[1850] | 1 | !> @file prognostic_equations_mod.f90 |
---|
[1036] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1818] | 16 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
[1036] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
[736] | 19 | ! Current revisions: |
---|
[1092] | 20 | ! ------------------ |
---|
[1827] | 21 | ! |
---|
| 22 | ! |
---|
[1485] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: prognostic_equations_mod.f90 1851 2016-04-08 13:32:50Z maronga $ |
---|
| 26 | ! |
---|
[1851] | 27 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
| 28 | ! Module renamed |
---|
| 29 | ! |
---|
| 30 | ! |
---|
[1827] | 31 | ! 1826 2016-04-07 12:01:39Z maronga |
---|
| 32 | ! Renamed canopy model calls. |
---|
| 33 | ! |
---|
[1823] | 34 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
| 35 | ! Kessler microphysics scheme moved to microphysics. |
---|
| 36 | ! |
---|
[1822] | 37 | ! 1757 2016-02-22 15:49:32Z maronga |
---|
[1758] | 38 | ! |
---|
| 39 | ! |
---|
[1757] | 40 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
[1692] | 41 | ! Added optional model spin-up without radiation / land surface model calls. |
---|
| 42 | ! Formatting corrections. |
---|
| 43 | ! |
---|
[1691] | 44 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 45 | ! Code annotations made doxygen readable |
---|
| 46 | ! |
---|
| 47 | ! 1585 2015-04-30 07:05:52Z maronga |
---|
[1586] | 48 | ! Added call for temperature tendency calculation due to radiative flux divergence |
---|
| 49 | ! |
---|
[1518] | 50 | ! 1517 2015-01-07 19:12:25Z hoffmann |
---|
| 51 | ! advec_s_bc_mod addded, since advec_s_bc is now a module |
---|
| 52 | ! |
---|
[1517] | 53 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
[1497] | 54 | ! Renamed "radiation" -> "cloud_top_radiation" |
---|
| 55 | ! |
---|
[1496] | 56 | ! 1484 2014-10-21 10:53:05Z kanani |
---|
[1484] | 57 | ! Changes due to new module structure of the plant canopy model: |
---|
| 58 | ! parameters cthf and plant_canopy moved to module plant_canopy_model_mod. |
---|
| 59 | ! Removed double-listing of use_upstream_for_tke in ONLY-list of module |
---|
| 60 | ! control_parameters |
---|
| 61 | ! |
---|
| 62 | ! 1409 2014-05-23 12:11:32Z suehring |
---|
[1409] | 63 | ! Bugfix: i_omp_start changed for advec_u_ws at left inflow and outflow boundary. |
---|
| 64 | ! This ensures that left-hand side fluxes are also calculated for nxl in that |
---|
| 65 | ! case, even though the solution at nxl is overwritten in boundary_conds() |
---|
| 66 | ! |
---|
| 67 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
[1398] | 68 | ! Rayleigh-damping for horizontal velocity components changed: instead of damping |
---|
| 69 | ! against ug and vg, damping against u_init and v_init is used to allow for a |
---|
| 70 | ! homogenized treatment in case of nudging |
---|
| 71 | ! |
---|
| 72 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
[1381] | 73 | ! Change order of calls for scalar prognostic quantities: |
---|
| 74 | ! ls_advec -> nudging -> subsidence since initial profiles |
---|
| 75 | ! |
---|
[1380] | 76 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 77 | ! missing variables added to ONLY lists |
---|
| 78 | ! |
---|
| 79 | ! 1365 2014-04-22 15:03:56Z boeske |
---|
[1365] | 80 | ! Calls of ls_advec for large scale advection added, |
---|
| 81 | ! subroutine subsidence is only called if use_subsidence_tendencies = .F., |
---|
| 82 | ! new argument ls_index added to the calls of subsidence |
---|
| 83 | ! +ls_index |
---|
| 84 | ! |
---|
| 85 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
[1361] | 86 | ! Two-moment microphysics moved to the start of prognostic equations. This makes |
---|
| 87 | ! the 3d arrays for tend_q, tend_qr, tend_pt and tend_pt redundant. |
---|
| 88 | ! Additionally, it is allowed to call the microphysics just once during the time |
---|
| 89 | ! step (not at each sub-time step). |
---|
| 90 | ! |
---|
| 91 | ! Two-moment cloud physics added for vector and accelerator optimization. |
---|
| 92 | ! |
---|
| 93 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
[1354] | 94 | ! REAL constants provided with KIND-attribute |
---|
| 95 | ! |
---|
[1353] | 96 | ! 1337 2014-03-25 15:11:48Z heinze |
---|
| 97 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 98 | ! |
---|
| 99 | ! 1332 2014-03-25 11:59:43Z suehring |
---|
[1333] | 100 | ! Bugfix: call advec_ws or advec_pw for TKE only if NOT use_upstream_for_tke |
---|
| 101 | ! |
---|
[1332] | 102 | ! 1330 2014-03-24 17:29:32Z suehring |
---|
[1331] | 103 | ! In case of SGS-particle velocity advection of TKE is also allowed with |
---|
| 104 | ! dissipative 5th-order scheme. |
---|
| 105 | ! |
---|
[1321] | 106 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 107 | ! ONLY-attribute added to USE-statements, |
---|
| 108 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 109 | ! kinds are defined in new module kinds, |
---|
| 110 | ! old module precision_kind is removed, |
---|
| 111 | ! revision history before 2012 removed, |
---|
| 112 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 113 | ! all variable declaration statements |
---|
[1054] | 114 | ! |
---|
[1319] | 115 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 116 | ! module interfaces removed |
---|
| 117 | ! |
---|
[1258] | 118 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 119 | ! openacc loop vector clauses removed, independent clauses added |
---|
| 120 | ! |
---|
[1247] | 121 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
| 122 | ! enable nudging also for accelerator version |
---|
| 123 | ! |
---|
[1242] | 124 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 125 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
| 126 | ! |
---|
[1182] | 127 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 128 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 129 | ! |
---|
[1132] | 130 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 131 | ! those parts requiring global communication moved to time_integration, |
---|
| 132 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 133 | ! j_north |
---|
| 134 | ! |
---|
[1116] | 135 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 136 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 137 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 138 | ! |
---|
[1112] | 139 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 140 | ! update directives for prognostic quantities removed |
---|
| 141 | ! |
---|
[1107] | 142 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 143 | ! small changes in code formatting |
---|
| 144 | ! |
---|
[1093] | 145 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 146 | ! unused variables removed |
---|
| 147 | ! |
---|
[1054] | 148 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 149 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 150 | ! and rain water content (qr) |
---|
[979] | 151 | ! |
---|
[1053] | 152 | ! currently, only available for cache loop optimization |
---|
[1020] | 153 | ! |
---|
[1037] | 154 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 155 | ! code put under GPL (PALM 3.9) |
---|
| 156 | ! |
---|
[1020] | 157 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 158 | ! non-optimized version of prognostic_equations removed |
---|
| 159 | ! |
---|
[1017] | 160 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 161 | ! new branch prognostic_equations_acc |
---|
| 162 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 163 | ! |
---|
[1002] | 164 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 165 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 166 | ! |
---|
[979] | 167 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 168 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 169 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 170 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 171 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 172 | ! |
---|
[941] | 173 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 174 | ! temperature equation can be switched off |
---|
| 175 | ! |
---|
[736] | 176 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 177 | ! Initial revision |
---|
| 178 | ! |
---|
| 179 | ! |
---|
| 180 | ! Description: |
---|
| 181 | ! ------------ |
---|
[1682] | 182 | !> Solving the prognostic equations. |
---|
[736] | 183 | !------------------------------------------------------------------------------! |
---|
[1682] | 184 | MODULE prognostic_equations_mod |
---|
[736] | 185 | |
---|
[1691] | 186 | |
---|
[1682] | 187 | |
---|
[1320] | 188 | USE arrays_3d, & |
---|
| 189 | ONLY: diss_l_e, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qr, & |
---|
| 190 | diss_l_sa, diss_s_e, diss_s_nr, diss_s_pt, diss_s_q, & |
---|
| 191 | diss_s_qr, diss_s_sa, e, e_p, flux_s_e, flux_s_nr, flux_s_pt, & |
---|
| 192 | flux_s_q, flux_s_qr, flux_s_sa, flux_l_e, flux_l_nr, & |
---|
| 193 | flux_l_pt, flux_l_q, flux_l_qr, flux_l_sa, nr, nr_p, nrsws, & |
---|
| 194 | nrswst, pt, ptdf_x, ptdf_y, pt_init, pt_p, prho, q, q_init, & |
---|
[1374] | 195 | q_p, qsws, qswst, qr, qr_p, qrsws, qrswst, rdf, rdf_sc, & |
---|
| 196 | ref_state, rho, sa, sa_init, sa_p, saswsb, saswst, shf, tend, & |
---|
| 197 | te_m, tnr_m, tpt_m, tq_m, tqr_m, tsa_m, tswst, tu_m, tv_m, & |
---|
[1398] | 198 | tw_m, u, ug, u_init, u_p, v, vg, vpt, v_init, v_p, w, w_p |
---|
[1320] | 199 | |
---|
| 200 | USE control_parameters, & |
---|
[1361] | 201 | ONLY: call_microphysics_at_all_substeps, cloud_physics, & |
---|
[1822] | 202 | cloud_top_radiation, constant_diffusion, dp_external, & |
---|
[1320] | 203 | dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, humidity, & |
---|
[1822] | 204 | inflow_l, intermediate_timestep_count, & |
---|
[1365] | 205 | intermediate_timestep_count_max, large_scale_forcing, & |
---|
[1822] | 206 | large_scale_subsidence, microphysics_seifert, & |
---|
| 207 | microphysics_sat_adjust, neutral, nudging, ocean, outflow_l, & |
---|
| 208 | outflow_s, passive_scalar, prho_reference, prho_reference, & |
---|
| 209 | prho_reference, pt_reference, pt_reference, pt_reference, & |
---|
| 210 | scalar_advec, scalar_advec, simulated_time, sloping_surface, & |
---|
[1496] | 211 | timestep_scheme, tsc, use_subsidence_tendencies, & |
---|
| 212 | use_upstream_for_tke, wall_heatflux, & |
---|
[1320] | 213 | wall_nrflux, wall_qflux, wall_qflux, wall_qflux, wall_qrflux, & |
---|
| 214 | wall_salinityflux, ws_scheme_mom, ws_scheme_sca |
---|
[736] | 215 | |
---|
[1320] | 216 | USE cpulog, & |
---|
| 217 | ONLY: cpu_log, log_point |
---|
[736] | 218 | |
---|
[1320] | 219 | USE eqn_state_seawater_mod, & |
---|
| 220 | ONLY: eqn_state_seawater |
---|
| 221 | |
---|
| 222 | USE indices, & |
---|
| 223 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlu, nxr, nyn, nys, & |
---|
| 224 | nysv, nzb_s_inner, nzb_u_inner, nzb_v_inner, nzb_w_inner, nzt |
---|
| 225 | |
---|
| 226 | USE advec_ws, & |
---|
| 227 | ONLY: advec_s_ws, advec_s_ws_acc, advec_u_ws, advec_u_ws_acc, & |
---|
| 228 | advec_v_ws, advec_v_ws_acc, advec_w_ws, advec_w_ws_acc |
---|
| 229 | |
---|
[1517] | 230 | USE advec_s_bc_mod, & |
---|
| 231 | ONLY: advec_s_bc |
---|
| 232 | |
---|
[1320] | 233 | USE advec_s_pw_mod, & |
---|
| 234 | ONLY: advec_s_pw |
---|
| 235 | |
---|
| 236 | USE advec_s_up_mod, & |
---|
| 237 | ONLY: advec_s_up |
---|
| 238 | |
---|
| 239 | USE advec_u_pw_mod, & |
---|
| 240 | ONLY: advec_u_pw |
---|
| 241 | |
---|
| 242 | USE advec_u_up_mod, & |
---|
| 243 | ONLY: advec_u_up |
---|
| 244 | |
---|
| 245 | USE advec_v_pw_mod, & |
---|
| 246 | ONLY: advec_v_pw |
---|
| 247 | |
---|
| 248 | USE advec_v_up_mod, & |
---|
| 249 | ONLY: advec_v_up |
---|
| 250 | |
---|
| 251 | USE advec_w_pw_mod, & |
---|
| 252 | ONLY: advec_w_pw |
---|
| 253 | |
---|
| 254 | USE advec_w_up_mod, & |
---|
| 255 | ONLY: advec_w_up |
---|
| 256 | |
---|
| 257 | USE buoyancy_mod, & |
---|
| 258 | ONLY: buoyancy, buoyancy_acc |
---|
| 259 | |
---|
| 260 | USE calc_radiation_mod, & |
---|
| 261 | ONLY: calc_radiation |
---|
| 262 | |
---|
| 263 | USE coriolis_mod, & |
---|
| 264 | ONLY: coriolis, coriolis_acc |
---|
| 265 | |
---|
