1 | MODULE prognostic_equations_mod |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Current revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: prognostic_equations.f90 532 2010-04-21 13:33:38Z weinreis $ |
---|
11 | ! |
---|
12 | ! 531 2010-04-21 06:47:21Z heinze |
---|
13 | ! add call of subsidence in the equation for humidity / passive scalar |
---|
14 | ! |
---|
15 | ! 411 2009-12-11 14:15:58Z heinze |
---|
16 | ! add call of subsidence in the equation for potential temperature |
---|
17 | ! |
---|
18 | ! 388 2009-09-23 09:40:33Z raasch |
---|
19 | ! prho is used instead of rho in diffusion_e, |
---|
20 | ! external pressure gradient |
---|
21 | ! |
---|
22 | ! 153 2008-03-19 09:41:30Z steinfeld |
---|
23 | ! add call of plant_canopy_model in the prognostic equation for |
---|
24 | ! the potential temperature and for the passive scalar |
---|
25 | ! |
---|
26 | ! 138 2007-11-28 10:03:58Z letzel |
---|
27 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
28 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
29 | ! |
---|
30 | ! 106 2007-08-16 14:30:26Z raasch |
---|
31 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
32 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
33 | ! for non-cyclic boundary conditions) |
---|
34 | ! |
---|
35 | ! 97 2007-06-21 08:23:15Z raasch |
---|
36 | ! prognostic equation for salinity, density is calculated from equation of |
---|
37 | ! state for seawater and is used for calculation of buoyancy, |
---|
38 | ! +eqn_state_seawater_mod |
---|
39 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
40 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
41 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
42 | ! calc_mean_profile |
---|
43 | ! |
---|
44 | ! 75 2007-03-22 09:54:05Z raasch |
---|
45 | ! checking for negative q and limiting for positive values, |
---|
46 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
47 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
48 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
49 | ! _vector-version |
---|
50 | ! |
---|
51 | ! 19 2007-02-23 04:53:48Z raasch |
---|
52 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
53 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
54 | ! |
---|
55 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
56 | ! |
---|
57 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
58 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
59 | ! regardless of the timestep scheme used for the other quantities, |
---|
60 | ! new argument diss in call of diffusion_e |
---|
61 | ! |
---|
62 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
63 | ! Initial revision |
---|
64 | ! |
---|
65 | ! |
---|
66 | ! Description: |
---|
67 | ! ------------ |
---|
68 | ! Solving the prognostic equations. |
---|
69 | !------------------------------------------------------------------------------! |
---|
70 | |
---|
71 | USE arrays_3d |
---|
72 | USE control_parameters |
---|
73 | USE cpulog |
---|
74 | USE eqn_state_seawater_mod |
---|
75 | USE grid_variables |
---|
76 | USE indices |
---|
77 | USE interfaces |
---|
78 | USE pegrid |
---|
79 | USE pointer_interfaces |
---|
80 | USE statistics |
---|
81 | |
---|
82 | USE advec_s_pw_mod |
---|
83 | USE advec_s_up_mod |
---|
84 | USE advec_u_pw_mod |
---|
85 | USE advec_u_up_mod |
---|
86 | USE advec_v_pw_mod |
---|
87 | USE advec_v_up_mod |
---|
88 | USE advec_w_pw_mod |
---|
89 | USE advec_w_up_mod |
---|
90 | USE buoyancy_mod |
---|
91 | USE calc_precipitation_mod |
---|
92 | USE calc_radiation_mod |
---|
93 | USE coriolis_mod |
---|
94 | USE diffusion_e_mod |
---|
95 | USE diffusion_s_mod |
---|
96 | USE diffusion_u_mod |
---|
97 | USE diffusion_v_mod |
---|
98 | USE diffusion_w_mod |
---|
99 | USE impact_of_latent_heat_mod |
---|
100 | USE plant_canopy_model_mod |
---|
101 | USE production_e_mod |
---|
102 | USE subsidence_mod |
---|
103 | USE user_actions_mod |
---|
104 | |
---|
105 | |
---|
106 | PRIVATE |
---|
107 | PUBLIC prognostic_equations_noopt, prognostic_equations_cache, & |
---|
108 | prognostic_equations_vector |
---|
109 | |
---|
110 | INTERFACE prognostic_equations_noopt |
---|
111 | MODULE PROCEDURE prognostic_equations_noopt |
---|
112 | END INTERFACE prognostic_equations_noopt |
---|
113 | |
---|
114 | INTERFACE prognostic_equations_cache |
---|
115 | MODULE PROCEDURE prognostic_equations_cache |
---|
116 | END INTERFACE prognostic_equations_cache |
---|
117 | |
---|
118 | INTERFACE prognostic_equations_vector |
---|
119 | MODULE PROCEDURE prognostic_equations_vector |
---|
120 | END INTERFACE prognostic_equations_vector |
---|
121 | |
---|
122 | |
---|
123 | CONTAINS |
---|
124 | |
---|
125 | |
---|
126 | SUBROUTINE prognostic_equations_noopt |
---|
127 | |
---|
128 | !------------------------------------------------------------------------------! |
---|
129 | ! Version with single loop optimization |
---|
130 | ! |
---|
131 | ! (Optimized over each single prognostic equation.) |
---|
132 | !------------------------------------------------------------------------------! |
---|
133 | |
---|
134 | IMPLICIT NONE |
---|
135 | |
---|
136 | CHARACTER (LEN=9) :: time_to_string |
---|
137 | INTEGER :: i, j, k |
---|
138 | REAL :: sat, sbt |
---|
139 | |
---|
140 | ! |
---|
141 | !-- Calculate those variables needed in the tendency terms which need |
---|
142 | !-- global communication |
---|
143 | CALL calc_mean_profile( pt, 4 ) |
---|
144 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
145 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
146 | |
---|
147 | ! |
---|
148 | !-- u-velocity component |
---|
149 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
150 | |
---|
151 | ! |
---|
152 | !-- u-tendency terms with communication |
---|
153 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
154 | tend = 0.0 |
---|
155 | CALL advec_u_ups |
---|
156 | ENDIF |
---|
157 | |
---|
158 | ! |
---|
159 | !-- u-tendency terms with no communication |
---|
160 | DO i = nxlu, nxr |
---|
161 | DO j = nys, nyn |
---|
162 | ! |
---|
163 | !-- Tendency terms |
---|
164 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
165 | tend(:,j,i) = 0.0 |
---|
166 | CALL advec_u_pw( i, j ) |
---|
167 | ELSE |
---|
168 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
169 | tend(:,j,i) = 0.0 |
---|
170 | CALL advec_u_up( i, j ) |
---|
171 | ENDIF |
---|
172 | ENDIF |
---|
173 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
174 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
175 | usws_m, uswst_m, v_m, w_m ) |
---|
176 | ELSE |
---|
177 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
178 | uswst, v, w ) |
---|
179 | ENDIF |
---|
180 | CALL coriolis( i, j, 1 ) |
---|
181 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, 4 ) |
---|
182 | |
---|
183 | ! |
---|
184 | !-- Drag by plant canopy |
---|
185 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
186 | |
---|
187 | ! |
---|
188 | !-- External pressure gradient |
---|
189 | IF ( dp_external ) THEN |
---|
190 | DO k = dp_level_ind_b+1, nzt |
---|
191 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
192 | ENDDO |
---|
193 | ENDIF |
---|
194 | |
---|
195 | CALL user_actions( i, j, 'u-tendency' ) |
---|
196 | |
---|
197 | ! |
---|
198 | !-- Prognostic equation for u-velocity component |
---|
199 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
200 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
201 | dt_3d * ( & |
---|
202 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
203 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
204 | ) - & |
---|
205 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
206 | ENDDO |
---|
207 | |
---|
208 | ! |
---|
209 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
210 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
211 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
212 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
213 | tu_m(k,j,i) = tend(k,j,i) |
---|
214 | ENDDO |
---|
215 | ELSEIF ( intermediate_timestep_count < & |
---|
216 | intermediate_timestep_count_max ) THEN |
---|
217 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
218 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
219 | ENDDO |
---|
220 | ENDIF |
---|
221 | ENDIF |
---|
222 | |
---|
223 | ENDDO |
---|
224 | ENDDO |
---|
225 | |
---|
226 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
227 | |
---|
228 | ! |
---|
229 | !-- v-velocity component |
---|
230 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
231 | |
---|
232 | ! |
---|
233 | !-- v-tendency terms with communication |
---|
234 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
235 | tend = 0.0 |
---|
236 | CALL advec_v_ups |
---|
237 | ENDIF |
---|
238 | |
---|
239 | ! |
---|
240 | !-- v-tendency terms with no communication |
---|
241 | DO i = nxl, nxr |
---|
242 | DO j = nysv, nyn |
---|
243 | ! |
---|
244 | !-- Tendency terms |
---|
245 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
246 | tend(:,j,i) = 0.0 |
---|
247 | CALL advec_v_pw( i, j ) |
---|
248 | ELSE |
---|
249 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
250 | tend(:,j,i) = 0.0 |
---|
251 | CALL advec_v_up( i, j ) |
---|
252 | ENDIF |
---|
253 | ENDIF |
---|
254 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
255 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
256 | v_m, vsws_m, vswst_m, w_m ) |
---|
257 | ELSE |
---|
258 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
