! |
---|
911 | !-- Save change in LW heating rate |
---|
912 | rad_lw_out_change_0(j,i) = rrtm_lwuflx_dt(0,nzb) |
---|
913 | |
---|
914 | ENDIF |
---|
915 | |
---|
916 | IF ( sw_radiation .AND. sun_up ) THEN |
---|
917 | CALL rrtmg_sw( 1, nzt_rad , rrtm_icld , rrtm_iaer ,& |
---|
918 | rrtm_play , rrtm_plev , rrtm_tlay , rrtm_tlev ,& |
---|
919 | rrtm_tsfc , rrtm_h2ovmr , rrtm_o3vmr , rrtm_co2vmr ,& |
---|
920 | rrtm_ch4vmr , rrtm_n2ovmr , rrtm_o2vmr , rrtm_asdir(:,j,i),& |
---|
921 | rrtm_asdif(:,j,i), rrtm_aldir(:,j,i), rrtm_aldif(:,j,i), zenith,& |
---|
922 | 0.0_wp , day , solar_constant, rrtm_inflgsw,& |
---|
923 | rrtm_iceflgsw , rrtm_liqflgsw, rrtm_cldfr , rrtm_sw_taucld ,& |
---|
924 | rrtm_sw_ssacld , rrtm_sw_asmcld, rrtm_sw_fsfcld, rrtm_cicewp ,& |
---|
925 | rrtm_cliqwp , rrtm_reice , rrtm_reliq , rrtm_sw_tauaer ,& |
---|
926 | rrtm_sw_ssaaer , rrtm_sw_asmaer , rrtm_sw_ecaer , & |
---|
927 | rrtm_swuflx , rrtm_swdflx , rrtm_swhr , & |
---|
928 | rrtm_swuflxc , rrtm_swdflxc , rrtm_swhrc ) |
---|
929 | |
---|
930 | ! |
---|
931 | !-- Save fluxes |
---|
932 | DO k = nzb, nzt+1 |
---|
933 | rad_sw_in(k,j,i) = rrtm_swdflx(0,k) |
---|
934 | rad_sw_out(k,j,i) = rrtm_swuflx(0,k) |
---|
935 | ENDDO |
---|
936 | |
---|
937 | ! |
---|
938 | !-- Save heating rates (convert from K/d to K/s) |
---|
939 | DO k = nzb+1, nzt+1 |
---|
940 | rad_sw_hr(k,j,i) = rrtm_swhr(0,k) * d_hours_day |
---|
941 | rad_sw_cs_hr(k,j,i) = rrtm_swhrc(0,k) * d_hours_day |
---|
942 | ENDDO |
---|
943 | |
---|
944 | ENDIF |
---|
945 | |
---|
946 | ! |
---|
947 | !-- Calculate surface net radiation |
---|
948 | rad_net(j,i) = rad_sw_in(nzb,j,i) - rad_sw_out(nzb,j,i) & |
---|
949 | + rad_lw_in(nzb,j,i) - rad_lw_out(nzb,j,i) |
---|
950 | |
---|
951 | ENDDO |
---|
952 | ENDDO |
---|
953 | |
---|
954 | CALL exchange_horiz( rad_lw_in, nbgp ) |
---|
955 | CALL exchange_horiz( rad_lw_out, nbgp ) |
---|
956 | CALL exchange_horiz( rad_lw_hr, nbgp ) |
---|
957 | CALL exchange_horiz( rad_lw_cs_hr, nbgp ) |
---|
958 | |
---|
959 | CALL exchange_horiz( rad_sw_in, nbgp ) |
---|
960 | CALL exchange_horiz( rad_sw_out, nbgp ) |
---|
961 | CALL exchange_horiz( rad_sw_hr, nbgp ) |
---|
962 | CALL exchange_horiz( rad_sw_cs_hr, nbgp ) |
---|
963 | |
---|
964 | CALL exchange_horiz_2d( rad_net, nbgp ) |
---|
965 | CALL exchange_horiz_2d( rad_lw_out_change_0, nbgp ) |
---|
966 | #endif |
---|
967 | |
---|
968 | END SUBROUTINE radiation_rrtmg |
---|
969 | |
---|
970 | |
---|
971 | !------------------------------------------------------------------------------! |
---|
972 | ! Description: |
---|
973 | ! ------------ |
---|
974 | !> Calculate the cosine of the zenith angle (variable is called zenith) |
---|
975 | !------------------------------------------------------------------------------! |
---|
976 | SUBROUTINE calc_zenith |
---|
977 | |
---|
978 | IMPLICIT NONE |
---|
979 | |
---|
980 | REAL(wp) :: declination, & !< solar declination angle |
---|
981 | hour_angle !< solar hour angle |
---|
982 | ! |
---|
983 | !-- Calculate current day and time based on the initial values and simulation |
---|
984 | !-- time |
---|
985 | day = day_init + INT(FLOOR( (time_utc_init + time_since_reference_point) & |
---|
986 | / 86400.0_wp ), KIND=iwp) |
---|
987 | time_utc = MOD((time_utc_init + time_since_reference_point), 86400.0_wp) |
---|
988 | |
---|
989 | |
---|
990 | ! |
---|
991 | !-- Calculate solar declination and hour angle |
---|
992 | declination = ASIN( decl_1 * SIN(decl_2 * REAL(day, KIND=wp) - decl_3) ) |
---|
993 | hour_angle = 2.0_wp * pi * (time_utc / 86400.0_wp) + lon - pi |
---|
994 | |
---|
995 | ! |
---|
996 | !-- Calculate zenith angle |
---|
997 | zenith(0) = SIN(lat) * SIN(declination) + COS(lat) * COS(declination) & |
---|
998 | * COS(hour_angle) |
---|
999 | zenith(0) = MAX(0.0_wp,zenith(0)) |
---|
1000 | |
---|
1001 | ! |
---|
1002 | !-- Check if the sun is up (otheriwse shortwave calculations can be skipped) |
---|
1003 | IF ( zenith(0) > 0.0_wp ) THEN |
---|
