1 | MODULE prognostic_equations_mod |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Actual revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: prognostic_equations.f90 39 2007-03-01 12:46:59Z raasch $ |
---|
11 | ! |
---|
12 | ! 19 2007-02-23 04:53:48Z raasch |
---|
13 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
14 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
15 | ! |
---|
16 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
17 | ! |
---|
18 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
19 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
20 | ! regardless of the timestep scheme used for the other quantities, |
---|
21 | ! new argument diss in call of diffusion_e |
---|
22 | ! |
---|
23 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
24 | ! Initial revision |
---|
25 | ! |
---|
26 | ! |
---|
27 | ! Description: |
---|
28 | ! ------------ |
---|
29 | ! Solving the prognostic equations. |
---|
30 | !------------------------------------------------------------------------------! |
---|
31 | |
---|
32 | USE arrays_3d |
---|
33 | USE control_parameters |
---|
34 | USE cpulog |
---|
35 | USE grid_variables |
---|
36 | USE indices |
---|
37 | USE interfaces |
---|
38 | USE pegrid |
---|
39 | USE pointer_interfaces |
---|
40 | USE statistics |
---|
41 | |
---|
42 | USE advec_s_pw_mod |
---|
43 | USE advec_s_up_mod |
---|
44 | USE advec_u_pw_mod |
---|
45 | USE advec_u_up_mod |
---|
46 | USE advec_v_pw_mod |
---|
47 | USE advec_v_up_mod |
---|
48 | USE advec_w_pw_mod |
---|
49 | USE advec_w_up_mod |
---|
50 | USE buoyancy_mod |
---|
51 | USE calc_precipitation_mod |
---|
52 | USE calc_radiation_mod |
---|
53 | USE coriolis_mod |
---|
54 | USE diffusion_e_mod |
---|
55 | USE diffusion_s_mod |
---|
56 | USE diffusion_u_mod |
---|
57 | USE diffusion_v_mod |
---|
58 | USE diffusion_w_mod |
---|
59 | USE impact_of_latent_heat_mod |
---|
60 | USE production_e_mod |
---|
61 | USE user_actions_mod |
---|
62 | |
---|
63 | |
---|
64 | PRIVATE |
---|
65 | PUBLIC prognostic_equations, prognostic_equations_fast, & |
---|
66 | prognostic_equations_vec |
---|
67 | |
---|
68 | INTERFACE prognostic_equations |
---|
69 | MODULE PROCEDURE prognostic_equations |
---|
70 | END INTERFACE prognostic_equations |
---|
71 | |
---|
72 | INTERFACE prognostic_equations_fast |
---|
73 | MODULE PROCEDURE prognostic_equations_fast |
---|
74 | END INTERFACE prognostic_equations_fast |
---|
75 | |
---|
76 | INTERFACE prognostic_equations_vec |
---|
77 | MODULE PROCEDURE prognostic_equations_vec |
---|
78 | END INTERFACE prognostic_equations_vec |
---|
79 | |
---|
80 | |
---|
81 | CONTAINS |
---|
82 | |
---|
83 | |
---|
84 | SUBROUTINE prognostic_equations |
---|
85 | |
---|
86 | !------------------------------------------------------------------------------! |
---|
87 | ! Version with single loop optimization |
---|
88 | ! |
---|
89 | ! (Optimized over each single prognostic equation.) |
---|
90 | !------------------------------------------------------------------------------! |
---|
91 | |
---|
92 | IMPLICIT NONE |
---|
93 | |
---|
94 | CHARACTER (LEN=9) :: time_to_string |
---|
95 | INTEGER :: i, j, k |
---|
96 | REAL :: sat, sbt |
---|
97 | |
---|
98 | ! |
---|
99 | !-- Calculate those variables needed in the tendency terms which need |
---|
100 | !-- global communication |
---|
101 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
102 | IF ( moisture ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
103 | |
---|
104 | ! |
---|
105 | !-- u-velocity component |
---|
106 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
107 | |
---|
108 | ! |
---|
109 | !-- u-tendency terms with communication |
---|
110 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
111 | tend = 0.0 |
---|
112 | CALL advec_u_ups |
---|
113 | ENDIF |
---|
114 | |
---|
115 | ! |
---|
116 | !-- u-tendency terms with no communication |
---|
117 | DO i = nxl, nxr+uxrp |
---|
118 | DO j = nys, nyn |
---|
119 | ! |
---|
120 | !-- Tendency terms |
---|
121 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
122 | tend(:,j,i) = 0.0 |
---|
123 | CALL advec_u_pw( i, j ) |
---|
124 | ELSE |
---|
125 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
126 | tend(:,j,i) = 0.0 |
---|
127 | CALL advec_u_up( i, j ) |
---|
128 | ENDIF |
---|
129 | ENDIF |
---|
130 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
131 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
132 | usws_m, v_m, w_m, z0 ) |
---|
133 | ELSE |
---|
134 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
135 | v, w, z0 ) |
---|
136 | ENDIF |
---|
137 | CALL coriolis( i, j, 1 ) |
---|
138 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, 1, 4 ) |
---|
139 | CALL user_actions( i, j, 'u-tendency' ) |
---|
140 | |
---|
141 | ! |
---|
142 | !-- Prognostic equation for u-velocity component |
---|
143 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
144 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
145 | dt_3d * ( & |
---|
146 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
147 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
148 | ) - & |
---|
149 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
150 | ENDDO |
---|
151 | |
---|
152 | ! |
---|
153 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
154 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
155 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
156 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
157 | tu_m(k,j,i) = tend(k,j,i) |
---|
158 | ENDDO |
---|
159 | ELSEIF ( intermediate_timestep_count < & |
---|
160 | intermediate_timestep_count_max ) THEN |
---|
161 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
162 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
163 | ENDDO |
---|
164 | ENDIF |
---|
165 | ENDIF |
---|
166 | |
---|
167 | ENDDO |
---|
168 | ENDDO |
---|
169 | |
---|
170 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
171 | |
---|
172 | ! |
---|
173 | !-- v-velocity component |
---|
174 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
175 | |
---|
176 | ! |
---|
177 | !-- v-tendency terms with communication |
---|
178 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
179 | tend = 0.0 |
---|
180 | CALL advec_v_ups |
---|
181 | ENDIF |
---|
182 | |
---|
183 | ! |
---|
184 | !-- v-tendency terms with no communication |
---|
185 | DO i = nxl, nxr |
---|
186 | DO j = nys, nyn+vynp |
---|
187 | ! |
---|
188 | !-- Tendency terms |
---|
189 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
190 | tend(:,j,i) = 0.0 |
---|
191 | CALL advec_v_pw( i, j ) |
---|
192 | ELSE |
---|
193 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
194 | tend(:,j,i) = 0.0 |
---|
195 | CALL advec_v_up( i, j ) |
---|
196 | ENDIF |
---|
197 | ENDIF |
---|
198 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
199 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
200 | v_m, vsws_m, w_m, z0 ) |
---|