259 | vsws, vswst, w ) |
---|
260 | ENDIF |
---|
261 | CALL coriolis( i, j, 2 ) |
---|
262 | |
---|
263 | ! |
---|
264 | !-- Drag by plant canopy |
---|
265 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
266 | |
---|
267 | ! |
---|
268 | !-- External pressure gradient |
---|
269 | IF ( dp_external ) THEN |
---|
270 | DO k = dp_level_ind_b+1, nzt |
---|
271 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
272 | ENDDO |
---|
273 | ENDIF |
---|
274 | |
---|
275 | CALL user_actions( i, j, 'v-tendency' ) |
---|
276 | |
---|
277 | ! |
---|
278 | !-- Prognostic equation for v-velocity component |
---|
279 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
280 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
281 | dt_3d * ( & |
---|
282 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
283 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
284 | ) - & |
---|
285 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
286 | ENDDO |
---|
287 | |
---|
288 | ! |
---|
289 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
290 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
291 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
292 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
293 | tv_m(k,j,i) = tend(k,j,i) |
---|
294 | ENDDO |
---|
295 | ELSEIF ( intermediate_timestep_count < & |
---|
296 | intermediate_timestep_count_max ) THEN |
---|
297 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
298 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
299 | ENDDO |
---|
300 | ENDIF |
---|
301 | ENDIF |
---|
302 | |
---|
303 | ENDDO |
---|
304 | ENDDO |
---|
305 | |
---|
306 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
307 | |
---|
308 | ! |
---|
309 | !-- w-velocity component |
---|
310 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
311 | |
---|
312 | ! |
---|
313 | !-- w-tendency terms with communication |
---|
314 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
315 | tend = 0.0 |
---|
316 | CALL advec_w_ups |
---|
317 | ENDIF |
---|
318 | |
---|
319 | ! |
---|
320 | !-- w-tendency terms with no communication |
---|
321 | DO i = nxl, nxr |
---|
322 | DO j = nys, nyn |
---|
323 | ! |
---|
324 | !-- Tendency terms |
---|
325 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
326 | tend(:,j,i) = 0.0 |
---|
327 | CALL advec_w_pw( i, j ) |
---|
328 | ELSE |
---|
329 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
330 | tend(:,j,i) = 0.0 |
---|
331 | CALL advec_w_up( i, j ) |
---|
332 | ENDIF |
---|
333 | ENDIF |
---|
334 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
335 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
336 | tend, u_m, v_m, w_m ) |
---|
337 | ELSE |
---|
338 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
339 | tend, u, v, w ) |
---|
340 | ENDIF |
---|
341 | CALL coriolis( i, j, 3 ) |
---|
342 | IF ( ocean ) THEN |
---|
343 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
344 | ELSE |
---|
345 | IF ( .NOT. humidity ) THEN |
---|
346 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
347 | ELSE |
---|
348 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
349 | ENDIF |
---|
350 | ENDIF |
---|
351 | |
---|
352 | ! |
---|
353 | !-- Drag by plant canopy |
---|
354 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
355 | |
---|
356 | CALL user_actions( i, j, 'w-tendency' ) |
---|
357 | |
---|
358 | ! |
---|
359 | !-- Prognostic equation for w-velocity component |
---|
360 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
361 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
362 | dt_3d * ( & |
---|
363 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
364 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
365 | ) - & |
---|
366 | tsc(5) * rdf(k) * w(k,j,i) |
---|
367 | ENDDO |
---|
368 | |
---|
369 | ! |
---|
370 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
371 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
372 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
373 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
374 | tw_m(k,j,i) = tend(k,j,i) |
---|
375 | ENDDO |
---|
376 | ELSEIF ( intermediate_timestep_count < & |
---|
377 | intermediate_timestep_count_max ) THEN |
---|
378 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
379 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
380 | ENDDO |
---|
381 | ENDIF |
---|
382 | ENDIF |
---|
383 | |
---|
384 | ENDDO |
---|
385 | ENDDO |
---|
386 | |
---|
387 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
388 | |
---|
389 | ! |
---|
390 | !-- potential temperature |
---|
391 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
392 | |
---|
393 | ! |
---|
394 | !-- pt-tendency terms with communication |
---|
395 | sat = tsc(1) |
---|
396 | sbt = tsc(2) |
---|
397 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
398 | |
---|
399 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
400 | ! |
---|
401 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
402 | !-- switched on. Thus: |
---|
403 | sat = 1.0 |
---|
404 | sbt = 1.0 |
---|
405 | ENDIF |
---|
406 | tend = 0.0 |
---|
407 | CALL advec_s_bc( pt, 'pt' ) |
---|
408 | ELSE |
---|
409 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
410 | tend = 0.0 |
---|
411 | CALL advec_s_ups( pt, 'pt' ) |
---|
412 | ENDIF |
---|
413 | ENDIF |
---|
414 | |
---|
415 | ! |
---|
416 | !-- pt-tendency terms with no communication |
---|
417 | DO i = nxl, nxr |
---|
418 | DO j = nys, nyn |
---|
419 | ! |
---|
420 | !-- Tendency terms |
---|
421 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
422 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
423 | wall_heatflux, tend ) |
---|
424 | ELSE |
---|
425 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
426 | tend(:,j,i) = 0.0 |
---|
427 | CALL advec_s_pw( i, j, pt ) |
---|
428 | ELSE |
---|
429 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
430 | tend(:,j,i) = 0.0 |
---|
431 | CALL advec_s_up( i, j, pt ) |
---|
432 | ENDIF |
---|
433 | ENDIF |
---|
434 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
435 | THEN |
---|
436 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
437 | tswst_m, wall_heatflux, tend ) |
---|
438 | ELSE |
---|
439 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
440 | wall_heatflux, tend ) |
---|
441 | ENDIF |
---|
442 | ENDIF |
---|
443 | |
---|
444 | ! |
---|
445 | !-- If required compute heating/cooling due to long wave radiation |
---|
446 | !-- processes |
---|
447 | IF ( radiation ) THEN |
---|
448 | CALL calc_radiation( i, j ) |
---|
449 | ENDIF |
---|
450 | |
---|
451 | ! |
---|
452 | !-- If required compute impact of latent heat due to precipitation |
---|
453 | IF ( precipitation ) THEN |
---|
454 | CALL impact_of_latent_heat( i, j ) |
---|
455 | ENDIF |
---|
456 | |
---|
457 | ! |
---|
458 | !-- Consideration of heat sources within the plant canopy |
---|
459 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
460 | CALL plant_canopy_model( i, j, 4 ) |
---|
461 | ENDIF |
---|
462 | |
---|
463 | ! |
---|
464 | !-- If required compute influence of large-scale subsidence/ascent |
---|
465 | IF ( large_scale_subsidence ) THEN |
---|
466 | CALL subsidence ( i, j, tend, pt, pt_init ) |
---|
467 | ENDIF |
---|
468 | |
---|
469 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
470 | |
---|
471 | ! |
---|
472 | !-- Prognostic equation for potential temperature |
---|
473 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
474 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
475 | dt_3d * ( & |
---|
476 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
477 | ) - & |
---|
478 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
479 | ENDDO |
---|
480 | |
---|
481 | ! |
---|
482 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
483 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
484 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
485 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
486 | tpt_m(k,j,i) = tend(k,j,i) |
---|
487 | ENDDO |
---|
488 | ELSEIF ( intermediate_timestep_count < & |
---|
489 | intermediate_timestep_count_max ) THEN |
---|
490 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
491 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
492 | ENDDO |
---|
493 | ENDIF |
---|
494 | ENDIF |
---|
495 | |
---|
496 | ENDDO |
---|
497 | ENDDO |
---|
498 | |
---|
499 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
500 | |
---|
501 | ! |
---|
502 | !-- If required, compute prognostic equation for salinity |
---|
503 | IF ( ocean ) THEN |
---|
504 | |
---|
505 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
506 | |
---|
507 | ! |
---|
508 | !-- sa-tendency terms with communication |
---|
509 | sat = tsc(1) |
---|
510 | sbt = tsc(2) |
---|
511 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
512 | |
---|
513 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
514 | ! |
---|
515 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
516 | !-- switched on. Thus: |
---|
517 | sat = 1.0 |
---|
518 | sbt = 1.0 |
---|
519 | ENDIF |
---|
520 | tend = 0.0 |
---|
521 | CALL advec_s_bc( sa, 'sa' ) |
---|
522 | ELSE |
---|
523 | IF ( tsc(2) /= 2.0 ) THEN |
---|
524 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
525 | tend = 0.0 |
---|
526 | CALL advec_s_ups( sa, 'sa' ) |
---|
527 | ENDIF |
---|
528 | ENDIF |
---|
529 | ENDIF |
---|
530 | |
---|
531 | ! |
---|
532 | !-- sa terms with no communication |