1004 | sun_up = .TRUE. |
---|
1005 | ELSE |
---|
1006 | sun_up = .FALSE. |
---|
1007 | END IF |
---|
1008 | |
---|
1009 | END SUBROUTINE calc_zenith |
---|
1010 | |
---|
1011 | #if defined ( __rrtmg ) && defined ( __netcdf ) |
---|
1012 | !------------------------------------------------------------------------------! |
---|
1013 | ! Description: |
---|
1014 | ! ------------ |
---|
1015 | !> Calculates surface albedo components based on Briegleb (1992) and |
---|
1016 | !> Briegleb et al. (1986) |
---|
1017 | !------------------------------------------------------------------------------! |
---|
1018 | SUBROUTINE calc_albedo |
---|
1019 | |
---|
1020 | IMPLICIT NONE |
---|
1021 | |
---|
1022 | IF ( sun_up ) THEN |
---|
1023 | ! |
---|
1024 | !-- Ocean |
---|
1025 | IF ( albedo_type == 1 ) THEN |
---|
1026 | rrtm_aldir(0,:,:) = 0.026_wp / ( zenith(0)**1.7_wp + 0.065_wp ) & |
---|
1027 | + 0.15_wp * ( zenith(0) - 0.1_wp ) & |
---|
1028 | * ( zenith(0) - 0.5_wp ) & |
---|
1029 | * ( zenith(0) - 1.0_wp ) |
---|
1030 | rrtm_asdir(0,:,:) = rrtm_aldir(0,:,:) |
---|
1031 | ! |
---|
1032 | !-- Snow |
---|
1033 | ELSEIF ( albedo_type == 16 ) THEN |
---|
1034 | IF ( zenith(0) < 0.5_wp ) THEN |
---|
1035 | rrtm_aldir(0,:,:) = 0.5_wp * (1.0_wp - aldif) & |
---|
1036 | * ( 3.0_wp / (1.0_wp + 4.0_wp & |
---|
1037 | * zenith(0))) - 1.0_wp |
---|
1038 | rrtm_asdir(0,:,:) = 0.5_wp * (1.0_wp - asdif) & |
---|
1039 | * ( 3.0_wp / (1.0_wp + 4.0_wp & |
---|
1040 | * zenith(0))) - 1.0_wp |
---|
1041 | |
---|
1042 | rrtm_aldir(0,:,:) = MIN(0.98_wp, rrtm_aldir(0,:,:)) |
---|
1043 | rrtm_asdir(0,:,:) = MIN(0.98_wp, rrtm_asdir(0,:,:)) |
---|
1044 | ELSE |
---|
1045 | rrtm_aldir(0,:,:) = aldif |
---|
1046 | rrtm_asdir(0,:,:) = asdif |
---|
1047 | ENDIF |
---|
1048 | ! |
---|
1049 | !-- Sea ice |
---|
1050 | ELSEIF ( albedo_type == 15 ) THEN |
---|
1051 | rrtm_aldir(0,:,:) = aldif |
---|
1052 | rrtm_asdir(0,:,:) = asdif |
---|
1053 | ! |
---|
1054 | !-- Land surfaces |
---|
1055 | ELSE |
---|
1056 | SELECT CASE ( albedo_type ) |
---|
1057 | |
---|
1058 | ! |
---|
1059 | !-- Surface types with strong zenith dependence |
---|
1060 | CASE ( 1, 2, 3, 4, 11, 12, 13 ) |
---|
1061 | rrtm_aldir(0,:,:) = aldif * 1.4_wp / & |
---|
1062 | (1.0_wp + 0.8_wp * zenith(0)) |
---|
1063 | rrtm_asdir(0,:,:) = asdif * 1.4_wp / & |
---|
1064 | (1.0_wp + 0.8_wp * zenith(0)) |
---|
1065 | ! |
---|
1066 | !-- Surface types with weak zenith dependence |
---|
1067 | CASE ( 5, 6, 7, 8, 9, 10, 14 ) |
---|
1068 | rrtm_aldir(0,:,:) = aldif * 1.1_wp / & |
---|
1069 | (1.0_wp + 0.2_wp * zenith(0)) |
---|
1070 | rrtm_asdir(0,:,:) = asdif * 1.1_wp / & |
---|
1071 | (1.0_wp + 0.2_wp * zenith(0)) |
---|
1072 | |
---|
1073 | CASE DEFAULT |
---|
1074 | |
---|
1075 | END SELECT |
---|
1076 | ENDIF |
---|
1077 | ! |
---|
1078 | !-- Diffusive albedo is taken from Table 2 |
---|
1079 | rrtm_aldif(0,:,:) = aldif |
---|
1080 | rrtm_asdif(0,:,:) = asdif |
---|
1081 | |
---|
1082 | ELSE |
---|
1083 | |
---|
1084 | rrtm_aldir(0,:,:) = 0.0_wp |
---|
1085 | rrtm_asdir(0,:,:) = 0.0_wp |
---|
1086 | rrtm_aldif(0,:,:) = 0.0_wp |
---|
1087 | rrtm_asdif(0,:,:) = 0.0_wp |
---|
1088 | ENDIF |
---|
1089 | END SUBROUTINE calc_albedo |
---|
1090 | |
---|
1091 | !------------------------------------------------------------------------------! |
---|
1092 | ! Description: |
---|
1093 | ! ------------ |
---|
1094 | !> Read sounding data (pressure and temperature) from RADIATION_DATA. |
---|
1095 | !------------------------------------------------------------------------------! |
---|
1096 | SUBROUTINE read_sounding_data |
---|
1097 | |
---|
1098 | USE netcdf_control |
---|
1099 | |
---|
1100 | IMPLICIT NONE |
---|
1101 | |
---|
1102 | INTEGER(iwp) :: id, & !< NetCDF id of input file |
---|
1103 | id_dim_zrad, & !< pressure level id in the NetCDF file |
---|
1104 | id_var, & !< NetCDF variable id |
---|
1105 | k, & !< loop index |
---|
1106 | nz_snd, & !< number of vertical levels in the sounding data |
---|