| 266 | USE diffusion_e_mod, & |
---|
| 267 | ONLY: diffusion_e, diffusion_e_acc |
---|
| 268 | |
---|
| 269 | USE diffusion_s_mod, & |
---|
| 270 | ONLY: diffusion_s, diffusion_s_acc |
---|
| 271 | |
---|
| 272 | USE diffusion_u_mod, & |
---|
| 273 | ONLY: diffusion_u, diffusion_u_acc |
---|
| 274 | |
---|
| 275 | USE diffusion_v_mod, & |
---|
| 276 | ONLY: diffusion_v, diffusion_v_acc |
---|
| 277 | |
---|
| 278 | USE diffusion_w_mod, & |
---|
| 279 | ONLY: diffusion_w, diffusion_w_acc |
---|
| 280 | |
---|
| 281 | USE kinds |
---|
| 282 | |
---|
[1365] | 283 | USE ls_forcing_mod, & |
---|
| 284 | ONLY: ls_advec |
---|
| 285 | |
---|
[1320] | 286 | USE microphysics_mod, & |
---|
| 287 | ONLY: microphysics_control |
---|
| 288 | |
---|
| 289 | USE nudge_mod, & |
---|
| 290 | ONLY: nudge |
---|
| 291 | |
---|
| 292 | USE plant_canopy_model_mod, & |
---|
[1826] | 293 | ONLY: cthf, plant_canopy, pcm_tendency |
---|
[1320] | 294 | |
---|
| 295 | USE production_e_mod, & |
---|
| 296 | ONLY: production_e, production_e_acc |
---|
| 297 | |
---|
[1585] | 298 | USE radiation_model_mod, & |
---|
[1691] | 299 | ONLY: radiation, radiation_scheme, radiation_tendency, & |
---|
| 300 | skip_time_do_radiation |
---|
[1585] | 301 | |
---|
[1374] | 302 | USE statistics, & |
---|
| 303 | ONLY: hom |
---|
| 304 | |
---|
[1320] | 305 | USE subsidence_mod, & |
---|
| 306 | ONLY: subsidence |
---|
| 307 | |
---|
| 308 | USE user_actions_mod, & |
---|
| 309 | ONLY: user_actions |
---|
| 310 | |
---|
| 311 | |
---|
[736] | 312 | PRIVATE |
---|
[1019] | 313 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 314 | prognostic_equations_acc |
---|
[736] | 315 | |
---|
| 316 | INTERFACE prognostic_equations_cache |
---|
| 317 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 318 | END INTERFACE prognostic_equations_cache |
---|
| 319 | |
---|
| 320 | INTERFACE prognostic_equations_vector |
---|
| 321 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 322 | END INTERFACE prognostic_equations_vector |
---|
| 323 | |
---|
[1015] | 324 | INTERFACE prognostic_equations_acc |
---|
| 325 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 326 | END INTERFACE prognostic_equations_acc |
---|
[736] | 327 | |
---|
[1015] | 328 | |
---|
[736] | 329 | CONTAINS |
---|
| 330 | |
---|
| 331 | |
---|
| 332 | !------------------------------------------------------------------------------! |
---|
[1691] | 333 | ! Description: |
---|
| 334 | ! ------------ |
---|
[1682] | 335 | !> Version with one optimized loop over all equations. It is only allowed to |
---|
| 336 | !> be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 337 | !> |
---|
| 338 | !> Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 339 | !> so communication between CPUs is not allowed (does not make sense) within |
---|
| 340 | !> these loops. |
---|
| 341 | !> |
---|
| 342 | !> (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
[736] | 343 | !------------------------------------------------------------------------------! |
---|
[1691] | 344 | |
---|
[1682] | 345 | SUBROUTINE prognostic_equations_cache |
---|
[736] | 346 | |
---|
[1682] | 347 | |
---|
[736] | 348 | IMPLICIT NONE |
---|
| 349 | |
---|
[1682] | 350 | INTEGER(iwp) :: i !< |
---|
| 351 | INTEGER(iwp) :: i_omp_start !< |
---|
| 352 | INTEGER(iwp) :: j !< |
---|
| 353 | INTEGER(iwp) :: k !< |
---|
| 354 | INTEGER(iwp) :: omp_get_thread_num !< |
---|
| 355 | INTEGER(iwp) :: tn = 0 !< |
---|
[1320] | 356 | |
---|
[1682] | 357 | LOGICAL :: loop_start !< |
---|
[736] | 358 | |
---|
| 359 | |
---|
| 360 | ! |
---|
| 361 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 362 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 363 | |
---|
| 364 | ! |
---|
| 365 | !-- Loop over all prognostic equations |
---|
| 366 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 367 | |
---|
| 368 | !$ tn = omp_get_thread_num() |
---|
| 369 | loop_start = .TRUE. |
---|
| 370 | !$OMP DO |
---|
| 371 | DO i = nxl, nxr |
---|
| 372 | |
---|
| 373 | ! |
---|
| 374 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 375 | !-- later in advec_ws |
---|
| 376 | IF ( loop_start ) THEN |
---|
| 377 | loop_start = .FALSE. |
---|
| 378 | i_omp_start = i |
---|
| 379 | ENDIF |
---|
[1365] | 380 | |
---|
[736] | 381 | DO j = nys, nyn |
---|
| 382 | ! |
---|
[1822] | 383 | !-- If required, calculate cloud microphysics |
---|
| 384 | IF ( cloud_physics .AND. .NOT. microphysics_sat_adjust .AND. & |
---|
[1361] | 385 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 386 | call_microphysics_at_all_substeps ) & |
---|
| 387 | ) THEN |
---|
| 388 | CALL microphysics_control( i, j ) |
---|
| 389 | ENDIF |
---|
| 390 | ! |
---|
[736] | 391 | !-- Tendency terms for u-velocity component |
---|
| 392 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 393 | |
---|
[1337] | 394 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 395 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 396 | IF ( ws_scheme_mom ) THEN |
---|
[1409] | 397 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
[736] | 398 | ELSE |
---|
| 399 | CALL advec_u_pw( i, j ) |
---|
| 400 | ENDIF |
---|
| 401 | ELSE |
---|
| 402 | CALL advec_u_up( i, j ) |
---|
| 403 | ENDIF |
---|
[1001] | 404 | CALL diffusion_u( i, j ) |
---|
[736] | 405 | CALL coriolis( i, j, 1 ) |
---|
[940] | 406 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 407 | CALL buoyancy( i, j, pt, 1 ) |
---|
[940] | 408 | ENDIF |
---|
[736] | 409 | |
---|
| 410 | ! |
---|
| 411 | !-- Drag by plant canopy |
---|
[1826] | 412 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 1 ) |
---|
[736] | 413 | |
---|
| 414 | ! |
---|
| 415 | !-- External pressure gradient |
---|
| 416 | IF ( dp_external ) THEN |
---|
| 417 | DO k = dp_level_ind_b+1, nzt |
---|
| 418 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 419 | ENDDO |
---|
| 420 | ENDIF |
---|
| 421 | |
---|
[1241] | 422 | ! |
---|
| 423 | !-- Nudging |
---|
[1691] | 424 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
[1241] | 425 | |
---|
[736] | 426 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 427 | ! |
---|
| 428 | !-- Prognostic equation for u-velocity component |
---|
| 429 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 430 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 431 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 432 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 433 | ENDDO |
---|
| 434 | |
---|
| 435 | ! |
---|
| 436 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 437 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 438 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 439 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 440 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 441 | ENDDO |
---|
| 442 | ELSEIF ( intermediate_timestep_count < & |
---|
| 443 | intermediate_timestep_count_max ) THEN |
---|
| 444 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 445 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 446 | ENDDO |
---|
| 447 | ENDIF |
---|
| 448 | ENDIF |
---|
| 449 | |
---|
| 450 | ENDIF |
---|
| 451 | |
---|
| 452 | ! |
---|
| 453 | !-- Tendency terms for v-velocity component |
---|
| 454 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 455 | |
---|
[1337] | 456 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 457 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 458 | IF ( ws_scheme_mom ) THEN |
---|
| 459 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 460 | ELSE |
---|
| 461 | CALL advec_v_pw( i, j ) |
---|
| 462 | ENDIF |
---|
| 463 | ELSE |
---|
| 464 | CALL advec_v_up( i, j ) |
---|
| 465 | ENDIF |
---|
[1001] | 466 | CALL diffusion_v( i, j ) |
---|
[736] | 467 | CALL coriolis( i, j, 2 ) |
---|
| 468 | |
---|
| 469 | ! |
---|
| 470 | !-- Drag by plant canopy |
---|
[1826] | 471 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 2 ) |
---|
[736] | 472 | |
---|
| 473 | ! |
---|
| 474 | !-- External pressure gradient |
---|
| 475 | IF ( dp_external ) THEN |
---|
| 476 | DO k = dp_level_ind_b+1, nzt |
---|
| 477 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 478 | ENDDO |
---|
| 479 | ENDIF |
---|
| 480 | |
---|
[1241] | 481 | ! |
---|
| 482 | !-- Nudging |
---|
[1691] | 483 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
[1241] | 484 | |
---|
[736] | 485 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 486 | ! |
---|
| 487 | !-- Prognostic equation for v-velocity component |
---|
| 488 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 489 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 490 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 491 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 492 | ENDDO |
---|
| 493 | |
---|
| 494 | ! |
---|
| 495 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 496 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 497 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 498 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 499 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 500 | ENDDO |
---|
| 501 | ELSEIF ( intermediate_timestep_count < & |
---|
| 502 | intermediate_timestep_count_max ) THEN |
---|
| 503 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 504 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 505 | ENDDO |
---|
| 506 | ENDIF |
---|
| 507 | ENDIF |
---|
| 508 | |
---|
| 509 | ENDIF |
---|
| 510 | |
---|
| 511 | ! |
---|
| 512 | !-- Tendency terms for w-velocity component |
---|
[1337] | 513 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 514 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 515 | IF ( ws_scheme_mom ) THEN |
---|
| 516 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 517 | ELSE |
---|
| 518 | CALL advec_w_pw( i, j ) |
---|
| 519 | END IF |
---|
| 520 | ELSE |
---|
| 521 | CALL advec_w_up( i, j ) |
---|
| 522 | ENDIF |
---|
[1001] | 523 | CALL diffusion_w( i, j ) |
---|
[736] | 524 | CALL coriolis( i, j, 3 ) |
---|
[940] | 525 | |
---|
| 526 | IF ( .NOT. neutral ) THEN |
---|
| 527 | IF ( ocean ) THEN |
---|
[1179] | 528 | CALL buoyancy( i, j, rho, 3 ) |
---|
[736] | 529 | ELSE |
---|
[940] | 530 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 531 | CALL buoyancy( i, j, pt, 3 ) |
---|
[940] | 532 | ELSE |
---|
[1179] | 533 | CALL buoyancy( i, j, vpt, 3 ) |
---|
[940] | 534 | ENDIF |
---|
[736] | 535 | ENDIF |
---|
| 536 | ENDIF |
---|
| 537 | |
---|
| 538 | ! |
---|
| 539 | !-- Drag by plant canopy |
---|
[1826] | 540 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 3 ) |
---|
[736] | 541 | |
---|
| 542 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 543 | |
---|
| 544 | ! |
---|
| 545 | !-- Prognostic equation for w-velocity component |
---|
| 546 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 547 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 548 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 549 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 550 | ENDDO |
---|
| 551 | |
---|
| 552 | ! |
---|
| 553 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 554 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 555 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 556 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 557 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 558 | ENDDO |
---|
| 559 | ELSEIF ( intermediate_timestep_count < & |
---|
| 560 | intermediate_timestep_count_max ) THEN |
---|
| 561 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 562 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 563 | ENDDO |
---|
| 564 | ENDIF |
---|
| 565 | ENDIF |
---|
[1361] | 566 | |
---|
[736] | 567 | ! |
---|
[940] | 568 | !-- If required, compute prognostic equation for potential temperature |
---|
| 569 | IF ( .NOT. neutral ) THEN |
---|
| 570 | ! |
---|
| 571 | !-- Tendency terms for potential temperature |
---|
[1337] | 572 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 573 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 574 | IF ( ws_scheme_sca ) THEN |
---|
| 575 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 576 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 577 | ELSE |
---|
| 578 | CALL advec_s_pw( i, j, pt ) |
---|
| 579 | ENDIF |
---|
| 580 | ELSE |
---|