201 | ELSE |
---|
202 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
203 | vsws, w, z0 ) |
---|
204 | ENDIF |
---|
205 | CALL coriolis( i, j, 2 ) |
---|
206 | CALL user_actions( i, j, 'v-tendency' ) |
---|
207 | |
---|
208 | ! |
---|
209 | !-- Prognostic equation for v-velocity component |
---|
210 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
211 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
212 | dt_3d * ( & |
---|
213 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
214 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
215 | ) - & |
---|
216 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
217 | ENDDO |
---|
218 | |
---|
219 | ! |
---|
220 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
221 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
222 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
223 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
224 | tv_m(k,j,i) = tend(k,j,i) |
---|
225 | ENDDO |
---|
226 | ELSEIF ( intermediate_timestep_count < & |
---|
227 | intermediate_timestep_count_max ) THEN |
---|
228 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
229 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
230 | ENDDO |
---|
231 | ENDIF |
---|
232 | ENDIF |
---|
233 | |
---|
234 | ENDDO |
---|
235 | ENDDO |
---|
236 | |
---|
237 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
238 | |
---|
239 | ! |
---|
240 | !-- w-velocity component |
---|
241 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
242 | |
---|
243 | ! |
---|
244 | !-- w-tendency terms with communication |
---|
245 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
246 | tend = 0.0 |
---|
247 | CALL advec_w_ups |
---|
248 | ENDIF |
---|
249 | |
---|
250 | ! |
---|
251 | !-- w-tendency terms with no communication |
---|
252 | DO i = nxl, nxr |
---|
253 | DO j = nys, nyn |
---|
254 | ! |
---|
255 | !-- Tendency terms |
---|
256 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
257 | tend(:,j,i) = 0.0 |
---|
258 | CALL advec_w_pw( i, j ) |
---|
259 | ELSE |
---|
260 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
261 | tend(:,j,i) = 0.0 |
---|
262 | CALL advec_w_up( i, j ) |
---|
263 | ENDIF |
---|
264 | ENDIF |
---|
265 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
266 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
267 | tend, u_m, v_m, w_m, z0 ) |
---|
268 | ELSE |
---|
269 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
270 | tend, u, v, w, z0 ) |
---|
271 | ENDIF |
---|
272 | CALL coriolis( i, j, 3 ) |
---|
273 | IF ( .NOT. moisture ) THEN |
---|
274 | CALL buoyancy( i, j, pt, 3, 4 ) |
---|
275 | ELSE |
---|
276 | CALL buoyancy( i, j, vpt, 3, 44 ) |
---|
277 | ENDIF |
---|
278 | CALL user_actions( i, j, 'w-tendency' ) |
---|
279 | |
---|
280 | ! |
---|
281 | !-- Prognostic equation for w-velocity component |
---|
282 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
283 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
284 | dt_3d * ( & |
---|
285 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
286 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
287 | ) - & |
---|
288 | tsc(5) * rdf(k) * w(k,j,i) |
---|
289 | ENDDO |
---|
290 | |
---|
291 | ! |
---|
292 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
293 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
294 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
295 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
296 | tw_m(k,j,i) = tend(k,j,i) |
---|
297 | ENDDO |
---|
298 | ELSEIF ( intermediate_timestep_count < & |
---|
299 | intermediate_timestep_count_max ) THEN |
---|
300 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
301 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
302 | ENDDO |
---|
303 | ENDIF |
---|
304 | ENDIF |
---|
305 | |
---|
306 | ENDDO |
---|
307 | ENDDO |
---|
308 | |
---|
309 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
310 | |
---|
311 | ! |
---|
312 | !-- potential temperature |
---|
313 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
314 | |
---|
315 | ! |
---|
316 | !-- pt-tendency terms with communication |
---|
317 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
318 | ! |
---|
319 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
320 | sat = 1.0 |
---|
321 | sbt = 1.0 |
---|
322 | tend = 0.0 |
---|
323 | CALL advec_s_bc( pt, 'pt' ) |
---|
324 | ELSE |
---|
325 | sat = tsc(1) |
---|
326 | sbt = tsc(2) |
---|
327 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
328 | tend = 0.0 |
---|
329 | CALL advec_s_ups( pt, 'pt' ) |
---|
330 | ENDIF |
---|
331 | ENDIF |
---|
332 | |
---|
333 | ! |
---|
334 | !-- pt-tendency terms with no communication |
---|
335 | DO i = nxl, nxr |
---|
336 | DO j = nys, nyn |
---|
337 | ! |
---|
338 | !-- Tendency terms |
---|
339 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
340 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
341 | ELSE |
---|
342 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
343 | tend(:,j,i) = 0.0 |
---|
344 | CALL advec_s_pw( i, j, pt ) |
---|
345 | ELSE |
---|
346 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
347 | tend(:,j,i) = 0.0 |
---|
348 | CALL advec_s_up( i, j, pt ) |
---|
349 | ENDIF |
---|
350 | ENDIF |
---|
351 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
352 | THEN |
---|
353 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
354 | tswst_m, tend ) |
---|
355 | ELSE |
---|
356 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
357 | ENDIF |
---|
358 | ENDIF |
---|
359 | |
---|
360 | ! |
---|
361 | !-- If required compute heating/cooling due to long wave radiation |
---|
362 | !-- processes |
---|
363 | IF ( radiation ) THEN |
---|
364 | CALL calc_radiation( i, j ) |
---|
365 | ENDIF |
---|
366 | |
---|
367 | ! |
---|
368 | !-- If required compute impact of latent heat due to precipitation |
---|
369 | IF ( precipitation ) THEN |
---|
370 | CALL impact_of_latent_heat( i, j ) |
---|
371 | ENDIF |
---|
372 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
373 | |
---|
374 | ! |
---|
375 | !-- Prognostic equation for potential temperature |
---|
376 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
377 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
378 | dt_3d * ( & |
---|
379 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
380 | ) - & |
---|
381 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
382 | ENDDO |
---|
383 | |
---|
384 | ! |
---|
385 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
386 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
387 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
388 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
389 | tpt_m(k,j,i) = tend(k,j,i) |
---|
390 | ENDDO |
---|
391 | ELSEIF ( intermediate_timestep_count < & |
---|
392 | intermediate_timestep_count_max ) THEN |
---|
393 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
394 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