1107 | nz_snd_start, & !< start vertical index for sounding data to be used |
---|
1108 | nz_snd_end !< end vertical index for souding data to be used |
---|
1109 | |
---|
1110 | REAL(wp) :: t_surface !< actual surface temperature |
---|
1111 | |
---|
1112 | REAL(wp), DIMENSION(:), ALLOCATABLE :: hyp_snd_tmp, & !< temporary hydrostatic pressure profile (sounding) |
---|
1113 | t_snd_tmp !< temporary temperature profile (sounding) |
---|
1114 | |
---|
1115 | ! |
---|
1116 | !-- In case of updates, deallocate arrays first (sufficient to check one |
---|
1117 | !-- array as the others are automatically allocated). This is required |
---|
1118 | !-- because nzt_rad might change during the update |
---|
1119 | IF ( ALLOCATED ( hyp_snd ) ) THEN |
---|
1120 | DEALLOCATE( hyp_snd ) |
---|
1121 | DEALLOCATE( t_snd ) |
---|
1122 | DEALLOCATE( q_snd ) |
---|
1123 | DEALLOCATE ( rrtm_play ) |
---|
1124 | DEALLOCATE ( rrtm_plev ) |
---|
1125 | DEALLOCATE ( rrtm_tlay ) |
---|
1126 | DEALLOCATE ( rrtm_tlev ) |
---|
1127 | |
---|
1128 | DEALLOCATE ( rrtm_h2ovmr ) |
---|
1129 | DEALLOCATE ( rrtm_cicewp ) |
---|
1130 | DEALLOCATE ( rrtm_cldfr ) |
---|
1131 | DEALLOCATE ( rrtm_cliqwp ) |
---|
1132 | DEALLOCATE ( rrtm_reice ) |
---|
1133 | DEALLOCATE ( rrtm_reliq ) |
---|
1134 | DEALLOCATE ( rrtm_lw_taucld ) |
---|
1135 | DEALLOCATE ( rrtm_lw_tauaer ) |
---|
1136 | |
---|
1137 | DEALLOCATE ( rrtm_lwdflx ) |
---|
1138 | DEALLOCATE ( rrtm_lwdflxc ) |
---|
1139 | DEALLOCATE ( rrtm_lwuflx ) |
---|
1140 | DEALLOCATE ( rrtm_lwuflxc ) |
---|
1141 | DEALLOCATE ( rrtm_lwuflx_dt ) |
---|
1142 | DEALLOCATE ( rrtm_lwuflxc_dt ) |
---|
1143 | DEALLOCATE ( rrtm_lwhr ) |
---|
1144 | DEALLOCATE ( rrtm_lwhrc ) |
---|
1145 | |
---|
1146 | DEALLOCATE ( rrtm_sw_taucld ) |
---|
1147 | DEALLOCATE ( rrtm_sw_ssacld ) |
---|
1148 | DEALLOCATE ( rrtm_sw_asmcld ) |
---|
1149 | DEALLOCATE ( rrtm_sw_fsfcld ) |
---|
1150 | DEALLOCATE ( rrtm_sw_tauaer ) |
---|
1151 | DEALLOCATE ( rrtm_sw_ssaaer ) |
---|
1152 | DEALLOCATE ( rrtm_sw_asmaer ) |
---|
1153 | DEALLOCATE ( rrtm_sw_ecaer ) |
---|
1154 | |
---|
1155 | DEALLOCATE ( rrtm_swdflx ) |
---|
1156 | DEALLOCATE ( rrtm_swdflxc ) |
---|
1157 | DEALLOCATE ( rrtm_swuflx ) |
---|
1158 | DEALLOCATE ( rrtm_swuflxc ) |
---|
1159 | DEALLOCATE ( rrtm_swhr ) |
---|
1160 | DEALLOCATE ( rrtm_swhrc ) |
---|
1161 | |
---|
1162 | ENDIF |
---|
1163 | |
---|
1164 | ! |
---|
1165 | !-- Open file for reading |
---|
1166 | nc_stat = NF90_OPEN( rrtm_input_file, NF90_NOWRITE, id ) |
---|
1167 | CALL handle_netcdf_error( 'netcdf', 549 ) |
---|
1168 | |
---|
1169 | ! |
---|
1170 | !-- Inquire dimension of z axis and save in nz_snd |
---|
1171 | nc_stat = NF90_INQ_DIMID( id, "Pressure", id_dim_zrad ) |
---|
1172 | nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim_zrad, len = nz_snd ) |
---|
1173 | CALL handle_netcdf_error( 'netcdf', 551 ) |
---|
1174 | |
---|
1175 | ! |
---|
1176 | ! !-- Allocate temporary array for storing pressure data |
---|
1177 | ALLOCATE( hyp_snd_tmp(1:nz_snd) ) |
---|
1178 | hyp_snd_tmp = 0.0_wp |
---|
1179 | |
---|
1180 | |
---|
1181 | !-- Read pressure from file |
---|
1182 | nc_stat = NF90_INQ_VARID( id, "Pressure", id_var ) |
---|
1183 | nc_stat = NF90_GET_VAR( id, id_var, hyp_snd_tmp(:), start = (/1/), & |
---|
1184 | count = (/nz_snd/) ) |
---|
1185 | CALL handle_netcdf_error( 'netcdf', 552 ) |
---|
1186 | |
---|
1187 | ! |
---|
1188 | !-- Allocate temporary array for storing temperature data |
---|
1189 | ALLOCATE( t_snd_tmp(1:nz_snd) ) |
---|
1190 | t_snd_tmp = 0.0_wp |
---|
1191 | |
---|
1192 | ! |
---|
1193 | !-- Read temperature from file |
---|
1194 | nc_stat = NF90_INQ_VARID( id, "ReferenceTemperature", id_var ) |
---|
1195 | nc_stat = NF90_GET_VAR( id, id_var, t_snd_tmp(:), start = (/1/), & |
---|
1196 | count = (/nz_snd/) ) |
---|
1197 | CALL handle_netcdf_error( 'netcdf', 553 ) |
---|
1198 | |
---|
1199 | ! |
---|
1200 | !-- Calculate start of sounding data |
---|
1201 | nz_snd_start = nz_snd + 1 |
---|
1202 | nz_snd_end = nz_snd + 1 |