| 581 | CALL advec_s_up( i, j, pt ) |
---|
| 582 | ENDIF |
---|
[1001] | 583 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 584 | |
---|
| 585 | ! |
---|
[940] | 586 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 587 | !-- processes |
---|
[1496] | 588 | IF ( cloud_top_radiation ) THEN |
---|
[940] | 589 | CALL calc_radiation( i, j ) |
---|
| 590 | ENDIF |
---|
[736] | 591 | |
---|
[1106] | 592 | ! |
---|
[940] | 593 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 594 | IF ( plant_canopy .AND. cthf /= 0.0_wp ) THEN |
---|
[1826] | 595 | CALL pcm_tendency( i, j, 4 ) |
---|
[940] | 596 | ENDIF |
---|
[736] | 597 | |
---|
[940] | 598 | ! |
---|
[1365] | 599 | !-- Large scale advection |
---|
| 600 | IF ( large_scale_forcing ) THEN |
---|
| 601 | CALL ls_advec( i, j, simulated_time, 'pt' ) |
---|
| 602 | ENDIF |
---|
| 603 | |
---|
| 604 | ! |
---|
[1380] | 605 | !-- Nudging |
---|
| 606 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
| 607 | |
---|
| 608 | ! |
---|
[1106] | 609 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
[1365] | 610 | IF ( large_scale_subsidence .AND. & |
---|
| 611 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 612 | CALL subsidence( i, j, tend, pt, pt_init, 2 ) |
---|
[940] | 613 | ENDIF |
---|
[736] | 614 | |
---|
[1585] | 615 | ! |
---|
| 616 | !-- If required, add tendency due to radiative heating/cooling |
---|
[1691] | 617 | IF ( radiation .AND. radiation_scheme == 'rrtmg' .AND. & |
---|
| 618 | simulated_time > skip_time_do_radiation ) THEN |
---|
[1585] | 619 | CALL radiation_tendency ( i, j, tend ) |
---|
| 620 | ENDIF |
---|
| 621 | |
---|
| 622 | |
---|
[940] | 623 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 624 | |
---|
| 625 | ! |
---|
[940] | 626 | !-- Prognostic equation for potential temperature |
---|
| 627 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 628 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 629 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 630 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 631 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 632 | ENDDO |
---|
[736] | 633 | |
---|
| 634 | ! |
---|
[940] | 635 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 636 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 637 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 638 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 639 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 640 | ENDDO |
---|
| 641 | ELSEIF ( intermediate_timestep_count < & |
---|
| 642 | intermediate_timestep_count_max ) THEN |
---|
| 643 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 644 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 645 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 646 | ENDDO |
---|
| 647 | ENDIF |
---|
[736] | 648 | ENDIF |
---|
[940] | 649 | |
---|
[736] | 650 | ENDIF |
---|
| 651 | |
---|
| 652 | ! |
---|
| 653 | !-- If required, compute prognostic equation for salinity |
---|
| 654 | IF ( ocean ) THEN |
---|
| 655 | |
---|
| 656 | ! |
---|
| 657 | !-- Tendency-terms for salinity |
---|
[1337] | 658 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 659 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 660 | THEN |
---|
| 661 | IF ( ws_scheme_sca ) THEN |
---|
| 662 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 663 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 664 | ELSE |
---|
| 665 | CALL advec_s_pw( i, j, sa ) |
---|
| 666 | ENDIF |
---|
| 667 | ELSE |
---|
| 668 | CALL advec_s_up( i, j, sa ) |
---|
| 669 | ENDIF |
---|
[1001] | 670 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 671 | |
---|
| 672 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 673 | |
---|
| 674 | ! |
---|
| 675 | !-- Prognostic equation for salinity |
---|
| 676 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 677 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 678 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 679 | - tsc(5) * rdf_sc(k) * & |
---|
| 680 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 681 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 682 | ENDDO |
---|
| 683 | |
---|
| 684 | ! |
---|
| 685 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 686 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 687 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 688 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 689 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 690 | ENDDO |
---|
| 691 | ELSEIF ( intermediate_timestep_count < & |
---|
| 692 | intermediate_timestep_count_max ) THEN |
---|
| 693 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 694 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 695 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 696 | ENDDO |
---|
| 697 | ENDIF |
---|
| 698 | ENDIF |
---|
| 699 | |
---|
| 700 | ! |
---|
| 701 | !-- Calculate density by the equation of state for seawater |
---|
| 702 | CALL eqn_state_seawater( i, j ) |
---|
| 703 | |
---|
| 704 | ENDIF |
---|
| 705 | |
---|
| 706 | ! |
---|
| 707 | !-- If required, compute prognostic equation for total water content / |
---|
| 708 | !-- scalar |
---|
| 709 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 710 | |
---|
| 711 | ! |
---|
| 712 | !-- Tendency-terms for total water content / scalar |
---|
[1337] | 713 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 714 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 715 | THEN |
---|
| 716 | IF ( ws_scheme_sca ) THEN |
---|
| 717 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 718 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 719 | ELSE |
---|
| 720 | CALL advec_s_pw( i, j, q ) |
---|
| 721 | ENDIF |
---|
| 722 | ELSE |
---|
| 723 | CALL advec_s_up( i, j, q ) |
---|
| 724 | ENDIF |
---|
[1001] | 725 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[1691] | 726 | |
---|
[736] | 727 | ! |
---|
| 728 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1826] | 729 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 5 ) |
---|
[736] | 730 | |
---|
[1053] | 731 | ! |
---|
[1365] | 732 | !-- Large scale advection |
---|
| 733 | IF ( large_scale_forcing ) THEN |
---|
| 734 | CALL ls_advec( i, j, simulated_time, 'q' ) |
---|
| 735 | ENDIF |
---|
| 736 | |
---|
| 737 | ! |
---|
[1380] | 738 | !-- Nudging |
---|
| 739 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
| 740 | |
---|
| 741 | ! |
---|
[736] | 742 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 743 | IF ( large_scale_subsidence .AND. & |
---|
| 744 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 745 | CALL subsidence( i, j, tend, q, q_init, 3 ) |
---|
[736] | 746 | ENDIF |
---|
| 747 | |
---|
| 748 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 749 | |
---|
| 750 | ! |
---|
| 751 | !-- Prognostic equation for total water content / scalar |
---|
| 752 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 753 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 754 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 755 | - tsc(5) * rdf_sc(k) * & |
---|
| 756 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 757 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 758 | ENDDO |
---|
| 759 | |
---|
| 760 | ! |
---|
| 761 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 762 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 763 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 764 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 765 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 766 | ENDDO |
---|
| 767 | ELSEIF ( intermediate_timestep_count < & |
---|
| 768 | intermediate_timestep_count_max ) THEN |
---|
| 769 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 770 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 771 | 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 772 | ENDDO |
---|
| 773 | ENDIF |
---|
| 774 | ENDIF |
---|
| 775 | |
---|
[1053] | 776 | ! |
---|
| 777 | !-- If required, calculate prognostic equations for rain water content |
---|
| 778 | !-- and rain drop concentration |
---|
[1822] | 779 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1053] | 780 | ! |
---|
| 781 | !-- Calculate prognostic equation for rain water content |
---|
[1337] | 782 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 783 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 784 | THEN |
---|
| 785 | IF ( ws_scheme_sca ) THEN |
---|
| 786 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 787 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 788 | i_omp_start, tn ) |
---|
| 789 | ELSE |
---|
| 790 | CALL advec_s_pw( i, j, qr ) |
---|
| 791 | ENDIF |
---|
| 792 | ELSE |
---|
| 793 | CALL advec_s_up( i, j, qr ) |
---|
| 794 | ENDIF |
---|
| 795 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 796 | |
---|
| 797 | ! |
---|
| 798 | !-- Prognostic equation for rain water content |
---|
| 799 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 800 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 801 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 802 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
[1337] | 803 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
[1053] | 804 | ENDDO |
---|
| 805 | ! |
---|
| 806 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 807 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 808 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 809 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 810 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 811 | ENDDO |
---|
| 812 | ELSEIF ( intermediate_timestep_count < & |
---|
| 813 | intermediate_timestep_count_max ) THEN |
---|
| 814 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 815 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 816 | 5.3125_wp * tqr_m(k,j,i) |
---|
[1053] | 817 | ENDDO |
---|
| 818 | ENDIF |
---|
| 819 | ENDIF |
---|
| 820 | |
---|
| 821 | ! |
---|
| 822 | !-- Calculate prognostic equation for rain drop concentration. |
---|
[1337] | 823 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 824 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 825 | IF ( ws_scheme_sca ) THEN |
---|
[1115] | 826 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 827 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 828 | i_omp_start, tn ) |
---|
[1053] | 829 | ELSE |
---|
| 830 | CALL advec_s_pw( i, j, nr ) |
---|
| 831 | ENDIF |
---|
| 832 | ELSE |
---|
| 833 | CALL advec_s_up( i, j, nr ) |
---|
| 834 | ENDIF |
---|
| 835 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
| 836 | |
---|
| 837 | ! |
---|
| 838 | !-- Prognostic equation for rain drop concentration |
---|
| 839 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 840 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 841 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 842 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
[1337] | 843 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
[1053] | 844 | ENDDO |
---|
| 845 | ! |
---|
| 846 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 847 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 848 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 849 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 850 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 851 | ENDDO |
---|
| 852 | ELSEIF ( intermediate_timestep_count < & |
---|
| 853 | intermediate_timestep_count_max ) THEN |
---|
| 854 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 855 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 856 | 5.3125_wp * tnr_m(k,j,i) |
---|
[1053] | 857 | ENDDO |
---|
| 858 | ENDIF |
---|
| 859 | ENDIF |
---|
| 860 | |
---|
| 861 | ENDIF |
---|
| 862 | |
---|
[1128] | 863 | ENDIF |
---|
| 864 | |
---|
[736] | 865 | ! |
---|
| 866 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 867 | !-- energy (TKE) |
---|
| 868 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 869 | |
---|
| 870 | ! |
---|
| 871 | !-- Tendency-terms for TKE |
---|
[1337] | 872 | tend(:,j,i) = 0.0_wp |
---|
[1332] | 873 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
| 874 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