---|
533 | DO i = nxl, nxr |
---|
534 | DO j = nys, nyn |
---|
535 | ! |
---|
536 | !-- Tendency-terms |
---|
537 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
538 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
539 | wall_salinityflux, tend ) |
---|
540 | ELSE |
---|
541 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
542 | tend(:,j,i) = 0.0 |
---|
543 | CALL advec_s_pw( i, j, sa ) |
---|
544 | ELSE |
---|
545 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
546 | tend(:,j,i) = 0.0 |
---|
547 | CALL advec_s_up( i, j, sa ) |
---|
548 | ENDIF |
---|
549 | ENDIF |
---|
550 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
551 | wall_salinityflux, tend ) |
---|
552 | ENDIF |
---|
553 | |
---|
554 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
555 | |
---|
556 | ! |
---|
557 | !-- Prognostic equation for salinity |
---|
558 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
559 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
560 | dt_3d * ( & |
---|
561 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
562 | ) - & |
---|
563 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
564 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
565 | ENDDO |
---|
566 | |
---|
567 | ! |
---|
568 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
569 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
570 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
571 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
572 | tsa_m(k,j,i) = tend(k,j,i) |
---|
573 | ENDDO |
---|
574 | ELSEIF ( intermediate_timestep_count < & |
---|
575 | intermediate_timestep_count_max ) THEN |
---|
576 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
577 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
578 | 5.3125 * tsa_m(k,j,i) |
---|
579 | ENDDO |
---|
580 | ENDIF |
---|
581 | ENDIF |
---|
582 | |
---|
583 | ! |
---|
584 | !-- Calculate density by the equation of state for seawater |
---|
585 | CALL eqn_state_seawater( i, j ) |
---|
586 | |
---|
587 | ENDDO |
---|
588 | ENDDO |
---|
589 | |
---|
590 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
591 | |
---|
592 | ENDIF |
---|
593 | |
---|
594 | ! |
---|
595 | !-- If required, compute prognostic equation for total water content / scalar |
---|
596 | IF ( humidity .OR. passive_scalar ) THEN |
---|
597 | |
---|
598 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
599 | |
---|
600 | ! |
---|
601 | !-- Scalar/q-tendency terms with communication |
---|
602 | sat = tsc(1) |
---|
603 | sbt = tsc(2) |
---|
604 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
605 | |
---|
606 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
607 | ! |
---|
608 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
609 | !-- switched on. Thus: |
---|
610 | sat = 1.0 |
---|
611 | sbt = 1.0 |
---|
612 | ENDIF |
---|
613 | tend = 0.0 |
---|
614 | CALL advec_s_bc( q, 'q' ) |
---|
615 | ELSE |
---|
616 | IF ( tsc(2) /= 2.0 ) THEN |
---|
617 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
618 | tend = 0.0 |
---|
619 | CALL advec_s_ups( q, 'q' ) |
---|
620 | ENDIF |
---|
621 | ENDIF |
---|
622 | ENDIF |
---|
623 | |
---|
624 | ! |
---|
625 | !-- Scalar/q-tendency terms with no communication |
---|
626 | DO i = nxl, nxr |
---|
627 | DO j = nys, nyn |
---|
628 | ! |
---|
629 | !-- Tendency-terms |
---|
630 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
631 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
632 | wall_qflux, tend ) |
---|
633 | ELSE |
---|
634 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
635 | tend(:,j,i) = 0.0 |
---|
636 | CALL advec_s_pw( i, j, q ) |
---|
637 | ELSE |
---|
638 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
639 | tend(:,j,i) = 0.0 |
---|
640 | CALL advec_s_up( i, j, q ) |
---|
641 | ENDIF |
---|
642 | ENDIF |
---|
643 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
644 | THEN |
---|
645 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
646 | qswst_m, wall_qflux, tend ) |
---|
647 | ELSE |
---|
648 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
649 | wall_qflux, tend ) |
---|
650 | ENDIF |
---|
651 | ENDIF |
---|
652 | |
---|
653 | ! |
---|
654 | !-- If required compute decrease of total water content due to |
---|
655 | !-- precipitation |
---|
656 | IF ( precipitation ) THEN |
---|
657 | CALL calc_precipitation( i, j ) |
---|
658 | ENDIF |
---|
659 | |
---|
660 | ! |
---|
661 | !-- Sink or source of scalar concentration due to canopy elements |
---|
662 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
663 | |
---|
664 | ! |
---|
665 | !-- If required compute influence of large-scale subsidence/ascent |
---|
666 | IF ( large_scale_subsidence ) THEN |
---|
667 | CALL subsidence ( i, j, tend, q, q_init ) |
---|
668 | ENDIF |
---|
669 | |
---|
670 | CALL user_actions( i, j, 'q-tendency' ) |
---|
671 | |
---|
672 | ! |
---|
673 | !-- Prognostic equation for total water content / scalar |
---|
674 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
675 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
676 | dt_3d * ( & |
---|
677 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
678 | ) - & |
---|
679 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
680 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
681 | ENDDO |
---|
682 | |
---|
683 | ! |
---|
684 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
685 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
686 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
687 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
688 | tq_m(k,j,i) = tend(k,j,i) |
---|
689 | ENDDO |
---|
690 | ELSEIF ( intermediate_timestep_count < & |
---|
691 | intermediate_timestep_count_max ) THEN |
---|
692 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
693 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
694 | ENDDO |
---|
695 | ENDIF |
---|
696 | ENDIF |
---|
697 | |
---|
698 | ENDDO |
---|
699 | ENDDO |
---|
700 | |
---|
701 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
702 | |
---|
703 | ENDIF |
---|
704 | |
---|
705 | ! |
---|
706 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
707 | !-- energy (TKE) |
---|
708 | IF ( .NOT. constant_diffusion ) THEN |
---|
709 | |
---|
710 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
711 | |
---|
712 | ! |
---|
713 | !-- TKE-tendency terms with communication |
---|
714 | CALL production_e_init |
---|
715 | |
---|
716 | sat = tsc(1) |
---|
717 | sbt = tsc(2) |
---|
718 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
719 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
720 | |
---|
721 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
722 | ! |
---|
723 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
724 | !-- switched on. Thus: |
---|
725 | sat = 1.0 |
---|
726 | sbt = 1.0 |
---|
727 | ENDIF |
---|
728 | tend = 0.0 |
---|
729 | CALL advec_s_bc( e, 'e' ) |
---|
730 | ELSE |
---|
731 | IF ( tsc(2) /= 2.0 ) THEN |
---|
732 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
733 | tend = 0.0 |
---|
734 | CALL advec_s_ups( e, 'e' ) |
---|
735 | ENDIF |
---|
736 | ENDIF |
---|
737 | ENDIF |
---|
738 | ENDIF |
---|
739 | |
---|
740 | ! |
---|
741 | !-- TKE-tendency terms with no communication |
---|
742 | DO i = nxl, nxr |
---|
743 | DO j = nys, nyn |
---|
744 | ! |
---|
745 | !-- Tendency-terms |
---|
746 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
747 | .NOT. use_upstream_for_tke ) THEN |
---|
748 | IF ( .NOT. humidity ) THEN |
---|
749 | IF ( ocean ) THEN |
---|
750 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
751 | l_grid, prho, prho_reference, rif, & |
---|
752 | tend, zu, zw ) |
---|
753 | ELSE |
---|
754 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
755 | l_grid, pt, pt_reference, rif, tend, & |
---|
756 | zu, zw ) |
---|
757 | ENDIF |
---|
758 | ELSE |
---|
759 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
760 | l_grid, vpt, pt_reference, rif, tend, zu, & |
---|
761 | zw ) |
---|
762 | ENDIF |
---|
763 | ELSE |
---|
764 | IF ( use_upstream_for_tke ) THEN |
---|
765 | tend(:,j,i) = 0.0 |
---|
766 | CALL advec_s_up( i, j, e ) |
---|
767 | ELSE |
---|
768 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
769 | THEN |
---|
770 | tend(:,j,i) = 0.0 |
---|
771 | CALL advec_s_pw( i, j, e ) |
---|
772 | ELSE |
---|
773 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
774 | tend(:,j,i) = 0.0 |
---|
775 | CALL advec_s_up( i, j, e ) |
---|
776 | ENDIF |
---|
777 | ENDIF |
---|
778 | ENDIF |
---|
779 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
780 | THEN |
---|
781 | IF ( .NOT. humidity ) THEN |
---|
782 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
783 | km_m, l_grid, pt_m, pt_reference, & |
---|
784 | rif_m, tend, zu, zw ) |
---|
785 | ELSE |
---|
786 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
787 | km_m, l_grid, vpt_m, pt_reference, & |
---|
788 | rif_m, tend, zu, zw ) |
---|
789 | ENDIF |
---|
790 | ELSE |
---|
791 | IF ( .NOT. humidity ) THEN |
---|
792 | IF ( ocean ) THEN |
---|
793 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
794 | km, l_grid, prho, prho_reference, & |
---|
795 | rif, tend, zu, zw ) |
---|
796 | ELSE |
---|
797 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
798 | km, l_grid, pt, pt_reference, rif, & |
---|
799 | tend, zu, zw ) |
---|
800 | ENDIF |
---|
801 | ELSE |
---|
802 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