---|
1203 | |
---|
1204 | ! |
---|
1205 | !-- Start filling vertical dimension at 10hPa above the model domain (hyp is |
---|
1206 | !-- in Pa, hyp_snd in hPa). |
---|
1207 | DO k = 1, nz_snd |
---|
1208 | IF ( hyp_snd_tmp(k) < ( hyp(nzt+1) - 1000.0_wp) * 0.01_wp ) THEN |
---|
1209 | nz_snd_start = k |
---|
1210 | EXIT |
---|
1211 | END IF |
---|
1212 | END DO |
---|
1213 | |
---|
1214 | IF ( nz_snd_start <= nz_snd ) THEN |
---|
1215 | nz_snd_end = nz_snd |
---|
1216 | END IF |
---|
1217 | |
---|
1218 | |
---|
1219 | ! |
---|
1220 | !-- Calculate of total grid points for RRTMG calculations |
---|
1221 | nzt_rad = nzt + nz_snd_end - nz_snd_start + 1 |
---|
1222 | |
---|
1223 | ! |
---|
1224 | !-- Save data above LES domain in hyp_snd, t_snd and q_snd |
---|
1225 | !-- Note: q_snd_tmp is not calculated at the moment (dry residual atmosphere) |
---|
1226 | ALLOCATE( hyp_snd(nzb+1:nzt_rad) ) |
---|
1227 | ALLOCATE( t_snd(nzb+1:nzt_rad) ) |
---|
1228 | ALLOCATE( q_snd(nzb+1:nzt_rad) ) |
---|
1229 | hyp_snd = 0.0_wp |
---|
1230 | t_snd = 0.0_wp |
---|
1231 | q_snd = 0.0_wp |
---|
1232 | |
---|
1233 | hyp_snd(nzt+2:nzt_rad) = hyp_snd_tmp(nz_snd_start+1:nz_snd_end) |
---|
1234 | t_snd(nzt+2:nzt_rad) = t_snd_tmp(nz_snd_start+1:nz_snd_end) |
---|
1235 | |
---|
1236 | nc_stat = NF90_CLOSE( id ) |
---|
1237 | |
---|
1238 | ! |
---|
1239 | !-- Calculate pressure levels on zu and zw grid. Sounding data is added at |
---|
1240 | !-- top of the LES domain. This routine does not consider horizontal or |
---|
1241 | !-- vertical variability of pressure and temperature |
---|
1242 | ALLOCATE ( rrtm_play(0:0,nzb+1:nzt_rad+1) ) |
---|
1243 | ALLOCATE ( rrtm_plev(0:0,nzb+1:nzt_rad+2) ) |
---|
1244 | |
---|
1245 | t_surface = pt_surface * ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
1246 | DO k = nzb+1, nzt+1 |
---|
1247 | rrtm_play(0,k) = hyp(k) * 0.01_wp |
---|
1248 | rrtm_plev(0,k) = surface_pressure * ( (t_surface - g/cp * zw(k-1)) / & |
---|
1249 | t_surface )**(1.0_wp/0.286_wp) |
---|
1250 | ENDDO |
---|
1251 | |
---|
1252 | DO k = nzt+2, nzt_rad |
---|
1253 | rrtm_play(0,k) = hyp_snd(k) |
---|
1254 | rrtm_plev(0,k) = 0.5_wp * ( rrtm_play(0,k) + rrtm_play(0,k-1) ) |
---|
1255 | ENDDO |
---|
1256 | rrtm_plev(0,nzt_rad+1) = MAX( 0.5 * hyp_snd(nzt_rad), & |
---|
1257 | 1.5 * hyp_snd(nzt_rad) & |
---|
1258 | - 0.5 * hyp_snd(nzt_rad-1) ) |
---|
1259 | rrtm_plev(0,nzt_rad+2) = MIN( 1.0E-4_wp, & |
---|
1260 | 0.25_wp * rrtm_plev(0,nzt_rad+1) ) |
---|
1261 | |
---|
1262 | rrtm_play(0,nzt_rad+1) = 0.5 * rrtm_plev(0,nzt_rad+1) |
---|
1263 | |
---|
1264 | ! |
---|
1265 | !-- Calculate temperature/humidity levels at top of the LES domain. |
---|
1266 | !-- Currently, the temperature is taken from sounding data (might lead to a |
---|
1267 | !-- temperature jump at interface. To do: Humidity is currently not |
---|
1268 | !-- calculated above the LES domain. |
---|
1269 | ALLOCATE ( rrtm_tlay(0:0,nzb+1:nzt_rad+1) ) |
---|
1270 | ALLOCATE ( rrtm_tlev(0:0,nzb+1:nzt_rad+2) ) |
---|
1271 | ALLOCATE ( rrtm_h2ovmr(0:0,nzb+1:nzt_rad+1) ) |
---|
1272 | |
---|
1273 | DO k = nzt+8, nzt_rad |
---|
1274 | rrtm_tlay(0,k) = t_snd(k) |
---|
1275 | rrtm_h2ovmr(0,k) = q_snd(k) |
---|
1276 | ENDDO |
---|
1277 | rrtm_tlay(0,nzt_rad+1) = 2.0_wp * rrtm_tlay(0,nzt_rad) & |
---|
1278 | - rrtm_tlay(0,nzt_rad-1) |
---|
1279 | DO k = nzt+9, nzt_rad+1 |
---|
1280 | rrtm_tlev(0,k) = rrtm_tlay(0,k-1) + (rrtm_tlay(0,k) & |
---|
1281 | - rrtm_tlay(0,k-1)) & |
---|
1282 | / ( rrtm_play(0,k) - rrtm_play(0,k-1) ) & |
---|
1283 | * ( rrtm_plev(0,k) - rrtm_play(0,k-1) ) |
---|
1284 | ENDDO |
---|
1285 | rrtm_h2ovmr(0,nzt_rad+1) = rrtm_h2ovmr(0,nzt_rad) |
---|
1286 | |
---|
1287 | rrtm_tlev(0,nzt_rad+2) = 2.0_wp * rrtm_tlay(0,nzt_rad+1) & |
---|
1288 | - rrtm_tlev(0,nzt_rad) |
---|
1289 | ! |
---|
1290 | !-- Allocate remaining RRTMG arrays |
---|
1291 | ALLOCATE ( rrtm_cicewp(0:0,nzb+1:nzt_rad+1) ) |
---|
1292 | ALLOCATE ( rrtm_cldfr(0:0,nzb+1:nzt_rad+1) ) |
---|
