1 | MODULE radiation_model_mod |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2015 Leibniz Universitaet Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! Added albedo class for snow |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: radiation_model.f90 1587 2015-05-04 14:19:01Z maronga $ |
---|
27 | ! |
---|
28 | ! 1585 2015-04-30 07:05:52Z maronga |
---|
29 | ! Added support for RRTMG |
---|
30 | ! |
---|
31 | ! 1571 2015-03-12 16:12:49Z maronga |
---|
32 | ! Added missing KIND attribute. Removed upper-case variable names |
---|
33 | ! |
---|
34 | ! 1551 2015-03-03 14:18:16Z maronga |
---|
35 | ! Added support for data output. Various variables have been renamed. Added |
---|
36 | ! interface for different radiation schemes (currently: clear-sky, constant, and |
---|
37 | ! RRTM (not yet implemented). |
---|
38 | ! |
---|
39 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
40 | ! Initial revision |
---|
41 | ! |
---|
42 | ! |
---|
43 | ! Description: |
---|
44 | ! ------------ |
---|
45 | ! Radiation models and interfaces |
---|
46 | ! To do: move variable definitions used in init_radiation only to the subroutine |
---|
47 | ! as they are no longer required after initialization. |
---|
48 | ! Note that many variables have a leading dummy dimension (0:0) in order to |
---|
49 | ! match the assume-size shape expected by the RRTMG model |
---|
50 | ! |
---|
51 | ! To do: |
---|
52 | ! - Output of full column vertical profiles used in RRTMG |
---|
53 | ! - Output of other rrtm arrays (such as volume mixing ratios) |
---|
54 | ! - Adapt for use with topography |
---|
55 | ! - Remove 3D dummy arrays (such as clear-sky output) |
---|
56 | !------------------------------------------------------------------------------! |
---|
57 | |
---|
58 | USE arrays_3d, & |
---|
59 | ONLY: hyp, pt, q, ql, zw |
---|
60 | |
---|
61 | USE cloud_parameters, & |
---|
62 | ONLY: cp, l_v, nc_const, rho_l, sigma_gc |
---|
63 | |
---|
64 | USE constants, & |
---|
65 | ONLY: pi |
---|
66 | |
---|
67 | USE control_parameters, & |
---|
68 | ONLY: cloud_droplets, cloud_physics, g, initializing_actions, & |
---|
69 | large_scale_forcing, lsf_surf, phi, pt_surface, & |
---|
70 | surface_pressure, time_since_reference_point |
---|
71 | |
---|
72 | USE indices, & |
---|
73 | ONLY: nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb_s_inner, nzb, nzt |
---|
74 | |
---|
75 | USE kinds |
---|
76 | |
---|
77 | USE netcdf |
---|
78 | |
---|
79 | USE netcdf_control, & |
---|
80 | ONLY: dots_label, dots_num, dots_unit |
---|
81 | |
---|
82 | #if defined ( __rrtmg ) |
---|
83 | USE parrrsw, & |
---|
84 | ONLY: naerec, nbndsw |
---|
85 | |
---|
86 | USE parrrtm, & |
---|
87 | ONLY: nbndlw |
---|
88 | |
---|
89 | USE rrtmg_lw_init, & |
---|
90 | ONLY: rrtmg_lw_ini |
---|
91 | |
---|
92 | USE rrtmg_sw_init, & |
---|
93 | ONLY: rrtmg_sw_ini |
---|
94 | |
---|
95 | USE rrtmg_lw_rad, & |
---|
96 | ONLY: rrtmg_lw |
---|
97 | |
---|
98 | USE rrtmg_sw_rad, & |
---|
99 | ONLY: rrtmg_sw |
---|
100 | #endif |
---|
101 | |
---|
102 | |
---|
103 | |
---|
104 | IMPLICIT NONE |
---|
105 | |
---|
106 | CHARACTER(10) :: radiation_scheme = 'clear-sky' ! 'constant', 'clear-sky', or 'rrtmg' |
---|
107 | |
---|
108 | ! |
---|
109 | !-- Predefined Land surface classes (albedo_type) after Briegleb (1992) |
---|
110 | CHARACTER(37), DIMENSION(0:16), PARAMETER :: albedo_type_name = (/ & |
---|
111 | 'user defined', & ! 0 |
---|
112 | 'ocean', & ! 1 |
---|
113 | 'mixed farming, tall grassland', & ! 2 |
---|
114 | 'tall/medium grassland', & ! 3 |
---|
115 | 'evergreen shrubland', & ! 4 |
---|
116 | 'short grassland/meadow/shrubland', & ! 5 |
---|
117 | 'evergreen needleleaf forest', & ! 6 |
---|
118 | 'mixed deciduous evergreen forest', & ! 7 |
---|
119 | 'deciduous forest', & ! 8 |
---|
120 | 'tropical evergreen broadleaved forest',& ! 9 |
---|
121 | 'medium/tall grassland/woodland', & ! 10 |
---|
122 | 'desert, sandy', & ! 11 |
---|
123 | 'desert, rocky', & ! 12 |
---|
124 | 'tundra', & ! 13 |
---|
125 | 'land ice', & ! 14 |
---|
126 | 'sea ice', & ! 15 |
---|
127 | 'snow' & ! 16 |
---|
128 | /) |
---|
129 | |
---|
130 | INTEGER(iwp) :: albedo_type = 5, & !: Albedo surface type (default: short grassland) |
---|
131 | day, & !: current day of the year |
---|
132 | day_init = 172, & !: day of the year at model start (21/06) |
---|
133 | dots_rad = 0 !: starting index for timeseries output |
---|
134 | |
---|
135 | |
---|
136 | |
---|
137 | |
---|
138 | |
---|
139 | |
---|
140 | LOGICAL :: constant_albedo = .FALSE., & !: flag parameter indicating whether the albedo may change depending on zenith |
---|
141 | lw_radiation = .TRUE., & !: flag parameter indicing whether longwave radiation shall be calculated |
---|
142 | radiation = .FALSE., & !: flag parameter indicating whether the radiation model is used |
---|
143 | sun_up = .TRUE., & !: flag parameter indicating whether the sun is up or down |
---|
144 | sw_radiation = .TRUE. !: flag parameter indicing whether shortwave radiation shall be calculated |
---|
145 | |
---|
146 | REAL(wp), PARAMETER :: sigma_sb = 5.67E-8_wp, & !: Stefan-Boltzmann constant |
---|
147 | solar_constant = 1368.0_wp !: solar constant at top of atmosphere |
---|
148 | |
---|
149 | REAL(wp) :: albedo = 9999999.9_wp, & !: NAMELIST alpha |
---|
150 | albedo_lw_dif = 9999999.9_wp, & !: NAMELIST aldif |
---|
151 | albedo_lw_dir = 9999999.9_wp, & !: NAMELIST aldir |
---|
152 | albedo_sw_dif = 9999999.9_wp, & !: NAMELIST asdif |
---|
153 | albedo_sw_dir = 9999999.9_wp, & !: NAMELIST asdir |
---|
154 | dt_radiation = 0.0_wp, & !: radiation model timestep |
---|
155 | emissivity = 0.95_wp, & !: NAMELIST surface emissivity |
---|
156 | exn, & !: Exner function |
---|
157 | lon = 0.0_wp, & !: longitude in radians |
---|
158 | lat = 0.0_wp, & !: latitude in radians |
---|
159 | decl_1, & !: declination coef. 1 |
---|
160 | decl_2, & !: declination coef. 2 |
---|
161 | decl_3, & !: declination coef. 3 |
---|
162 | time_utc, & !: current time in UTC |
---|
163 | time_utc_init = 43200.0_wp, & !: UTC time at model start (noon) |
---|
164 | lambda = 0.0_wp, & !: longitude in degrees |
---|
165 | net_radiation = 0.0_wp, & !: net radiation at surface |
---|
166 | time_radiation = 0.0_wp, & !: time since last call of radiation code |
---|
167 | sky_trans !: sky transmissivity |
---|
168 | |
---|
169 | |
---|
170 | REAL(wp), DIMENSION(0:0) :: zenith !: solar zenith angle |
---|
171 | |
---|
172 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: & |
---|
173 | alpha, & !: surface broadband albedo (used for clear-sky scheme) |
---|
174 | rad_net, & !: net radiation at the surface |
---|
175 | rad_net_av !: average of rad_net |
---|
176 | |
---|
177 | ! |
---|
178 | !-- Land surface albedos for solar zenith angle of 60° after Briegleb (1992) |
---|
179 | !-- (shortwave, longwave, broadband): sw, lw, bb, |
---|
180 | REAL(wp), DIMENSION(0:2,1:16), PARAMETER :: albedo_pars = RESHAPE( (/& |
---|
181 | 0.06_wp, 0.06_wp, 0.06_wp, & ! 1 |
---|
182 | 0.09_wp, 0.28_wp, 0.19_wp, & ! 2 |
---|
183 | 0.11_wp, 0.33_wp, 0.23_wp, & ! 3 |
---|
184 | 0.11_wp, 0.33_wp, 0.23_wp, & ! 4 |
---|
185 | 0.14_wp, 0.34_wp, 0.25_wp, & ! 5 |
---|
186 | 0.06_wp, 0.22_wp, 0.14_wp, & ! 6 |
---|
187 | 0.06_wp, 0.27_wp, 0.17_wp, & ! 7 |
---|
188 | 0.06_wp, 0.31_wp, 0.19_wp, & ! 8 |
---|
189 | 0.06_wp, 0.22_wp, 0.14_wp, & ! 9 |
---|
190 | 0.06_wp, 0.28_wp, 0.18_wp, & ! 10 |
---|
191 | 0.35_wp, 0.51_wp, 0.43_wp, & ! 11 |
---|
192 | 0.24_wp, 0.40_wp, 0.32_wp, & ! 12 |
---|
193 | 0.10_wp, 0.27_wp, 0.19_wp, & ! 13 |
---|
194 | 0.90_wp, 0.65_wp, 0.77_wp, & ! 14 |
---|
195 | 0.90_wp, 0.65_wp, 0.77_wp, & ! 15 |
---|
196 | 0.95_wp, 0.70_wp, 0.82_wp & ! 16 |
---|
197 | /), (/ 3, 16 /) ) |
---|
198 | |
---|
199 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE, TARGET :: & |
---|
200 | rad_sw_in, & !: incoming shortwave radiation (W/m2) |
---|
201 | rad_sw_in_av, & !: average of rad_sw_in |
---|
202 | rad_sw_out, & !: outgoing shortwave radiation (W/m2) |
---|
203 | rad_sw_out_av, & !: average of rad_sw_out |
---|
204 | rad_lw_in, & !: incoming longwave radiation (W/m2) |
---|
205 | rad_lw_in_av, & !: average of rad_lw_in |
---|
206 | rad_lw_out, & !: outgoing longwave radiation (W/m2) |
---|
207 | rad_lw_out_av !: average of rad_lw_out |