395 | ENDDO |
---|
396 | ENDIF |
---|
397 | ENDIF |
---|
398 | |
---|
399 | ENDDO |
---|
400 | ENDDO |
---|
401 | |
---|
402 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
403 | |
---|
404 | ! |
---|
405 | !-- If required, compute prognostic equation for total water content / scalar |
---|
406 | IF ( moisture .OR. passive_scalar ) THEN |
---|
407 | |
---|
408 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
409 | |
---|
410 | ! |
---|
411 | !-- Scalar/q-tendency terms with communication |
---|
412 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
413 | ! |
---|
414 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
415 | sat = 1.0 |
---|
416 | sbt = 1.0 |
---|
417 | tend = 0.0 |
---|
418 | CALL advec_s_bc( q, 'q' ) |
---|
419 | ELSE |
---|
420 | sat = tsc(1) |
---|
421 | sbt = tsc(2) |
---|
422 | IF ( tsc(2) /= 2.0 ) THEN |
---|
423 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
424 | tend = 0.0 |
---|
425 | CALL advec_s_ups( q, 'q' ) |
---|
426 | ENDIF |
---|
427 | ENDIF |
---|
428 | ENDIF |
---|
429 | |
---|
430 | ! |
---|
431 | !-- Scalar/q-tendency terms with no communication |
---|
432 | DO i = nxl, nxr |
---|
433 | DO j = nys, nyn |
---|
434 | ! |
---|
435 | !-- Tendency-terms |
---|
436 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
437 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, tend ) |
---|
438 | ELSE |
---|
439 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
440 | tend(:,j,i) = 0.0 |
---|
441 | CALL advec_s_pw( i, j, q ) |
---|
442 | ELSE |
---|
443 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
444 | tend(:,j,i) = 0.0 |
---|
445 | CALL advec_s_up( i, j, q ) |
---|
446 | ENDIF |
---|
447 | ENDIF |
---|
448 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
449 | THEN |
---|
450 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
451 | qswst_m, tend ) |
---|
452 | ELSE |
---|
453 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
454 | tend ) |
---|
455 | ENDIF |
---|
456 | ENDIF |
---|
457 | |
---|
458 | ! |
---|
459 | !-- If required compute decrease of total water content due to |
---|
460 | !-- precipitation |
---|
461 | IF ( precipitation ) THEN |
---|
462 | CALL calc_precipitation( i, j ) |
---|
463 | ENDIF |
---|
464 | CALL user_actions( i, j, 'q-tendency' ) |
---|
465 | |
---|
466 | ! |
---|
467 | !-- Prognostic equation for total water content / scalar |
---|
468 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
469 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
470 | dt_3d * ( & |
---|
471 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
472 | ) - & |
---|
473 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
474 | ENDDO |
---|
475 | |
---|
476 | ! |
---|
477 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
478 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
479 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
480 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
481 | tq_m(k,j,i) = tend(k,j,i) |
---|
482 | ENDDO |
---|
483 | ELSEIF ( intermediate_timestep_count < & |
---|
484 | intermediate_timestep_count_max ) THEN |
---|
485 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
486 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
487 | ENDDO |
---|
488 | ENDIF |
---|
489 | ENDIF |
---|
490 | |
---|
491 | ENDDO |
---|
492 | ENDDO |
---|
493 | |
---|
494 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
495 | |
---|
496 | ENDIF |
---|
497 | |
---|
498 | ! |
---|
499 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
500 | !-- energy (TKE) |
---|
501 | IF ( .NOT. constant_diffusion ) THEN |
---|
502 | |
---|
503 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
504 | |
---|
505 | ! |
---|
506 | !-- TKE-tendency terms with communication |
---|
507 | CALL production_e_init |
---|
508 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
509 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
510 | ! |
---|
511 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
512 | sat = 1.0 |
---|
513 | sbt = 1.0 |
---|
514 | tend = 0.0 |
---|
515 | CALL advec_s_bc( e, 'e' ) |
---|
516 | ELSE |
---|
517 | sat = tsc(1) |
---|
518 | sbt = tsc(2) |
---|
519 | IF ( tsc(2) /= 2.0 ) THEN |
---|
520 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
521 | tend = 0.0 |
---|
522 | CALL advec_s_ups( e, 'e' ) |
---|
523 | ENDIF |
---|
524 | ENDIF |
---|
525 | ENDIF |
---|
526 | ENDIF |
---|
527 | |
---|
528 | ! |
---|
529 | !-- TKE-tendency terms with no communication |
---|
530 | DO i = nxl, nxr |
---|
531 | DO j = nys, nyn |
---|
532 | ! |
---|
533 | !-- Tendency-terms |
---|
534 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
535 | .NOT. use_upstream_for_tke ) THEN |
---|
536 | IF ( .NOT. moisture ) THEN |
---|
537 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
538 | l_grid, pt, rif, tend, zu ) |
---|
539 | ELSE |
---|
540 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
541 | l_grid, vpt, rif, tend, zu ) |
---|
542 | ENDIF |
---|
543 | ELSE |
---|
544 | IF ( use_upstream_for_tke ) THEN |
---|
545 | tend(:,j,i) = 0.0 |
---|
546 | CALL advec_s_up( i, j, e ) |
---|
547 | ELSE |
---|
548 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
549 | THEN |
---|
550 | tend(:,j,i) = 0.0 |
---|
551 | CALL advec_s_pw( i, j, e ) |
---|
552 | ELSE |
---|
553 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
554 | tend(:,j,i) = 0.0 |
---|
555 | CALL advec_s_up( i, j, e ) |
---|
556 | ENDIF |
---|
557 | ENDIF |
---|
558 | ENDIF |
---|
559 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
560 | THEN |
---|
561 | IF ( .NOT. moisture ) THEN |
---|
562 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
563 | km_m, l_grid, pt_m, rif_m, tend, zu ) |
---|
564 | ELSE |
---|
565 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
566 | km_m, l_grid, vpt_m, rif_m, tend, zu ) |
---|
567 | ENDIF |
---|
568 | ELSE |
---|
569 | IF ( .NOT. moisture ) THEN |
---|
570 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
571 | l_grid, pt, rif, tend, zu ) |
---|
572 | ELSE |
---|
573 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
574 | l_grid, vpt, rif, tend, zu ) |
---|
575 | ENDIF |
---|
576 | ENDIF |
---|
577 | ENDIF |
---|
578 | CALL production_e( i, j ) |
---|
579 | CALL user_actions( i, j, 'e-tendency' ) |
---|
580 | |
---|
581 | ! |
---|
582 | !-- Prognostic equation for TKE. |
---|
583 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
584 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
585 | !-- value is reduced by 90%. |
---|
586 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
587 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
588 | dt_3d * ( & |
---|
589 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
590 | ) |
---|
591 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
592 | ENDDO |
---|
593 | |
---|
594 | ! |
---|
595 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
596 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
