1 | MODULE prognostic_equations_mod |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Actual revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: prognostic_equations.f90 392 2009-09-24 10:39:14Z raasch $ |
---|
11 | ! |
---|
12 | ! 388 2009-09-23 09:40:33Z raasch |
---|
13 | ! prho is used instead of rho in diffusion_e, |
---|
14 | ! external pressure gradient |
---|
15 | ! |
---|
16 | ! 153 2008-03-19 09:41:30Z steinfeld |
---|
17 | ! add call of plant_canopy_model in the prognostic equation for |
---|
18 | ! the potential temperature and for the passive scalar |
---|
19 | ! |
---|
20 | ! 138 2007-11-28 10:03:58Z letzel |
---|
21 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
22 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
23 | ! |
---|
24 | ! 106 2007-08-16 14:30:26Z raasch |
---|
25 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
26 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
27 | ! for non-cyclic boundary conditions) |
---|
28 | ! |
---|
29 | ! 97 2007-06-21 08:23:15Z raasch |
---|
30 | ! prognostic equation for salinity, density is calculated from equation of |
---|
31 | ! state for seawater and is used for calculation of buoyancy, |
---|
32 | ! +eqn_state_seawater_mod |
---|
33 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
34 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
35 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
36 | ! calc_mean_profile |
---|
37 | ! |
---|
38 | ! 75 2007-03-22 09:54:05Z raasch |
---|
39 | ! checking for negative q and limiting for positive values, |
---|
40 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
41 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
42 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
43 | ! _vector-version |
---|
44 | ! |
---|
45 | ! 19 2007-02-23 04:53:48Z raasch |
---|
46 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
47 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
48 | ! |
---|
49 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
50 | ! |
---|
51 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
52 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
53 | ! regardless of the timestep scheme used for the other quantities, |
---|
54 | ! new argument diss in call of diffusion_e |
---|
55 | ! |
---|
56 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
57 | ! Initial revision |
---|
58 | ! |
---|
59 | ! |
---|
60 | ! Description: |
---|
61 | ! ------------ |
---|
62 | ! Solving the prognostic equations. |
---|
63 | !------------------------------------------------------------------------------! |
---|
64 | |
---|
65 | USE arrays_3d |
---|
66 | USE control_parameters |
---|
67 | USE cpulog |
---|
68 | USE eqn_state_seawater_mod |
---|
69 | USE grid_variables |
---|
70 | USE indices |
---|
71 | USE interfaces |
---|
72 | USE pegrid |
---|
73 | USE pointer_interfaces |
---|
74 | USE statistics |
---|
75 | |
---|
76 | USE advec_s_pw_mod |
---|
77 | USE advec_s_up_mod |
---|
78 | USE advec_u_pw_mod |
---|
79 | USE advec_u_up_mod |
---|
80 | USE advec_v_pw_mod |
---|
81 | USE advec_v_up_mod |
---|
82 | USE advec_w_pw_mod |
---|
83 | USE advec_w_up_mod |
---|
84 | USE buoyancy_mod |
---|
85 | USE calc_precipitation_mod |
---|
86 | USE calc_radiation_mod |
---|
87 | USE coriolis_mod |
---|
88 | USE diffusion_e_mod |
---|
89 | USE diffusion_s_mod |
---|
90 | USE diffusion_u_mod |
---|
91 | USE diffusion_v_mod |
---|
92 | USE diffusion_w_mod |
---|
93 | USE impact_of_latent_heat_mod |
---|
94 | USE plant_canopy_model_mod |
---|
95 | USE production_e_mod |
---|
96 | USE user_actions_mod |
---|
97 | |
---|
98 | |
---|
99 | PRIVATE |
---|
100 | PUBLIC prognostic_equations_noopt, prognostic_equations_cache, & |
---|
101 | prognostic_equations_vector |
---|
102 | |
---|
103 | INTERFACE prognostic_equations_noopt |
---|
104 | MODULE PROCEDURE prognostic_equations_noopt |
---|
105 | END INTERFACE prognostic_equations_noopt |
---|
106 | |
---|
107 | INTERFACE prognostic_equations_cache |
---|