---|
208 | |
---|
209 | ! |
---|
210 | !-- Variables and parameters used in RRTMG only |
---|
211 | #if defined ( __rrtmg ) |
---|
212 | CHARACTER(LEN=12) :: rrtm_input_file = "RAD_SND_DATA" !: name of the NetCDF input file (sounding data) |
---|
213 | |
---|
214 | |
---|
215 | ! |
---|
216 | !-- Flag parameters for RRTMGS (should not be changed) |
---|
217 | INTEGER(iwp), PARAMETER :: rrtm_inflglw = 2, & !: flag for lw cloud optical properties (0,1,2) |
---|
218 | rrtm_iceflglw = 0, & !: flag for lw ice particle specifications (0,1,2,3) |
---|
219 | rrtm_liqflglw = 1, & !: flag for lw liquid droplet specifications |
---|
220 | rrtm_inflgsw = 2, & !: flag for sw cloud optical properties (0,1,2) |
---|
221 | rrtm_iceflgsw = 0, & !: flag for sw ice particle specifications (0,1,2,3) |
---|
222 | rrtm_liqflgsw = 1 !: flag for sw liquid droplet specifications |
---|
223 | |
---|
224 | ! |
---|
225 | !-- The following variables should be only changed with care, as this will |
---|
226 | !-- require further setting of some variables, which is currently not |
---|
227 | !-- implemented (aerosols, ice phase). |
---|
228 | INTEGER(iwp) :: nzt_rad, & !: upper vertical limit for radiation calculations |
---|
229 | rrtm_icld = 0, & !: cloud flag (0: clear sky column, 1: cloudy column) |
---|
230 | rrtm_iaer = 0, & !: aerosol option flag (0: no aerosol layers, for lw only: 6 (requires setting of rrtm_sw_ecaer), 10: one or more aerosol layers (not implemented) |
---|
231 | rrtm_idrv = 0 !: longwave upward flux calculation option (0,1) |
---|
232 | |
---|
233 | LOGICAL :: snd_exists = .FALSE. !: flag parameter to check whether a user-defined input files exists |
---|
234 | |
---|
235 | REAL(wp), PARAMETER :: mol_weight_air_d_wv = 1.607793_wp !: molecular weight dry air / water vapor |
---|
236 | |
---|
237 | REAL(wp), DIMENSION(:), ALLOCATABLE :: hyp_snd, & !: hypostatic pressure from sounding data (hPa) |
---|
238 | q_snd, & !: specific humidity from sounding data (kg/kg) - dummy at the moment |
---|
239 | rrtm_tsfc, & !: dummy array for storing surface temperature |
---|
240 | t_snd !: actual temperature from sounding data (hPa) |
---|
241 | |
---|
242 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: aldif, & !: longwave diffuse albedo solar angle of 60° |
---|
243 | aldir, & !: longwave direct albedo solar angle of 60° |
---|
244 | asdif, & !: shortwave diffuse albedo solar angle of 60° |
---|
245 | asdir, & !: shortwave direct albedo solar angle of 60° |
---|
246 | rrtm_ccl4vmr, & !: CCL4 volume mixing ratio (g/mol) |
---|
247 | rrtm_cfc11vmr, & !: CFC11 volume mixing ratio (g/mol) |
---|
248 | rrtm_cfc12vmr, & !: CFC12 volume mixing ratio (g/mol) |
---|
249 | rrtm_cfc22vmr, & !: CFC22 volume mixing ratio (g/mol) |
---|
250 | rrtm_ch4vmr, & !: CH4 volume mixing ratio |
---|
251 | rrtm_cicewp, & !: in-cloud ice water path (g/m²) |
---|
252 | rrtm_cldfr, & !: cloud fraction (0,1) |
---|
253 | rrtm_cliqwp, & !: in-cloud liquid water path (g/m²) |
---|
254 | rrtm_co2vmr, & !: CO2 volume mixing ratio (g/mol) |
---|
255 | rrtm_emis, & !: surface emissivity (0-1) |
---|
256 | rrtm_h2ovmr, & !: H2O volume mixing ratio |
---|
257 | rrtm_n2ovmr, & !: N2O volume mixing ratio |
---|
258 | rrtm_o2vmr, & !: O2 volume mixing ratio |
---|
259 | rrtm_o3vmr, & !: O3 volume mixing ratio |
---|
260 | rrtm_play, & !: pressure layers (hPa, zu-grid) |
---|
261 | rrtm_plev, & !: pressure layers (hPa, zw-grid) |
---|
262 | rrtm_reice, & !: cloud ice effective radius (microns) |
---|
263 | rrtm_reliq, & !: cloud water drop effective radius (microns) |
---|
264 | rrtm_tlay, & !: actual temperature (K, zu-grid) |
---|
265 | rrtm_tlev, & !: actual temperature (K, zw-grid) |
---|
266 | rrtm_lwdflx, & !: RRTM output of incoming longwave radiation flux (W/m2) |
---|
267 | rrtm_lwuflx, & !: RRTM output of outgoing longwave radiation flux (W/m2) |
---|
268 | rrtm_lwhr, & !: RRTM output of longwave radiation heating rate (K/d) |
---|
269 | rrtm_lwuflxc, & !: RRTM output of incoming clear sky longwave radiation flux (W/m2) |
---|
270 | rrtm_lwdflxc, & !: RRTM output of outgoing clear sky longwave radiation flux (W/m2) |
---|
271 | rrtm_lwhrc, & !: RRTM output of incoming longwave clear sky radiation heating rate (K/d) |
---|
272 | rrtm_swdflx, & !: RRTM output of incoming shortwave radiation flux (W/m2) |
---|
273 | rrtm_swuflx, & !: RRTM output of outgoing shortwave radiation flux (W/m2) |
---|
274 | rrtm_swhr, & !: RRTM output of shortwave radiation heating rate (K/d) |
---|
275 | rrtm_swuflxc, & !: RRTM output of incoming clear sky shortwave radiation flux (W/m2) |
---|
276 | rrtm_swdflxc, & !: RRTM output of outgoing clear sky shortwave radiation flux (W/m2) |
---|
277 | rrtm_swhrc !: RRTM output of incoming shortwave clear sky radiation heating rate (K/d) |
---|
278 | |
---|
279 | ! |
---|
280 | !-- Definition of arrays that are currently not used for calling RRTMG (due to setting of flag parameters) |
---|
281 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: rad_lw_cs_in, & !: incoming clear sky longwave radiation (W/m2) (not used) |
---|
282 | rad_lw_cs_out, & !: outgoing clear sky longwave radiation (W/m2) (not used) |
---|
283 | rad_lw_cs_hr, & !: longwave clear sky radiation heating rate (K/d) (not used) |
---|
284 | rad_lw_hr, & !: longwave radiation heating rate (K/d) |
---|
285 | rad_sw_cs_in, & !: incoming clear sky shortwave radiation (W/m2) (not used) |
---|
286 | rad_sw_cs_out, & !: outgoing clear sky shortwave radiation (W/m2) (not used) |
---|
287 | rad_sw_cs_hr, & !: shortwave clear sky radiation heating rate (K/d) (not used) |
---|
288 | rad_sw_hr, & !: shortwave radiation heating rate (K/d) |
---|
289 | rrtm_aldif, & !: surface albedo for longwave diffuse radiation |
---|
290 | rrtm_aldir, & !: surface albedo for longwave direct radiation |
---|
291 | rrtm_asdif, & !: surface albedo for shortwave diffuse radiation |
---|
292 | rrtm_asdir, & !: surface albedo for shortwave direct radiation |
---|
293 | rrtm_lw_tauaer, & !: lw aerosol optical depth |
---|
294 | rrtm_lw_taucld, & !: lw in-cloud optical depth |
---|
295 | rrtm_sw_taucld, & !: sw in-cloud optical depth |
---|
296 | rrtm_sw_ssacld, & !: sw in-cloud single scattering albedo |
---|
297 | rrtm_sw_asmcld, & !: sw in-cloud asymmetry parameter |
---|
298 | rrtm_sw_fsfcld, & !: sw in-cloud forward scattering fraction |
---|
299 | rrtm_sw_tauaer, & !: sw aerosol optical depth |
---|
300 | rrtm_sw_ssaaer, & !: sw aerosol single scattering albedo |
---|
301 | rrtm_sw_asmaer, & !: sw aerosol asymmetry parameter |
---|
302 | rrtm_sw_ecaer !: sw aerosol optical detph at 0.55 microns (rrtm_iaer = 6 only) |
---|
303 | #endif |
---|
304 | |
---|
305 | INTERFACE init_radiation |
---|
306 | MODULE PROCEDURE init_radiation |
---|
307 | END INTERFACE init_radiation |
---|
308 | |
---|
309 | INTERFACE radiation_clearsky |
---|
310 | MODULE PROCEDURE radiation_clearsky |
---|
311 | END INTERFACE radiation_clearsky |
---|
312 | |
---|
313 | INTERFACE radiation_rrtmg |
---|
314 | MODULE PROCEDURE radiation_rrtmg |
---|
315 | END INTERFACE radiation_rrtmg |
---|
316 | |
---|
317 | INTERFACE radiation_tendency |
---|
318 | MODULE PROCEDURE radiation_tendency |
---|
319 | MODULE PROCEDURE radiation_tendency_ij |
---|
320 | END INTERFACE radiation_tendency |
---|
321 | |
---|
322 | SAVE |
---|
323 | |
---|
324 | PRIVATE |
---|
325 | |
---|
326 | PUBLIC albedo, albedo_type, albedo_type_name, albedo_lw_dif, albedo_lw_dir,& |
---|
327 | albedo_sw_dif, albedo_sw_dir, constant_albedo, day_init, dots_rad, & |
---|
328 | dt_radiation, init_radiation, lambda, lw_radiation, net_radiation, & |
---|
329 | rad_net, rad_net_av, radiation, radiation_clearsky, & |
---|
330 | radiation_rrtmg, radiation_scheme, radiation_tendency, rad_lw_in, & |
---|
331 | rad_lw_in_av, rad_lw_out, rad_lw_out_av, rad_sw_in, rad_sw_in_av, & |
---|
332 | rad_sw_out, rad_sw_out_av, sigma_sb, sw_radiation, time_radiation, & |
---|
333 | time_utc_init |
---|
334 | |
---|
335 | #if defined ( __rrtmg ) |
---|
336 | PUBLIC rrtm_aldif, rrtm_aldir, rrtm_asdif, rrtm_asdir |
---|
337 | #endif |
---|
338 | |
---|
339 | CONTAINS |
---|
340 | |
---|
341 | !------------------------------------------------------------------------------! |
---|
342 | ! Description: |