[736] | 875 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 876 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 877 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 878 | ELSE |
---|
| 879 | CALL advec_s_pw( i, j, e ) |
---|
| 880 | ENDIF |
---|
| 881 | ELSE |
---|
| 882 | CALL advec_s_up( i, j, e ) |
---|
| 883 | ENDIF |
---|
[1001] | 884 | IF ( .NOT. humidity ) THEN |
---|
| 885 | IF ( ocean ) THEN |
---|
| 886 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 887 | ELSE |
---|
[1001] | 888 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 889 | ENDIF |
---|
| 890 | ELSE |
---|
[1001] | 891 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 892 | ENDIF |
---|
| 893 | CALL production_e( i, j ) |
---|
| 894 | |
---|
| 895 | ! |
---|
| 896 | !-- Additional sink term for flows through plant canopies |
---|
[1826] | 897 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 6 ) |
---|
[736] | 898 | |
---|
| 899 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 900 | |
---|
| 901 | ! |
---|
| 902 | !-- Prognostic equation for TKE. |
---|
| 903 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 904 | !-- reasons in the course of the integration. In such cases the old |
---|
| 905 | !-- TKE value is reduced by 90%. |
---|
| 906 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 907 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 908 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 909 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 910 | ENDDO |
---|
| 911 | |
---|
| 912 | ! |
---|
| 913 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 914 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 915 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 916 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 917 | te_m(k,j,i) = tend(k,j,i) |
---|
| 918 | ENDDO |
---|
| 919 | ELSEIF ( intermediate_timestep_count < & |
---|
| 920 | intermediate_timestep_count_max ) THEN |
---|
| 921 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 922 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 923 | 5.3125_wp * te_m(k,j,i) |
---|
[736] | 924 | ENDDO |
---|
| 925 | ENDIF |
---|
| 926 | ENDIF |
---|
| 927 | |
---|
| 928 | ENDIF ! TKE equation |
---|
| 929 | |
---|
| 930 | ENDDO |
---|
| 931 | ENDDO |
---|
| 932 | !$OMP END PARALLEL |
---|
| 933 | |
---|
| 934 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 935 | |
---|
| 936 | |
---|
| 937 | END SUBROUTINE prognostic_equations_cache |
---|
| 938 | |
---|
| 939 | |
---|
| 940 | !------------------------------------------------------------------------------! |
---|
[1691] | 941 | ! Description: |
---|
| 942 | ! ------------ |
---|
[1682] | 943 | !> Version for vector machines |
---|
[736] | 944 | !------------------------------------------------------------------------------! |
---|
[1691] | 945 | |
---|
[1682] | 946 | SUBROUTINE prognostic_equations_vector |
---|
[736] | 947 | |
---|
[1682] | 948 | |
---|
[736] | 949 | IMPLICIT NONE |
---|
| 950 | |
---|
[1682] | 951 | INTEGER(iwp) :: i !< |
---|
| 952 | INTEGER(iwp) :: j !< |
---|
| 953 | INTEGER(iwp) :: k !< |
---|
[736] | 954 | |
---|
[1682] | 955 | REAL(wp) :: sbt !< |
---|
[736] | 956 | |
---|
[1320] | 957 | |
---|
[736] | 958 | ! |
---|
[1822] | 959 | !-- If required, calculate cloud microphysical impacts |
---|
| 960 | IF ( cloud_physics .AND. .NOT. microphysics_sat_adjust .AND. & |
---|
[1361] | 961 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 962 | call_microphysics_at_all_substeps ) & |
---|
| 963 | ) THEN |
---|
| 964 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 965 | CALL microphysics_control |
---|
| 966 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 967 | ENDIF |
---|
| 968 | |
---|
| 969 | ! |
---|
[736] | 970 | !-- u-velocity component |
---|
| 971 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 972 | |
---|
[1337] | 973 | tend = 0.0_wp |
---|
[1001] | 974 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 975 | IF ( ws_scheme_mom ) THEN |
---|
| 976 | CALL advec_u_ws |
---|
| 977 | ELSE |
---|
| 978 | CALL advec_u_pw |
---|
| 979 | ENDIF |
---|
| 980 | ELSE |
---|
[1001] | 981 | CALL advec_u_up |
---|
[736] | 982 | ENDIF |
---|
[1001] | 983 | CALL diffusion_u |
---|
[736] | 984 | CALL coriolis( 1 ) |
---|
[940] | 985 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 986 | CALL buoyancy( pt, 1 ) |
---|
[940] | 987 | ENDIF |
---|
[736] | 988 | |
---|
| 989 | ! |
---|
| 990 | !-- Drag by plant canopy |
---|
[1826] | 991 | IF ( plant_canopy ) CALL pcm_tendency( 1 ) |
---|
[736] | 992 | |
---|
| 993 | ! |
---|
| 994 | !-- External pressure gradient |
---|
| 995 | IF ( dp_external ) THEN |
---|
| 996 | DO i = nxlu, nxr |
---|
| 997 | DO j = nys, nyn |
---|
| 998 | DO k = dp_level_ind_b+1, nzt |
---|
| 999 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1000 | ENDDO |
---|
| 1001 | ENDDO |
---|
| 1002 | ENDDO |
---|
| 1003 | ENDIF |
---|
| 1004 | |
---|
[1241] | 1005 | ! |
---|
| 1006 | !-- Nudging |
---|
[1691] | 1007 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
[1241] | 1008 | |
---|
[736] | 1009 | CALL user_actions( 'u-tendency' ) |
---|
| 1010 | |
---|
| 1011 | ! |
---|
| 1012 | !-- Prognostic equation for u-velocity component |
---|
| 1013 | DO i = nxlu, nxr |
---|
| 1014 | DO j = nys, nyn |
---|
| 1015 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 1016 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1017 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 1018 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 1019 | ENDDO |
---|
| 1020 | ENDDO |
---|
| 1021 | ENDDO |
---|
| 1022 | |
---|
| 1023 | ! |
---|
| 1024 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1025 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1026 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1027 | DO i = nxlu, nxr |
---|
| 1028 | DO j = nys, nyn |
---|
| 1029 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1030 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1031 | ENDDO |
---|
| 1032 | ENDDO |
---|
| 1033 | ENDDO |
---|
| 1034 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1035 | intermediate_timestep_count_max ) THEN |
---|
| 1036 | DO i = nxlu, nxr |
---|
| 1037 | DO j = nys, nyn |
---|
| 1038 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 1039 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 1040 | ENDDO |
---|
| 1041 | ENDDO |
---|
| 1042 | ENDDO |
---|
| 1043 | ENDIF |
---|
| 1044 | ENDIF |
---|
| 1045 | |
---|
| 1046 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1047 | |
---|
| 1048 | ! |
---|
| 1049 | !-- v-velocity component |
---|
| 1050 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1051 | |
---|
[1337] | 1052 | tend = 0.0_wp |
---|
[1001] | 1053 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1054 | IF ( ws_scheme_mom ) THEN |
---|
| 1055 | CALL advec_v_ws |
---|
| 1056 | ELSE |
---|
| 1057 | CALL advec_v_pw |
---|
| 1058 | END IF |
---|
| 1059 | ELSE |
---|
[1001] | 1060 | CALL advec_v_up |
---|
[736] | 1061 | ENDIF |
---|
[1001] | 1062 | CALL diffusion_v |
---|
[736] | 1063 | CALL coriolis( 2 ) |
---|
| 1064 | |
---|
| 1065 | ! |
---|
| 1066 | !-- Drag by plant canopy |
---|
[1826] | 1067 | IF ( plant_canopy ) CALL pcm_tendency( 2 ) |
---|
[736] | 1068 | |
---|
| 1069 | ! |
---|
| 1070 | !-- External pressure gradient |
---|
| 1071 | IF ( dp_external ) THEN |
---|
| 1072 | DO i = nxl, nxr |
---|
| 1073 | DO j = nysv, nyn |
---|
| 1074 | DO k = dp_level_ind_b+1, nzt |
---|
| 1075 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1076 | ENDDO |
---|
| 1077 | ENDDO |
---|
| 1078 | ENDDO |
---|
| 1079 | ENDIF |
---|
| 1080 | |
---|
[1241] | 1081 | ! |
---|
| 1082 | !-- Nudging |
---|
[1691] | 1083 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
[1241] | 1084 | |
---|
[736] | 1085 | CALL user_actions( 'v-tendency' ) |
---|
| 1086 | |
---|
| 1087 | ! |
---|
| 1088 | !-- Prognostic equation for v-velocity component |
---|
| 1089 | DO i = nxl, nxr |
---|
| 1090 | DO j = nysv, nyn |
---|
| 1091 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 1092 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1093 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1094 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 1095 | ENDDO |
---|
| 1096 | ENDDO |
---|
| 1097 | ENDDO |
---|
| 1098 | |
---|
| 1099 | ! |
---|
| 1100 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1101 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1102 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1103 | DO i = nxl, nxr |
---|
| 1104 | DO j = nysv, nyn |
---|
| 1105 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1106 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1107 | ENDDO |
---|
| 1108 | ENDDO |
---|
| 1109 | ENDDO |
---|
| 1110 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1111 | intermediate_timestep_count_max ) THEN |
---|
| 1112 | DO i = nxl, nxr |
---|
| 1113 | DO j = nysv, nyn |
---|
| 1114 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 1115 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 1116 | ENDDO |
---|
| 1117 | ENDDO |
---|
| 1118 | ENDDO |
---|
| 1119 | ENDIF |
---|
| 1120 | ENDIF |
---|
| 1121 | |
---|
| 1122 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1123 | |
---|
| 1124 | ! |
---|
| 1125 | !-- w-velocity component |
---|
| 1126 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1127 | |
---|
[1353] | 1128 | tend = 0.0_wp |
---|
[1001] | 1129 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1130 | IF ( ws_scheme_mom ) THEN |
---|
| 1131 | CALL advec_w_ws |
---|
| 1132 | ELSE |
---|
| 1133 | CALL advec_w_pw |
---|
| 1134 | ENDIF |
---|
| 1135 | ELSE |
---|
[1001] | 1136 | CALL advec_w_up |
---|
[736] | 1137 | ENDIF |
---|
[1001] | 1138 | CALL diffusion_w |
---|
[736] | 1139 | CALL coriolis( 3 ) |
---|
[940] | 1140 | |
---|
| 1141 | IF ( .NOT. neutral ) THEN |
---|
| 1142 | IF ( ocean ) THEN |
---|
[1179] | 1143 | CALL buoyancy( rho, 3 ) |
---|
[736] | 1144 | ELSE |
---|
[940] | 1145 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1146 | CALL buoyancy( pt, 3 ) |
---|
[940] | 1147 | ELSE |
---|
[1179] | 1148 | CALL buoyancy( vpt, 3 ) |
---|
[940] | 1149 | ENDIF |
---|
[736] | 1150 | ENDIF |
---|
| 1151 | ENDIF |
---|
| 1152 | |
---|
| 1153 | ! |
---|
| 1154 | !-- Drag by plant canopy |
---|
[1826] | 1155 | IF ( plant_canopy ) CALL pcm_tendency( 3 ) |
---|
[736] | 1156 | |
---|
| 1157 | CALL user_actions( 'w-tendency' ) |
---|
| 1158 | |
---|
| 1159 | ! |
---|
| 1160 | !-- Prognostic equation for w-velocity component |
---|
| 1161 | DO i = nxl, nxr |
---|
| 1162 | DO j = nys, nyn |
---|
| 1163 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 1164 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1165 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1166 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 1167 | ENDDO |
---|
| 1168 | ENDDO |
---|
| 1169 | ENDDO |
---|
| 1170 | |
---|
| 1171 | ! |
---|
| 1172 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1173 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1174 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1175 | DO i = nxl, nxr |
---|
| 1176 | DO j = nys, nyn |
---|
| 1177 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1178 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1179 | ENDDO |
---|
| 1180 | ENDDO |
---|
| 1181 | ENDDO |
---|
| 1182 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1183 | intermediate_timestep_count_max ) THEN |
---|
| 1184 | DO i = nxl, nxr |
---|
| 1185 | DO j = nys, nyn |
---|
| 1186 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 1187 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 1188 | ENDDO |
---|
| 1189 | ENDDO |
---|
| 1190 | ENDDO |
---|
| 1191 | ENDIF |
---|
| 1192 | ENDIF |
---|
| 1193 | |
---|
| 1194 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1195 | |
---|
[940] | 1196 | |
---|
[736] | 1197 | ! |
---|
[940] | 1198 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1199 | IF ( .NOT. neutral ) THEN |
---|
[736] | 1200 | |
---|
[940] | 1201 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1202 | |
---|
[736] | 1203 | ! |
---|
[940] | 1204 | !-- pt-tendency terms with communication |
---|
| 1205 | sbt = tsc(2) |
---|
| 1206 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 1207 | |