1293 | ALLOCATE ( rrtm_cliqwp(0:0,nzb+1:nzt_rad+1) ) |
---|
1294 | ALLOCATE ( rrtm_reice(0:0,nzb+1:nzt_rad+1) ) |
---|
1295 | ALLOCATE ( rrtm_reliq(0:0,nzb+1:nzt_rad+1) ) |
---|
1296 | ALLOCATE ( rrtm_lw_taucld(1:nbndlw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
1297 | ALLOCATE ( rrtm_lw_tauaer(0:0,nzb+1:nzt_rad+1,1:nbndlw+1) ) |
---|
1298 | ALLOCATE ( rrtm_sw_taucld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
1299 | ALLOCATE ( rrtm_sw_ssacld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
1300 | ALLOCATE ( rrtm_sw_asmcld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
1301 | ALLOCATE ( rrtm_sw_fsfcld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
1302 | ALLOCATE ( rrtm_sw_tauaer(0:0,nzb+1:nzt_rad+1,1:nbndsw+1) ) |
---|
1303 | ALLOCATE ( rrtm_sw_ssaaer(0:0,nzb+1:nzt_rad+1,1:nbndsw+1) ) |
---|
1304 | ALLOCATE ( rrtm_sw_asmaer(0:0,nzb+1:nzt_rad+1,1:nbndsw+1) ) |
---|
1305 | ALLOCATE ( rrtm_sw_ecaer(0:0,nzb+1:nzt_rad+1,1:naerec+1) ) |
---|
1306 | |
---|
1307 | ! |
---|
1308 | !-- The ice phase is currently not considered in PALM |
---|
1309 | rrtm_cicewp = 0.0_wp |
---|
1310 | rrtm_reice = 0.0_wp |
---|
1311 | |
---|
1312 | ! |
---|
1313 | !-- Set other parameters (move to NAMELIST parameters in the future) |
---|
1314 | rrtm_lw_tauaer = 0.0_wp |
---|
1315 | rrtm_lw_taucld = 0.0_wp |
---|
1316 | rrtm_sw_taucld = 0.0_wp |
---|
1317 | rrtm_sw_ssacld = 0.0_wp |
---|
1318 | rrtm_sw_asmcld = 0.0_wp |
---|
1319 | rrtm_sw_fsfcld = 0.0_wp |
---|
1320 | rrtm_sw_tauaer = 0.0_wp |
---|
1321 | rrtm_sw_ssaaer = 0.0_wp |
---|
1322 | rrtm_sw_asmaer = 0.0_wp |
---|
1323 | rrtm_sw_ecaer = 0.0_wp |
---|
1324 | |
---|
1325 | |
---|
1326 | ALLOCATE ( rrtm_swdflx(0:0,nzb:nzt_rad+1) ) |
---|
1327 | ALLOCATE ( rrtm_swuflx(0:0,nzb:nzt_rad+1) ) |
---|
1328 | ALLOCATE ( rrtm_swhr(0:0,nzb+1:nzt_rad+1) ) |
---|
1329 | ALLOCATE ( rrtm_swuflxc(0:0,nzb:nzt_rad+1) ) |
---|
1330 | ALLOCATE ( rrtm_swdflxc(0:0,nzb:nzt_rad+1) ) |
---|
1331 | ALLOCATE ( rrtm_swhrc(0:0,nzb+1:nzt_rad+1) ) |
---|
1332 | |
---|
1333 | rrtm_swdflx = 0.0_wp |
---|
1334 | rrtm_swuflx = 0.0_wp |
---|
1335 | rrtm_swhr = 0.0_wp |
---|
1336 | rrtm_swuflxc = 0.0_wp |
---|
1337 | rrtm_swdflxc = 0.0_wp |
---|
1338 | rrtm_swhrc = 0.0_wp |
---|
1339 | |
---|
1340 | ALLOCATE ( rrtm_lwdflx(0:0,nzb:nzt_rad+1) ) |
---|
1341 | ALLOCATE ( rrtm_lwuflx(0:0,nzb:nzt_rad+1) ) |
---|
1342 | ALLOCATE ( rrtm_lwhr(0:0,nzb+1:nzt_rad+1) ) |
---|
1343 | ALLOCATE ( rrtm_lwuflxc(0:0,nzb:nzt_rad+1) ) |
---|
1344 | ALLOCATE ( rrtm_lwdflxc(0:0,nzb:nzt_rad+1) ) |
---|
1345 | ALLOCATE ( rrtm_lwhrc(0:0,nzb+1:nzt_rad+1) ) |
---|
1346 | |
---|
1347 | rrtm_lwdflx = 0.0_wp |
---|
1348 | rrtm_lwuflx = 0.0_wp |
---|
1349 | rrtm_lwhr = 0.0_wp |
---|
1350 | rrtm_lwuflxc = 0.0_wp |
---|
1351 | rrtm_lwdflxc = 0.0_wp |
---|
1352 | rrtm_lwhrc = 0.0_wp |
---|
1353 | |
---|
1354 | ALLOCATE ( rrtm_lwuflx_dt(0:0,nzb:nzt_rad+1) ) |
---|
1355 | ALLOCATE ( rrtm_lwuflxc_dt(0:0,nzb:nzt_rad+1) ) |
---|
1356 | |
---|
1357 | rrtm_lwuflx_dt = 0.0_wp |
---|
1358 | rrtm_lwuflxc_dt = 0.0_wp |
---|
1359 | |
---|
1360 | END SUBROUTINE read_sounding_data |
---|
1361 | |
---|
1362 | |
---|
1363 | !------------------------------------------------------------------------------! |
---|
1364 | ! Description: |
---|
1365 | ! ------------ |
---|
1366 | !> Read trace gas data from file |
---|
1367 | !------------------------------------------------------------------------------! |
---|
1368 | SUBROUTINE read_trace_gas_data |
---|
1369 | |
---|
1370 | USE netcdf_control |
---|
1371 | USE rrsw_ncpar |
---|
1372 | |
---|
1373 | IMPLICIT NONE |
---|
1374 | |
---|
1375 | INTEGER(iwp), PARAMETER :: num_trace_gases = 9 !< number of trace gases (absorbers) |
---|
1376 | |
---|
1377 | CHARACTER(LEN=5), DIMENSION(num_trace_gases), PARAMETER :: & !< trace gas names |
---|
1378 | trace_names = (/'O3 ', 'CO2 ', 'CH4 ', 'N2O ', 'O2 ', & |
---|
1379 | 'CFC11', 'CFC12', 'CFC22', 'CCL4 '/) |
---|
1380 | |
---|
1381 | INTEGER(iwp) :: id, & !< NetCDF id |