---|
343 | ! ------------ |
---|
344 | !-- Initialization of the radiation model |
---|
345 | !------------------------------------------------------------------------------! |
---|
346 | SUBROUTINE init_radiation |
---|
347 | |
---|
348 | IMPLICIT NONE |
---|
349 | |
---|
350 | ! |
---|
351 | !-- Allocate array for storing the surface net radiation |
---|
352 | IF ( .NOT. ALLOCATED ( rad_net ) ) THEN |
---|
353 | ALLOCATE ( rad_net(nysg:nyng,nxlg:nxrg) ) |
---|
354 | rad_net = 0.0_wp |
---|
355 | ENDIF |
---|
356 | |
---|
357 | ! |
---|
358 | !-- Fix net radiation in case of radiation_scheme = 'constant' |
---|
359 | IF ( radiation_scheme == 'constant' ) THEN |
---|
360 | rad_net = net_radiation |
---|
361 | radiation = .FALSE. |
---|
362 | ! |
---|
363 | !-- Calculate orbital constants |
---|
364 | ELSE |
---|
365 | decl_1 = SIN(23.45_wp * pi / 180.0_wp) |
---|
366 | decl_2 = 2.0_wp * pi / 365.0_wp |
---|
367 | decl_3 = decl_2 * 81.0_wp |
---|
368 | lat = phi * pi / 180.0_wp |
---|
369 | lon = lambda * pi / 180.0_wp |
---|
370 | ENDIF |
---|
371 | |
---|
372 | |
---|
373 | IF ( radiation_scheme == 'clear-sky' ) THEN |
---|
374 | |
---|
375 | ALLOCATE ( alpha(nysg:nyng,nxlg:nxrg) ) |
---|
376 | |
---|
377 | IF ( .NOT. ALLOCATED ( rad_sw_in ) ) THEN |
---|
378 | ALLOCATE ( rad_sw_in(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
379 | ENDIF |
---|
380 | IF ( .NOT. ALLOCATED ( rad_sw_out ) ) THEN |
---|
381 | ALLOCATE ( rad_sw_out(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
382 | ENDIF |
---|
383 | |
---|
384 | IF ( .NOT. ALLOCATED ( rad_sw_in_av ) ) THEN |
---|
385 | ALLOCATE ( rad_sw_in_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
386 | ENDIF |
---|
387 | IF ( .NOT. ALLOCATED ( rad_sw_out_av ) ) THEN |
---|
388 | ALLOCATE ( rad_sw_out_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
389 | ENDIF |
---|
390 | |
---|
391 | IF ( .NOT. ALLOCATED ( rad_lw_in ) ) THEN |
---|
392 | ALLOCATE ( rad_lw_in(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
393 | ENDIF |
---|
394 | IF ( .NOT. ALLOCATED ( rad_lw_out ) ) THEN |
---|
395 | ALLOCATE ( rad_lw_out(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
396 | ENDIF |
---|
397 | |
---|
398 | IF ( .NOT. ALLOCATED ( rad_lw_in_av ) ) THEN |
---|
399 | ALLOCATE ( rad_lw_in_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
400 | ENDIF |
---|
401 | IF ( .NOT. ALLOCATED ( rad_lw_out_av ) ) THEN |
---|
402 | ALLOCATE ( rad_lw_out_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
403 | ENDIF |
---|
404 | |
---|
405 | rad_sw_in = 0.0_wp |
---|
406 | rad_sw_out = 0.0_wp |
---|
407 | rad_lw_in = 0.0_wp |
---|
408 | rad_lw_out = 0.0_wp |
---|
409 | |
---|
410 | ! |
---|
411 | !-- Overwrite albedo if manually set in parameter file |
---|
412 | IF ( albedo_type /= 0 .AND. albedo == 9999999.9_wp ) THEN |
---|
413 | albedo = albedo_pars(2,albedo_type) |
---|
414 | ENDIF |
---|
415 | |
---|
416 | alpha = albedo |
---|
417 | |
---|
418 | ! |
---|
419 | !-- Initialization actions for RRTMG |
---|
420 | ELSEIF ( radiation_scheme == 'rrtmg' ) THEN |
---|
421 | #if defined ( __rrtmg ) |
---|
422 | ! |
---|
423 | !-- Allocate albedos |
---|
424 | ALLOCATE ( rrtm_aldif(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
425 | ALLOCATE ( rrtm_aldir(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
426 | ALLOCATE ( rrtm_asdif(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
427 | ALLOCATE ( rrtm_asdir(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
428 | ALLOCATE ( aldif(nysg:nyng,nxlg:nxrg) ) |
---|
429 | ALLOCATE ( aldir(nysg:nyng,nxlg:nxrg) ) |
---|
430 | ALLOCATE ( asdif(nysg:nyng,nxlg:nxrg) ) |
---|
431 | ALLOCATE ( asdir(nysg:nyng,nxlg:nxrg) ) |
---|
432 | |
---|
433 | IF ( albedo_type /= 0 ) THEN |
---|
434 | IF ( albedo_lw_dif == 9999999.9_wp ) THEN |
---|
435 | albedo_lw_dif = albedo_pars(0,albedo_type) |
---|
436 | albedo_lw_dir = albedo_lw_dif |
---|
437 | ENDIF |
---|
438 | IF ( albedo_sw_dif == 9999999.9_wp ) THEN |
---|
439 | albedo_sw_dif = albedo_pars(1,albedo_type) |
---|
440 | albedo_sw_dir = albedo_sw_dif |
---|
441 | ENDIF |
---|
442 | ENDIF |
---|
443 | |
---|
444 | aldif(:,:) = albedo_lw_dif |
---|
445 | aldir(:,:) = albedo_lw_dir |
---|
446 | asdif(:,:) = albedo_sw_dif |
---|
447 | asdir(:,:) = albedo_sw_dir |
---|
448 | ! |
---|
449 | !-- Calculate initial values of current (cosine of) the zenith angle and |
---|
450 | !-- whether the sun is up |
---|
451 | CALL calc_zenith |
---|
452 | ! |
---|
453 | !-- Calculate initial surface albedo |
---|
454 | IF ( .NOT. constant_albedo ) THEN |
---|
455 | CALL calc_albedo |
---|
456 | ELSE |
---|
457 | rrtm_aldif(0,:,:) = aldif(:,:) |
---|
458 | rrtm_aldir(0,:,:) = aldir(:,:) |
---|
459 | rrtm_asdif(0,:,:) = asdif(:,:) |
---|
460 | rrtm_asdir(0,:,:) = asdir(:,:) |
---|
461 | ENDIF |
---|
462 | |
---|
463 | ! |
---|
464 | !-- Allocate surface emissivity |
---|
465 | ALLOCATE ( rrtm_emis(0:0,1:nbndlw+1) ) |
---|
466 | rrtm_emis = emissivity |
---|
467 | |
---|
468 | ! |
---|
469 | !-- Allocate 3d arrays of radiative fluxes and heating rates |
---|
470 | ALLOCATE ( rad_sw_hr(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
471 | ALLOCATE ( rad_sw_cs_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
472 | ALLOCATE ( rad_sw_cs_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
473 | ALLOCATE ( rad_sw_cs_hr(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
474 | |
---|
475 | IF ( .NOT. ALLOCATED ( rad_sw_in ) ) THEN |
---|
476 | ALLOCATE ( rad_sw_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
477 | rad_sw_in = 0.0_wp |
---|
478 | |
---|
479 | ENDIF |
---|
480 | |
---|
481 | IF ( .NOT. ALLOCATED ( rad_sw_in_av ) ) THEN |
---|
482 | ALLOCATE ( rad_sw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
483 | rad_sw_out = 0.0_wp |
---|
484 | ENDIF |
---|
485 | |
---|
486 | IF ( .NOT. ALLOCATED ( rad_sw_out ) ) THEN |
---|
487 | ALLOCATE ( rad_sw_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
488 | ENDIF |
---|
489 | |
---|
490 | IF ( .NOT. ALLOCATED ( rad_sw_out_av ) ) THEN |
---|
491 | ALLOCATE ( rad_sw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
492 | ENDIF |
---|
493 | |
---|
494 | ALLOCATE ( rad_lw_hr(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
495 | ALLOCATE ( rad_lw_cs_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
496 | ALLOCATE ( rad_lw_cs_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
497 | ALLOCATE ( rad_lw_cs_hr(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
498 | |
---|
499 | IF ( .NOT. ALLOCATED ( rad_lw_in ) ) THEN |
---|
500 | ALLOCATE ( rad_lw_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
501 | rad_lw_in = 0.0_wp |
---|
502 | ENDIF |
---|
503 | |
---|
504 | IF ( .NOT. ALLOCATED ( rad_lw_in_av ) ) THEN |
---|
505 | ALLOCATE ( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
506 | ENDIF |
---|
507 | |
---|
508 | IF ( .NOT. ALLOCATED ( rad_lw_out ) ) THEN |
---|
509 | ALLOCATE ( rad_lw_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
510 | rad_lw_out = 0.0_wp |
---|
511 | ENDIF |
---|
512 | |
---|
513 | IF ( .NOT. ALLOCATED ( rad_lw_out_av ) ) THEN |
---|
514 | ALLOCATE ( rad_lw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
515 | ENDIF |
---|
516 | |
---|
517 | rad_sw_hr = 0.0_wp |
---|
518 | rad_sw_cs_in = 0.0_wp |
---|
519 | rad_sw_cs_out = 0.0_wp |
---|
520 | rad_sw_cs_hr = 0.0_wp |
---|
521 | |
---|
522 | rad_lw_hr = 0.0_wp |
---|
523 | rad_lw_cs_in = 0.0_wp |
---|
524 | rad_lw_cs_out = 0.0_wp |
---|
525 | rad_lw_cs_hr = 0.0_wp |
---|
526 | |
---|
527 | ! |
---|
528 | !-- Allocate dummy array for storing surface temperature |
---|
529 | ALLOCATE ( rrtm_tsfc(1) ) |
---|
530 | |
---|
531 | ! |
---|
532 | !-- Initialize RRTMG |
---|
533 | IF ( lw_radiation ) CALL rrtmg_lw_ini ( cp ) |
---|
534 | IF ( sw_radiation ) CALL rrtmg_sw_ini ( cp ) |
---|
535 | |
---|
536 | ! |
---|
537 | !-- Set input files for RRTMG |
---|
538 | INQUIRE(FILE="RAD_SND_DATA", EXIST=snd_exists) |
---|
539 | IF ( .NOT. snd_exists ) THEN |
---|
540 | rrtm_input_file = "rrtmg_lw.nc" |
---|
541 | ENDIF |
---|
542 | |
---|
543 | ! |
---|
544 | !-- Read vertical layers for RRTMG from sounding data |
---|
545 | !-- The routine provides nzt_rad, hyp_snd(1:nzt_rad), |
---|
546 | !-- t_snd(nzt+2:nzt_rad), rrtm_play(1:nzt_rad), rrtm_plev(1_nzt_rad+1), |