803 | l_grid, vpt, pt_reference, rif, tend, & |
---|
804 | zu, zw ) |
---|
805 | ENDIF |
---|
806 | ENDIF |
---|
807 | ENDIF |
---|
808 | CALL production_e( i, j ) |
---|
809 | |
---|
810 | ! |
---|
811 | !-- Additional sink term for flows through plant canopies |
---|
812 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
813 | |
---|
814 | CALL user_actions( i, j, 'e-tendency' ) |
---|
815 | |
---|
816 | ! |
---|
817 | !-- Prognostic equation for TKE. |
---|
818 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
819 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
820 | !-- value is reduced by 90%. |
---|
821 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
822 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
823 | dt_3d * ( & |
---|
824 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
825 | ) |
---|
826 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
827 | ENDDO |
---|
828 | |
---|
829 | ! |
---|
830 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
831 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
832 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
833 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
834 | te_m(k,j,i) = tend(k,j,i) |
---|
835 | ENDDO |
---|
836 | ELSEIF ( intermediate_timestep_count < & |
---|
837 | intermediate_timestep_count_max ) THEN |
---|
838 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
839 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
840 | ENDDO |
---|
841 | ENDIF |
---|
842 | ENDIF |
---|
843 | |
---|
844 | ENDDO |
---|
845 | ENDDO |
---|
846 | |
---|
847 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
848 | |
---|
849 | ENDIF |
---|
850 | |
---|
851 | |
---|
852 | END SUBROUTINE prognostic_equations_noopt |
---|
853 | |
---|
854 | |
---|
855 | SUBROUTINE prognostic_equations_cache |
---|
856 | |
---|
857 | !------------------------------------------------------------------------------! |
---|
858 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
859 | ! be called for the standard Piascek-Williams advection scheme. |
---|
860 | ! |
---|
861 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
862 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
863 | ! these loops. |
---|
864 | ! |
---|
865 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
866 | !------------------------------------------------------------------------------! |
---|
867 | |
---|
868 | IMPLICIT NONE |
---|
869 | |
---|
870 | CHARACTER (LEN=9) :: time_to_string |
---|
871 | INTEGER :: i, j, k |
---|
872 | |
---|
873 | |
---|
874 | ! |
---|
875 | !-- Time measurement can only be performed for the whole set of equations |
---|
876 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
877 | |
---|
878 | |
---|
879 | ! |
---|
880 | !-- Calculate those variables needed in the tendency terms which need |
---|
881 | !-- global communication |
---|
882 | CALL calc_mean_profile( pt, 4 ) |
---|
883 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
884 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
885 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
886 | |
---|
887 | |
---|
888 | ! |
---|
889 | !-- Loop over all prognostic equations |
---|
890 | !$OMP PARALLEL private (i,j,k) |
---|
891 | !$OMP DO |
---|
892 | DO i = nxl, nxr |
---|
893 | DO j = nys, nyn |
---|
894 | ! |
---|
895 | !-- Tendency terms for u-velocity component |
---|
896 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
897 | |
---|
898 | tend(:,j,i) = 0.0 |
---|
899 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
900 | CALL advec_u_pw( i, j ) |
---|
901 | ELSE |
---|
902 | CALL advec_u_up( i, j ) |
---|
903 | ENDIF |
---|
904 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
905 | THEN |
---|
906 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
907 | u_m, usws_m, uswst_m, v_m, w_m ) |
---|
908 | ELSE |
---|
909 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
910 | usws, uswst, v, w ) |
---|
911 | ENDIF |
---|
912 | CALL coriolis( i, j, 1 ) |
---|
913 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, & |
---|
914 | 4 ) |
---|
915 | |
---|
916 | ! |
---|
917 | !-- Drag by plant canopy |
---|
918 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
919 | |
---|
920 | ! |
---|
921 | !-- External pressure gradient |
---|
922 | IF ( dp_external ) THEN |
---|
923 | DO k = dp_level_ind_b+1, nzt |
---|
924 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
925 | ENDDO |
---|
926 | ENDIF |
---|
927 | |
---|
928 | CALL user_actions( i, j, 'u-tendency' ) |
---|
929 | |
---|
930 | ! |
---|
931 | !-- Prognostic equation for u-velocity component |
---|
932 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
933 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
934 | dt_3d * ( & |
---|
935 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
936 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
937 | ) - & |
---|
938 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
939 | ENDDO |
---|
940 | |
---|
941 | ! |
---|
942 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
943 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
944 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
945 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
946 | tu_m(k,j,i) = tend(k,j,i) |
---|
947 | ENDDO |
---|
948 | ELSEIF ( intermediate_timestep_count < & |
---|
949 | intermediate_timestep_count_max ) THEN |
---|
950 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
951 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
952 | ENDDO |
---|
953 | ENDIF |
---|
954 | ENDIF |
---|
955 | |
---|
956 | ENDIF |
---|
957 | |
---|
958 | ! |
---|
959 | !-- Tendency terms for v-velocity component |
---|
960 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
961 | |
---|
962 | tend(:,j,i) = 0.0 |
---|
963 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
964 | CALL advec_v_pw( i, j ) |
---|
965 | ELSE |
---|
966 | CALL advec_v_up( i, j ) |
---|
967 | ENDIF |
---|
968 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
969 | THEN |
---|
970 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
971 | u_m, v_m, vsws_m, vswst_m, w_m ) |
---|
972 | ELSE |
---|
973 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
974 | vsws, vswst, w ) |
---|
975 | ENDIF |
---|
976 | CALL coriolis( i, j, 2 ) |
---|
977 | |
---|
978 | ! |
---|
979 | !-- Drag by plant canopy |
---|
980 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
981 | |
---|
982 | ! |
---|
983 | !-- External pressure gradient |
---|
984 | IF ( dp_external ) THEN |
---|
985 | DO k = dp_level_ind_b+1, nzt |
---|
986 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
987 | ENDDO |
---|
988 | ENDIF |
---|
989 | |
---|
990 | CALL user_actions( i, j, 'v-tendency' ) |
---|
991 | |
---|
992 | ! |
---|
993 | !-- Prognostic equation for v-velocity component |
---|
994 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
995 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
996 | dt_3d * ( & |
---|
997 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
998 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
999 | ) - & |
---|
1000 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
1001 | ENDDO |
---|
1002 | |
---|
1003 | ! |
---|
1004 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1005 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1006 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1007 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1008 | tv_m(k,j,i) = tend(k,j,i) |
---|
1009 | ENDDO |
---|
1010 | ELSEIF ( intermediate_timestep_count < & |
---|
1011 | intermediate_timestep_count_max ) THEN |
---|
1012 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1013 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
1014 | ENDDO |
---|
1015 | ENDIF |
---|
1016 | ENDIF |
---|
1017 | |
---|
1018 | ENDIF |
---|
1019 | |
---|
1020 | ! |
---|
1021 | !-- Tendency terms for w-velocity component |
---|
1022 | tend(:,j,i) = 0.0 |
---|
1023 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1024 | CALL advec_w_pw( i, j ) |
---|
1025 | ELSE |
---|
1026 | CALL advec_w_up( i, j ) |
---|
1027 | ENDIF |
---|
1028 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
1029 | THEN |
---|
1030 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
1031 | km_damp_y, tend, u_m, v_m, w_m ) |
---|
1032 | ELSE |
---|
1033 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
1034 | tend, u, v, w ) |
---|
1035 | ENDIF |
---|
1036 | CALL coriolis( i, j, 3 ) |
---|
1037 | IF ( ocean ) THEN |
---|
1038 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
1039 | ELSE |
---|
1040 | IF ( .NOT. humidity ) THEN |
---|
1041 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
1042 | ELSE |
---|
1043 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
1044 | ENDIF |
---|
1045 | ENDIF |
---|
1046 | |
---|
1047 | ! |
---|
1048 | !-- Drag by plant canopy |
---|
1049 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
1050 | |
---|
1051 | CALL user_actions( i, j, 'w-tendency' ) |
---|
1052 | |
---|
1053 | ! |
---|
1054 | !-- Prognostic equation for w-velocity component |
---|
1055 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1056 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
1057 | dt_3d * ( & |
---|
1058 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
1059 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
1060 | ) - & |
---|
1061 | tsc(5) * rdf(k) * w(k,j,i) |
---|
1062 | ENDDO |
---|
1063 | |