---|
1382 | k, & !< loop index |
---|
1383 | m, & !< loop index |
---|
1384 | n, & !< loop index |
---|
1385 | nabs, & !< number of absorbers |
---|
1386 | np, & !< number of pressure levels |
---|
1387 | id_abs, & !< NetCDF id of the respective absorber |
---|
1388 | id_dim, & !< NetCDF id of asborber's dimension |
---|
1389 | id_var !< NetCDf id ot the absorber |
---|
1390 | |
---|
1391 | REAL(wp) :: p_mls_l, p_mls_u, p_wgt_l, p_wgt_u, p_mls_m |
---|
1392 | |
---|
1393 | |
---|
1394 | REAL(wp), DIMENSION(:), ALLOCATABLE :: p_mls, & !< pressure levels for the absorbers |
---|
1395 | rrtm_play_tmp, & !< temporary array for pressure zu-levels |
---|
1396 | rrtm_plev_tmp, & !< temporary array for pressure zw-levels |
---|
1397 | trace_path_tmp !< temporary array for storing trace gas path data |
---|
1398 | |
---|
1399 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: trace_mls, & !< array for storing the absorber amounts |
---|
1400 | trace_mls_path, & !< array for storing trace gas path data |
---|
1401 | trace_mls_tmp !< temporary array for storing trace gas data |
---|
1402 | |
---|
1403 | |
---|
1404 | ! |
---|
1405 | !-- In case of updates, deallocate arrays first (sufficient to check one |
---|
1406 | !-- array as the others are automatically allocated) |
---|
1407 | IF ( ALLOCATED ( rrtm_o3vmr ) ) THEN |
---|
1408 | DEALLOCATE ( rrtm_o3vmr ) |
---|
1409 | DEALLOCATE ( rrtm_co2vmr ) |
---|
1410 | DEALLOCATE ( rrtm_ch4vmr ) |
---|
1411 | DEALLOCATE ( rrtm_n2ovmr ) |
---|
1412 | DEALLOCATE ( rrtm_o2vmr ) |
---|
1413 | DEALLOCATE ( rrtm_cfc11vmr ) |
---|
1414 | DEALLOCATE ( rrtm_cfc12vmr ) |
---|
1415 | DEALLOCATE ( rrtm_cfc22vmr ) |
---|
1416 | DEALLOCATE ( rrtm_ccl4vmr ) |
---|
1417 | ENDIF |
---|
1418 | |
---|
1419 | ! |
---|
1420 | !-- Allocate trace gas profiles |
---|
1421 | ALLOCATE ( rrtm_o3vmr(0:0,1:nzt_rad+1) ) |
---|
1422 | ALLOCATE ( rrtm_co2vmr(0:0,1:nzt_rad+1) ) |
---|
1423 | ALLOCATE ( rrtm_ch4vmr(0:0,1:nzt_rad+1) ) |
---|
1424 | ALLOCATE ( rrtm_n2ovmr(0:0,1:nzt_rad+1) ) |
---|
1425 | ALLOCATE ( rrtm_o2vmr(0:0,1:nzt_rad+1) ) |
---|
1426 | ALLOCATE ( rrtm_cfc11vmr(0:0,1:nzt_rad+1) ) |
---|
1427 | ALLOCATE ( rrtm_cfc12vmr(0:0,1:nzt_rad+1) ) |
---|
1428 | ALLOCATE ( rrtm_cfc22vmr(0:0,1:nzt_rad+1) ) |
---|
1429 | ALLOCATE ( rrtm_ccl4vmr(0:0,1:nzt_rad+1) ) |
---|
1430 | |
---|
1431 | ! |
---|
1432 | !-- Open file for reading |
---|
1433 | nc_stat = NF90_OPEN( rrtm_input_file, NF90_NOWRITE, id ) |
---|
1434 | CALL handle_netcdf_error( 'netcdf', 549 ) |
---|
1435 | ! |
---|
1436 | !-- Inquire dimension ids and dimensions |
---|
1437 | nc_stat = NF90_INQ_DIMID( id, "Pressure", id_dim ) |
---|
1438 | CALL handle_netcdf_error( 'netcdf', 550 ) |
---|
1439 | nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim, len = np) |
---|
1440 | CALL handle_netcdf_error( 'netcdf', 550 ) |
---|
1441 | |
---|
1442 | nc_stat = NF90_INQ_DIMID( id, "Absorber", id_dim ) |
---|
1443 | CALL handle_netcdf_error( 'netcdf', 550 ) |
---|
1444 | nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim, len = nabs ) |
---|
1445 | CALL handle_netcdf_error( 'netcdf', 550 ) |
---|
1446 | |
---|
1447 | |
---|
1448 | ! |
---|
1449 | !-- Allocate pressure, and trace gas arrays |
---|
1450 | ALLOCATE( p_mls(1:np) ) |
---|
1451 | ALLOCATE( trace_mls(1:num_trace_gases,1:np) ) |
---|
1452 | ALLOCATE( trace_mls_tmp(1:nabs,1:np) ) |
---|
1453 | |
---|
1454 | |
---|
1455 | nc_stat = NF90_INQ_VARID( id, "Pressure", id_var ) |
---|
1456 | CALL handle_netcdf_error( 'netcdf', 550 ) |
---|
1457 | nc_stat = NF90_GET_VAR( id, id_var, p_mls ) |
---|
1458 | CALL handle_netcdf_error( 'netcdf', 550 ) |
---|
1459 | |
---|
1460 | nc_stat = NF90_INQ_VARID( id, "AbsorberAmountMLS", id_var ) |
---|
1461 | CALL handle_netcdf_error( 'netcdf', 550 ) |
---|
1462 | nc_stat = NF90_GET_VAR( id, id_var, trace_mls_tmp ) |
---|
1463 | CALL handle_netcdf_error( 'netcdf', 550 ) |
---|
1464 | |
---|
1465 | |
---|
1466 | ! |
---|
1467 | !-- Write absorber amounts (mls) to trace_mls |