---|
547 | !-- rrtm_tlay(nzt+2:nzt_rad), rrtm_tlev(nzt+2:nzt_rad+1) |
---|
548 | CALL read_sounding_data |
---|
549 | |
---|
550 | ! |
---|
551 | !-- Read trace gas profiles from file. This routine provides |
---|
552 | !-- the rrtm_ arrays (1:nzt_rad+1) |
---|
553 | CALL read_trace_gas_data |
---|
554 | #endif |
---|
555 | ENDIF |
---|
556 | |
---|
557 | ! |
---|
558 | !-- Perform user actions if required |
---|
559 | CALL user_init_radiation |
---|
560 | |
---|
561 | |
---|
562 | ! |
---|
563 | !-- Add timeseries for radiation model |
---|
564 | dots_rad = dots_num + 1 |
---|
565 | dots_label(dots_num+1) = "rad_net" |
---|
566 | dots_label(dots_num+2) = "rad_lw_in" |
---|
567 | dots_label(dots_num+3) = "rad_lw_out" |
---|
568 | dots_label(dots_num+4) = "rad_sw_in" |
---|
569 | dots_label(dots_num+5) = "rad_sw_out" |
---|
570 | dots_unit(dots_num+1:dots_num+5) = "W/m2" |
---|
571 | dots_num = dots_num + 5 |
---|
572 | |
---|
573 | ! |
---|
574 | !-- Output of albedos is only required for RRTMG |
---|
575 | IF ( radiation_scheme == 'rrtmg' ) THEN |
---|
576 | dots_label(dots_num+1) = "rrtm_aldif" |
---|
577 | dots_label(dots_num+2) = "rrtm_aldir" |
---|
578 | dots_label(dots_num+3) = "rrtm_asdif" |
---|
579 | dots_label(dots_num+4) = "rrtm_asdir" |
---|
580 | dots_unit(dots_num+1:dots_num+4) = "" |
---|
581 | dots_num = dots_num + 4 |
---|
582 | ENDIF |
---|
583 | |
---|
584 | ! |
---|
585 | !-- Calculate radiative fluxes at model start |
---|
586 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
587 | IF ( radiation_scheme == 'clear-sky' ) THEN |
---|
588 | CALL radiation_clearsky |
---|
589 | ELSEIF ( radiation_scheme == 'rrtmg' ) THEN |
---|
590 | CALL radiation_rrtmg |
---|
591 | ENDIF |
---|
592 | ENDIF |
---|
593 | |
---|
594 | RETURN |
---|
595 | |
---|
596 | END SUBROUTINE init_radiation |
---|
597 | |
---|
598 | |
---|
599 | !------------------------------------------------------------------------------! |
---|
600 | ! Description: |
---|
601 | ! ------------ |
---|
602 | !-- A simple clear sky radiation model |
---|
603 | !------------------------------------------------------------------------------! |
---|
604 | SUBROUTINE radiation_clearsky |
---|
605 | |
---|
606 | USE indices, & |
---|
607 | ONLY: nbgp |
---|
608 | |
---|
609 | IMPLICIT NONE |
---|
610 | |
---|
611 | INTEGER(iwp) :: i, j, k |
---|
612 | |
---|
613 | ! |
---|
614 | !-- Calculate current zenith angle |
---|
615 | CALL calc_zenith |
---|
616 | |
---|
617 | ! |
---|
618 | !-- Calculate sky transmissivity |
---|
619 | sky_trans = 0.6_wp + 0.2_wp * zenith(0) |
---|
620 | |
---|
621 | ! |
---|
622 | !-- Calculate value of the Exner function |
---|
623 | exn = (surface_pressure / 1000.0_wp )**0.286_wp |
---|
624 | ! |
---|
625 | !-- Calculate radiation fluxes and net radiation (rad_net) for each grid |
---|
626 | !-- point |
---|
627 | DO i = nxl, nxr |
---|
628 | DO j = nys, nyn |
---|
629 | k = nzb_s_inner(j,i) |
---|
630 | rad_sw_in(0,j,i) = solar_constant * sky_trans * zenith(0) |
---|
631 | rad_sw_out(0,j,i) = alpha(j,i) * rad_sw_in(0,j,i) |
---|
632 | rad_lw_out(0,j,i) = sigma_sb * (pt(k,j,i) * exn)**4 |
---|
633 | rad_lw_in(0,j,i) = 0.8_wp * sigma_sb * (pt(k+1,j,i) * exn)**4 |
---|
634 | rad_net(j,i) = rad_sw_in(0,j,i) - rad_sw_out(0,j,i) & |
---|
635 | + rad_lw_in(0,j,i) - rad_lw_out(0,j,i) |
---|
636 | |
---|
637 | ENDDO |
---|
638 | ENDDO |
---|
639 | |
---|
640 | CALL exchange_horiz_2d( rad_lw_in, nbgp ) |
---|
641 | CALL exchange_horiz_2d( rad_lw_out, nbgp ) |
---|
642 | CALL exchange_horiz_2d( rad_sw_in, nbgp ) |
---|
643 | CALL exchange_horiz_2d( rad_sw_out, nbgp ) |
---|
644 | CALL exchange_horiz_2d( rad_net, nbgp ) |
---|
645 | |
---|
646 | RETURN |
---|
647 | |
---|
648 | END SUBROUTINE radiation_clearsky |
---|
649 | |
---|
650 | |
---|
651 | !------------------------------------------------------------------------------! |
---|
652 | ! Description: |
---|
653 | ! ------------ |
---|
654 | !-- Implementation of the RRTMG radiation_scheme |
---|
655 | !------------------------------------------------------------------------------! |
---|
656 | SUBROUTINE radiation_rrtmg |
---|
657 | |
---|
658 | USE indices, & |
---|
659 | ONLY: nbgp |
---|
660 | |
---|
661 | USE particle_attributes, & |
---|
662 | ONLY: grid_particles, number_of_particles, particles, & |
---|
663 | particle_advection_start, prt_count |
---|
664 | |
---|
665 | IMPLICIT NONE |
---|
666 | |
---|
667 | #if defined ( __rrtmg ) |
---|
668 | |
---|
669 | INTEGER(iwp) :: i, j, k, n !: |
---|
670 | |
---|
671 | REAL(wp) :: s_r2 !: weighted sum over all droplets with r^2 |
---|
672 | REAL(wp) :: s_r3 !: weighted sum over all droplets with r^3 |
---|
673 | |
---|
674 | ! |
---|
675 | !-- Calculate current (cosine of) zenith angle and whether the sun is up |
---|
676 | CALL calc_zenith |
---|
677 | ! |
---|
678 | !-- Calculate surface albedo |
---|
679 | IF ( .NOT. constant_albedo ) THEN |
---|
680 | CALL calc_albedo |
---|
681 | ENDIF |
---|
682 | |
---|
683 | ! |
---|
684 | !-- Prepare input data for RRTMG |
---|
685 | |
---|
686 | ! |
---|
687 | !-- In case of large scale forcing with surface data, calculate new pressure |
---|
688 | !-- profile. nzt_rad might be modified by these calls and all required arrays |
---|
689 | !-- will then be re-allocated |
---|
690 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
691 | CALL read_sounding_data |
---|
692 | CALL read_trace_gas_data |
---|
693 | ENDIF |
---|
694 | ! |
---|
695 | !-- Loop over all grid points |
---|
696 | DO i = nxl, nxr |
---|
697 | DO j = nys, nyn |
---|
698 | |
---|
699 | ! |
---|
700 | !-- Prepare profiles of temperature and H2O volume mixing ratio |
---|
701 | rrtm_tlev(0,nzb+1) = pt(nzb,j,i) |
---|
702 | |
---|
703 | DO k = nzb+1, nzt+1 |
---|
704 | rrtm_tlay(0,k) = pt(k,j,i) * ( (hyp(k) ) / 100000.0_wp & |
---|
705 | )**0.286_wp + ( l_v / cp ) * ql(k,j,i) |
---|
706 | rrtm_h2ovmr(0,k) = mol_weight_air_d_wv * (q(k,j,i) - ql(k,j,i)) |
---|
707 | |
---|
708 | ENDDO |
---|
709 | |
---|
710 | ! |
---|
711 | !-- Avoid temperature/humidity jumps at the top of the LES domain by |
---|
712 | !-- linear interpolation from nzt+2 to nzt+7 |
---|
713 | DO k = nzt+2, nzt+7 |
---|
714 | rrtm_tlay(0,k) = rrtm_tlay(0,nzt+1) & |
---|
715 | + ( rrtm_tlay(0,nzt+8) - rrtm_tlay(0,nzt+1) ) & |
---|
716 | / ( rrtm_play(0,nzt+8) - rrtm_play(0,nzt+1) ) & |
---|
717 | * ( rrtm_play(0,k) - rrtm_play(0,nzt+1) ) |
---|
718 | |
---|
719 | rrtm_h2ovmr(0,k) = rrtm_h2ovmr(0,nzt+1) & |
---|
720 | + ( rrtm_h2ovmr(0,nzt+8) - rrtm_h2ovmr(0,nzt+1) )& |
---|
721 | / ( rrtm_play(0,nzt+8) - rrtm_play(0,nzt+1) )& |
---|
722 | * ( rrtm_play(0,k) - rrtm_play(0,nzt+1) ) |
---|
723 | |
---|
724 | ENDDO |
---|
725 | |
---|
726 | !-- Linear interpolate to zw grid |
---|
727 | DO k = nzb+2, nzt+8 |
---|
728 | rrtm_tlev(0,k) = rrtm_tlay(0,k-1) + (rrtm_tlay(0,k) - & |
---|
729 | rrtm_tlay(0,k-1)) & |
---|
730 | / ( rrtm_play(0,k) - rrtm_play(0,k-1) ) & |
---|
731 | * ( rrtm_plev(0,k) - rrtm_play(0,k-1) ) |
---|
732 | ENDDO |
---|
733 | |
---|
734 | |
---|
735 | ! |
---|
736 | !-- Calculate liquid water path and cloud fraction for each column. |
---|
737 | !-- Note that LWP is required in g/m² instead of kg/kg m. |
---|
738 | rrtm_cldfr = 0.0_wp |
---|
739 | rrtm_reliq = 0.0_wp |
---|
740 | rrtm_cliqwp = 0.0_wp |
---|
741 | |
---|
742 | DO k = nzb+1, nzt+1 |
---|
743 | rrtm_cliqwp(0,k) = ql(k,j,i) * 1000.0_wp * & |
---|
744 | (rrtm_plev(0,k) - rrtm_plev(0,k+1)) * 100.0_wp / g |
---|
745 | |
---|
746 | IF ( rrtm_cliqwp(0,k) .GT. 0 ) THEN |
---|
747 | rrtm_cldfr(0,k) = 1.0_wp |
---|
748 | rrtm_icld = 1 |
---|
749 | |
---|
750 | ! |
---|
751 | !-- Calculate cloud droplet effective radius |
---|
752 | IF ( cloud_physics ) THEN |
---|
753 | rrtm_reliq(0,k) = 1.0E6_wp * ( 3.0_wp * ql(k,j,i) & |
---|
754 | / ( 4.0_wp * pi * nc_const * rho_l ) & |
---|
755 | )**0.33333333333333_wp & |
---|
756 | * EXP( LOG( sigma_gc )**2 ) |
---|
757 | |
---|
758 | ELSEIF ( cloud_droplets ) THEN |
---|
759 | number_of_particles = prt_count(k,j,i) |
---|
760 | |
---|
761 | IF (number_of_particles <= 0) CYCLE |
---|
762 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
763 | s_r2 = 0.0_wp |
---|
764 | s_r3 = 0.0_wp |
---|
765 | |
---|
766 | DO n = 1, number_of_particles |
---|