---|
1064 | ! |
---|
1065 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1066 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1067 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1068 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1069 | tw_m(k,j,i) = tend(k,j,i) |
---|
1070 | ENDDO |
---|
1071 | ELSEIF ( intermediate_timestep_count < & |
---|
1072 | intermediate_timestep_count_max ) THEN |
---|
1073 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1074 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1075 | ENDDO |
---|
1076 | ENDIF |
---|
1077 | ENDIF |
---|
1078 | |
---|
1079 | ! |
---|
1080 | !-- Tendency terms for potential temperature |
---|
1081 | tend(:,j,i) = 0.0 |
---|
1082 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1083 | CALL advec_s_pw( i, j, pt ) |
---|
1084 | ELSE |
---|
1085 | CALL advec_s_up( i, j, pt ) |
---|
1086 | ENDIF |
---|
1087 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
1088 | THEN |
---|
1089 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
1090 | tswst_m, wall_heatflux, tend ) |
---|
1091 | ELSE |
---|
1092 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
1093 | wall_heatflux, tend ) |
---|
1094 | ENDIF |
---|
1095 | |
---|
1096 | ! |
---|
1097 | !-- If required compute heating/cooling due to long wave radiation |
---|
1098 | !-- processes |
---|
1099 | IF ( radiation ) THEN |
---|
1100 | CALL calc_radiation( i, j ) |
---|
1101 | ENDIF |
---|
1102 | |
---|
1103 | ! |
---|
1104 | !-- If required compute impact of latent heat due to precipitation |
---|
1105 | IF ( precipitation ) THEN |
---|
1106 | CALL impact_of_latent_heat( i, j ) |
---|
1107 | ENDIF |
---|
1108 | |
---|
1109 | ! |
---|
1110 | !-- Consideration of heat sources within the plant canopy |
---|
1111 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
1112 | CALL plant_canopy_model( i, j, 4 ) |
---|
1113 | ENDIF |
---|
1114 | |
---|
1115 | |
---|
1116 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1117 | IF ( large_scale_subsidence ) THEN |
---|
1118 | CALL subsidence ( i, j, tend, pt, pt_init ) |
---|
1119 | ENDIF |
---|
1120 | |
---|
1121 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
1122 | |
---|
1123 | ! |
---|
1124 | !-- Prognostic equation for potential temperature |
---|
1125 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1126 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
1127 | dt_3d * ( & |
---|
1128 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
1129 | ) - & |
---|
1130 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
1131 | ENDDO |
---|
1132 | |
---|
1133 | ! |
---|
1134 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1135 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1136 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1137 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1138 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1139 | ENDDO |
---|
1140 | ELSEIF ( intermediate_timestep_count < & |
---|
1141 | intermediate_timestep_count_max ) THEN |
---|
1142 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1143 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1144 | 5.3125 * tpt_m(k,j,i) |
---|
1145 | ENDDO |
---|
1146 | ENDIF |
---|
1147 | ENDIF |
---|
1148 | |
---|
1149 | ! |
---|
1150 | !-- If required, compute prognostic equation for salinity |
---|
1151 | IF ( ocean ) THEN |
---|
1152 | |
---|
1153 | ! |
---|
1154 | !-- Tendency-terms for salinity |
---|
1155 | tend(:,j,i) = 0.0 |
---|
1156 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
1157 | THEN |
---|
1158 | CALL advec_s_pw( i, j, sa ) |
---|
1159 | ELSE |
---|
1160 | CALL advec_s_up( i, j, sa ) |
---|
1161 | ENDIF |
---|
1162 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
1163 | wall_salinityflux, tend ) |
---|
1164 | |
---|
1165 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
1166 | |
---|
1167 | ! |
---|
1168 | !-- Prognostic equation for salinity |
---|
1169 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1170 | sa_p(k,j,i) = tsc(1) * sa(k,j,i) + & |
---|
1171 | dt_3d * ( & |
---|
1172 | tsc(2) * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
1173 | ) - & |
---|
1174 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
1175 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
1176 | ENDDO |
---|
1177 | |
---|
1178 | ! |
---|
1179 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1180 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1181 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1182 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1183 | tsa_m(k,j,i) = tend(k,j,i) |
---|
1184 | ENDDO |
---|
1185 | ELSEIF ( intermediate_timestep_count < & |
---|
1186 | intermediate_timestep_count_max ) THEN |
---|
1187 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1188 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1189 | 5.3125 * tsa_m(k,j,i) |
---|
1190 | ENDDO |
---|
1191 | ENDIF |
---|
1192 | ENDIF |
---|
1193 | |
---|
1194 | ! |
---|
1195 | !-- Calculate density by the equation of state for seawater |
---|
1196 | CALL eqn_state_seawater( i, j ) |
---|
1197 | |
---|
1198 | ENDIF |
---|
1199 | |
---|
1200 | ! |
---|
1201 | !-- If required, compute prognostic equation for total water content / |
---|
1202 | !-- scalar |
---|
1203 | IF ( humidity .OR. passive_scalar ) THEN |
---|
1204 | |
---|
1205 | ! |
---|
1206 | !-- Tendency-terms for total water content / scalar |
---|
1207 | tend(:,j,i) = 0.0 |
---|
1208 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
1209 | THEN |
---|
1210 | CALL advec_s_pw( i, j, q ) |
---|
1211 | ELSE |
---|
1212 | CALL advec_s_up( i, j, q ) |
---|
1213 | ENDIF |
---|
1214 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
1215 | THEN |
---|
1216 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
1217 | qswst_m, wall_qflux, tend ) |
---|
1218 | ELSE |
---|
1219 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
1220 | wall_qflux, tend ) |
---|
1221 | ENDIF |
---|
1222 | |
---|
1223 | ! |
---|
1224 | !-- If required compute decrease of total water content due to |
---|
1225 | !-- precipitation |
---|
1226 | IF ( precipitation ) THEN |
---|
1227 | CALL calc_precipitation( i, j ) |
---|
1228 | ENDIF |
---|
1229 | |
---|
1230 | ! |
---|
1231 | !-- Sink or source of scalar concentration due to canopy elements |
---|
1232 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
1233 | |
---|
1234 | |
---|
1235 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1236 | IF ( large_scale_subsidence ) THEN |
---|
1237 | CALL subsidence ( i, j, tend, q, q_init ) |
---|
1238 | ENDIF |
---|
1239 | |
---|
1240 | |
---|
1241 | CALL user_actions( i, j, 'q-tendency' ) |
---|
1242 | |
---|
1243 | ! |
---|
1244 | !-- Prognostic equation for total water content / scalar |
---|
1245 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1246 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
1247 | dt_3d * ( & |
---|
1248 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
1249 | ) - & |
---|
1250 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
1251 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
1252 | ENDDO |
---|
1253 | |
---|
1254 | ! |
---|
1255 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1256 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1257 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1258 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1259 | tq_m(k,j,i) = tend(k,j,i) |
---|
1260 | ENDDO |
---|
1261 | ELSEIF ( intermediate_timestep_count < & |
---|
1262 | intermediate_timestep_count_max ) THEN |
---|
1263 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1264 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1265 | 5.3125 * tq_m(k,j,i) |
---|
1266 | ENDDO |
---|
1267 | ENDIF |
---|
1268 | ENDIF |
---|
1269 | |
---|
1270 | ENDIF |
---|
1271 | |
---|
1272 | ! |
---|
1273 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1274 | !-- energy (TKE) |
---|
1275 | IF ( .NOT. constant_diffusion ) THEN |
---|
1276 | |
---|
1277 | ! |
---|
1278 | !-- Tendency-terms for TKE |
---|
1279 | tend(:,j,i) = 0.0 |
---|
1280 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
1281 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
1282 | CALL advec_s_pw( i, j, e ) |
---|
1283 | ELSE |
---|
1284 | CALL advec_s_up( i, j, e ) |
---|
1285 | ENDIF |
---|
1286 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
1287 | THEN |
---|
1288 | IF ( .NOT. humidity ) THEN |
---|
1289 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
1290 | km_m, l_grid, pt_m, pt_reference, & |
---|
1291 | rif_m, tend, zu, zw ) |
---|
1292 | ELSE |
---|
1293 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
1294 | km_m, l_grid, vpt_m, pt_reference, & |
---|
1295 | rif_m, tend, zu, zw ) |
---|
1296 | ENDIF |
---|
1297 | ELSE |
---|
1298 | IF ( .NOT. humidity ) THEN |
---|
1299 | IF ( ocean ) THEN |
---|
1300 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
1301 | km, l_grid, prho, prho_reference, & |
---|
1302 | rif, tend, zu, zw ) |
---|
1303 | ELSE |
---|
1304 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
1305 | km, l_grid, pt, pt_reference, rif, & |
---|
1306 | tend, zu, zw ) |
---|
1307 | ENDIF |
---|
1308 | ELSE |
---|
1309 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
1310 | l_grid, vpt, pt_reference, rif, tend, & |
---|
1311 | zu, zw ) |
---|
1312 | ENDIF |
---|
1313 | ENDIF |
---|
1314 | CALL production_e( i, j ) |
---|