597 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
598 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
599 | te_m(k,j,i) = tend(k,j,i) |
---|
600 | ENDDO |
---|
601 | ELSEIF ( intermediate_timestep_count < & |
---|
602 | intermediate_timestep_count_max ) THEN |
---|
603 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
604 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
605 | ENDDO |
---|
606 | ENDIF |
---|
607 | ENDIF |
---|
608 | |
---|
609 | ENDDO |
---|
610 | ENDDO |
---|
611 | |
---|
612 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
613 | |
---|
614 | ENDIF |
---|
615 | |
---|
616 | |
---|
617 | END SUBROUTINE prognostic_equations |
---|
618 | |
---|
619 | |
---|
620 | SUBROUTINE prognostic_equations_fast |
---|
621 | |
---|
622 | !------------------------------------------------------------------------------! |
---|
623 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
624 | ! be called for the standard Piascek-Williams advection scheme. |
---|
625 | ! |
---|
626 | ! The call of this subroutine is embedded in two DO loops over i and j, thus |
---|
627 | ! communication between CPUs is not allowed in this subroutine. |
---|
628 | ! |
---|
629 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
630 | !------------------------------------------------------------------------------! |
---|
631 | |
---|
632 | IMPLICIT NONE |
---|
633 | |
---|
634 | CHARACTER (LEN=9) :: time_to_string |
---|
635 | INTEGER :: i, j, k |
---|
636 | |
---|
637 | |
---|
638 | ! |
---|
639 | !-- Time measurement can only be performed for the whole set of equations |
---|
640 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
641 | |
---|
642 | |
---|
643 | ! |
---|
644 | !-- Calculate those variables needed in the tendency terms which need |
---|
645 | !-- global communication |
---|
646 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
647 | IF ( moisture ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
648 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
649 | |
---|
650 | |
---|
651 | ! |
---|
652 | !-- Loop over all prognostic equations |
---|
653 | !$OMP PARALLEL private (i,j,k) |
---|
654 | !$OMP DO |
---|
655 | DO i = nxl, nxr+uxrp ! Additional levels for non cyclic boundary |
---|
656 | DO j = nys, nyn+vynp ! conditions are included |
---|
657 | ! |
---|
658 | !-- Tendency terms for u-velocity component |
---|
659 | IF ( j < nyn+1 ) THEN |
---|
660 | |
---|
661 | tend(:,j,i) = 0.0 |
---|
662 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
663 | CALL advec_u_pw( i, j ) |
---|
664 | ELSE |
---|
665 | CALL advec_u_up( i, j ) |
---|
666 | ENDIF |
---|
667 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
668 | THEN |
---|
669 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
670 | u_m, usws_m, v_m, w_m, z0 ) |
---|
671 | ELSE |
---|
672 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
673 | usws, v, w, z0 ) |
---|
674 | ENDIF |
---|
675 | CALL coriolis( i, j, 1 ) |
---|
676 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, 1, 4 ) |
---|
677 | CALL user_actions( i, j, 'u-tendency' ) |
---|
678 | |
---|
679 | ! |
---|
680 | !-- Prognostic equation for u-velocity component |
---|
681 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
682 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
683 | dt_3d * ( & |
---|
684 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
685 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
686 | ) - & |
---|
687 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
688 | ENDDO |
---|
689 | |
---|
690 | ! |
---|
691 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
692 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
693 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
694 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
695 | tu_m(k,j,i) = tend(k,j,i) |
---|
696 | ENDDO |
---|
697 | ELSEIF ( intermediate_timestep_count < & |
---|
698 | intermediate_timestep_count_max ) THEN |
---|
699 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
700 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
701 | ENDDO |
---|
702 | ENDIF |
---|
703 | ENDIF |
---|
704 | |
---|
705 | ENDIF |
---|
706 | |
---|
707 | ! |
---|
708 | !-- Tendency terms for v-velocity component |
---|
709 | IF ( i < nxr+1 ) THEN |
---|
710 | |
---|
711 | tend(:,j,i) = 0.0 |
---|
712 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
713 | CALL advec_v_pw( i, j ) |
---|
714 | ELSE |
---|
715 | CALL advec_v_up( i, j ) |
---|
716 | ENDIF |
---|
717 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
718 | THEN |
---|
719 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
720 | u_m, v_m, vsws_m, w_m, z0 ) |
---|
721 | ELSE |
---|
722 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
723 | vsws, w, z0 ) |
---|
724 | ENDIF |
---|
725 | CALL coriolis( i, j, 2 ) |
---|
726 | CALL user_actions( i, j, 'v-tendency' ) |
---|
727 | |
---|
728 | ! |
---|
729 | !-- Prognostic equation for v-velocity component |
---|
730 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
731 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
732 | dt_3d * ( & |
---|
733 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
734 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
735 | ) - & |
---|
736 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
737 | ENDDO |
---|
738 | |
---|
739 | ! |
---|
740 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
741 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
742 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
743 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
744 | tv_m(k,j,i) = tend(k,j,i) |
---|
745 | ENDDO |
---|
746 | ELSEIF ( intermediate_timestep_count < & |
---|
747 | intermediate_timestep_count_max ) THEN |
---|
748 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
749 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
750 | ENDDO |
---|
751 | ENDIF |
---|
752 | ENDIF |
---|
753 | |
---|
754 | ENDIF |
---|
755 | |
---|
756 | ! |
---|
757 | !-- Tendency terms for w-velocity component |
---|
758 | IF ( i < nxr+1 .AND. j < nyn+1 ) THEN |
---|
759 | |
---|
760 | tend(:,j,i) = 0.0 |
---|
761 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
762 | CALL advec_w_pw( i, j ) |
---|
763 | ELSE |
---|
764 | CALL advec_w_up( i, j ) |
---|
765 | ENDIF |
---|
766 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
767 | THEN |
---|
768 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
769 | km_damp_y, tend, u_m, v_m, w_m, z0 ) |
---|
770 | ELSE |
---|
771 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
772 | tend, u, v, w, z0 ) |
---|
773 | ENDIF |
---|
774 | CALL coriolis( i, j, 3 ) |
---|
775 | IF ( .NOT. moisture ) THEN |
---|
776 | CALL buoyancy( i, j, pt, 3, 4 ) |
---|
777 | ELSE |
---|
778 | CALL buoyancy( i, j, vpt, 3, 44 ) |
---|
779 | ENDIF |
---|
780 | CALL user_actions( i, j, 'w-tendency' ) |
---|
781 | |