767 | IF ( particles(n)%particle_mask ) THEN |
---|
768 | s_r2 = s_r2 + particles(n)%radius**2 * & |
---|
769 | particles(n)%weight_factor |
---|
770 | s_r3 = s_r3 + particles(n)%radius**3 * & |
---|
771 | particles(n)%weight_factor |
---|
772 | ENDIF |
---|
773 | ENDDO |
---|
774 | |
---|
775 | IF ( s_r2 > 0.0_wp ) rrtm_reliq(0,k) = s_r3 / s_r2 |
---|
776 | |
---|
777 | ENDIF |
---|
778 | |
---|
779 | ! |
---|
780 | !-- Limit effective radius |
---|
781 | IF ( rrtm_reliq(0,k) .GT. 0.0_wp ) THEN |
---|
782 | rrtm_reliq(0,k) = MAX(rrtm_reliq(0,k),2.5_wp) |
---|
783 | rrtm_reliq(0,k) = MIN(rrtm_reliq(0,k),60.0_wp) |
---|
784 | ENDIF |
---|
785 | ELSE |
---|
786 | rrtm_icld = 0 |
---|
787 | ENDIF |
---|
788 | ENDDO |
---|
789 | |
---|
790 | ! |
---|
791 | !-- Set surface temperature |
---|
792 | rrtm_tsfc = pt(nzb,j,i) * (surface_pressure / 1000.0_wp )**0.286_wp |
---|
793 | |
---|
794 | IF ( lw_radiation ) THEN |
---|
795 | CALL rrtmg_lw( 1, nzt_rad , rrtm_icld , rrtm_idrv ,& |
---|
796 | rrtm_play , rrtm_plev , rrtm_tlay , rrtm_tlev ,& |
---|
797 | rrtm_tsfc , rrtm_h2ovmr , rrtm_o3vmr , rrtm_co2vmr ,& |
---|
798 | rrtm_ch4vmr , rrtm_n2ovmr , rrtm_o2vmr , rrtm_cfc11vmr ,& |
---|
799 | rrtm_cfc12vmr , rrtm_cfc22vmr, rrtm_ccl4vmr , rrtm_emis ,& |
---|
800 | rrtm_inflglw , rrtm_iceflglw, rrtm_liqflglw, rrtm_cldfr ,& |
---|
801 | rrtm_lw_taucld , rrtm_cicewp , rrtm_cliqwp , rrtm_reice ,& |
---|
802 | rrtm_reliq , rrtm_lw_tauaer, & |
---|
803 | rrtm_lwuflx , rrtm_lwdflx , rrtm_lwhr , & |
---|
804 | rrtm_lwuflxc , rrtm_lwdflxc , rrtm_lwhrc ) |
---|
805 | |
---|
806 | DO k = nzb, nzt+1 |
---|
807 | rad_lw_in(k,j,i) = rrtm_lwdflx(0,k) |
---|
808 | rad_lw_out(k,j,i) = rrtm_lwuflx(0,k) |
---|
809 | ENDDO |
---|
810 | |
---|
811 | |
---|
812 | ENDIF |
---|
813 | |
---|
814 | IF ( sw_radiation .AND. sun_up ) THEN |
---|
815 | CALL rrtmg_sw( 1, nzt_rad , rrtm_icld , rrtm_iaer ,& |
---|
816 | rrtm_play , rrtm_plev , rrtm_tlay , rrtm_tlev ,& |
---|
817 | rrtm_tsfc , rrtm_h2ovmr , rrtm_o3vmr , rrtm_co2vmr ,& |
---|
818 | rrtm_ch4vmr , rrtm_n2ovmr , rrtm_o2vmr , rrtm_asdir(:,j,i),& |
---|
819 | rrtm_asdif(:,j,i), rrtm_aldir(:,j,i), rrtm_aldif(:,j,i), zenith,& |
---|
820 | 0.0_wp , day , solar_constant, rrtm_inflgsw,& |
---|
821 | rrtm_iceflgsw , rrtm_liqflgsw, rrtm_cldfr , rrtm_sw_taucld ,& |
---|
822 | rrtm_sw_ssacld , rrtm_sw_asmcld, rrtm_sw_fsfcld, rrtm_cicewp ,& |
---|
823 | rrtm_cliqwp , rrtm_reice , rrtm_reliq , rrtm_sw_tauaer ,& |
---|
824 | rrtm_sw_ssaaer , rrtm_sw_asmaer , rrtm_sw_ecaer , & |
---|
825 | rrtm_swuflx , rrtm_swdflx , rrtm_swhr , & |
---|
826 | rrtm_swuflxc , rrtm_swdflxc , rrtm_swhrc ) |
---|
827 | |
---|
828 | DO k = nzb, nzt+1 |
---|
829 | rad_sw_in(k,j,i) = rrtm_swdflx(0,k) |
---|
830 | rad_sw_out(k,j,i) = rrtm_swuflx(0,k) |
---|
831 | ENDDO |
---|
832 | ENDIF |
---|
833 | |
---|
834 | ! |
---|
835 | !-- Calculate surface net radiation |
---|
836 | rad_net(j,i) = rad_sw_in(nzb,j,i) - rad_sw_out(nzb,j,i) & |
---|
837 | + rad_lw_in(nzb,j,i) - rad_lw_out(nzb,j,i) |
---|
838 | |
---|
839 | ENDDO |
---|
840 | ENDDO |
---|
841 | |
---|
842 | CALL exchange_horiz( rad_lw_in, nbgp ) |
---|
843 | CALL exchange_horiz( rad_lw_out, nbgp ) |
---|
844 | CALL exchange_horiz( rad_sw_in, nbgp ) |
---|
845 | CALL exchange_horiz( rad_sw_out, nbgp ) |
---|
846 | CALL exchange_horiz_2d( rad_net, nbgp ) |
---|
847 | #endif |
---|
848 | |
---|
849 | END SUBROUTINE radiation_rrtmg |
---|
850 | |
---|
851 | |
---|
852 | !------------------------------------------------------------------------------! |
---|
853 | ! Description: |
---|
854 | ! ------------ |
---|
855 | !-- Calculate the cosine of the zenith angle (variable is called zenith) |
---|
856 | !------------------------------------------------------------------------------! |
---|
857 | SUBROUTINE calc_zenith |
---|
858 | |
---|
859 | IMPLICIT NONE |
---|
860 | |
---|
861 | REAL(wp) :: declination, & !: solar declination angle |
---|
862 | hour_angle !: solar hour angle |
---|
863 | ! |
---|
864 | !-- Calculate current day and time based on the initial values and simulation |
---|
865 | !-- time |
---|
866 | day = day_init + INT(FLOOR( (time_utc_init + time_since_reference_point) & |
---|
867 | / 86400.0_wp ), KIND=iwp) |
---|
868 | time_utc = MOD((time_utc_init + time_since_reference_point), 86400.0_wp) |
---|
869 | |
---|
870 | |
---|
871 | ! |
---|
872 | !-- Calculate solar declination and hour angle |
---|
873 | declination = ASIN( decl_1 * SIN(decl_2 * REAL(day, KIND=wp) - decl_3) ) |
---|
874 | hour_angle = 2.0_wp * pi * (time_utc / 86400.0_wp) + lon - pi |
---|
875 | |
---|
876 | ! |
---|
877 | !-- Calculate zenith angle |
---|
878 | zenith(0) = SIN(lat) * SIN(declination) + COS(lat) * COS(declination) & |
---|
879 | * COS(hour_angle) |
---|
880 | zenith(0) = MAX(0.0_wp,zenith(0)) |
---|
881 | |
---|
882 | ! |
---|
883 | !-- Check if the sun is up (otheriwse shortwave calculations can be skipped) |
---|
884 | IF ( zenith(0) .GT. 0.0_wp ) THEN |
---|
885 | sun_up = .TRUE. |
---|
886 | ELSE |
---|
887 | sun_up = .FALSE. |
---|
888 | END IF |
---|
889 | |
---|
890 | END SUBROUTINE calc_zenith |
---|
891 | |
---|
892 | #if defined ( __rrtmg ) |
---|
893 | !------------------------------------------------------------------------------! |
---|
894 | ! Description: |
---|
895 | ! ------------ |
---|
896 | !-- Calculates surface albedo components based on Briegleb (1992) and |
---|
897 | !-- Briegleb et al. (1986) |
---|
898 | !------------------------------------------------------------------------------! |
---|
899 | SUBROUTINE calc_albedo |
---|
900 | |
---|
901 | IMPLICIT NONE |
---|
902 | |
---|
903 | IF ( sun_up ) THEN |
---|
904 | ! |
---|
905 | !-- Ocean |
---|
906 | IF ( albedo_type == 1 ) THEN |
---|
907 | rrtm_aldir(0,:,:) = 0.026_wp / ( zenith(0)**1.7_wp + 0.065_wp ) & |
---|
908 | + 0.15_wp * ( zenith(0) - 0.1_wp ) & |
---|
909 | * ( zenith(0) - 0.5_wp ) & |
---|
910 | * ( zenith(0) - 1.0_wp ) |
---|
911 | rrtm_asdir(0,:,:) = rrtm_aldir(0,:,:) |
---|
912 | ! |
---|
913 | !-- Snow |
---|
914 | ELSEIF ( albedo_type == 16 ) THEN |
---|
915 | IF ( zenith(0) < 0.5_wp ) THEN |
---|
916 | rrtm_aldir(0,:,:) = 0.5_wp * (1.0_wp - aldif) & |
---|
917 | * ( 3.0_wp / (1.0_wp + 4.0_wp & |
---|
918 | * zenith(0))) - 1.0_wp |
---|
919 | rrtm_asdir(0,:,:) = 0.5_wp * (1.0_wp - asdif) & |
---|
920 | * ( 3.0_wp / (1.0_wp + 4.0_wp & |
---|
921 | * zenith(0))) - 1.0_wp |
---|
922 | |
---|
923 | rrtm_aldir(0,:,:) = MIN(0.98_wp, rrtm_aldir(0,:,:)) |
---|
924 | rrtm_asdir(0,:,:) = MIN(0.98_wp, rrtm_asdir(0,:,:)) |
---|
925 | ELSE |
---|
926 | rrtm_aldir(0,:,:) = aldif |
---|
927 | rrtm_asdir(0,:,:) = asdif |
---|
928 | ENDIF |
---|
929 | ! |
---|
930 | !-- Sea ice |
---|
931 | ELSEIF ( albedo_type == 15 ) THEN |
---|
932 | rrtm_aldir(0,:,:) = aldif |
---|
933 | rrtm_asdir(0,:,:) = asdif |
---|
934 | ! |
---|
935 | !-- Land surfaces |
---|
936 | ELSE |
---|
937 | SELECT CASE ( albedo_type ) |
---|
938 | |
---|
939 | ! |
---|
940 | !-- Surface types with strong zenith dependence |
---|
941 | CASE ( 1, 2, 3, 4, 11, 12, 13 ) |
---|
942 | rrtm_aldir(0,:,:) = aldif * 1.4_wp / & |
---|
943 | (1.0_wp + 0.8_wp * zenith(0)) |
---|
944 | rrtm_asdir(0,:,:) = asdif * 1.4_wp / & |
---|
945 | (1.0_wp + 0.8_wp * zenith(0)) |
---|
946 | ! |
---|
947 | !-- Surface types with weak zenith dependence |
---|
948 | CASE ( 5, 6, 7, 8, 9, 10, 14 ) |
---|
949 | rrtm_aldir(0,:,:) = aldif * 1.1_wp / & |
---|
950 | (1.0_wp + 0.2_wp * zenith(0)) |
---|
951 | rrtm_asdir(0,:,:) = asdif * 1.1_wp / & |
---|
952 | (1.0_wp + 0.2_wp * zenith(0)) |
---|
953 | |
---|
954 | CASE DEFAULT |
---|
955 | |
---|
956 | END SELECT |
---|
957 | ENDIF |
---|
958 | ! |
---|
959 | !-- Diffusive albedo is taken from Table 2 |
---|
960 | rrtm_aldif(0,:,:) = aldif |
---|
961 | rrtm_asdif(0,:,:) = asdif |
---|
962 | |
---|
963 | ELSE |
---|
964 | |
---|
965 | rrtm_aldir(0,:,:) = 0.0_wp |
---|
966 | rrtm_asdir(0,:,:) = 0.0_wp |
---|
967 | rrtm_aldif(0,:,:) = 0.0_wp |
---|
968 | rrtm_asdif(0,:,:) = 0.0_wp |
---|
969 | ENDIF |
---|
970 | END SUBROUTINE calc_albedo |
---|
971 | |
---|
972 | !------------------------------------------------------------------------------! |
---|
973 | ! Description: |
---|
974 | ! ------------ |
---|
975 | !-- Read sounding data (pressure and temperature) from RADIATION_DATA. |