1315 | |
---|
1316 | ! |
---|
1317 | !-- Additional sink term for flows through plant canopies |
---|
1318 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
1319 | |
---|
1320 | CALL user_actions( i, j, 'e-tendency' ) |
---|
1321 | |
---|
1322 | ! |
---|
1323 | !-- Prognostic equation for TKE. |
---|
1324 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
1325 | !-- reasons in the course of the integration. In such cases the old |
---|
1326 | !-- TKE value is reduced by 90%. |
---|
1327 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1328 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
1329 | dt_3d * ( & |
---|
1330 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
1331 | ) |
---|
1332 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
1333 | ENDDO |
---|
1334 | |
---|
1335 | ! |
---|
1336 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1337 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1338 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1339 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1340 | te_m(k,j,i) = tend(k,j,i) |
---|
1341 | ENDDO |
---|
1342 | ELSEIF ( intermediate_timestep_count < & |
---|
1343 | intermediate_timestep_count_max ) THEN |
---|
1344 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1345 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1346 | 5.3125 * te_m(k,j,i) |
---|
1347 | ENDDO |
---|
1348 | ENDIF |
---|
1349 | ENDIF |
---|
1350 | |
---|
1351 | ENDIF ! TKE equation |
---|
1352 | |
---|
1353 | ENDDO |
---|
1354 | ENDDO |
---|
1355 | !$OMP END PARALLEL |
---|
1356 | |
---|
1357 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
1358 | |
---|
1359 | |
---|
1360 | END SUBROUTINE prognostic_equations_cache |
---|
1361 | |
---|
1362 | |
---|
1363 | SUBROUTINE prognostic_equations_vector |
---|
1364 | |
---|
1365 | !------------------------------------------------------------------------------! |
---|
1366 | ! Version for vector machines |
---|
1367 | !------------------------------------------------------------------------------! |
---|
1368 | |
---|
1369 | IMPLICIT NONE |
---|
1370 | |
---|
1371 | CHARACTER (LEN=9) :: time_to_string |
---|
1372 | INTEGER :: i, j, k |
---|
1373 | REAL :: sat, sbt |
---|
1374 | |
---|
1375 | ! |
---|
1376 | !-- Calculate those variables needed in the tendency terms which need |
---|
1377 | !-- global communication |
---|
1378 | CALL calc_mean_profile( pt, 4 ) |
---|
1379 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
1380 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
1381 | |
---|
1382 | ! |
---|
1383 | !-- u-velocity component |
---|
1384 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
1385 | |
---|
1386 | ! |
---|
1387 | !-- u-tendency terms with communication |
---|
1388 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1389 | tend = 0.0 |
---|
1390 | CALL advec_u_ups |
---|
1391 | ENDIF |
---|
1392 | |
---|
1393 | ! |
---|
1394 | !-- u-tendency terms with no communication |
---|
1395 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1396 | tend = 0.0 |
---|
1397 | CALL advec_u_pw |
---|
1398 | ELSE |
---|
1399 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1400 | tend = 0.0 |
---|
1401 | CALL advec_u_up |
---|
1402 | ENDIF |
---|
1403 | ENDIF |
---|
1404 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1405 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, & |
---|
1406 | uswst_m, v_m, w_m ) |
---|
1407 | ELSE |
---|
1408 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, uswst, v, w ) |
---|
1409 | ENDIF |
---|
1410 | CALL coriolis( 1 ) |
---|
1411 | IF ( sloping_surface ) CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
1412 | |
---|
1413 | ! |
---|
1414 | !-- Drag by plant canopy |
---|
1415 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
1416 | |
---|
1417 | ! |
---|
1418 | !-- External pressure gradient |
---|
1419 | IF ( dp_external ) THEN |
---|
1420 | DO i = nxlu, nxr |
---|
1421 | DO j = nys, nyn |
---|
1422 | DO k = dp_level_ind_b+1, nzt |
---|
1423 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
1424 | ENDDO |
---|
1425 | ENDDO |
---|
1426 | ENDDO |
---|
1427 | ENDIF |
---|
1428 | |
---|
1429 | CALL user_actions( 'u-tendency' ) |
---|
1430 | |
---|
1431 | ! |
---|
1432 | !-- Prognostic equation for u-velocity component |
---|
1433 | DO i = nxlu, nxr |
---|
1434 | DO j = nys, nyn |
---|
1435 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1436 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
1437 | dt_3d * ( & |
---|
1438 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
1439 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
1440 | ) - & |
---|
1441 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
1442 | ENDDO |
---|
1443 | ENDDO |
---|
1444 | ENDDO |
---|
1445 | |
---|
1446 | ! |
---|
1447 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1448 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1449 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1450 | DO i = nxlu, nxr |
---|
1451 | DO j = nys, nyn |
---|
1452 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1453 | tu_m(k,j,i) = tend(k,j,i) |
---|
1454 | ENDDO |
---|
1455 | ENDDO |
---|
1456 | ENDDO |
---|
1457 | ELSEIF ( intermediate_timestep_count < & |
---|
1458 | intermediate_timestep_count_max ) THEN |
---|
1459 | DO i = nxlu, nxr |
---|
1460 | DO j = nys, nyn |
---|
1461 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1462 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
1463 | ENDDO |
---|
1464 | ENDDO |
---|
1465 | ENDDO |
---|
1466 | ENDIF |
---|
1467 | ENDIF |
---|
1468 | |
---|
1469 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
1470 | |
---|
1471 | ! |
---|
1472 | !-- v-velocity component |
---|
1473 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
1474 | |
---|
1475 | ! |
---|
1476 | !-- v-tendency terms with communication |
---|
1477 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1478 | tend = 0.0 |
---|
1479 | CALL advec_v_ups |
---|
1480 | ENDIF |
---|
1481 | |
---|
1482 | ! |
---|
1483 | !-- v-tendency terms with no communication |
---|
1484 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1485 | tend = 0.0 |
---|
1486 | CALL advec_v_pw |
---|
1487 | ELSE |
---|
1488 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1489 | tend = 0.0 |
---|
1490 | CALL advec_v_up |
---|
1491 | ENDIF |
---|
1492 | ENDIF |
---|
1493 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1494 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
1495 | vswst_m, w_m ) |
---|
1496 | ELSE |
---|
1497 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, vswst, w ) |
---|
1498 | ENDIF |
---|
1499 | CALL coriolis( 2 ) |
---|
1500 | |
---|
1501 | ! |
---|
1502 | !-- Drag by plant canopy |
---|
1503 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
1504 | |
---|
1505 | ! |
---|
1506 | !-- External pressure gradient |
---|
1507 | IF ( dp_external ) THEN |
---|
1508 | DO i = nxl, nxr |
---|
1509 | DO j = nysv, nyn |
---|
1510 | DO k = dp_level_ind_b+1, nzt |
---|
1511 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
1512 | ENDDO |
---|
1513 | ENDDO |
---|
1514 | ENDDO |
---|
1515 | ENDIF |
---|
1516 | |
---|
1517 | CALL user_actions( 'v-tendency' ) |
---|
1518 | |
---|
1519 | ! |
---|
1520 | !-- Prognostic equation for v-velocity component |
---|
1521 | DO i = nxl, nxr |
---|
1522 | DO j = nysv, nyn |
---|
1523 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1524 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
1525 | dt_3d * ( & |
---|
1526 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
1527 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
1528 | ) - & |
---|
1529 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
1530 | ENDDO |
---|
1531 | ENDDO |
---|
1532 | ENDDO |
---|
1533 | |
---|
1534 | ! |
---|
1535 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1536 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1537 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1538 | DO i = nxl, nxr |
---|
1539 | DO j = nysv, nyn |
---|
1540 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1541 | tv_m(k,j,i) = tend(k,j,i) |
---|
1542 | ENDDO |
---|
1543 | ENDDO |
---|
1544 | ENDDO |
---|
1545 | ELSEIF ( intermediate_timestep_count < & |
---|
1546 | intermediate_timestep_count_max ) THEN |
---|
1547 | DO i = nxl, nxr |
---|
1548 | DO j = nysv, nyn |
---|
1549 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1550 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
1551 | ENDDO |
---|
1552 | ENDDO |
---|
1553 | ENDDO |
---|
1554 | ENDIF |
---|
1555 | ENDIF |
---|
1556 | |
---|
1557 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
1558 | |
---|
1559 | ! |
---|
1560 | !-- w-velocity component |
---|
1561 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
1562 | |
---|
1563 | ! |
---|
1564 | !-- w-tendency terms with communication |
---|
1565 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1566 | tend = 0.0 |
---|
1567 | CALL advec_w_ups |
---|
1568 | ENDIF |
---|
1569 | |
---|
1570 | ! |
---|
1571 | !-- w-tendency terms with no communication |
---|
1572 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1573 | tend = 0.0 |
---|
1574 | CALL advec_w_pw |
---|
1575 | ELSE |
---|
1576 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1577 | tend = 0.0 |
---|
1578 | CALL advec_w_up |
---|
1579 | ENDIF |
---|
1580 | ENDIF |
---|
1581 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1582 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