---|
782 | ! |
---|
783 | !-- Prognostic equation for w-velocity component |
---|
784 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
785 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
786 | dt_3d * ( & |
---|
787 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
788 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
789 | ) - & |
---|
790 | tsc(5) * rdf(k) * w(k,j,i) |
---|
791 | ENDDO |
---|
792 | |
---|
793 | ! |
---|
794 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
795 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
796 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
797 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
798 | tw_m(k,j,i) = tend(k,j,i) |
---|
799 | ENDDO |
---|
800 | ELSEIF ( intermediate_timestep_count < & |
---|
801 | intermediate_timestep_count_max ) THEN |
---|
802 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
803 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
804 | ENDDO |
---|
805 | ENDIF |
---|
806 | ENDIF |
---|
807 | |
---|
808 | ! |
---|
809 | !-- Tendency terms for potential temperature |
---|
810 | tend(:,j,i) = 0.0 |
---|
811 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
812 | CALL advec_s_pw( i, j, pt ) |
---|
813 | ELSE |
---|
814 | CALL advec_s_up( i, j, pt ) |
---|
815 | ENDIF |
---|
816 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
817 | THEN |
---|
818 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
819 | tswst_m, tend ) |
---|
820 | ELSE |
---|
821 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
822 | ENDIF |
---|
823 | |
---|
824 | ! |
---|
825 | !-- If required compute heating/cooling due to long wave radiation |
---|
826 | !-- processes |
---|
827 | IF ( radiation ) THEN |
---|
828 | CALL calc_radiation( i, j ) |
---|
829 | ENDIF |
---|
830 | |
---|
831 | ! |
---|
832 | !-- If required compute impact of latent heat due to precipitation |
---|
833 | IF ( precipitation ) THEN |
---|
834 | CALL impact_of_latent_heat( i, j ) |
---|
835 | ENDIF |
---|
836 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
837 | |
---|
838 | ! |
---|
839 | !-- Prognostic equation for potential temperature |
---|
840 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
841 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
842 | dt_3d * ( & |
---|
843 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
844 | ) - & |
---|
845 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
846 | ENDDO |
---|
847 | |
---|
848 | ! |
---|
849 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
850 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
851 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
852 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
853 | tpt_m(k,j,i) = tend(k,j,i) |
---|
854 | ENDDO |
---|
855 | ELSEIF ( intermediate_timestep_count < & |
---|
856 | intermediate_timestep_count_max ) THEN |
---|
857 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
858 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
859 | 5.3125 * tpt_m(k,j,i) |
---|
860 | ENDDO |
---|
861 | ENDIF |
---|
862 | ENDIF |
---|
863 | |
---|
864 | ! |
---|
865 | !-- If required, compute prognostic equation for total water content / |
---|
866 | !-- scalar |
---|
867 | IF ( moisture .OR. passive_scalar ) THEN |
---|
868 | |
---|
869 | ! |
---|
870 | !-- Tendency-terms for total water content / scalar |
---|
871 | tend(:,j,i) = 0.0 |
---|
872 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
873 | THEN |
---|
874 | CALL advec_s_pw( i, j, q ) |
---|
875 | ELSE |
---|
876 | CALL advec_s_up( i, j, q ) |
---|
877 | ENDIF |
---|
878 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
879 | THEN |
---|
880 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
881 | qswst_m, tend ) |
---|
882 | ELSE |
---|
883 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
884 | tend ) |
---|
885 | ENDIF |
---|
886 | |
---|
887 | ! |
---|
888 | !-- If required compute decrease of total water content due to |
---|
889 | !-- precipitation |
---|
890 | IF ( precipitation ) THEN |
---|
891 | CALL calc_precipitation( i, j ) |
---|
892 | ENDIF |
---|
893 | CALL user_actions( i, j, 'q-tendency' ) |
---|
894 | |
---|
895 | ! |
---|
896 | !-- Prognostic equation for total water content / scalar |
---|
897 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
898 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
899 | dt_3d * ( & |
---|
900 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
901 | ) - & |
---|
902 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
903 | ENDDO |
---|
904 | |
---|
905 | ! |
---|
906 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
907 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
908 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
909 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
910 | tq_m(k,j,i) = tend(k,j,i) |
---|
911 | ENDDO |
---|
912 | ELSEIF ( intermediate_timestep_count < & |
---|
913 | intermediate_timestep_count_max ) THEN |
---|
914 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
915 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
916 | 5.3125 * tq_m(k,j,i) |
---|
917 | ENDDO |
---|
918 | ENDIF |
---|
919 | ENDIF |
---|
920 | |
---|
921 | ENDIF |
---|
922 | |
---|
923 | ! |
---|
924 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
925 | !-- energy (TKE) |
---|
926 | IF ( .NOT. constant_diffusion ) THEN |
---|
927 | |
---|
928 | ! |
---|
929 | !-- Tendency-terms for TKE |
---|
930 | tend(:,j,i) = 0.0 |
---|
931 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
932 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
933 | CALL advec_s_pw( i, j, e ) |
---|
934 | ELSE |
---|
935 | CALL advec_s_up( i, j, e ) |
---|
936 | ENDIF |
---|
937 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
938 | THEN |
---|
939 | IF ( .NOT. moisture ) THEN |
---|
940 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
941 | km_m, l_grid, pt_m, rif_m, tend, zu ) |
---|
942 | ELSE |
---|
943 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
944 | km_m, l_grid, vpt_m, rif_m, tend, zu ) |
---|
945 | ENDIF |
---|
946 | ELSE |
---|
947 | IF ( .NOT. moisture ) THEN |
---|
948 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
949 | l_grid, pt, rif, tend, zu ) |
---|
950 | ELSE |
---|
951 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
952 | l_grid, vpt, rif, tend, zu ) |
---|
953 | ENDIF |
---|
954 | ENDIF |
---|
955 | CALL production_e( i, j ) |
---|
956 | CALL user_actions( i, j, 'e-tendency' ) |
---|
957 | |
---|
958 | ! |
---|
959 | !-- Prognostic equation for TKE. |
---|
960 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
961 | !-- reasons in the course of the integration. In such cases the old |
---|
962 | !-- TKE value is reduced by 90%. |
---|
963 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
964 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
965 | dt_3d * ( & |
---|