---|
[940] | 1208 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 1209 | ! |
---|
[1001] | 1210 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1211 | sbt = 1.0_wp |
---|
[940] | 1212 | ENDIF |
---|
[1337] | 1213 | tend = 0.0_wp |
---|
[940] | 1214 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 1215 | |
---|
[736] | 1216 | ENDIF |
---|
[940] | 1217 | |
---|
| 1218 | ! |
---|
| 1219 | !-- pt-tendency terms with no communication |
---|
[1001] | 1220 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1221 | tend = 0.0_wp |
---|
[1001] | 1222 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 1223 | IF ( ws_scheme_sca ) THEN |
---|
| 1224 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1225 | ELSE |
---|
| 1226 | CALL advec_s_pw( pt ) |
---|
| 1227 | ENDIF |
---|
| 1228 | ELSE |
---|
[1001] | 1229 | CALL advec_s_up( pt ) |
---|
[940] | 1230 | ENDIF |
---|
[736] | 1231 | ENDIF |
---|
| 1232 | |
---|
[1001] | 1233 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1234 | |
---|
[736] | 1235 | ! |
---|
[940] | 1236 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
[1496] | 1237 | IF ( cloud_top_radiation ) THEN |
---|
[940] | 1238 | CALL calc_radiation |
---|
| 1239 | ENDIF |
---|
[736] | 1240 | |
---|
| 1241 | ! |
---|
[940] | 1242 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 1243 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[1826] | 1244 | CALL pcm_tendency( 4 ) |
---|
[940] | 1245 | ENDIF |
---|
[736] | 1246 | |
---|
[940] | 1247 | ! |
---|
[1365] | 1248 | !-- Large scale advection |
---|
| 1249 | IF ( large_scale_forcing ) THEN |
---|
| 1250 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 1251 | ENDIF |
---|
| 1252 | |
---|
| 1253 | ! |
---|
[1380] | 1254 | !-- Nudging |
---|
| 1255 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1256 | |
---|
| 1257 | ! |
---|
[940] | 1258 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1259 | IF ( large_scale_subsidence .AND. & |
---|
| 1260 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1261 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[940] | 1262 | ENDIF |
---|
[736] | 1263 | |
---|
[1585] | 1264 | ! |
---|
| 1265 | !-- If required, add tendency due to radiative heating/cooling |
---|
[1691] | 1266 | IF ( radiation .AND. radiation_scheme == 'rrtmg' .AND. & |
---|
| 1267 | simulated_time > skip_time_do_radiation ) THEN |
---|
| 1268 | CALL radiation_tendency ( tend ) |
---|
[1585] | 1269 | ENDIF |
---|
| 1270 | |
---|
[940] | 1271 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 1272 | |
---|
| 1273 | ! |
---|
[940] | 1274 | !-- Prognostic equation for potential temperature |
---|
| 1275 | DO i = nxl, nxr |
---|
| 1276 | DO j = nys, nyn |
---|
| 1277 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1278 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1279 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1280 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1281 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 1282 | ENDDO |
---|
[736] | 1283 | ENDDO |
---|
| 1284 | ENDDO |
---|
| 1285 | |
---|
| 1286 | ! |
---|
[940] | 1287 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1288 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1289 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1290 | DO i = nxl, nxr |
---|
| 1291 | DO j = nys, nyn |
---|
| 1292 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1293 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1294 | ENDDO |
---|
[736] | 1295 | ENDDO |
---|
| 1296 | ENDDO |
---|
[940] | 1297 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1298 | intermediate_timestep_count_max ) THEN |
---|
| 1299 | DO i = nxl, nxr |
---|
| 1300 | DO j = nys, nyn |
---|
| 1301 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1302 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1303 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 1304 | ENDDO |
---|
[736] | 1305 | ENDDO |
---|
| 1306 | ENDDO |
---|
[940] | 1307 | ENDIF |
---|
[736] | 1308 | ENDIF |
---|
[940] | 1309 | |
---|
| 1310 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1311 | |
---|
[736] | 1312 | ENDIF |
---|
| 1313 | |
---|
| 1314 | ! |
---|
| 1315 | !-- If required, compute prognostic equation for salinity |
---|
| 1316 | IF ( ocean ) THEN |
---|
| 1317 | |
---|
| 1318 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1319 | |
---|
| 1320 | ! |
---|
| 1321 | !-- sa-tendency terms with communication |
---|
| 1322 | sbt = tsc(2) |
---|
| 1323 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1324 | |
---|
| 1325 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1326 | ! |
---|
[1001] | 1327 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1328 | sbt = 1.0_wp |
---|
[736] | 1329 | ENDIF |
---|
[1337] | 1330 | tend = 0.0_wp |
---|
[736] | 1331 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1332 | |
---|
[736] | 1333 | ENDIF |
---|
| 1334 | |
---|
| 1335 | ! |
---|
| 1336 | !-- sa-tendency terms with no communication |
---|
[1001] | 1337 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1353] | 1338 | tend = 0.0_wp |
---|
[1001] | 1339 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1340 | IF ( ws_scheme_sca ) THEN |
---|
| 1341 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1342 | ELSE |
---|
| 1343 | CALL advec_s_pw( sa ) |
---|
| 1344 | ENDIF |
---|
| 1345 | ELSE |
---|
[1001] | 1346 | CALL advec_s_up( sa ) |
---|
[736] | 1347 | ENDIF |
---|
| 1348 | ENDIF |
---|
[1001] | 1349 | |
---|
| 1350 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1351 | |
---|
| 1352 | CALL user_actions( 'sa-tendency' ) |
---|
| 1353 | |
---|
| 1354 | ! |
---|
| 1355 | !-- Prognostic equation for salinity |
---|
| 1356 | DO i = nxl, nxr |
---|
| 1357 | DO j = nys, nyn |
---|
| 1358 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1359 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1360 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1361 | - tsc(5) * rdf_sc(k) * & |
---|
| 1362 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 1363 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 1364 | ENDDO |
---|
| 1365 | ENDDO |
---|
| 1366 | ENDDO |
---|
| 1367 | |
---|
| 1368 | ! |
---|
| 1369 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1370 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1371 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1372 | DO i = nxl, nxr |
---|
| 1373 | DO j = nys, nyn |
---|
| 1374 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1375 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1376 | ENDDO |
---|
| 1377 | ENDDO |
---|
| 1378 | ENDDO |
---|
| 1379 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1380 | intermediate_timestep_count_max ) THEN |
---|
| 1381 | DO i = nxl, nxr |
---|
| 1382 | DO j = nys, nyn |
---|
| 1383 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1384 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1385 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 1386 | ENDDO |
---|
| 1387 | ENDDO |
---|
| 1388 | ENDDO |
---|
| 1389 | ENDIF |
---|
| 1390 | ENDIF |
---|
| 1391 | |
---|
| 1392 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1393 | |
---|
| 1394 | ! |
---|
| 1395 | !-- Calculate density by the equation of state for seawater |
---|
| 1396 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1397 | CALL eqn_state_seawater |
---|
| 1398 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1399 | |
---|
| 1400 | ENDIF |
---|
| 1401 | |
---|
| 1402 | ! |
---|
| 1403 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1404 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1405 | |
---|
| 1406 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1407 | |
---|
| 1408 | ! |
---|
| 1409 | !-- Scalar/q-tendency terms with communication |
---|
| 1410 | sbt = tsc(2) |
---|
| 1411 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1412 | |
---|
| 1413 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1414 | ! |
---|
[1001] | 1415 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1416 | sbt = 1.0_wp |
---|
[736] | 1417 | ENDIF |
---|
[1337] | 1418 | tend = 0.0_wp |
---|
[736] | 1419 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1420 | |
---|
[736] | 1421 | ENDIF |
---|
| 1422 | |
---|
| 1423 | ! |
---|
| 1424 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1425 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1426 | tend = 0.0_wp |
---|
[1001] | 1427 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1428 | IF ( ws_scheme_sca ) THEN |
---|
| 1429 | CALL advec_s_ws( q, 'q' ) |
---|
| 1430 | ELSE |
---|
| 1431 | CALL advec_s_pw( q ) |
---|
| 1432 | ENDIF |
---|
| 1433 | ELSE |
---|
[1001] | 1434 | CALL advec_s_up( q ) |
---|
[736] | 1435 | ENDIF |
---|
| 1436 | ENDIF |
---|
[1001] | 1437 | |
---|
| 1438 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1439 | |
---|
| 1440 | ! |
---|
| 1441 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1826] | 1442 | IF ( plant_canopy ) CALL pcm_tendency( 5 ) |
---|
[1365] | 1443 | |
---|
[736] | 1444 | ! |
---|
[1365] | 1445 | !-- Large scale advection |
---|
| 1446 | IF ( large_scale_forcing ) THEN |
---|
| 1447 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 1448 | ENDIF |
---|
| 1449 | |
---|
| 1450 | ! |
---|
[1380] | 1451 | !-- Nudging |
---|
| 1452 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1453 | |
---|
| 1454 | ! |
---|
[736] | 1455 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1456 | IF ( large_scale_subsidence .AND. & |
---|
| 1457 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1458 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[736] | 1459 | ENDIF |
---|
| 1460 | |
---|
| 1461 | CALL user_actions( 'q-tendency' ) |
---|
| 1462 | |
---|
| 1463 | ! |
---|
| 1464 | !-- Prognostic equation for total water content / scalar |
---|
| 1465 | DO i = nxl, nxr |
---|
| 1466 | DO j = nys, nyn |
---|
| 1467 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1468 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1469 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1470 | - tsc(5) * rdf_sc(k) * & |
---|
| 1471 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 1472 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 1473 | ENDDO |
---|
| 1474 | ENDDO |
---|
| 1475 | ENDDO |
---|
| 1476 | |
---|
| 1477 | ! |
---|
| 1478 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1479 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1480 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1481 | DO i = nxl, nxr |
---|
| 1482 | DO j = nys, nyn |
---|
| 1483 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1484 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1485 | ENDDO |
---|
| 1486 | ENDDO |
---|
| 1487 | ENDDO |
---|
| 1488 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1489 | intermediate_timestep_count_max ) THEN |
---|
| 1490 | DO i = nxl, nxr |
---|
| 1491 | DO j = nys, nyn |
---|
| 1492 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1493 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 1494 | ENDDO |
---|
| 1495 | ENDDO |
---|
| 1496 | ENDDO |
---|
| 1497 | ENDIF |
---|
| 1498 | ENDIF |
---|
| 1499 | |
---|
| 1500 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1501 | |
---|
[1361] | 1502 | ! |
---|
| 1503 | !-- If required, calculate prognostic equations for rain water content |
---|
| 1504 | !-- and rain drop concentration |
---|
[1822] | 1505 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1361] | 1506 | |
---|
| 1507 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 1508 | |
---|
| 1509 | ! |
---|
| 1510 | !-- Calculate prognostic equation for rain water content |
---|
| 1511 | sbt = tsc(2) |
---|
| 1512 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1513 | |
---|
| 1514 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1515 | ! |
---|
| 1516 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1517 | sbt = 1.0_wp |
---|
| 1518 | ENDIF |
---|
| 1519 | tend = 0.0_wp |
---|
| 1520 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 1521 | |
---|
| 1522 | ENDIF |
---|
| 1523 | |
---|
| 1524 | ! |
---|
| 1525 | !-- qr-tendency terms with no communication |
---|
| 1526 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1527 | tend = 0.0_wp |