---|
976 | !------------------------------------------------------------------------------! |
---|
977 | SUBROUTINE read_sounding_data |
---|
978 | |
---|
979 | USE netcdf_control |
---|
980 | |
---|
981 | IMPLICIT NONE |
---|
982 | |
---|
983 | INTEGER(iwp) :: id, id_dim_zrad, id_var, k, nz_snd, nz_snd_start, nz_snd_end |
---|
984 | |
---|
985 | REAL(wp) :: t_surface |
---|
986 | |
---|
987 | REAL(wp), DIMENSION(:), ALLOCATABLE :: hyp_snd_tmp, t_snd_tmp |
---|
988 | |
---|
989 | ! |
---|
990 | !-- In case of updates, deallocate arrays first (sufficient to check one |
---|
991 | !-- array as the others are automatically allocated). This is required |
---|
992 | !-- because nzt_rad might change during the update |
---|
993 | IF ( ALLOCATED ( hyp_snd ) ) THEN |
---|
994 | DEALLOCATE( hyp_snd ) |
---|
995 | DEALLOCATE( t_snd ) |
---|
996 | DEALLOCATE( q_snd ) |
---|
997 | DEALLOCATE ( rrtm_play ) |
---|
998 | DEALLOCATE ( rrtm_plev ) |
---|
999 | DEALLOCATE ( rrtm_tlay ) |
---|
1000 | DEALLOCATE ( rrtm_tlev ) |
---|
1001 | DEALLOCATE ( rrtm_h2ovmr ) |
---|
1002 | DEALLOCATE ( rrtm_cicewp ) |
---|
1003 | DEALLOCATE ( rrtm_cldfr ) |
---|
1004 | DEALLOCATE ( rrtm_cliqwp ) |
---|
1005 | DEALLOCATE ( rrtm_reice ) |
---|
1006 | DEALLOCATE ( rrtm_reliq ) |
---|
1007 | DEALLOCATE ( rrtm_lw_taucld ) |
---|
1008 | DEALLOCATE ( rrtm_lw_tauaer ) |
---|
1009 | DEALLOCATE ( rrtm_lwdflx ) |
---|
1010 | DEALLOCATE ( rrtm_lwuflx ) |
---|
1011 | DEALLOCATE ( rrtm_lwhr ) |
---|
1012 | DEALLOCATE ( rrtm_lwuflxc ) |
---|
1013 | DEALLOCATE ( rrtm_lwdflxc ) |
---|
1014 | DEALLOCATE ( rrtm_lwhrc ) |
---|
1015 | DEALLOCATE ( rrtm_sw_taucld ) |
---|
1016 | DEALLOCATE ( rrtm_sw_ssacld ) |
---|
1017 | DEALLOCATE ( rrtm_sw_asmcld ) |
---|
1018 | DEALLOCATE ( rrtm_sw_fsfcld ) |
---|
1019 | DEALLOCATE ( rrtm_sw_tauaer ) |
---|
1020 | DEALLOCATE ( rrtm_sw_ssaaer ) |
---|
1021 | DEALLOCATE ( rrtm_sw_asmaer ) |
---|
1022 | DEALLOCATE ( rrtm_sw_ecaer ) |
---|
1023 | DEALLOCATE ( rrtm_swdflx ) |
---|
1024 | DEALLOCATE ( rrtm_swuflx ) |
---|
1025 | DEALLOCATE ( rrtm_swhr ) |
---|
1026 | DEALLOCATE ( rrtm_swuflxc ) |
---|
1027 | DEALLOCATE ( rrtm_swdflxc ) |
---|
1028 | DEALLOCATE ( rrtm_swhrc ) |
---|
1029 | ENDIF |
---|
1030 | |
---|
1031 | ! |
---|
1032 | !-- Open file for reading |
---|
1033 | nc_stat = NF90_OPEN( rrtm_input_file, NF90_NOWRITE, id ) |
---|
1034 | CALL handle_netcdf_error( 'netcdf', 549 ) |
---|
1035 | |
---|
1036 | ! |
---|
1037 | !-- Inquire dimension of z axis and save in nz_snd |
---|
1038 | nc_stat = NF90_INQ_DIMID( id, "Pressure", id_dim_zrad ) |
---|
1039 | nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim_zrad, len = nz_snd ) |
---|
1040 | CALL handle_netcdf_error( 'netcdf', 551 ) |
---|
1041 | |
---|
1042 | ! |
---|
1043 | ! !-- Allocate temporary array for storing pressure data |
---|
1044 | ALLOCATE( hyp_snd_tmp(nzb+1:nz_snd) ) |
---|
1045 | hyp_snd_tmp = 0.0_wp |
---|
1046 | |
---|
1047 | |
---|
1048 | !-- Read pressure from file |
---|
1049 | nc_stat = NF90_INQ_VARID( id, "Pressure", id_var ) |
---|
1050 | nc_stat = NF90_GET_VAR( id, id_var, hyp_snd_tmp(:), start = (/1/), & |
---|
1051 | count = (/nz_snd/) ) |
---|
1052 | CALL handle_netcdf_error( 'netcdf', 552 ) |
---|
1053 | |
---|
1054 | ! |
---|
1055 | !-- Allocate temporary array for storing temperature data |
---|
1056 | ALLOCATE( t_snd_tmp(nzb+1:nz_snd) ) |
---|
1057 | t_snd_tmp = 0.0_wp |
---|
1058 | |
---|
1059 | ! |
---|
1060 | !-- Read temperature from file |
---|
1061 | nc_stat = NF90_INQ_VARID( id, "ReferenceTemperature", id_var ) |
---|
1062 | nc_stat = NF90_GET_VAR( id, id_var, t_snd_tmp(:), start = (/1/), & |
---|
1063 | count = (/nz_snd/) ) |
---|
1064 | CALL handle_netcdf_error( 'netcdf', 553 ) |
---|
1065 | |
---|
1066 | ! |
---|
1067 | !-- Calculate start of sounding data |
---|
1068 | nz_snd_start = nz_snd + 1 |
---|
1069 | nz_snd_end = nz_snd_end |
---|
1070 | |
---|
1071 | ! |
---|
1072 | !-- Start filling vertical dimension at 10hPa above the model domain (hyp is |
---|
1073 | !-- in Pa, hyp_snd in hPa). |
---|
1074 | DO k = 1, nz_snd |
---|
1075 | IF ( hyp_snd_tmp(k) .LT. (hyp(nzt+1) - 1000.0_wp) * 0.01_wp ) THEN |
---|
1076 | nz_snd_start = k |
---|
1077 | EXIT |
---|
1078 | END IF |
---|
1079 | END DO |
---|
1080 | |
---|
1081 | IF ( nz_snd_start .LE. nz_snd ) THEN |
---|
1082 | nz_snd_end = nz_snd - 1 |
---|
1083 | END IF |
---|
1084 | |
---|
1085 | |
---|
1086 | ! |
---|
1087 | !-- Calculate of total grid points for RRTMG calculations |
---|
1088 | nzt_rad = nzt + nz_snd_end - nz_snd_start + 2 |
---|
1089 | |
---|
1090 | ! |
---|
1091 | !-- Save data above LES domain in hyp_snd, t_snd and q_snd |
---|
1092 | !-- Note: q_snd_tmp is not calculated at the moment (dry residual atmosphere) |
---|
1093 | ALLOCATE( hyp_snd(nzb+1:nzt_rad) ) |
---|
1094 | ALLOCATE( t_snd(nzb+1:nzt_rad) ) |
---|
1095 | ALLOCATE( q_snd(nzb+1:nzt_rad) ) |
---|
1096 | hyp_snd = 0.0_wp |
---|
1097 | t_snd = 0.0_wp |
---|
1098 | q_snd = 0.0_wp |
---|
1099 | |
---|
1100 | hyp_snd(nzt+2:nzt_rad) = hyp_snd_tmp(nz_snd_start:nz_snd_end) |
---|
1101 | t_snd(nzt+2:nzt_rad) = t_snd_tmp(nz_snd_start:nz_snd_end) |
---|
1102 | |
---|
1103 | DEALLOCATE ( hyp_snd_tmp ) |
---|
1104 | DEALLOCATE ( t_snd_tmp ) |
---|
1105 | |
---|
1106 | nc_stat = NF90_CLOSE( id ) |
---|
1107 | |
---|
1108 | ! |
---|
1109 | !-- Calculate pressure levels on zu and zw grid. Sounding data is added at |
---|
1110 | !-- top of the LES domain. This routine does not consider horizontal or |
---|
1111 | !-- vertical variability of pressure and temperature |
---|
1112 | ALLOCATE ( rrtm_play(0:0,nzb+1:nzt_rad+1) ) |
---|
1113 | ALLOCATE ( rrtm_plev(0:0,nzb+1:nzt_rad+2) ) |
---|
1114 | |
---|
1115 | t_surface = pt_surface * (surface_pressure / 1000.0_wp )**0.286_wp |
---|
1116 | DO k = nzb+1, nzt+1 |
---|
1117 | rrtm_play(0,k) = hyp(k) * 0.01_wp |
---|
1118 | rrtm_plev(0,k) = surface_pressure * ( (t_surface - g/cp * zw(k-1)) / & |
---|
1119 | t_surface )**(1.0_wp/0.286_wp) |
---|
1120 | ENDDO |
---|
1121 | |
---|
1122 | DO k = nzt+2, nzt_rad |
---|
1123 | rrtm_play(0,k) = hyp_snd(k) |
---|
1124 | rrtm_plev(0,k) = 0.5_wp * ( rrtm_play(0,k) + rrtm_play(0,k-1) ) |
---|
1125 | ENDDO |
---|
1126 | rrtm_plev(0,nzt_rad+1) = MAX( 0.5 * hyp_snd(nzt_rad), & |
---|
1127 | 1.5 * hyp_snd(nzt_rad) & |
---|
1128 | - 0.5 * hyp_snd(nzt_rad-1) ) |
---|
1129 | rrtm_plev(0,nzt_rad+2) = MIN( 1.0E-4_wp, & |
---|
1130 | 0.25_wp * rrtm_plev(0,nzt_rad+1) ) |
---|
1131 | |
---|
1132 | rrtm_play(0,nzt_rad+1) = 0.5 * rrtm_plev(0,nzt_rad+1) |
---|
1133 | |
---|
1134 | ! |
---|
1135 | !-- Calculate temperature/humidity levels at top of the LES domain. |
---|
1136 | !-- Currently, the temperature is taken from sounding data (might lead to a |
---|
1137 | !-- temperature jump at interface. To do: Humidity is currently not |
---|
1138 | !-- calculated above the LES domain. |
---|
1139 | ALLOCATE ( rrtm_tlay(0:0,nzb+1:nzt_rad+1) ) |
---|
1140 | ALLOCATE ( rrtm_tlev(0:0,nzb+1:nzt_rad+2) ) |
---|
1141 | ALLOCATE ( rrtm_h2ovmr(0:0,nzb+1:nzt_rad+1) ) |
---|
1142 | |
---|
1143 | DO k = nzt+8, nzt_rad |
---|
1144 | rrtm_tlay(0,k) = t_snd(k) |
---|
1145 | rrtm_h2ovmr(0,k) = q_snd(k) |
---|
1146 | ENDDO |
---|
1147 | rrtm_tlay(0,nzt_rad+1) = 2.0_wp * rrtm_tlay(0,nzt_rad) & |
---|
1148 | - rrtm_tlay(0,nzt_rad-1) |
---|
1149 | DO k = nzt+9, nzt_rad+1 |
---|
1150 | rrtm_tlev(0,k) = rrtm_tlay(0,k-1) + (rrtm_tlay(0,k) & |
---|
1151 | - rrtm_tlay(0,k-1)) & |
---|
1152 | / ( rrtm_play(0,k) - rrtm_play(0,k-1) ) & |
---|
1153 | * ( rrtm_plev(0,k) - rrtm_play(0,k-1) ) |
---|
1154 | ENDDO |
---|
1155 | rrtm_h2ovmr(0,nzt_rad+1) = rrtm_h2ovmr(0,nzt_rad) |
---|
1156 | |
---|
1157 | rrtm_tlev(0,nzt_rad+2) = 2.0_wp * rrtm_tlay(0,nzt_rad+1) & |
---|
1158 | - rrtm_tlev(0,nzt_rad) |
---|
1159 | ! |
---|
1160 | !-- Allocate remaining RRTMG arrays |
---|
1161 | ALLOCATE ( rrtm_cicewp(0:0,nzb+1:nzt_rad+1) ) |
---|
1162 | ALLOCATE ( rrtm_cldfr(0:0,nzb+1:nzt_rad+1) ) |
---|
1163 | ALLOCATE ( rrtm_cliqwp(0:0,nzb+1:nzt_rad+1) ) |
---|
1164 | ALLOCATE ( rrtm_reice(0:0,nzb+1:nzt_rad+1) ) |
---|
1165 | ALLOCATE ( rrtm_reliq(0:0,nzb+1:nzt_rad+1) ) |
---|
1166 | ALLOCATE ( rrtm_lw_taucld(1:nbndlw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