108 | MODULE PROCEDURE prognostic_equations_cache |
---|
109 | END INTERFACE prognostic_equations_cache |
---|
110 | |
---|
111 | INTERFACE prognostic_equations_vector |
---|
112 | MODULE PROCEDURE prognostic_equations_vector |
---|
113 | END INTERFACE prognostic_equations_vector |
---|
114 | |
---|
115 | |
---|
116 | CONTAINS |
---|
117 | |
---|
118 | |
---|
119 | SUBROUTINE prognostic_equations_noopt |
---|
120 | |
---|
121 | !------------------------------------------------------------------------------! |
---|
122 | ! Version with single loop optimization |
---|
123 | ! |
---|
124 | ! (Optimized over each single prognostic equation.) |
---|
125 | !------------------------------------------------------------------------------! |
---|
126 | |
---|
127 | IMPLICIT NONE |
---|
128 | |
---|
129 | CHARACTER (LEN=9) :: time_to_string |
---|
130 | INTEGER :: i, j, k |
---|
131 | REAL :: sat, sbt |
---|
132 | |
---|
133 | ! |
---|
134 | !-- Calculate those variables needed in the tendency terms which need |
---|
135 | !-- global communication |
---|
136 | CALL calc_mean_profile( pt, 4 ) |
---|
137 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
138 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
139 | |
---|
140 | ! |
---|
141 | !-- u-velocity component |
---|
142 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
143 | |
---|
144 | ! |
---|
145 | !-- u-tendency terms with communication |
---|
146 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
147 | tend = 0.0 |
---|
148 | CALL advec_u_ups |
---|
149 | ENDIF |
---|
150 | |
---|
151 | ! |
---|
152 | !-- u-tendency terms with no communication |
---|
153 | DO i = nxlu, nxr |
---|
154 | DO j = nys, nyn |
---|
155 | ! |
---|
156 | !-- Tendency terms |
---|
157 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
158 | tend(:,j,i) = 0.0 |
---|
159 | CALL advec_u_pw( i, j ) |
---|
160 | ELSE |
---|
161 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
162 | tend(:,j,i) = 0.0 |
---|
163 | CALL advec_u_up( i, j ) |
---|
164 | ENDIF |
---|
165 | ENDIF |
---|
166 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
167 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
168 | usws_m, uswst_m, v_m, w_m ) |
---|
169 | ELSE |
---|
170 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
171 | uswst, v, w ) |
---|
172 | ENDIF |
---|
173 | CALL coriolis( i, j, 1 ) |
---|
174 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, 4 ) |
---|
175 | |
---|
176 | ! |
---|
177 | !-- Drag by plant canopy |
---|
178 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
179 | |
---|
180 | ! |
---|
181 | !-- External pressure gradient |
---|
182 | IF ( dp_external ) THEN |
---|
183 | DO k = dp_level_ind_b+1, nzt |
---|
184 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
185 | ENDDO |
---|
186 | ENDIF |
---|
187 | |
---|
188 | CALL user_actions( i, j, 'u-tendency' ) |
---|
189 | |
---|
190 | ! |
---|
191 | !-- Prognostic equation for u-velocity component |
---|
192 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
193 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
194 | dt_3d * ( & |
---|
195 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
196 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
197 | ) - & |
---|
198 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
199 | ENDDO |
---|
200 | |
---|
201 | ! |
---|
202 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
203 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
204 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
205 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
206 | tu_m(k,j,i) = tend(k,j,i) |
---|
207 | ENDDO |
---|
208 | ELSEIF ( intermediate_timestep_count < & |
---|
209 | intermediate_timestep_count_max ) THEN |
---|
210 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
211 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
212 | ENDDO |
---|
213 | ENDIF |
---|
214 | ENDIF |
---|
215 | |
---|
216 | ENDDO |
---|
217 | ENDDO |
---|
218 | |
---|
219 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