---|
| 1528 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1529 | IF ( ws_scheme_sca ) THEN |
---|
| 1530 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 1531 | ELSE |
---|
| 1532 | CALL advec_s_pw( qr ) |
---|
| 1533 | ENDIF |
---|
| 1534 | ELSE |
---|
| 1535 | CALL advec_s_up( qr ) |
---|
| 1536 | ENDIF |
---|
| 1537 | ENDIF |
---|
| 1538 | |
---|
| 1539 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 1540 | |
---|
[1826] | 1541 | CALL user_actions( 'qr-tendency' ) |
---|
| 1542 | |
---|
[1361] | 1543 | ! |
---|
| 1544 | !-- Prognostic equation for rain water content |
---|
| 1545 | DO i = nxl, nxr |
---|
| 1546 | DO j = nys, nyn |
---|
| 1547 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1548 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1549 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 1550 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 1551 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 1552 | ENDDO |
---|
| 1553 | ENDDO |
---|
| 1554 | ENDDO |
---|
| 1555 | |
---|
| 1556 | ! |
---|
| 1557 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1558 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1559 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1560 | DO i = nxl, nxr |
---|
| 1561 | DO j = nys, nyn |
---|
| 1562 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1563 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 1564 | ENDDO |
---|
| 1565 | ENDDO |
---|
| 1566 | ENDDO |
---|
| 1567 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1568 | intermediate_timestep_count_max ) THEN |
---|
| 1569 | DO i = nxl, nxr |
---|
| 1570 | DO j = nys, nyn |
---|
| 1571 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1572 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1573 | tqr_m(k,j,i) |
---|
| 1574 | ENDDO |
---|
| 1575 | ENDDO |
---|
| 1576 | ENDDO |
---|
| 1577 | ENDIF |
---|
| 1578 | ENDIF |
---|
| 1579 | |
---|
| 1580 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 1581 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 1582 | |
---|
| 1583 | ! |
---|
| 1584 | !-- Calculate prognostic equation for rain drop concentration |
---|
| 1585 | sbt = tsc(2) |
---|
| 1586 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1587 | |
---|
| 1588 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1589 | ! |
---|
| 1590 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1591 | sbt = 1.0_wp |
---|
| 1592 | ENDIF |
---|
| 1593 | tend = 0.0_wp |
---|
| 1594 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 1595 | |
---|
| 1596 | ENDIF |
---|
| 1597 | |
---|
| 1598 | ! |
---|
| 1599 | !-- nr-tendency terms with no communication |
---|
| 1600 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1601 | tend = 0.0_wp |
---|
| 1602 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1603 | IF ( ws_scheme_sca ) THEN |
---|
| 1604 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 1605 | ELSE |
---|
| 1606 | CALL advec_s_pw( nr ) |
---|
| 1607 | ENDIF |
---|
| 1608 | ELSE |
---|
| 1609 | CALL advec_s_up( nr ) |
---|
| 1610 | ENDIF |
---|
| 1611 | ENDIF |
---|
| 1612 | |
---|
| 1613 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 1614 | |
---|
| 1615 | ! |
---|
| 1616 | !-- Prognostic equation for rain drop concentration |
---|
| 1617 | DO i = nxl, nxr |
---|
| 1618 | DO j = nys, nyn |
---|
| 1619 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1620 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1621 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 1622 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 1623 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 1624 | ENDDO |
---|
| 1625 | ENDDO |
---|
| 1626 | ENDDO |
---|
| 1627 | |
---|
| 1628 | ! |
---|
| 1629 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1630 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1631 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1632 | DO i = nxl, nxr |
---|
| 1633 | DO j = nys, nyn |
---|
| 1634 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1635 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 1636 | ENDDO |
---|
| 1637 | ENDDO |
---|
| 1638 | ENDDO |
---|
| 1639 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1640 | intermediate_timestep_count_max ) THEN |
---|
| 1641 | DO i = nxl, nxr |
---|
| 1642 | DO j = nys, nyn |
---|
| 1643 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1644 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1645 | tnr_m(k,j,i) |
---|
| 1646 | ENDDO |
---|
| 1647 | ENDDO |
---|
| 1648 | ENDDO |
---|
| 1649 | ENDIF |
---|
| 1650 | ENDIF |
---|
| 1651 | |
---|
| 1652 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 1653 | |
---|
| 1654 | ENDIF |
---|
| 1655 | |
---|
[736] | 1656 | ENDIF |
---|
| 1657 | |
---|
| 1658 | ! |
---|
| 1659 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1660 | !-- energy (TKE) |
---|
| 1661 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1662 | |
---|
| 1663 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1664 | |
---|
| 1665 | sbt = tsc(2) |
---|
| 1666 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1667 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1668 | |
---|
| 1669 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1670 | ! |
---|
[1001] | 1671 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1672 | sbt = 1.0_wp |
---|
[736] | 1673 | ENDIF |
---|
[1337] | 1674 | tend = 0.0_wp |
---|
[736] | 1675 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1676 | |
---|
[736] | 1677 | ENDIF |
---|
| 1678 | ENDIF |
---|
| 1679 | |
---|
| 1680 | ! |
---|
| 1681 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1682 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1683 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 1684 | tend = 0.0_wp |
---|
[736] | 1685 | CALL advec_s_up( e ) |
---|
| 1686 | ELSE |
---|
[1337] | 1687 | tend = 0.0_wp |
---|
[1001] | 1688 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1689 | IF ( ws_scheme_sca ) THEN |
---|
| 1690 | CALL advec_s_ws( e, 'e' ) |
---|
| 1691 | ELSE |
---|
| 1692 | CALL advec_s_pw( e ) |
---|
| 1693 | ENDIF |
---|
| 1694 | ELSE |
---|
[1001] | 1695 | CALL advec_s_up( e ) |
---|
[736] | 1696 | ENDIF |
---|
| 1697 | ENDIF |
---|
[1001] | 1698 | ENDIF |
---|
| 1699 | |
---|
| 1700 | IF ( .NOT. humidity ) THEN |
---|
| 1701 | IF ( ocean ) THEN |
---|
| 1702 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1703 | ELSE |
---|
[1001] | 1704 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1705 | ENDIF |
---|
[1001] | 1706 | ELSE |
---|
| 1707 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1708 | ENDIF |
---|
[1001] | 1709 | |
---|
[736] | 1710 | CALL production_e |
---|
| 1711 | |
---|
| 1712 | ! |
---|
| 1713 | !-- Additional sink term for flows through plant canopies |
---|
[1826] | 1714 | IF ( plant_canopy ) CALL pcm_tendency( 6 ) |
---|
[736] | 1715 | CALL user_actions( 'e-tendency' ) |
---|
| 1716 | |
---|
| 1717 | ! |
---|
| 1718 | !-- Prognostic equation for TKE. |
---|
| 1719 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1720 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1721 | !-- value is reduced by 90%. |
---|
| 1722 | DO i = nxl, nxr |
---|
| 1723 | DO j = nys, nyn |
---|
| 1724 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1725 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1726 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 1727 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 1728 | ENDDO |
---|
| 1729 | ENDDO |
---|
| 1730 | ENDDO |
---|
| 1731 | |
---|
| 1732 | ! |
---|
| 1733 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1734 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1735 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1736 | DO i = nxl, nxr |
---|
| 1737 | DO j = nys, nyn |
---|
| 1738 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1739 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1740 | ENDDO |
---|
| 1741 | ENDDO |
---|
| 1742 | ENDDO |
---|
| 1743 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1744 | intermediate_timestep_count_max ) THEN |
---|
| 1745 | DO i = nxl, nxr |
---|
| 1746 | DO j = nys, nyn |
---|
| 1747 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1748 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[736] | 1749 | ENDDO |
---|
| 1750 | ENDDO |
---|
| 1751 | ENDDO |
---|
| 1752 | ENDIF |
---|
| 1753 | ENDIF |
---|
| 1754 | |
---|
| 1755 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1756 | |
---|
| 1757 | ENDIF |
---|
| 1758 | |
---|
| 1759 | END SUBROUTINE prognostic_equations_vector |
---|
| 1760 | |
---|
| 1761 | |
---|
[1015] | 1762 | !------------------------------------------------------------------------------! |
---|
[1691] | 1763 | ! Description: |
---|
| 1764 | ! ------------ |
---|
[1682] | 1765 | !> Version for accelerator boards |
---|
[1015] | 1766 | !------------------------------------------------------------------------------! |
---|
[1691] | 1767 | |
---|
[1682] | 1768 | SUBROUTINE prognostic_equations_acc |
---|
[1015] | 1769 | |
---|
[1682] | 1770 | |
---|
[1015] | 1771 | IMPLICIT NONE |
---|
| 1772 | |
---|
[1682] | 1773 | INTEGER(iwp) :: i !< |
---|
| 1774 | INTEGER(iwp) :: j !< |
---|
| 1775 | INTEGER(iwp) :: k !< |
---|
| 1776 | INTEGER(iwp) :: runge_step !< |
---|
[1015] | 1777 | |
---|
[1682] | 1778 | REAL(wp) :: sbt !< |
---|
[1320] | 1779 | |
---|
[1015] | 1780 | ! |
---|
| 1781 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1782 | runge_step = 0 |
---|
| 1783 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1784 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1785 | runge_step = 1 |
---|
| 1786 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1787 | intermediate_timestep_count_max ) THEN |
---|
| 1788 | runge_step = 2 |
---|
| 1789 | ENDIF |
---|
| 1790 | ENDIF |
---|
| 1791 | |
---|
| 1792 | ! |
---|
[1361] | 1793 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
[1822] | 1794 | IF ( cloud_physics .AND. .NOT. microphysics_sat_adjust .AND. & |
---|
[1361] | 1795 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 1796 | call_microphysics_at_all_substeps ) & |
---|
| 1797 | ) THEN |
---|
| 1798 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 1799 | CALL microphysics_control |
---|
| 1800 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 1801 | ENDIF |
---|
| 1802 | |
---|
| 1803 | ! |
---|
[1015] | 1804 | !-- u-velocity component |
---|
[1374] | 1805 | !++ Statistics still not completely ported to accelerators |
---|
[1179] | 1806 | !$acc update device( hom, ref_state ) |
---|
[1015] | 1807 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1808 | |
---|
| 1809 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1810 | IF ( ws_scheme_mom ) THEN |
---|
| 1811 | CALL advec_u_ws_acc |
---|
| 1812 | ELSE |
---|
[1337] | 1813 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1814 | CALL advec_u_pw |
---|
| 1815 | ENDIF |
---|
| 1816 | ELSE |
---|
| 1817 | CALL advec_u_up |
---|
| 1818 | ENDIF |
---|
| 1819 | CALL diffusion_u_acc |
---|
| 1820 | CALL coriolis_acc( 1 ) |
---|
| 1821 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 1822 | CALL buoyancy( pt, 1 ) |
---|
[1015] | 1823 | ENDIF |
---|
| 1824 | |
---|
| 1825 | ! |
---|
| 1826 | !-- Drag by plant canopy |
---|
[1826] | 1827 | IF ( plant_canopy ) CALL pcm_tendency( 1 ) |
---|
[1015] | 1828 | |
---|
| 1829 | ! |
---|
| 1830 | !-- External pressure gradient |
---|
| 1831 | IF ( dp_external ) THEN |
---|
[1128] | 1832 | DO i = i_left, i_right |
---|
| 1833 | DO j = j_south, j_north |
---|
[1015] | 1834 | DO k = dp_level_ind_b+1, nzt |
---|
| 1835 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1836 | ENDDO |
---|
| 1837 | ENDDO |
---|
| 1838 | ENDDO |
---|
| 1839 | ENDIF |
---|
| 1840 | |
---|
[1246] | 1841 | ! |
---|
| 1842 | !-- Nudging |
---|
[1691] | 1843 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
[1246] | 1844 | |
---|
[1015] | 1845 | CALL user_actions( 'u-tendency' ) |
---|
| 1846 | |
---|
| 1847 | ! |
---|
| 1848 | !-- Prognostic equation for u-velocity component |
---|
[1398] | 1849 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, u_init, u_p ) |
---|
[1257] | 1850 | !$acc loop independent |