966 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
967 | ) |
---|
968 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
969 | ENDDO |
---|
970 | |
---|
971 | ! |
---|
972 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
973 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
974 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
975 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
976 | te_m(k,j,i) = tend(k,j,i) |
---|
977 | ENDDO |
---|
978 | ELSEIF ( intermediate_timestep_count < & |
---|
979 | intermediate_timestep_count_max ) THEN |
---|
980 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
981 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
982 | 5.3125 * te_m(k,j,i) |
---|
983 | ENDDO |
---|
984 | ENDIF |
---|
985 | ENDIF |
---|
986 | |
---|
987 | ENDIF ! TKE equation |
---|
988 | |
---|
989 | ENDIF ! Gridpoints excluding the non-cyclic wall |
---|
990 | |
---|
991 | ENDDO |
---|
992 | ENDDO |
---|
993 | !$OMP END PARALLEL |
---|
994 | |
---|
995 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
996 | |
---|
997 | |
---|
998 | END SUBROUTINE prognostic_equations_fast |
---|
999 | |
---|
1000 | |
---|
1001 | SUBROUTINE prognostic_equations_vec |
---|
1002 | |
---|
1003 | !------------------------------------------------------------------------------! |
---|
1004 | ! Version for vector machines |
---|
1005 | !------------------------------------------------------------------------------! |
---|
1006 | |
---|
1007 | IMPLICIT NONE |
---|
1008 | |
---|
1009 | CHARACTER (LEN=9) :: time_to_string |
---|
1010 | INTEGER :: i, j, k |
---|
1011 | REAL :: sat, sbt |
---|
1012 | |
---|
1013 | ! |
---|
1014 | !-- Calculate those variables needed in the tendency terms which need |
---|
1015 | !-- global communication |
---|
1016 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
1017 | IF ( moisture ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
1018 | |
---|
1019 | ! |
---|
1020 | !-- u-velocity component |
---|
1021 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
1022 | |
---|
1023 | ! |
---|
1024 | !-- u-tendency terms with communication |
---|
1025 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1026 | tend = 0.0 |
---|
1027 | CALL advec_u_ups |
---|
1028 | ENDIF |
---|
1029 | |
---|
1030 | ! |
---|
1031 | !-- u-tendency terms with no communication |
---|
1032 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1033 | tend = 0.0 |
---|
1034 | CALL advec_u_pw |
---|
1035 | ELSE |
---|
1036 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1037 | tend = 0.0 |
---|
1038 | CALL advec_u_up |
---|
1039 | ENDIF |
---|
1040 | ENDIF |
---|
1041 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1042 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, v_m, & |
---|
1043 | w_m, z0 ) |
---|
1044 | ELSE |
---|
1045 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, v, w, z0 ) |
---|
1046 | ENDIF |
---|
1047 | CALL coriolis( 1 ) |
---|
1048 | IF ( sloping_surface ) CALL buoyancy( pt, 1, 4 ) |
---|
1049 | CALL user_actions( 'u-tendency' ) |
---|
1050 | |
---|
1051 | ! |
---|
1052 | !-- Prognostic equation for u-velocity component |
---|
1053 | DO i = nxl, nxr+uxrp |
---|
1054 | DO j = nys, nyn |
---|
1055 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1056 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
1057 | dt_3d * ( & |
---|
1058 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
1059 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
1060 | ) - & |
---|
1061 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
1062 | ENDDO |
---|
1063 | ENDDO |
---|
1064 | ENDDO |
---|
1065 | |
---|
1066 | ! |
---|
1067 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1068 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1069 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1070 | DO i = nxl, nxr+uxrp |
---|
1071 | DO j = nys, nyn |
---|
1072 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1073 | tu_m(k,j,i) = tend(k,j,i) |
---|
1074 | ENDDO |
---|
1075 | ENDDO |
---|
1076 | ENDDO |
---|
1077 | ELSEIF ( intermediate_timestep_count < & |
---|
1078 | intermediate_timestep_count_max ) THEN |
---|
1079 | DO i = nxl, nxr+uxrp |
---|
1080 | DO j = nys, nyn |
---|
1081 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1082 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
1083 | ENDDO |
---|
1084 | ENDDO |
---|
1085 | ENDDO |
---|
1086 | ENDIF |
---|
1087 | ENDIF |
---|
1088 | |
---|
1089 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
1090 | |
---|
1091 | ! |
---|
1092 | !-- v-velocity component |
---|
1093 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
1094 | |
---|
1095 | ! |
---|
1096 | !-- v-tendency terms with communication |
---|
1097 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1098 | tend = 0.0 |
---|
1099 | CALL advec_v_ups |
---|
1100 | ENDIF |
---|
1101 | |
---|
1102 | ! |
---|
1103 | !-- v-tendency terms with no communication |
---|
1104 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1105 | tend = 0.0 |
---|
1106 | CALL advec_v_pw |
---|
1107 | ELSE |
---|
1108 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1109 | tend = 0.0 |
---|
1110 | CALL advec_v_up |
---|
1111 | ENDIF |
---|
1112 | ENDIF |
---|
1113 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1114 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
1115 | w_m, z0 ) |
---|
1116 | ELSE |
---|
1117 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, w, z0 ) |
---|
1118 | ENDIF |
---|
1119 | CALL coriolis( 2 ) |
---|
1120 | CALL user_actions( 'v-tendency' ) |
---|
1121 | |
---|
1122 | ! |
---|
1123 | !-- Prognostic equation for v-velocity component |
---|
1124 | DO i = nxl, nxr |
---|
1125 | DO j = nys, nyn+vynp |
---|
1126 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1127 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
1128 | dt_3d * ( & |
---|
1129 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
1130 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
1131 | ) - & |
---|
1132 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
1133 | ENDDO |
---|
1134 | ENDDO |
---|
1135 | ENDDO |
---|
1136 | |
---|
1137 | ! |
---|
1138 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1139 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1140 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1141 | DO i = nxl, nxr |
---|
1142 | DO j = nys, nyn+vynp |
---|
1143 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1144 | tv_m(k,j,i) = tend(k,j,i) |
---|
1145 | ENDDO |
---|
1146 | ENDDO |
---|
1147 | ENDDO |
---|
1148 | ELSEIF ( intermediate_timestep_count < & |
---|
1149 | intermediate_timestep_count_max ) THEN |
---|
1150 | DO i = nxl, nxr |
---|
1151 | DO j = nys, nyn+vynp |
---|
1152 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1153 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
1154 | ENDDO |
---|
1155 | ENDDO |
---|
1156 | ENDDO |
---|
1157 | ENDIF |
---|
1158 | ENDIF |
---|