---|
1468 | DO n = 1, num_trace_gases |
---|
1469 | CALL getAbsorberIndex( TRIM( trace_names(n) ), id_abs ) |
---|
1470 | |
---|
1471 | trace_mls(n,1:np) = trace_mls_tmp(id_abs,1:np) |
---|
1472 | |
---|
1473 | ! |
---|
1474 | !-- Replace missing values by zero |
---|
1475 | WHERE ( trace_mls(n,:) > 2.0_wp ) |
---|
1476 | trace_mls(n,:) = 0.0_wp |
---|
1477 | END WHERE |
---|
1478 | END DO |
---|
1479 | |
---|
1480 | DEALLOCATE ( trace_mls_tmp ) |
---|
1481 | |
---|
1482 | nc_stat = NF90_CLOSE( id ) |
---|
1483 | CALL handle_netcdf_error( 'netcdf', 551 ) |
---|
1484 | |
---|
1485 | ! |
---|
1486 | !-- Add extra pressure level for calculations of the trace gas paths |
---|
1487 | ALLOCATE ( rrtm_play_tmp(1:nzt_rad+1) ) |
---|
1488 | ALLOCATE ( rrtm_plev_tmp(1:nzt_rad+2) ) |
---|
1489 | |
---|
1490 | rrtm_play_tmp(1:nzt_rad) = rrtm_play(0,1:nzt_rad) |
---|
1491 | rrtm_plev_tmp(1:nzt_rad+1) = rrtm_plev(0,1:nzt_rad+1) |
---|
1492 | rrtm_play_tmp(nzt_rad+1) = rrtm_plev(0,nzt_rad+1) * 0.5_wp |
---|
1493 | rrtm_plev_tmp(nzt_rad+2) = MIN( 1.0E-4_wp, 0.25_wp & |
---|
1494 | * rrtm_plev(0,nzt_rad+1) ) |
---|
1495 | |
---|
1496 | ! |
---|
1497 | !-- Calculate trace gas path (zero at surface) with interpolation to the |
---|
1498 | !-- sounding levels |
---|
1499 | ALLOCATE ( trace_mls_path(1:nzt_rad+2,1:num_trace_gases) ) |
---|
1500 | |
---|
1501 | trace_mls_path(nzb+1,:) = 0.0_wp |
---|
1502 | |
---|
1503 | DO k = nzb+2, nzt_rad+2 |
---|
1504 | DO m = 1, num_trace_gases |
---|
1505 | trace_mls_path(k,m) = trace_mls_path(k-1,m) |
---|
1506 | |
---|
1507 | ! |
---|
1508 | !-- When the pressure level is higher than the trace gas pressure |
---|
1509 | !-- level, assume that |
---|
1510 | IF ( rrtm_plev_tmp(k-1) > p_mls(1) ) THEN |
---|
1511 | |
---|
1512 | trace_mls_path(k,m) = trace_mls_path(k,m) + trace_mls(m,1) & |
---|
1513 | * ( rrtm_plev_tmp(k-1) & |
---|
1514 | - MAX( p_mls(1), rrtm_plev_tmp(k) ) & |
---|
1515 | ) / g |
---|
1516 | ENDIF |
---|
1517 | |
---|
1518 | ! |
---|
1519 | !-- Integrate for each sounding level from the contributing p_mls |
---|
1520 | !-- levels |
---|
1521 | DO n = 2, np |
---|
1522 | ! |
---|
1523 | !-- Limit p_mls so that it is within the model level |
---|
1524 | p_mls_u = MIN( rrtm_plev_tmp(k-1), & |
---|
1525 | MAX( rrtm_plev_tmp(k), p_mls(n) ) ) |
---|
1526 | p_mls_l = MIN( rrtm_plev_tmp(k-1), & |
---|
1527 | MAX( rrtm_plev_tmp(k), p_mls(n-1) ) ) |
---|
1528 | |
---|
1529 | IF ( p_mls_l > p_mls_u ) THEN |
---|
1530 | |
---|
1531 | ! |
---|
1532 | !-- Calculate weights for interpolation |
---|
1533 | p_mls_m = 0.5_wp * (p_mls_l + p_mls_u) |
---|
1534 | p_wgt_u = (p_mls(n-1) - p_mls_m) / (p_mls(n-1) - p_mls(n)) |
---|
1535 | p_wgt_l = (p_mls_m - p_mls(n)) / (p_mls(n-1) - p_mls(n)) |
---|
1536 | |
---|
1537 | ! |
---|
1538 | !-- Add level to trace gas path |
---|
1539 | trace_mls_path(k,m) = trace_mls_path(k,m) & |
---|
1540 | + ( p_wgt_u * trace_mls(m,n) & |
---|
1541 | + p_wgt_l * trace_mls(m,n-1) ) & |
---|
1542 | * (p_mls_l - p_mls_u) / g |
---|
1543 | ENDIF |
---|
1544 | ENDDO |
---|
1545 | |
---|
1546 | IF ( rrtm_plev_tmp(k) < p_mls(np) ) THEN |
---|
1547 | trace_mls_path(k,m) = trace_mls_path(k,m) + trace_mls(m,np) & |
---|
1548 | * ( MIN( rrtm_plev_tmp(k-1), p_mls(np) ) & |
---|
1549 | - rrtm_plev_tmp(k) & |
---|
1550 | ) / g |
---|
1551 | ENDIF |
---|
1552 | ENDDO |
---|
1553 | ENDDO |
---|
1554 | |
---|
1555 | |
---|
1556 | ! |
---|
1557 | !-- Prepare trace gas path profiles |
---|
1558 | ALLOCATE ( trace_path_tmp(1:nzt_rad+1) ) |
---|
1559 | |
---|
1560 | DO m = 1, num_trace_gases |
---|
1561 | |
---|
1562 | trace_path_tmp(1:nzt_rad+1) = ( trace_mls_path(2:nzt_rad+2,m) & |
---|
1563 | - trace_mls_path(1:nzt_rad+1,m) ) * g & |
---|
1564 | / ( rrtm_plev_tmp(1:nzt_rad+1) & |
---|
1565 | - rrtm_plev_tmp(2:nzt_rad+2) ) |
---|
1566 | |
---|
1567 | ! |
---|
1568 | !-- Save trace gas paths to the respective arrays |
---|
1569 | SELECT CASE ( TRIM( trace_names(m) ) ) |
---|
1570 | |
---|