---|
[1128] | 1851 | DO i = i_left, i_right |
---|
[1257] | 1852 | !$acc loop independent |
---|
[1128] | 1853 | DO j = j_south, j_north |
---|
[1257] | 1854 | !$acc loop independent |
---|
[1015] | 1855 | DO k = 1, nzt |
---|
| 1856 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1857 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1858 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 1859 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[1015] | 1860 | ! |
---|
| 1861 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1862 | IF ( runge_step == 1 ) THEN |
---|
| 1863 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1864 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1865 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[1015] | 1866 | ENDIF |
---|
| 1867 | ENDIF |
---|
| 1868 | ENDDO |
---|
| 1869 | ENDDO |
---|
| 1870 | ENDDO |
---|
| 1871 | !$acc end kernels |
---|
| 1872 | |
---|
| 1873 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1874 | |
---|
| 1875 | ! |
---|
| 1876 | !-- v-velocity component |
---|
| 1877 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1878 | |
---|
| 1879 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1880 | IF ( ws_scheme_mom ) THEN |
---|
| 1881 | CALL advec_v_ws_acc |
---|
| 1882 | ELSE |
---|
[1337] | 1883 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1884 | CALL advec_v_pw |
---|
| 1885 | END IF |
---|
| 1886 | ELSE |
---|
| 1887 | CALL advec_v_up |
---|
| 1888 | ENDIF |
---|
| 1889 | CALL diffusion_v_acc |
---|
| 1890 | CALL coriolis_acc( 2 ) |
---|
| 1891 | |
---|
| 1892 | ! |
---|
| 1893 | !-- Drag by plant canopy |
---|
[1826] | 1894 | IF ( plant_canopy ) CALL pcm_tendency( 2 ) |
---|
[1015] | 1895 | |
---|
| 1896 | ! |
---|
| 1897 | !-- External pressure gradient |
---|
| 1898 | IF ( dp_external ) THEN |
---|
[1128] | 1899 | DO i = i_left, i_right |
---|
| 1900 | DO j = j_south, j_north |
---|
[1015] | 1901 | DO k = dp_level_ind_b+1, nzt |
---|
| 1902 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1903 | ENDDO |
---|
| 1904 | ENDDO |
---|
| 1905 | ENDDO |
---|
| 1906 | ENDIF |
---|
| 1907 | |
---|
[1246] | 1908 | ! |
---|
| 1909 | !-- Nudging |
---|
[1691] | 1910 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
[1246] | 1911 | |
---|
[1015] | 1912 | CALL user_actions( 'v-tendency' ) |
---|
| 1913 | |
---|
| 1914 | ! |
---|
| 1915 | !-- Prognostic equation for v-velocity component |
---|
[1398] | 1916 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, v_init, v_p ) |
---|
[1257] | 1917 | !$acc loop independent |
---|
[1128] | 1918 | DO i = i_left, i_right |
---|
[1257] | 1919 | !$acc loop independent |
---|
[1128] | 1920 | DO j = j_south, j_north |
---|
[1257] | 1921 | !$acc loop independent |
---|
[1015] | 1922 | DO k = 1, nzt |
---|
| 1923 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1924 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1925 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1926 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[1015] | 1927 | ! |
---|
| 1928 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1929 | IF ( runge_step == 1 ) THEN |
---|
| 1930 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1931 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1932 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[1015] | 1933 | ENDIF |
---|
| 1934 | ENDIF |
---|
| 1935 | ENDDO |
---|
| 1936 | ENDDO |
---|
| 1937 | ENDDO |
---|
| 1938 | !$acc end kernels |
---|
| 1939 | |
---|
| 1940 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1941 | |
---|
| 1942 | ! |
---|
| 1943 | !-- w-velocity component |
---|
| 1944 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1945 | |
---|
| 1946 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1947 | IF ( ws_scheme_mom ) THEN |
---|
| 1948 | CALL advec_w_ws_acc |
---|
| 1949 | ELSE |
---|
[1337] | 1950 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1951 | CALL advec_w_pw |
---|
| 1952 | ENDIF |
---|
| 1953 | ELSE |
---|
| 1954 | CALL advec_w_up |
---|
| 1955 | ENDIF |
---|
| 1956 | CALL diffusion_w_acc |
---|
| 1957 | CALL coriolis_acc( 3 ) |
---|
| 1958 | |
---|
| 1959 | IF ( .NOT. neutral ) THEN |
---|
| 1960 | IF ( ocean ) THEN |
---|
[1179] | 1961 | CALL buoyancy( rho, 3 ) |
---|
[1015] | 1962 | ELSE |
---|
| 1963 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1964 | CALL buoyancy_acc( pt, 3 ) |
---|
[1015] | 1965 | ELSE |
---|
[1179] | 1966 | CALL buoyancy( vpt, 3 ) |
---|
[1015] | 1967 | ENDIF |
---|
| 1968 | ENDIF |
---|
| 1969 | ENDIF |
---|
| 1970 | |
---|
| 1971 | ! |
---|
| 1972 | !-- Drag by plant canopy |
---|
[1826] | 1973 | IF ( plant_canopy ) CALL pcm_tendency( 3 ) |
---|
[1015] | 1974 | |
---|
| 1975 | CALL user_actions( 'w-tendency' ) |
---|
| 1976 | |
---|
| 1977 | ! |
---|
| 1978 | !-- Prognostic equation for w-velocity component |
---|
| 1979 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
[1257] | 1980 | !$acc loop independent |
---|
[1128] | 1981 | DO i = i_left, i_right |
---|
[1257] | 1982 | !$acc loop independent |
---|
[1128] | 1983 | DO j = j_south, j_north |
---|
[1257] | 1984 | !$acc loop independent |
---|
[1015] | 1985 | DO k = 1, nzt-1 |
---|
| 1986 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 1987 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1988 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1989 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1990 | ! |
---|
| 1991 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1992 | IF ( runge_step == 1 ) THEN |
---|
| 1993 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1994 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1995 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[1015] | 1996 | ENDIF |
---|
| 1997 | ENDIF |
---|
| 1998 | ENDDO |
---|
| 1999 | ENDDO |
---|
| 2000 | ENDDO |
---|
| 2001 | !$acc end kernels |
---|
| 2002 | |
---|
| 2003 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 2004 | |
---|
| 2005 | |
---|
| 2006 | ! |
---|
| 2007 | !-- If required, compute prognostic equation for potential temperature |
---|
| 2008 | IF ( .NOT. neutral ) THEN |
---|
| 2009 | |
---|
| 2010 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 2011 | |
---|
| 2012 | ! |
---|
| 2013 | !-- pt-tendency terms with communication |
---|
| 2014 | sbt = tsc(2) |
---|
| 2015 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2016 | |
---|
| 2017 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2018 | ! |
---|
| 2019 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 2020 | sbt = 1.0_wp |
---|
[1015] | 2021 | ENDIF |
---|
[1337] | 2022 | tend = 0.0_wp |
---|
[1015] | 2023 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 2024 | |
---|
| 2025 | ENDIF |
---|
| 2026 | |
---|
| 2027 | ! |
---|
| 2028 | !-- pt-tendency terms with no communication |
---|
| 2029 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2030 | tend = 0.0_wp |
---|
[1015] | 2031 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2032 | IF ( ws_scheme_sca ) THEN |
---|
| 2033 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 2034 | ELSE |
---|
[1337] | 2035 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2036 | CALL advec_s_pw( pt ) |
---|
| 2037 | ENDIF |
---|
| 2038 | ELSE |
---|
| 2039 | CALL advec_s_up( pt ) |
---|
| 2040 | ENDIF |
---|
| 2041 | ENDIF |
---|
| 2042 | |
---|
| 2043 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 2044 | |
---|
| 2045 | ! |
---|
| 2046 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
[1496] | 2047 | IF ( cloud_top_radiation ) THEN |
---|
[1015] | 2048 | CALL calc_radiation |
---|
| 2049 | ENDIF |
---|
| 2050 | |
---|
| 2051 | ! |
---|
| 2052 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 2053 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[1826] | 2054 | CALL pcm_tendency( 4 ) |
---|
[1015] | 2055 | ENDIF |
---|
| 2056 | |
---|
| 2057 | ! |
---|
[1365] | 2058 | !-- Large scale advection |
---|
| 2059 | IF ( large_scale_forcing ) THEN |
---|
| 2060 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 2061 | ENDIF |
---|
| 2062 | |
---|
| 2063 | ! |
---|
[1380] | 2064 | !-- Nudging |
---|
| 2065 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 2066 | |
---|
| 2067 | ! |
---|
[1015] | 2068 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2069 | IF ( large_scale_subsidence .AND. & |
---|
| 2070 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2071 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[1015] | 2072 | ENDIF |
---|
| 2073 | |
---|
[1691] | 2074 | IF ( radiation .AND. radiation_scheme == 'rrtmg' .AND. & |
---|
| 2075 | simulated_time > skip_time_do_radiation ) THEN |
---|
| 2076 | CALL radiation_tendency ( tend ) |
---|
| 2077 | ENDIF |
---|
| 2078 | |
---|
[1015] | 2079 | CALL user_actions( 'pt-tendency' ) |
---|
| 2080 | |
---|
| 2081 | ! |
---|
| 2082 | !-- Prognostic equation for potential temperature |
---|
| 2083 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 2084 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
[1257] | 2085 | !$acc loop independent |
---|
[1128] | 2086 | DO i = i_left, i_right |
---|
[1257] | 2087 | !$acc loop independent |
---|
[1128] | 2088 | DO j = j_south, j_north |
---|
[1257] | 2089 | !$acc loop independent |
---|
[1015] | 2090 | DO k = 1, nzt |
---|
| 2091 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2092 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2093 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 2094 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 2095 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 2096 | ! |
---|
| 2097 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2098 | IF ( runge_step == 1 ) THEN |
---|
| 2099 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 2100 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2101 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tpt_m(k,j,i) |
---|
[1015] | 2102 | ENDIF |
---|
| 2103 | ENDIF |
---|
| 2104 | ENDDO |
---|
| 2105 | ENDDO |
---|
| 2106 | ENDDO |
---|
| 2107 | !$acc end kernels |
---|
| 2108 | |
---|
| 2109 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 2110 | |
---|
| 2111 | ENDIF |
---|
| 2112 | |
---|
| 2113 | ! |
---|
| 2114 | !-- If required, compute prognostic equation for salinity |
---|
| 2115 | IF ( ocean ) THEN |
---|
| 2116 | |
---|
| 2117 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 2118 | |
---|
| 2119 | ! |
---|
| 2120 | !-- sa-tendency terms with communication |
---|
| 2121 | sbt = tsc(2) |
---|
| 2122 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2123 | |
---|
| 2124 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2125 | ! |
---|
| 2126 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2127 | sbt = 1.0_wp |
---|
[1015] | 2128 | ENDIF |
---|
[1337] | 2129 | tend = 0.0_wp |
---|
[1015] | 2130 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 2131 | |
---|
| 2132 | ENDIF |
---|
| 2133 | |
---|
| 2134 | ! |
---|
| 2135 | !-- sa-tendency terms with no communication |
---|
| 2136 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2137 | tend = 0.0_wp |
---|
[1015] | 2138 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2139 | IF ( ws_scheme_sca ) THEN |
---|
| 2140 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 2141 | ELSE |
---|
| 2142 | CALL advec_s_pw( sa ) |
---|
| 2143 | ENDIF |
---|
| 2144 | ELSE |
---|
| 2145 | CALL advec_s_up( sa ) |
---|
| 2146 | ENDIF |
---|
| 2147 | ENDIF |
---|
| 2148 | |
---|
| 2149 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 2150 | |
---|
| 2151 | CALL user_actions( 'sa-tendency' ) |
---|
| 2152 | |
---|
| 2153 | ! |
---|
| 2154 | !-- Prognostic equation for salinity |
---|
[1128] | 2155 | DO i = i_left, i_right |
---|
| 2156 | DO j = j_south, j_north |
---|
[1015] | 2157 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2158 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2159 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 2160 | - tsc(5) * rdf_sc(k) * & |
---|
| 2161 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 2162 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[1015] | 2163 | ! |
---|
| 2164 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2165 | IF ( runge_step == 1 ) THEN |
---|