1583 | v_m, w_m ) |
---|
1584 | ELSE |
---|
1585 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w ) |
---|
1586 | ENDIF |
---|
1587 | CALL coriolis( 3 ) |
---|
1588 | IF ( ocean ) THEN |
---|
1589 | CALL buoyancy( rho, rho_reference, 3, 64 ) |
---|
1590 | ELSE |
---|
1591 | IF ( .NOT. humidity ) THEN |
---|
1592 | CALL buoyancy( pt, pt_reference, 3, 4 ) |
---|
1593 | ELSE |
---|
1594 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
1595 | ENDIF |
---|
1596 | ENDIF |
---|
1597 | |
---|
1598 | ! |
---|
1599 | !-- Drag by plant canopy |
---|
1600 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
1601 | |
---|
1602 | CALL user_actions( 'w-tendency' ) |
---|
1603 | |
---|
1604 | ! |
---|
1605 | !-- Prognostic equation for w-velocity component |
---|
1606 | DO i = nxl, nxr |
---|
1607 | DO j = nys, nyn |
---|
1608 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1609 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
1610 | dt_3d * ( & |
---|
1611 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
1612 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
1613 | ) - & |
---|
1614 | tsc(5) * rdf(k) * w(k,j,i) |
---|
1615 | ENDDO |
---|
1616 | ENDDO |
---|
1617 | ENDDO |
---|
1618 | |
---|
1619 | ! |
---|
1620 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1621 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1622 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1623 | DO i = nxl, nxr |
---|
1624 | DO j = nys, nyn |
---|
1625 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1626 | tw_m(k,j,i) = tend(k,j,i) |
---|
1627 | ENDDO |
---|
1628 | ENDDO |
---|
1629 | ENDDO |
---|
1630 | ELSEIF ( intermediate_timestep_count < & |
---|
1631 | intermediate_timestep_count_max ) THEN |
---|
1632 | DO i = nxl, nxr |
---|
1633 | DO j = nys, nyn |
---|
1634 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1635 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1636 | ENDDO |
---|
1637 | ENDDO |
---|
1638 | ENDDO |
---|
1639 | ENDIF |
---|
1640 | ENDIF |
---|
1641 | |
---|
1642 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
1643 | |
---|
1644 | ! |
---|
1645 | !-- potential temperature |
---|
1646 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
1647 | |
---|
1648 | ! |
---|
1649 | !-- pt-tendency terms with communication |
---|
1650 | sat = tsc(1) |
---|
1651 | sbt = tsc(2) |
---|
1652 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1653 | |
---|
1654 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1655 | ! |
---|
1656 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1657 | !-- switched on. Thus: |
---|
1658 | sat = 1.0 |
---|
1659 | sbt = 1.0 |
---|
1660 | ENDIF |
---|
1661 | tend = 0.0 |
---|
1662 | CALL advec_s_bc( pt, 'pt' ) |
---|
1663 | ELSE |
---|
1664 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
1665 | tend = 0.0 |
---|
1666 | CALL advec_s_ups( pt, 'pt' ) |
---|
1667 | ENDIF |
---|
1668 | ENDIF |
---|
1669 | |
---|
1670 | ! |
---|
1671 | !-- pt-tendency terms with no communication |
---|
1672 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1673 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
1674 | tend ) |
---|
1675 | ELSE |
---|
1676 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1677 | tend = 0.0 |
---|
1678 | CALL advec_s_pw( pt ) |
---|
1679 | ELSE |
---|
1680 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1681 | tend = 0.0 |
---|
1682 | CALL advec_s_up( pt ) |
---|
1683 | ENDIF |
---|
1684 | ENDIF |
---|
1685 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1686 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tswst_m, & |
---|
1687 | wall_heatflux, tend ) |
---|
1688 | ELSE |
---|
1689 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
1690 | tend ) |
---|
1691 | ENDIF |
---|
1692 | ENDIF |
---|
1693 | |
---|
1694 | ! |
---|
1695 | !-- If required compute heating/cooling due to long wave radiation |
---|
1696 | !-- processes |
---|
1697 | IF ( radiation ) THEN |
---|
1698 | CALL calc_radiation |
---|
1699 | ENDIF |
---|
1700 | |
---|
1701 | ! |
---|
1702 | !-- If required compute impact of latent heat due to precipitation |
---|
1703 | IF ( precipitation ) THEN |
---|
1704 | CALL impact_of_latent_heat |
---|
1705 | ENDIF |
---|
1706 | |
---|
1707 | ! |
---|
1708 | !-- Consideration of heat sources within the plant canopy |
---|
1709 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
1710 | CALL plant_canopy_model( 4 ) |
---|
1711 | ENDIF |
---|
1712 | |
---|
1713 | !--If required compute influence of large-scale subsidence/ascent |
---|
1714 | IF ( large_scale_subsidence ) THEN |
---|
1715 | CALL subsidence ( tend, pt, pt_init ) |
---|
1716 | ENDIF |
---|
1717 | |
---|
1718 | CALL user_actions( 'pt-tendency' ) |
---|
1719 | |
---|
1720 | ! |
---|
1721 | !-- Prognostic equation for potential temperature |
---|
1722 | DO i = nxl, nxr |
---|
1723 | DO j = nys, nyn |
---|
1724 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1725 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
1726 | dt_3d * ( & |
---|
1727 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
1728 | ) - & |
---|
1729 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
1730 | ENDDO |
---|
1731 | ENDDO |
---|
1732 | ENDDO |
---|
1733 | |
---|
1734 | ! |
---|
1735 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1736 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1737 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1738 | DO i = nxl, nxr |
---|
1739 | DO j = nys, nyn |
---|
1740 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1741 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1742 | ENDDO |
---|
1743 | ENDDO |
---|
1744 | ENDDO |
---|
1745 | ELSEIF ( intermediate_timestep_count < & |
---|
1746 | intermediate_timestep_count_max ) THEN |
---|
1747 | DO i = nxl, nxr |
---|
1748 | DO j = nys, nyn |
---|
1749 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1750 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
1751 | ENDDO |
---|
1752 | ENDDO |
---|
1753 | ENDDO |
---|
1754 | ENDIF |
---|
1755 | ENDIF |
---|
1756 | |
---|
1757 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
1758 | |
---|
1759 | ! |
---|
1760 | !-- If required, compute prognostic equation for salinity |
---|
1761 | IF ( ocean ) THEN |
---|
1762 | |
---|
1763 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
1764 | |
---|
1765 | ! |
---|
1766 | !-- sa-tendency terms with communication |
---|
1767 | sat = tsc(1) |
---|
1768 | sbt = tsc(2) |
---|
1769 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1770 | |
---|
1771 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1772 | ! |
---|
1773 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1774 | !-- switched on. Thus: |
---|
1775 | sat = 1.0 |
---|
1776 | sbt = 1.0 |
---|
1777 | ENDIF |
---|
1778 | tend = 0.0 |
---|
1779 | CALL advec_s_bc( sa, 'sa' ) |
---|
1780 | ELSE |
---|
1781 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1782 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1783 | tend = 0.0 |
---|
1784 | CALL advec_s_ups( sa, 'sa' ) |
---|
1785 | ENDIF |
---|
1786 | ENDIF |
---|
1787 | ENDIF |
---|
1788 | |
---|
1789 | ! |
---|
1790 | !-- sa-tendency terms with no communication |
---|
1791 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1792 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
1793 | wall_salinityflux, tend ) |
---|
1794 | ELSE |
---|
1795 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1796 | tend = 0.0 |
---|
1797 | CALL advec_s_pw( sa ) |
---|
1798 | ELSE |
---|
1799 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1800 | tend = 0.0 |
---|
1801 | CALL advec_s_up( sa ) |
---|
1802 | ENDIF |
---|
1803 | ENDIF |
---|
1804 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
1805 | wall_salinityflux, tend ) |
---|
1806 | ENDIF |
---|
1807 | |
---|
1808 | CALL user_actions( 'sa-tendency' ) |
---|
1809 | |
---|
1810 | ! |
---|
1811 | !-- Prognostic equation for salinity |
---|
1812 | DO i = nxl, nxr |
---|
1813 | DO j = nys, nyn |
---|
1814 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1815 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
1816 | dt_3d * ( & |
---|
1817 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
1818 | ) - & |
---|
1819 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
1820 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
1821 | ENDDO |
---|
1822 | ENDDO |
---|
1823 | ENDDO |
---|
1824 | |
---|
1825 | ! |
---|
1826 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1827 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1828 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1829 | DO i = nxl, nxr |
---|
1830 | DO j = nys, nyn |
---|
1831 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1832 | tsa_m(k,j,i) = tend(k,j,i) |
---|
1833 | ENDDO |
---|
1834 | ENDDO |
---|
1835 | ENDDO |
---|
1836 | ELSEIF ( intermediate_timestep_count < & |
---|
1837 | intermediate_timestep_count_max ) THEN |
---|
1838 | DO i = nxl, nxr |
---|
1839 | DO j = nys, nyn |
---|
1840 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1841 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1842 | 5.3125 * tsa_m(k,j,i) |
---|
1843 | ENDDO |
---|
1844 | ENDDO |
---|
1845 | ENDDO |
---|
1846 | ENDIF |
---|
1847 | ENDIF |
---|
1848 | |
---|
1849 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
1850 | |
---|
1851 | ! |
---|