1167 | ALLOCATE ( rrtm_lw_tauaer(0:0,nzb+1:nzt_rad+1,1:nbndlw+1) ) |
---|
1168 | ALLOCATE ( rrtm_sw_taucld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
1169 | ALLOCATE ( rrtm_sw_ssacld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
1170 | ALLOCATE ( rrtm_sw_asmcld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
1171 | ALLOCATE ( rrtm_sw_fsfcld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
1172 | ALLOCATE ( rrtm_sw_tauaer(0:0,nzb+1:nzt_rad+1,1:nbndsw+1) ) |
---|
1173 | ALLOCATE ( rrtm_sw_ssaaer(0:0,nzb+1:nzt_rad+1,1:nbndsw+1) ) |
---|
1174 | ALLOCATE ( rrtm_sw_asmaer(0:0,nzb+1:nzt_rad+1,1:nbndsw+1) ) |
---|
1175 | ALLOCATE ( rrtm_sw_ecaer(0:0,nzb+1:nzt_rad+1,1:naerec+1) ) |
---|
1176 | |
---|
1177 | ! |
---|
1178 | !-- The ice phase is currently not considered in PALM |
---|
1179 | rrtm_cicewp = 0.0_wp |
---|
1180 | rrtm_reice = 0.0_wp |
---|
1181 | |
---|
1182 | ! |
---|
1183 | !-- Set other parameters (move to NAMELIST parameters in the future) |
---|
1184 | rrtm_lw_tauaer = 0.0_wp |
---|
1185 | rrtm_lw_taucld = 0.0_wp |
---|
1186 | rrtm_sw_taucld = 0.0_wp |
---|
1187 | rrtm_sw_ssacld = 0.0_wp |
---|
1188 | rrtm_sw_asmcld = 0.0_wp |
---|
1189 | rrtm_sw_fsfcld = 0.0_wp |
---|
1190 | rrtm_sw_tauaer = 0.0_wp |
---|
1191 | rrtm_sw_ssaaer = 0.0_wp |
---|
1192 | rrtm_sw_asmaer = 0.0_wp |
---|
1193 | rrtm_sw_ecaer = 0.0_wp |
---|
1194 | |
---|
1195 | |
---|
1196 | ALLOCATE ( rrtm_swdflx(0:0,nzb:nzt_rad+1) ) |
---|
1197 | ALLOCATE ( rrtm_swuflx(0:0,nzb:nzt_rad+1) ) |
---|
1198 | ALLOCATE ( rrtm_swhr(0:0,nzb+1:nzt_rad+1) ) |
---|
1199 | ALLOCATE ( rrtm_swuflxc(0:0,nzb:nzt_rad+1) ) |
---|
1200 | ALLOCATE ( rrtm_swdflxc(0:0,nzb:nzt_rad+1) ) |
---|
1201 | ALLOCATE ( rrtm_swhrc(0:0,nzb+1:nzt_rad+1) ) |
---|
1202 | |
---|
1203 | rrtm_swdflx = 0.0_wp |
---|
1204 | rrtm_swuflx = 0.0_wp |
---|
1205 | rrtm_swhr = 0.0_wp |
---|
1206 | rrtm_swuflxc = 0.0_wp |
---|
1207 | rrtm_swdflxc = 0.0_wp |
---|
1208 | rrtm_swhrc = 0.0_wp |
---|
1209 | |
---|
1210 | ALLOCATE ( rrtm_lwdflx(0:0,nzb:nzt_rad+1) ) |
---|
1211 | ALLOCATE ( rrtm_lwuflx(0:0,nzb:nzt_rad+1) ) |
---|
1212 | ALLOCATE ( rrtm_lwhr(0:0,nzb+1:nzt_rad+1) ) |
---|
1213 | ALLOCATE ( rrtm_lwuflxc(0:0,nzb:nzt_rad+1) ) |
---|
1214 | ALLOCATE ( rrtm_lwdflxc(0:0,nzb:nzt_rad+1) ) |
---|
1215 | ALLOCATE ( rrtm_lwhrc(0:0,nzb+1:nzt_rad+1) ) |
---|
1216 | |
---|
1217 | rrtm_lwdflx = 0.0_wp |
---|
1218 | rrtm_lwuflx = 0.0_wp |
---|
1219 | rrtm_lwhr = 0.0_wp |
---|
1220 | rrtm_lwuflxc = 0.0_wp |
---|
1221 | rrtm_lwdflxc = 0.0_wp |
---|
1222 | rrtm_lwhrc = 0.0_wp |
---|
1223 | |
---|
1224 | |
---|
1225 | END SUBROUTINE read_sounding_data |
---|
1226 | |
---|
1227 | |
---|
1228 | !------------------------------------------------------------------------------! |
---|
1229 | ! Description: |
---|
1230 | ! ------------ |
---|
1231 | !-- Read trace gas data from file |
---|
1232 | !------------------------------------------------------------------------------! |
---|
1233 | SUBROUTINE read_trace_gas_data |
---|
1234 | |
---|
1235 | USE netcdf_control |
---|
1236 | USE rrsw_ncpar |
---|
1237 | |
---|
1238 | IMPLICIT NONE |
---|
1239 | |
---|
1240 | INTEGER(iwp), PARAMETER :: num_trace_gases = 9 !: number of trace gases |
---|
1241 | |
---|
1242 | CHARACTER(LEN=5), DIMENSION(num_trace_gases), PARAMETER :: & |
---|
1243 | trace_names = (/'O3 ', 'CO2 ', 'CH4 ', 'N2O ', 'O2 ', & |
---|
1244 | 'CFC11', 'CFC12', 'CFC22', 'CCL4 '/) |
---|
1245 | |
---|
1246 | INTEGER(iwp) :: id, k, m, n, nabs, np, id_abs, id_dim, id_var |
---|
1247 | |
---|
1248 | REAL(wp) :: p_mls_l, p_mls_u, p_wgt_l, p_wgt_u, p_mls_m |
---|
1249 | |
---|
1250 | |
---|
1251 | REAL(wp), DIMENSION(:), ALLOCATABLE :: p_mls, & !: pressure levels for the absorbers |
---|
1252 | rrtm_play_tmp, & !: temporary array for pressure zu-levels |
---|
1253 | rrtm_plev_tmp, & !: temporary array for pressure zw-levels |
---|
1254 | trace_path_tmp !: temporary array for storing trace gas path data |
---|
1255 | |
---|
1256 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: trace_mls, & !: array for storing the absorber amounts |
---|
1257 | trace_mls_path, & !: array for storing trace gas path data |
---|
1258 | trace_mls_tmp !: temporary array for storing trace gas data |
---|
1259 | |
---|
1260 | |
---|
1261 | ! |
---|
1262 | !-- In case of updates, deallocate arrays first (sufficient to check one |
---|
1263 | !-- array as the others are automatically allocated) |
---|
1264 | IF ( ALLOCATED ( rrtm_o3vmr ) ) THEN |
---|
1265 | DEALLOCATE ( rrtm_o3vmr ) |
---|
1266 | DEALLOCATE ( rrtm_co2vmr ) |
---|
1267 | DEALLOCATE ( rrtm_ch4vmr ) |
---|
1268 | DEALLOCATE ( rrtm_n2ovmr ) |
---|
1269 | DEALLOCATE ( rrtm_o2vmr ) |
---|
1270 | DEALLOCATE ( rrtm_cfc11vmr ) |
---|
1271 | DEALLOCATE ( rrtm_cfc12vmr ) |
---|
1272 | DEALLOCATE ( rrtm_cfc22vmr ) |
---|
1273 | DEALLOCATE ( rrtm_ccl4vmr ) |
---|
1274 | ENDIF |
---|
1275 | |
---|
1276 | ! |
---|
1277 | !-- Allocate trace gas profiles |
---|
1278 | ALLOCATE ( rrtm_o3vmr(0:0,1:nzt_rad+1) ) |
---|
1279 | ALLOCATE ( rrtm_co2vmr(0:0,1:nzt_rad+1) ) |
---|
1280 | ALLOCATE ( rrtm_ch4vmr(0:0,1:nzt_rad+1) ) |
---|
1281 | ALLOCATE ( rrtm_n2ovmr(0:0,1:nzt_rad+1) ) |
---|
1282 | ALLOCATE ( rrtm_o2vmr(0:0,1:nzt_rad+1) ) |
---|
1283 | ALLOCATE ( rrtm_cfc11vmr(0:0,1:nzt_rad+1) ) |
---|
1284 | ALLOCATE ( rrtm_cfc12vmr(0:0,1:nzt_rad+1) ) |
---|
1285 | ALLOCATE ( rrtm_cfc22vmr(0:0,1:nzt_rad+1) ) |
---|
1286 | ALLOCATE ( rrtm_ccl4vmr(0:0,1:nzt_rad+1) ) |
---|
1287 | |
---|
1288 | ! |
---|
1289 | !-- Open file for reading |
---|
1290 | nc_stat = NF90_OPEN( rrtm_input_file, NF90_NOWRITE, id ) |
---|
1291 | CALL handle_netcdf_error( 'netcdf', 549 ) |
---|
1292 | ! |
---|
1293 | !-- Inquire dimension ids and dimensions |
---|
1294 | nc_stat = NF90_INQ_DIMID( id, "Pressure", id_dim ) |
---|
1295 | CALL handle_netcdf_error( 'netcdf', 550 ) |
---|
1296 | nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim, len = np) |
---|
1297 | CALL handle_netcdf_error( 'netcdf', 550 ) |
---|
1298 | |
---|
1299 | nc_stat = NF90_INQ_DIMID( id, "Absorber", id_dim ) |
---|
1300 | CALL handle_netcdf_error( 'netcdf', 550 ) |
---|
1301 | nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim, len = nabs ) |
---|
1302 | CALL handle_netcdf_error( 'netcdf', 550 ) |
---|
1303 | |
---|
1304 | |
---|
1305 | ! |
---|
1306 | !-- Allocate pressure, and trace gas arrays |
---|
1307 | ALLOCATE( p_mls(1:np) ) |
---|
1308 | ALLOCATE( trace_mls(1:num_trace_gases,1:np) ) |
---|
1309 | ALLOCATE( trace_mls_tmp(1:nabs,1:np) ) |
---|
1310 | |
---|
1311 | |
---|
1312 | nc_stat = NF90_INQ_VARID( id, "Pressure", id_var ) |
---|
1313 | CALL handle_netcdf_error( 'netcdf', 550 ) |
---|
1314 | nc_stat = NF90_GET_VAR( id, id_var, p_mls ) |
---|
1315 | CALL handle_netcdf_error( 'netcdf', 550 ) |
---|
1316 | |
---|
1317 | nc_stat = NF90_INQ_VARID( id, "AbsorberAmountMLS", id_var ) |
---|
1318 | CALL handle_netcdf_error( 'netcdf', 550 ) |
---|
1319 | nc_stat = NF90_GET_VAR( id, id_var, trace_mls_tmp ) |
---|
1320 | CALL handle_netcdf_error( 'netcdf', 550 ) |
---|
1321 | |
---|
1322 | |
---|
1323 | ! |
---|
1324 | !-- Write absorber amounts (mls) to trace_mls |
---|
1325 | DO n = 1, num_trace_gases |
---|
1326 | CALL getAbsorberIndex( TRIM( trace_names(n) ), id_abs ) |
---|
1327 | |
---|
1328 | trace_mls(n,1:np) = trace_mls_tmp(id_abs,1:np) |
---|
1329 | |
---|
1330 | ! |
---|
1331 | !-- Replace missing values by zero |
---|
1332 | WHERE ( trace_mls(n,:) > 2.0_wp ) |
---|
1333 | trace_mls(n,:) = 0.0_wp |
---|
1334 | END WHERE |
---|
1335 | END DO |
---|
1336 | |
---|
1337 | DEALLOCATE ( trace_mls_tmp ) |
---|
1338 | |
---|
1339 | nc_stat = NF90_CLOSE( id ) |
---|
1340 | CALL handle_netcdf_error( 'netcdf', 551 ) |
---|
1341 | |
---|
1342 | ! |
---|
1343 | !-- Add extra pressure level for calculations of the trace gas paths |
---|
1344 | ALLOCATE ( rrtm_play_tmp(1:nzt_rad+1) ) |
---|
1345 | ALLOCATE ( rrtm_plev_tmp(1:nzt_rad+2) ) |
---|
1346 | |
---|
1347 | rrtm_play_tmp(1:nzt_rad) = rrtm_play(0,1:nzt_rad) |
---|
1348 | rrtm_plev_tmp(1:nzt_rad+1) = rrtm_plev(0,1:nzt_rad+1) |
---|
1349 | rrtm_play_tmp(nzt_rad+1) = rrtm_plev(0,nzt_rad+1) * 0.5_wp |
---|
1350 | rrtm_plev_tmp(nzt_rad+2) = MIN( 1.0E-4_wp, 0.25_wp & |
---|
1351 | * rrtm_plev(0,nzt_rad+1) ) |
---|
1352 | |
---|
1353 | ! |
---|