1159 | |
---|
1160 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
1161 | |
---|
1162 | ! |
---|
1163 | !-- w-velocity component |
---|
1164 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
1165 | |
---|
1166 | ! |
---|
1167 | !-- w-tendency terms with communication |
---|
1168 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1169 | tend = 0.0 |
---|
1170 | CALL advec_w_ups |
---|
1171 | ENDIF |
---|
1172 | |
---|
1173 | ! |
---|
1174 | !-- w-tendency terms with no communication |
---|
1175 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1176 | tend = 0.0 |
---|
1177 | CALL advec_w_pw |
---|
1178 | ELSE |
---|
1179 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1180 | tend = 0.0 |
---|
1181 | CALL advec_w_up |
---|
1182 | ENDIF |
---|
1183 | ENDIF |
---|
1184 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1185 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
1186 | v_m, w_m, z0 ) |
---|
1187 | ELSE |
---|
1188 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w, & |
---|
1189 | z0 ) |
---|
1190 | ENDIF |
---|
1191 | CALL coriolis( 3 ) |
---|
1192 | IF ( .NOT. moisture ) THEN |
---|
1193 | CALL buoyancy( pt, 3, 4 ) |
---|
1194 | ELSE |
---|
1195 | CALL buoyancy( vpt, 3, 44 ) |
---|
1196 | ENDIF |
---|
1197 | CALL user_actions( 'w-tendency' ) |
---|
1198 | |
---|
1199 | ! |
---|
1200 | !-- Prognostic equation for w-velocity component |
---|
1201 | DO i = nxl, nxr |
---|
1202 | DO j = nys, nyn |
---|
1203 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1204 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
1205 | dt_3d * ( & |
---|
1206 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
1207 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
1208 | ) - & |
---|
1209 | tsc(5) * rdf(k) * w(k,j,i) |
---|
1210 | ENDDO |
---|
1211 | ENDDO |
---|
1212 | ENDDO |
---|
1213 | |
---|
1214 | ! |
---|
1215 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1216 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1217 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1218 | DO i = nxl, nxr |
---|
1219 | DO j = nys, nyn |
---|
1220 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1221 | tw_m(k,j,i) = tend(k,j,i) |
---|
1222 | ENDDO |
---|
1223 | ENDDO |
---|
1224 | ENDDO |
---|
1225 | ELSEIF ( intermediate_timestep_count < & |
---|
1226 | intermediate_timestep_count_max ) THEN |
---|
1227 | DO i = nxl, nxr |
---|
1228 | DO j = nys, nyn |
---|
1229 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1230 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1231 | ENDDO |
---|
1232 | ENDDO |
---|
1233 | ENDDO |
---|
1234 | ENDIF |
---|
1235 | ENDIF |
---|
1236 | |
---|
1237 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
1238 | |
---|
1239 | ! |
---|
1240 | !-- potential temperature |
---|
1241 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
1242 | |
---|
1243 | ! |
---|
1244 | !-- pt-tendency terms with communication |
---|
1245 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1246 | ! |
---|
1247 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1248 | sat = 1.0 |
---|
1249 | sbt = 1.0 |
---|
1250 | tend = 0.0 |
---|
1251 | CALL advec_s_bc( pt, 'pt' ) |
---|
1252 | ELSE |
---|
1253 | sat = tsc(1) |
---|
1254 | sbt = tsc(2) |
---|
1255 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
1256 | tend = 0.0 |
---|
1257 | CALL advec_s_ups( pt, 'pt' ) |
---|
1258 | ENDIF |
---|
1259 | ENDIF |
---|
1260 | |
---|
1261 | ! |
---|
1262 | !-- pt-tendency terms with no communication |
---|
1263 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1264 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
1265 | ELSE |
---|
1266 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1267 | tend = 0.0 |
---|
1268 | CALL advec_s_pw( pt ) |
---|
1269 | ELSE |
---|
1270 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1271 | tend = 0.0 |
---|
1272 | CALL advec_s_up( pt ) |
---|
1273 | ENDIF |
---|
1274 | ENDIF |
---|
1275 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1276 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tswst_m, tend ) |
---|
1277 | ELSE |
---|
1278 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
1279 | ENDIF |
---|
1280 | ENDIF |
---|
1281 | |
---|
1282 | ! |
---|
1283 | !-- If required compute heating/cooling due to long wave radiation |
---|
1284 | !-- processes |
---|
1285 | IF ( radiation ) THEN |
---|
1286 | CALL calc_radiation |
---|
1287 | ENDIF |
---|
1288 | |
---|
1289 | ! |
---|
1290 | !-- If required compute impact of latent heat due to precipitation |
---|
1291 | IF ( precipitation ) THEN |
---|
1292 | CALL impact_of_latent_heat |
---|
1293 | ENDIF |
---|
1294 | CALL user_actions( 'pt-tendency' ) |
---|
1295 | |
---|
1296 | ! |
---|
1297 | !-- Prognostic equation for potential temperature |
---|
1298 | DO i = nxl, nxr |
---|
1299 | DO j = nys, nyn |
---|
1300 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1301 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
1302 | dt_3d * ( & |
---|
1303 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
1304 | ) - & |
---|
1305 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
1306 | ENDDO |
---|
1307 | ENDDO |
---|
1308 | ENDDO |
---|
1309 | |
---|
1310 | ! |
---|
1311 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1312 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1313 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1314 | DO i = nxl, nxr |
---|
1315 | DO j = nys, nyn |
---|
1316 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1317 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1318 | ENDDO |
---|
1319 | ENDDO |
---|
1320 | ENDDO |
---|
1321 | ELSEIF ( intermediate_timestep_count < & |
---|
1322 | intermediate_timestep_count_max ) THEN |
---|
1323 | DO i = nxl, nxr |
---|
1324 | DO j = nys, nyn |
---|
1325 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1326 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
1327 | ENDDO |
---|
1328 | ENDDO |
---|
1329 | ENDDO |
---|
1330 | ENDIF |
---|
1331 | ENDIF |
---|
1332 | |
---|
1333 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
1334 | |
---|
1335 | ! |
---|
1336 | !-- If required, compute prognostic equation for total water content / scalar |
---|
1337 | IF ( moisture .OR. passive_scalar ) THEN |
---|
1338 | |
---|
1339 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
1340 | |
---|
1341 | ! |
---|
1342 | !-- Scalar/q-tendency terms with communication |
---|
1343 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1344 | ! |
---|
1345 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1346 | sat = 1.0 |
---|
1347 | sbt = 1.0 |
---|
1348 | tend = 0.0 |
---|
1349 | CALL advec_s_bc( q, 'q' ) |
---|
1350 | ELSE |
---|
1351 | sat = tsc(1) |
---|
1352 | sbt = tsc(2) |
---|
1353 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1354 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1355 | tend = 0.0 |
---|
1356 | CALL advec_s_ups( q, 'q' ) |