1571 | CASE ( 'O3' ) |
---|
1572 | |
---|
1573 | rrtm_o3vmr(0,:) = trace_path_tmp(:) |
---|
1574 | |
---|
1575 | CASE ( 'CO2' ) |
---|
1576 | |
---|
1577 | rrtm_co2vmr(0,:) = trace_path_tmp(:) |
---|
1578 | |
---|
1579 | CASE ( 'CH4' ) |
---|
1580 | |
---|
1581 | rrtm_ch4vmr(0,:) = trace_path_tmp(:) |
---|
1582 | |
---|
1583 | CASE ( 'N2O' ) |
---|
1584 | |
---|
1585 | rrtm_n2ovmr(0,:) = trace_path_tmp(:) |
---|
1586 | |
---|
1587 | CASE ( 'O2' ) |
---|
1588 | |
---|
1589 | rrtm_o2vmr(0,:) = trace_path_tmp(:) |
---|
1590 | |
---|
1591 | CASE ( 'CFC11' ) |
---|
1592 | |
---|
1593 | rrtm_cfc11vmr(0,:) = trace_path_tmp(:) |
---|
1594 | |
---|
1595 | CASE ( 'CFC12' ) |
---|
1596 | |
---|
1597 | rrtm_cfc12vmr(0,:) = trace_path_tmp(:) |
---|
1598 | |
---|
1599 | CASE ( 'CFC22' ) |
---|
1600 | |
---|
1601 | rrtm_cfc22vmr(0,:) = trace_path_tmp(:) |
---|
1602 | |
---|
1603 | CASE ( 'CCL4' ) |
---|
1604 | |
---|
1605 | rrtm_ccl4vmr(0,:) = trace_path_tmp(:) |
---|
1606 | |
---|
1607 | CASE DEFAULT |
---|
1608 | |
---|
1609 | END SELECT |
---|
1610 | |
---|
1611 | ENDDO |
---|
1612 | |
---|
1613 | DEALLOCATE ( trace_path_tmp ) |
---|
1614 | DEALLOCATE ( trace_mls_path ) |
---|
1615 | DEALLOCATE ( rrtm_play_tmp ) |
---|
1616 | DEALLOCATE ( rrtm_plev_tmp ) |
---|
1617 | DEALLOCATE ( trace_mls ) |
---|
1618 | DEALLOCATE ( p_mls ) |
---|
1619 | |
---|
1620 | END SUBROUTINE read_trace_gas_data |
---|
1621 | |
---|
1622 | #endif |
---|
1623 | |
---|
1624 | |
---|
1625 | !------------------------------------------------------------------------------! |
---|
1626 | ! Description: |
---|
1627 | ! ------------ |
---|
1628 | !> Calculate temperature tendency due to radiative cooling/heating. |
---|
1629 | !> Cache-optimized version. |
---|
1630 | !------------------------------------------------------------------------------! |
---|
1631 | SUBROUTINE radiation_tendency_ij ( i, j, tend ) |
---|
1632 | |
---|
1633 | USE cloud_parameters, & |
---|
1634 | ONLY: pt_d_t |
---|
1635 | |
---|
1636 | IMPLICIT NONE |
---|
1637 | |
---|
1638 | INTEGER(iwp) :: i, j, k !< loop indices |
---|
1639 | |
---|
1640 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: tend !< pt tendency term |
---|
1641 | |
---|
1642 | #if defined ( __rrtmg ) |
---|
1643 | ! |
---|
1644 | !-- Calculate tendency based on heating rate |
---|
1645 | DO k = nzb+1, nzt+1 |
---|
1646 | tend(k,j,i) = tend(k,j,i) + (rad_lw_hr(k,j,i) + rad_sw_hr(k,j,i)) & |
---|
1647 | * pt_d_t(k) * d_seconds_hour |
---|
1648 | ENDDO |
---|
1649 | |
---|
1650 | #endif |
---|
1651 | |
---|
1652 | END SUBROUTINE radiation_tendency_ij |
---|
1653 | |
---|
1654 | |
---|
1655 | !------------------------------------------------------------------------------! |
---|
1656 | ! Description: |
---|
1657 | ! ------------ |
---|
1658 | !> Calculate temperature tendency due to radiative cooling/heating. |
---|
1659 | !> Vector-optimized version |
---|
1660 | !------------------------------------------------------------------------------! |
---|
1661 | SUBROUTINE radiation_tendency ( tend ) |
---|
1662 | |
---|
1663 | USE cloud_parameters, & |
---|
1664 | ONLY: pt_d_t |
---|
1665 | |
---|
1666 | USE indices, & |
---|
1667 | ONLY: nxl, nxr, nyn, nys |
---|
1668 | |
---|
1669 | IMPLICIT NONE |
---|
1670 | |
---|
1671 | INTEGER(iwp) :: i, j, k !< loop indices |
---|
1672 | |
---|
1673 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: tend !< pt tendency term |
---|
1674 | |
---|
1675 | #if defined ( __rrtmg ) |
---|
1676 | ! |
---|
1677 | !-- Calculate tendency based on heating rate |
---|
1678 | DO i = nxl, nxr |
---|
1679 | DO j = nys, nyn |
---|
1680 | DO k = nzb+1, nzt+1 |
---|
1681 | tend(k,j,i) = tend(k,j,i) + ( rad_lw_hr(k,j,i) & |
---|
1682 | + rad_sw_hr(k,j,i) ) * pt_d_t(k) & |
---|
1683 | * d_seconds_hour |
---|
1684 | ENDDO |
---|
1685 | ENDDO |
---|
1686 | ENDDO |
---|
1687 | #endif |
---|
1688 | |
---|
1689 | END SUBROUTINE radiation_tendency |
---|
1690 | |
---|
1691 | END MODULE radiation_model_mod |
---|