| 2166 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 2167 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2168 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tsa_m(k,j,i) |
---|
[1015] | 2169 | ENDIF |
---|
| 2170 | ENDDO |
---|
| 2171 | ENDDO |
---|
| 2172 | ENDDO |
---|
| 2173 | |
---|
| 2174 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 2175 | |
---|
| 2176 | ! |
---|
| 2177 | !-- Calculate density by the equation of state for seawater |
---|
| 2178 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 2179 | CALL eqn_state_seawater |
---|
| 2180 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 2181 | |
---|
| 2182 | ENDIF |
---|
| 2183 | |
---|
| 2184 | ! |
---|
| 2185 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 2186 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 2187 | |
---|
| 2188 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 2189 | |
---|
| 2190 | ! |
---|
| 2191 | !-- Scalar/q-tendency terms with communication |
---|
| 2192 | sbt = tsc(2) |
---|
| 2193 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2194 | |
---|
| 2195 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2196 | ! |
---|
| 2197 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2198 | sbt = 1.0_wp |
---|
[1015] | 2199 | ENDIF |
---|
[1337] | 2200 | tend = 0.0_wp |
---|
[1015] | 2201 | CALL advec_s_bc( q, 'q' ) |
---|
| 2202 | |
---|
| 2203 | ENDIF |
---|
| 2204 | |
---|
| 2205 | ! |
---|
| 2206 | !-- Scalar/q-tendency terms with no communication |
---|
| 2207 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2208 | tend = 0.0_wp |
---|
[1015] | 2209 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2210 | IF ( ws_scheme_sca ) THEN |
---|
| 2211 | CALL advec_s_ws( q, 'q' ) |
---|
| 2212 | ELSE |
---|
| 2213 | CALL advec_s_pw( q ) |
---|
| 2214 | ENDIF |
---|
| 2215 | ELSE |
---|
| 2216 | CALL advec_s_up( q ) |
---|
| 2217 | ENDIF |
---|
| 2218 | ENDIF |
---|
| 2219 | |
---|
| 2220 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 2221 | |
---|
| 2222 | ! |
---|
| 2223 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1826] | 2224 | IF ( plant_canopy ) CALL pcm_tendency( 5 ) |
---|
[1015] | 2225 | |
---|
| 2226 | ! |
---|
[1365] | 2227 | !-- Large scale advection |
---|
| 2228 | IF ( large_scale_forcing ) THEN |
---|
| 2229 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 2230 | ENDIF |
---|
| 2231 | |
---|
| 2232 | ! |
---|
[1380] | 2233 | !-- Nudging |
---|
| 2234 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 2235 | |
---|
| 2236 | ! |
---|
[1015] | 2237 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2238 | IF ( large_scale_subsidence .AND. & |
---|
| 2239 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2240 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[1015] | 2241 | ENDIF |
---|
| 2242 | |
---|
| 2243 | CALL user_actions( 'q-tendency' ) |
---|
| 2244 | |
---|
| 2245 | ! |
---|
| 2246 | !-- Prognostic equation for total water content / scalar |
---|
[1128] | 2247 | DO i = i_left, i_right |
---|
| 2248 | DO j = j_south, j_north |
---|
[1015] | 2249 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2250 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2251 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 2252 | - tsc(5) * rdf_sc(k) * & |
---|
| 2253 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 2254 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[1015] | 2255 | ! |
---|
| 2256 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2257 | IF ( runge_step == 1 ) THEN |
---|
| 2258 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 2259 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2260 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[1015] | 2261 | ENDIF |
---|
| 2262 | ENDDO |
---|
| 2263 | ENDDO |
---|
| 2264 | ENDDO |
---|
| 2265 | |
---|
| 2266 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 2267 | |
---|
[1361] | 2268 | ! |
---|
| 2269 | !-- If required, calculate prognostic equations for rain water content |
---|
| 2270 | !-- and rain drop concentration |
---|
[1822] | 2271 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1361] | 2272 | |
---|
| 2273 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 2274 | ! |
---|
| 2275 | !-- qr-tendency terms with communication |
---|
| 2276 | sbt = tsc(2) |
---|
| 2277 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2278 | |
---|
| 2279 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2280 | ! |
---|
| 2281 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2282 | sbt = 1.0_wp |
---|
| 2283 | ENDIF |
---|
| 2284 | tend = 0.0_wp |
---|
| 2285 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 2286 | |
---|
| 2287 | ENDIF |
---|
| 2288 | |
---|
| 2289 | ! |
---|
| 2290 | !-- qr-tendency terms with no communication |
---|
| 2291 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2292 | tend = 0.0_wp |
---|
| 2293 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2294 | IF ( ws_scheme_sca ) THEN |
---|
| 2295 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 2296 | ELSE |
---|
| 2297 | CALL advec_s_pw( qr ) |
---|
| 2298 | ENDIF |
---|
| 2299 | ELSE |
---|
| 2300 | CALL advec_s_up( qr ) |
---|
| 2301 | ENDIF |
---|
| 2302 | ENDIF |
---|
| 2303 | |
---|
| 2304 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 2305 | |
---|
| 2306 | ! |
---|
| 2307 | !-- Prognostic equation for rain water content |
---|
| 2308 | DO i = i_left, i_right |
---|
| 2309 | DO j = j_south, j_north |
---|
| 2310 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2311 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2312 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 2313 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 2314 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 2315 | ! |
---|
| 2316 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2317 | IF ( runge_step == 1 ) THEN |
---|
| 2318 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 2319 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2320 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2321 | tqr_m(k,j,i) |
---|
| 2322 | ENDIF |
---|
| 2323 | ENDDO |
---|
| 2324 | ENDDO |
---|
| 2325 | ENDDO |
---|
| 2326 | |
---|
| 2327 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 2328 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 2329 | |
---|
| 2330 | ! |
---|
| 2331 | !-- nr-tendency terms with communication |
---|
| 2332 | sbt = tsc(2) |
---|
| 2333 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2334 | |
---|
| 2335 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2336 | ! |
---|
| 2337 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2338 | sbt = 1.0_wp |
---|
| 2339 | ENDIF |
---|
| 2340 | tend = 0.0_wp |
---|
| 2341 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 2342 | |
---|
| 2343 | ENDIF |
---|
| 2344 | |
---|
| 2345 | ! |
---|
| 2346 | !-- nr-tendency terms with no communication |
---|
| 2347 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2348 | tend = 0.0_wp |
---|
| 2349 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2350 | IF ( ws_scheme_sca ) THEN |
---|
| 2351 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 2352 | ELSE |
---|
| 2353 | CALL advec_s_pw( nr ) |
---|
| 2354 | ENDIF |
---|
| 2355 | ELSE |
---|
| 2356 | CALL advec_s_up( nr ) |
---|
| 2357 | ENDIF |
---|
| 2358 | ENDIF |
---|
| 2359 | |
---|
| 2360 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 2361 | |
---|
| 2362 | ! |
---|
| 2363 | !-- Prognostic equation for rain drop concentration |
---|
| 2364 | DO i = i_left, i_right |
---|
| 2365 | DO j = j_south, j_north |
---|
| 2366 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2367 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2368 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 2369 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 2370 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 2371 | ! |
---|
| 2372 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2373 | IF ( runge_step == 1 ) THEN |
---|
| 2374 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 2375 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2376 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2377 | tnr_m(k,j,i) |
---|
| 2378 | ENDIF |
---|
| 2379 | ENDDO |
---|
| 2380 | ENDDO |
---|
| 2381 | ENDDO |
---|
| 2382 | |
---|
| 2383 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 2384 | |
---|
| 2385 | ENDIF |
---|
| 2386 | |
---|
[1015] | 2387 | ENDIF |
---|
| 2388 | |
---|
| 2389 | ! |
---|
| 2390 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 2391 | !-- energy (TKE) |
---|
| 2392 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 2393 | |
---|
| 2394 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 2395 | |
---|
| 2396 | sbt = tsc(2) |
---|
| 2397 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 2398 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2399 | |
---|
| 2400 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2401 | ! |
---|
| 2402 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2403 | sbt = 1.0_wp |
---|
[1015] | 2404 | ENDIF |
---|
[1337] | 2405 | tend = 0.0_wp |
---|
[1015] | 2406 | CALL advec_s_bc( e, 'e' ) |
---|
| 2407 | |
---|
| 2408 | ENDIF |
---|
| 2409 | ENDIF |
---|
| 2410 | |
---|
| 2411 | ! |
---|
| 2412 | !-- TKE-tendency terms with no communication |
---|
| 2413 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 2414 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 2415 | tend = 0.0_wp |
---|
[1015] | 2416 | CALL advec_s_up( e ) |
---|
| 2417 | ELSE |
---|
| 2418 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2419 | IF ( ws_scheme_sca ) THEN |
---|
| 2420 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 2421 | ELSE |
---|
[1337] | 2422 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2423 | CALL advec_s_pw( e ) |
---|
| 2424 | ENDIF |
---|
| 2425 | ELSE |
---|
[1337] | 2426 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2427 | CALL advec_s_up( e ) |
---|
| 2428 | ENDIF |
---|
| 2429 | ENDIF |
---|
| 2430 | ENDIF |
---|
| 2431 | |
---|
| 2432 | IF ( .NOT. humidity ) THEN |
---|
| 2433 | IF ( ocean ) THEN |
---|
| 2434 | CALL diffusion_e( prho, prho_reference ) |
---|
| 2435 | ELSE |
---|
| 2436 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 2437 | ENDIF |
---|
| 2438 | ELSE |
---|
| 2439 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 2440 | ENDIF |
---|
| 2441 | |
---|
| 2442 | CALL production_e_acc |
---|
| 2443 | |
---|
| 2444 | ! |
---|
| 2445 | !-- Additional sink term for flows through plant canopies |
---|
[1826] | 2446 | IF ( plant_canopy ) CALL pcm_tendency( 6 ) |
---|
[1015] | 2447 | CALL user_actions( 'e-tendency' ) |
---|
| 2448 | |
---|
| 2449 | ! |
---|
| 2450 | !-- Prognostic equation for TKE. |
---|
| 2451 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2452 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2453 | !-- value is reduced by 90%. |
---|
| 2454 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
[1257] | 2455 | !$acc loop independent |
---|
[1128] | 2456 | DO i = i_left, i_right |
---|
[1257] | 2457 | !$acc loop independent |
---|
[1128] | 2458 | DO j = j_south, j_north |
---|
[1257] | 2459 | !$acc loop independent |
---|
[1015] | 2460 | DO k = 1, nzt |
---|
| 2461 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2462 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2463 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 2464 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[1015] | 2465 | ! |
---|
| 2466 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2467 | IF ( runge_step == 1 ) THEN |
---|
| 2468 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2469 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2470 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[1015] | 2471 | ENDIF |
---|
| 2472 | ENDIF |
---|
| 2473 | ENDDO |
---|
| 2474 | ENDDO |
---|
| 2475 | ENDDO |
---|
| 2476 | !$acc end kernels |
---|
| 2477 | |
---|
| 2478 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2479 | |
---|
| 2480 | ENDIF |
---|
| 2481 | |
---|
| 2482 | END SUBROUTINE prognostic_equations_acc |
---|
| 2483 | |
---|
| 2484 | |
---|
[736] | 2485 | END MODULE prognostic_equations_mod |
---|