1852 | !-- Calculate density by the equation of state for seawater |
---|
1853 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
1854 | CALL eqn_state_seawater |
---|
1855 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
1856 | |
---|
1857 | ENDIF |
---|
1858 | |
---|
1859 | ! |
---|
1860 | !-- If required, compute prognostic equation for total water content / scalar |
---|
1861 | IF ( humidity .OR. passive_scalar ) THEN |
---|
1862 | |
---|
1863 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
1864 | |
---|
1865 | ! |
---|
1866 | !-- Scalar/q-tendency terms with communication |
---|
1867 | sat = tsc(1) |
---|
1868 | sbt = tsc(2) |
---|
1869 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1870 | |
---|
1871 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1872 | ! |
---|
1873 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1874 | !-- switched on. Thus: |
---|
1875 | sat = 1.0 |
---|
1876 | sbt = 1.0 |
---|
1877 | ENDIF |
---|
1878 | tend = 0.0 |
---|
1879 | CALL advec_s_bc( q, 'q' ) |
---|
1880 | ELSE |
---|
1881 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1882 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1883 | tend = 0.0 |
---|
1884 | CALL advec_s_ups( q, 'q' ) |
---|
1885 | ENDIF |
---|
1886 | ENDIF |
---|
1887 | ENDIF |
---|
1888 | |
---|
1889 | ! |
---|
1890 | !-- Scalar/q-tendency terms with no communication |
---|
1891 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1892 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, wall_qflux, tend ) |
---|
1893 | ELSE |
---|
1894 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1895 | tend = 0.0 |
---|
1896 | CALL advec_s_pw( q ) |
---|
1897 | ELSE |
---|
1898 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1899 | tend = 0.0 |
---|
1900 | CALL advec_s_up( q ) |
---|
1901 | ENDIF |
---|
1902 | ENDIF |
---|
1903 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1904 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, qswst_m, & |
---|
1905 | wall_qflux, tend ) |
---|
1906 | ELSE |
---|
1907 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, & |
---|
1908 | wall_qflux, tend ) |
---|
1909 | ENDIF |
---|
1910 | ENDIF |
---|
1911 | |
---|
1912 | ! |
---|
1913 | !-- If required compute decrease of total water content due to |
---|
1914 | !-- precipitation |
---|
1915 | IF ( precipitation ) THEN |
---|
1916 | CALL calc_precipitation |
---|
1917 | ENDIF |
---|
1918 | |
---|
1919 | ! |
---|
1920 | !-- Sink or source of scalar concentration due to canopy elements |
---|
1921 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
1922 | |
---|
1923 | ! |
---|
1924 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1925 | IF ( large_scale_subsidence ) THEN |
---|
1926 | CALL subsidence ( tend, q, q_init ) |
---|
1927 | ENDIF |
---|
1928 | |
---|
1929 | CALL user_actions( 'q-tendency' ) |
---|
1930 | |
---|
1931 | ! |
---|
1932 | !-- Prognostic equation for total water content / scalar |
---|
1933 | DO i = nxl, nxr |
---|
1934 | DO j = nys, nyn |
---|
1935 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1936 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
1937 | dt_3d * ( & |
---|
1938 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
1939 | ) - & |
---|
1940 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
1941 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
1942 | ENDDO |
---|
1943 | ENDDO |
---|
1944 | ENDDO |
---|
1945 | |
---|
1946 | ! |
---|
1947 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1948 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1949 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1950 | DO i = nxl, nxr |
---|
1951 | DO j = nys, nyn |
---|
1952 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1953 | tq_m(k,j,i) = tend(k,j,i) |
---|
1954 | ENDDO |
---|
1955 | ENDDO |
---|
1956 | ENDDO |
---|
1957 | ELSEIF ( intermediate_timestep_count < & |
---|
1958 | intermediate_timestep_count_max ) THEN |
---|
1959 | DO i = nxl, nxr |
---|
1960 | DO j = nys, nyn |
---|
1961 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1962 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
1963 | ENDDO |
---|
1964 | ENDDO |
---|
1965 | ENDDO |
---|
1966 | ENDIF |
---|
1967 | ENDIF |
---|
1968 | |
---|
1969 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
1970 | |
---|
1971 | ENDIF |
---|
1972 | |
---|
1973 | ! |
---|
1974 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1975 | !-- energy (TKE) |
---|
1976 | IF ( .NOT. constant_diffusion ) THEN |
---|
1977 | |
---|
1978 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
1979 | |
---|
1980 | ! |
---|
1981 | !-- TKE-tendency terms with communication |
---|
1982 | CALL production_e_init |
---|
1983 | |
---|
1984 | sat = tsc(1) |
---|
1985 | sbt = tsc(2) |
---|
1986 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
1987 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1988 | |
---|
1989 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1990 | ! |
---|
1991 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1992 | !-- switched on. Thus: |
---|
1993 | sat = 1.0 |
---|
1994 | sbt = 1.0 |
---|
1995 | ENDIF |
---|
1996 | tend = 0.0 |
---|
1997 | CALL advec_s_bc( e, 'e' ) |
---|
1998 | ELSE |
---|
1999 | IF ( tsc(2) /= 2.0 ) THEN |
---|
2000 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
2001 | tend = 0.0 |
---|
2002 | CALL advec_s_ups( e, 'e' ) |
---|
2003 | ENDIF |
---|
2004 | ENDIF |
---|
2005 | ENDIF |
---|
2006 | ENDIF |
---|
2007 | |
---|
2008 | ! |
---|
2009 | !-- TKE-tendency terms with no communication |
---|
2010 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
2011 | THEN |
---|
2012 | IF ( .NOT. humidity ) THEN |
---|
2013 | IF ( ocean ) THEN |
---|
2014 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
2015 | prho, prho_reference, rif, tend, zu, zw ) |
---|
2016 | ELSE |
---|
2017 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
2018 | pt_reference, rif, tend, zu, zw ) |
---|
2019 | ENDIF |
---|
2020 | ELSE |
---|
2021 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
2022 | pt_reference, rif, tend, zu, zw ) |
---|
2023 | ENDIF |
---|
2024 | ELSE |
---|
2025 | IF ( use_upstream_for_tke ) THEN |
---|
2026 | tend = 0.0 |
---|
2027 | CALL advec_s_up( e ) |
---|
2028 | ELSE |
---|
2029 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
2030 | tend = 0.0 |
---|
2031 | CALL advec_s_pw( e ) |
---|
2032 | ELSE |
---|
2033 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
2034 | tend = 0.0 |
---|
2035 | CALL advec_s_up( e ) |
---|
2036 | ENDIF |
---|
2037 | ENDIF |
---|
2038 | ENDIF |
---|
2039 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
2040 | IF ( .NOT. humidity ) THEN |
---|
2041 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
2042 | pt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
2043 | ELSE |
---|
2044 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
2045 | vpt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
2046 | ENDIF |
---|
2047 | ELSE |
---|
2048 | IF ( .NOT. humidity ) THEN |
---|
2049 | IF ( ocean ) THEN |
---|
2050 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
2051 | prho, prho_reference, rif, tend, zu, zw ) |
---|
2052 | ELSE |
---|
2053 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
2054 | pt, pt_reference, rif, tend, zu, zw ) |
---|
2055 | ENDIF |
---|
2056 | ELSE |
---|
2057 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
2058 | pt_reference, rif, tend, zu, zw ) |
---|
2059 | ENDIF |
---|
2060 | ENDIF |
---|
2061 | ENDIF |
---|
2062 | CALL production_e |
---|
2063 | |
---|
2064 | ! |
---|
2065 | !-- Additional sink term for flows through plant canopies |
---|
2066 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
2067 | CALL user_actions( 'e-tendency' ) |
---|
2068 | |
---|
2069 | ! |
---|
2070 | !-- Prognostic equation for TKE. |
---|
2071 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
2072 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
2073 | !-- value is reduced by 90%. |
---|
2074 | DO i = nxl, nxr |
---|
2075 | DO j = nys, nyn |
---|
2076 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2077 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
2078 | dt_3d * ( & |
---|
2079 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
2080 | ) |
---|
2081 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
2082 | ENDDO |
---|
2083 | ENDDO |
---|
2084 | ENDDO |
---|
2085 | |
---|
2086 | ! |
---|
2087 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2088 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2089 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2090 | DO i = nxl, nxr |
---|
2091 | DO j = nys, nyn |
---|
2092 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2093 | te_m(k,j,i) = tend(k,j,i) |
---|
2094 | ENDDO |
---|
2095 | ENDDO |
---|
2096 | ENDDO |
---|
2097 | ELSEIF ( intermediate_timestep_count < & |
---|
2098 | intermediate_timestep_count_max ) THEN |
---|
2099 | DO i = nxl, nxr |
---|
2100 | DO j = nys, nyn |
---|
2101 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2102 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
2103 | ENDDO |
---|
2104 | ENDDO |
---|
2105 | ENDDO |
---|
2106 | ENDIF |
---|
2107 | ENDIF |
---|
2108 | |
---|
2109 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
2110 | |
---|
2111 | ENDIF |
---|
2112 | |
---|
2113 | |
---|
2114 | END SUBROUTINE prognostic_equations_vector |
---|
2115 | |
---|
2116 | |
---|
2117 | END MODULE prognostic_equations_mod |
---|