1354 | !-- Calculate trace gas path (zero at surface) with interpolation to the |
---|
1355 | !-- sounding levels |
---|
1356 | ALLOCATE ( trace_mls_path(1:nzt_rad+2,1:num_trace_gases) ) |
---|
1357 | |
---|
1358 | trace_mls_path(nzb+1,:) = 0.0_wp |
---|
1359 | |
---|
1360 | DO k = nzb+2, nzt_rad+2 |
---|
1361 | DO m = 1, num_trace_gases |
---|
1362 | trace_mls_path(k,m) = trace_mls_path(k-1,m) |
---|
1363 | |
---|
1364 | ! |
---|
1365 | !-- When the pressure level is higher than the trace gas pressure |
---|
1366 | !-- level, assume that |
---|
1367 | IF ( rrtm_plev_tmp(k-1) .GT. p_mls(1) ) THEN |
---|
1368 | |
---|
1369 | trace_mls_path(k,m) = trace_mls_path(k,m) + trace_mls(m,1) & |
---|
1370 | * ( rrtm_plev_tmp(k-1) & |
---|
1371 | - MAX( p_mls(1), rrtm_plev_tmp(k) ) & |
---|
1372 | ) / g |
---|
1373 | ENDIF |
---|
1374 | |
---|
1375 | ! |
---|
1376 | !-- Integrate for each sounding level from the contributing p_mls |
---|
1377 | !-- levels |
---|
1378 | DO n = 2, np |
---|
1379 | ! |
---|
1380 | !-- Limit p_mls so that it is within the model level |
---|
1381 | p_mls_u = MIN( rrtm_plev_tmp(k-1), & |
---|
1382 | MAX( rrtm_plev_tmp(k), p_mls(n) ) ) |
---|
1383 | p_mls_l = MIN( rrtm_plev_tmp(k-1), & |
---|
1384 | MAX( rrtm_plev_tmp(k), p_mls(n-1) ) ) |
---|
1385 | |
---|
1386 | IF ( p_mls_l .GT. p_mls_u ) THEN |
---|
1387 | |
---|
1388 | ! |
---|
1389 | !-- Calculate weights for interpolation |
---|
1390 | p_mls_m = 0.5_wp * (p_mls_l + p_mls_u) |
---|
1391 | p_wgt_u = (p_mls(n-1) - p_mls_m) / (p_mls(n-1) - p_mls(n)) |
---|
1392 | p_wgt_l = (p_mls_m - p_mls(n)) / (p_mls(n-1) - p_mls(n)) |
---|
1393 | |
---|
1394 | ! |
---|
1395 | !-- Add level to trace gas path |
---|
1396 | trace_mls_path(k,m) = trace_mls_path(k,m) & |
---|
1397 | + ( p_wgt_u * trace_mls(m,n) & |
---|
1398 | + p_wgt_l * trace_mls(m,n-1) ) & |
---|
1399 | * (p_mls_l + p_mls_u) / g |
---|
1400 | ENDIF |
---|
1401 | ENDDO |
---|
1402 | |
---|
1403 | IF ( rrtm_plev_tmp(k) .LT. p_mls(np) ) THEN |
---|
1404 | trace_mls_path(k,m) = trace_mls_path(k,m) + trace_mls(m,np) & |
---|
1405 | * ( MIN( rrtm_plev_tmp(k-1), p_mls(np) ) & |
---|
1406 | - rrtm_plev_tmp(k) & |
---|
1407 | ) / g |
---|
1408 | ENDIF |
---|
1409 | ENDDO |
---|
1410 | ENDDO |
---|
1411 | |
---|
1412 | |
---|
1413 | ! |
---|
1414 | !-- Prepare trace gas path profiles |
---|
1415 | ALLOCATE ( trace_path_tmp(1:nzt_rad+1) ) |
---|
1416 | |
---|
1417 | DO m = 1, num_trace_gases |
---|
1418 | |
---|
1419 | trace_path_tmp(1:nzt_rad+1) = ( trace_mls_path(2:nzt_rad+2,m) & |
---|
1420 | - trace_mls_path(1:nzt_rad+1,m) ) * g & |
---|
1421 | / ( rrtm_plev_tmp(1:nzt_rad+1) & |
---|
1422 | - rrtm_plev_tmp(2:nzt_rad+2) ) |
---|
1423 | |
---|
1424 | ! |
---|
1425 | !-- Save trace gas paths to the respective arrays |
---|
1426 | SELECT CASE ( TRIM( trace_names(m) ) ) |
---|
1427 | |
---|
1428 | CASE ( 'O3' ) |
---|
1429 | |
---|
1430 | rrtm_o3vmr(0,:) = trace_path_tmp(:) |
---|
1431 | |
---|
1432 | CASE ( 'CO2' ) |
---|
1433 | |
---|
1434 | rrtm_co2vmr(0,:) = trace_path_tmp(:) |
---|
1435 | |
---|
1436 | CASE ( 'CH4' ) |
---|
1437 | |
---|
1438 | rrtm_ch4vmr(0,:) = trace_path_tmp(:) |
---|
1439 | |
---|
1440 | CASE ( 'N2O' ) |
---|
1441 | |
---|
1442 | rrtm_n2ovmr(0,:) = trace_path_tmp(:) |
---|
1443 | |
---|
1444 | CASE ( 'O2' ) |
---|
1445 | |
---|
1446 | rrtm_o2vmr(0,:) = trace_path_tmp(:) |
---|
1447 | |
---|
1448 | CASE ( 'CFC11' ) |
---|
1449 | |
---|
1450 | rrtm_cfc11vmr(0,:) = trace_path_tmp(:) |
---|
1451 | |
---|
1452 | CASE ( 'CFC12' ) |
---|
1453 | |
---|
1454 | rrtm_cfc12vmr(0,:) = trace_path_tmp(:) |
---|
1455 | |
---|
1456 | CASE ( 'CFC22' ) |
---|
1457 | |
---|
1458 | rrtm_cfc22vmr(0,:) = trace_path_tmp(:) |
---|
1459 | |
---|
1460 | CASE ( 'CCL4' ) |
---|
1461 | |
---|
1462 | rrtm_ccl4vmr(0,:) = trace_path_tmp(:) |
---|
1463 | |
---|
1464 | CASE DEFAULT |
---|
1465 | |
---|
1466 | END SELECT |
---|
1467 | |
---|
1468 | ENDDO |
---|
1469 | |
---|
1470 | DEALLOCATE ( trace_path_tmp ) |
---|
1471 | DEALLOCATE ( trace_mls_path ) |
---|
1472 | DEALLOCATE ( rrtm_play_tmp ) |
---|
1473 | DEALLOCATE ( rrtm_plev_tmp ) |
---|
1474 | DEALLOCATE ( trace_mls ) |
---|
1475 | DEALLOCATE ( p_mls ) |
---|
1476 | |
---|
1477 | END SUBROUTINE read_trace_gas_data |
---|
1478 | |
---|
1479 | #endif |
---|
1480 | |
---|
1481 | |
---|
1482 | !------------------------------------------------------------------------------! |
---|
1483 | ! Description: |
---|
1484 | ! ------------ |
---|
1485 | !-- Calculate temperature tendency due to radiative cooling/heating. |
---|
1486 | !-- Cache-optimized version. |
---|
1487 | !------------------------------------------------------------------------------! |
---|
1488 | SUBROUTINE radiation_tendency_ij ( i, j, tend ) |
---|
1489 | |
---|
1490 | USE arrays_3d, & |
---|
1491 | ONLY: dzw |
---|
1492 | |
---|
1493 | USE cloud_parameters, & |
---|
1494 | ONLY: pt_d_t, cp |
---|
1495 | |
---|
1496 | USE control_parameters, & |
---|
1497 | ONLY: rho_surface |
---|
1498 | |
---|
1499 | IMPLICIT NONE |
---|
1500 | |
---|
1501 | INTEGER(iwp) :: i, j, k |
---|
1502 | |
---|
1503 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: tend |
---|
1504 | |
---|
1505 | #if defined ( __rrtmg ) |
---|
1506 | |
---|
1507 | REAL(wp) :: rad_sw_net_l, rad_sw_net_u, rad_lw_net_l, rad_lw_net_u |
---|
1508 | |
---|
1509 | rad_sw_net_l = 0.0_wp |
---|
1510 | rad_sw_net_u = 0.0_wp |
---|
1511 | rad_lw_net_l = 0.0_wp |
---|
1512 | rad_lw_net_u = 0.0_wp |
---|
1513 | |
---|
1514 | ! |
---|
1515 | !-- Calculate radiative flux divergence |
---|
1516 | DO k = nzb+1, nzt+1 |
---|
1517 | |
---|
1518 | rad_sw_net_l = rad_sw_in(k-1,j,i) - rad_sw_out(k-1,j,i) |
---|
1519 | rad_sw_net_u = rad_sw_in(k,j,i) - rad_sw_out(k,j,i) |
---|
1520 | rad_lw_net_l = rad_lw_in(k-1,j,i) - rad_lw_out(k-1,j,i) |
---|
1521 | rad_lw_net_u = rad_lw_in(k,j,i) - rad_lw_out(k,j,i) |
---|
1522 | |
---|
1523 | tend(k,j,i) = tend(k,j,i) + ( rad_sw_net_u - rad_sw_net_l & |
---|
1524 | + rad_lw_net_u - rad_lw_net_l ) / & |
---|
1525 | ( dzw(k) * cp * rho_surface ) * pt_d_t(k) |
---|
1526 | ENDDO |
---|
1527 | |
---|
1528 | #endif |
---|
1529 | |
---|
1530 | END SUBROUTINE radiation_tendency_ij |
---|
1531 | |
---|
1532 | |
---|
1533 | !------------------------------------------------------------------------------! |
---|
1534 | ! Description: |
---|
1535 | ! ------------ |
---|
1536 | !-- Calculate temperature tendency due to radiative cooling/heating. |
---|
1537 | !-- Vector-optimized version |
---|
1538 | !------------------------------------------------------------------------------! |
---|
1539 | SUBROUTINE radiation_tendency ( tend ) |
---|
1540 | |
---|
1541 | USE arrays_3d, & |
---|
1542 | ONLY: dzw |
---|
1543 | |
---|
1544 | USE cloud_parameters, & |
---|
1545 | ONLY: pt_d_t, cp |
---|
1546 | |
---|
1547 | USE indices, & |
---|
1548 | ONLY: nxl, nxr, nyn, nys |
---|
1549 | |
---|
1550 | USE control_parameters, & |
---|
1551 | ONLY: rho_surface |
---|
1552 | |
---|
1553 | IMPLICIT NONE |
---|
1554 | |
---|
1555 | INTEGER(iwp) :: i, j, k |
---|
1556 | |
---|
1557 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: tend |
---|
1558 | |
---|
1559 | #if defined ( __rrtmg ) |
---|
1560 | |
---|
1561 | REAL(wp) :: rad_sw_net_l, rad_sw_net_u, rad_lw_net_l, rad_lw_net_u |
---|
1562 | |
---|
1563 | rad_sw_net_l = 0.0_wp |
---|
1564 | rad_sw_net_u = 0.0_wp |
---|
1565 | rad_lw_net_l = 0.0_wp |
---|
1566 | rad_lw_net_u = 0.0_wp |
---|
1567 | |
---|
1568 | DO i = nxl, nxr |
---|
1569 | DO j = nys, nyn |
---|
1570 | |
---|
1571 | ! |
---|
1572 | !-- Calculate radiative flux divergence |
---|
1573 | DO k = nzb+1, nzt+1 |
---|
1574 | |
---|
1575 | rad_sw_net_l = rad_sw_in(k-1,j,i) - rad_sw_out(k-1,j,i) |
---|
1576 | rad_sw_net_u = rad_sw_in(k ,j,i) - rad_sw_out(k ,j,i) |
---|
1577 | rad_lw_net_l = rad_lw_in(k-1,j,i) - rad_lw_out(k-1,j,i) |
---|
1578 | rad_lw_net_u = rad_lw_in(k ,j,i) - rad_lw_out(k ,j,i) |
---|
1579 | |
---|
1580 | tend(k,j,i) = tend(k,j,i) + ( rad_sw_net_u - rad_sw_net_l & |
---|
1581 | + rad_lw_net_u - rad_lw_net_l ) / & |
---|
1582 | ( dzw(k) * cp * rho_surface ) * pt_d_t(k) |
---|
1583 | ENDDO |
---|
1584 | ENDDO |
---|
1585 | ENDDO |
---|
1586 | #endif |
---|
1587 | |
---|
1588 | END SUBROUTINE radiation_tendency |
---|
1589 | |
---|
1590 | END MODULE radiation_model_mod |
---|