---|
1357 | ENDIF |
---|
1358 | ENDIF |
---|
1359 | ENDIF |
---|
1360 | |
---|
1361 | ! |
---|
1362 | !-- Scalar/q-tendency terms with no communication |
---|
1363 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1364 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, tend ) |
---|
1365 | ELSE |
---|
1366 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1367 | tend = 0.0 |
---|
1368 | CALL advec_s_pw( q ) |
---|
1369 | ELSE |
---|
1370 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1371 | tend = 0.0 |
---|
1372 | CALL advec_s_up( q ) |
---|
1373 | ENDIF |
---|
1374 | ENDIF |
---|
1375 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1376 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, qswst_m, tend ) |
---|
1377 | ELSE |
---|
1378 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, tend ) |
---|
1379 | ENDIF |
---|
1380 | ENDIF |
---|
1381 | |
---|
1382 | ! |
---|
1383 | !-- If required compute decrease of total water content due to |
---|
1384 | !-- precipitation |
---|
1385 | IF ( precipitation ) THEN |
---|
1386 | CALL calc_precipitation |
---|
1387 | ENDIF |
---|
1388 | CALL user_actions( 'q-tendency' ) |
---|
1389 | |
---|
1390 | ! |
---|
1391 | !-- Prognostic equation for total water content / scalar |
---|
1392 | DO i = nxl, nxr |
---|
1393 | DO j = nys, nyn |
---|
1394 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1395 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
1396 | dt_3d * ( & |
---|
1397 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
1398 | ) - & |
---|
1399 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
1400 | ENDDO |
---|
1401 | ENDDO |
---|
1402 | ENDDO |
---|
1403 | |
---|
1404 | ! |
---|
1405 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1406 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1407 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1408 | DO i = nxl, nxr |
---|
1409 | DO j = nys, nyn |
---|
1410 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1411 | tq_m(k,j,i) = tend(k,j,i) |
---|
1412 | ENDDO |
---|
1413 | ENDDO |
---|
1414 | ENDDO |
---|
1415 | ELSEIF ( intermediate_timestep_count < & |
---|
1416 | intermediate_timestep_count_max ) THEN |
---|
1417 | DO i = nxl, nxr |
---|
1418 | DO j = nys, nyn |
---|
1419 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1420 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
1421 | ENDDO |
---|
1422 | ENDDO |
---|
1423 | ENDDO |
---|
1424 | ENDIF |
---|
1425 | ENDIF |
---|
1426 | |
---|
1427 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
1428 | |
---|
1429 | ENDIF |
---|
1430 | |
---|
1431 | ! |
---|
1432 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1433 | !-- energy (TKE) |
---|
1434 | IF ( .NOT. constant_diffusion ) THEN |
---|
1435 | |
---|
1436 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
1437 | |
---|
1438 | ! |
---|
1439 | !-- TKE-tendency terms with communication |
---|
1440 | CALL production_e_init |
---|
1441 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
1442 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1443 | ! |
---|
1444 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1445 | sat = 1.0 |
---|
1446 | sbt = 1.0 |
---|
1447 | tend = 0.0 |
---|
1448 | CALL advec_s_bc( e, 'e' ) |
---|
1449 | ELSE |
---|
1450 | sat = tsc(1) |
---|
1451 | sbt = tsc(2) |
---|
1452 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1453 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1454 | tend = 0.0 |
---|
1455 | CALL advec_s_ups( e, 'e' ) |
---|
1456 | ENDIF |
---|
1457 | ENDIF |
---|
1458 | ENDIF |
---|
1459 | ENDIF |
---|
1460 | |
---|
1461 | ! |
---|
1462 | !-- TKE-tendency terms with no communication |
---|
1463 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
1464 | THEN |
---|
1465 | IF ( .NOT. moisture ) THEN |
---|
1466 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
1467 | rif, tend, zu ) |
---|
1468 | ELSE |
---|
1469 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
1470 | rif, tend, zu ) |
---|
1471 | ENDIF |
---|
1472 | ELSE |
---|
1473 | IF ( use_upstream_for_tke ) THEN |
---|
1474 | tend = 0.0 |
---|
1475 | CALL advec_s_up( e ) |
---|
1476 | ELSE |
---|
1477 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1478 | tend = 0.0 |
---|
1479 | CALL advec_s_pw( e ) |
---|
1480 | ELSE |
---|
1481 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1482 | tend = 0.0 |
---|
1483 | CALL advec_s_up( e ) |
---|
1484 | ENDIF |
---|
1485 | ENDIF |
---|
1486 | ENDIF |
---|
1487 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1488 | IF ( .NOT. moisture ) THEN |
---|
1489 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
1490 | pt_m, rif_m, tend, zu ) |
---|
1491 | ELSE |
---|
1492 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
1493 | vpt_m, rif_m, tend, zu ) |
---|
1494 | ENDIF |
---|
1495 | ELSE |
---|
1496 | IF ( .NOT. moisture ) THEN |
---|
1497 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
1498 | rif, tend, zu ) |
---|
1499 | ELSE |
---|
1500 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
1501 | rif, tend, zu ) |
---|
1502 | ENDIF |
---|
1503 | ENDIF |
---|
1504 | ENDIF |
---|
1505 | CALL production_e |
---|
1506 | CALL user_actions( 'e-tendency' ) |
---|
1507 | |
---|
1508 | ! |
---|
1509 | !-- Prognostic equation for TKE. |
---|
1510 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
1511 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
1512 | !-- value is reduced by 90%. |
---|
1513 | DO i = nxl, nxr |
---|
1514 | DO j = nys, nyn |
---|
1515 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1516 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
1517 | dt_3d * ( & |
---|
1518 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
1519 | ) |
---|
1520 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
1521 | ENDDO |
---|
1522 | ENDDO |
---|
1523 | ENDDO |
---|
1524 | |
---|
1525 | ! |
---|
1526 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1527 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1528 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1529 | DO i = nxl, nxr |
---|
1530 | DO j = nys, nyn |
---|
1531 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1532 | te_m(k,j,i) = tend(k,j,i) |
---|
1533 | ENDDO |
---|
1534 | ENDDO |
---|
1535 | ENDDO |
---|
1536 | ELSEIF ( intermediate_timestep_count < & |
---|
1537 | intermediate_timestep_count_max ) THEN |
---|
1538 | DO i = nxl, nxr |
---|
1539 | DO j = nys, nyn |
---|
1540 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1541 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
1542 | ENDDO |
---|
1543 | ENDDO |
---|
1544 | ENDDO |
---|
1545 | ENDIF |
---|
1546 | ENDIF |
---|
1547 | |
---|
1548 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
1549 | |
---|
1550 | ENDIF |
---|
1551 | |
---|
1552 | |
---|
1553 | END SUBROUTINE prognostic_equations_vec |
---|
1554 | |
---|
1555 | |
---|
1556 | END MODULE prognostic_equations_mod |
---|