220 | |
---|
221 | ! |
---|
222 | !-- v-velocity component |
---|
223 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
224 | |
---|
225 | ! |
---|
226 | !-- v-tendency terms with communication |
---|
227 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
228 | tend = 0.0 |
---|
229 | CALL advec_v_ups |
---|
230 | ENDIF |
---|
231 | |
---|
232 | ! |
---|
233 | !-- v-tendency terms with no communication |
---|
234 | DO i = nxl, nxr |
---|
235 | DO j = nysv, nyn |
---|
236 | ! |
---|
237 | !-- Tendency terms |
---|
238 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
239 | tend(:,j,i) = 0.0 |
---|
240 | CALL advec_v_pw( i, j ) |
---|
241 | ELSE |
---|
242 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
243 | tend(:,j,i) = 0.0 |
---|
244 | CALL advec_v_up( i, j ) |
---|
245 | ENDIF |
---|
246 | ENDIF |
---|
247 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
248 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
249 | v_m, vsws_m, vswst_m, w_m ) |
---|
250 | ELSE |
---|
251 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
252 | vsws, vswst, w ) |
---|
253 | ENDIF |
---|
254 | CALL coriolis( i, j, 2 ) |
---|
255 | |
---|
256 | ! |
---|
257 | !-- Drag by plant canopy |
---|
258 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
259 | |
---|
260 | ! |
---|
261 | !-- External pressure gradient |
---|
262 | IF ( dp_external ) THEN |
---|
263 | DO k = dp_level_ind_b+1, nzt |
---|
264 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
265 | ENDDO |
---|
266 | ENDIF |
---|
267 | |
---|
268 | CALL user_actions( i, j, 'v-tendency' ) |
---|
269 | |
---|
270 | ! |
---|
271 | !-- Prognostic equation for v-velocity component |
---|
272 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
273 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
274 | dt_3d * ( & |
---|
275 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
276 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
277 | ) - & |
---|
278 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
279 | ENDDO |
---|
280 | |
---|
281 | ! |
---|
282 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
283 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
284 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
285 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
286 | tv_m(k,j,i) = tend(k,j,i) |
---|
287 | ENDDO |
---|
288 | ELSEIF ( intermediate_timestep_count < & |
---|
289 | intermediate_timestep_count_max ) THEN |
---|
290 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
291 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
292 | ENDDO |
---|
293 | ENDIF |
---|
294 | ENDIF |
---|
295 | |
---|
296 | ENDDO |
---|
297 | ENDDO |
---|
298 | |
---|
299 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
300 | |
---|
301 | ! |
---|
302 | !-- w-velocity component |
---|
303 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
304 | |
---|
305 | ! |
---|
306 | !-- w-tendency terms with communication |
---|
307 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
308 | tend = 0.0 |
---|
309 | CALL advec_w_ups |
---|
310 | ENDIF |
---|
311 | |
---|
312 | ! |
---|
313 | !-- w-tendency terms with no communication |
---|
314 | DO i = nxl, nxr |
---|
315 | DO j = nys, nyn |
---|
316 | ! |
---|
317 | !-- Tendency terms |
---|
318 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
319 | tend(:,j,i) = 0.0 |
---|
320 | CALL advec_w_pw( i, j ) |
---|
321 | ELSE |
---|
322 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
323 | tend(:,j,i) = 0.0 |
---|
324 | CALL advec_w_up( i, j ) |
---|
325 | ENDIF |
---|
326 | ENDIF |
---|
327 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
328 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
329 | tend, u_m, v_m, w_m ) |
---|
330 | ELSE |
---|
331 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
332 | tend, u, v, w ) |
---|
333 | ENDIF |
---|
334 | CALL coriolis( i, j, 3 ) |
---|
335 | IF ( ocean ) THEN |
---|
336 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
337 | ELSE |
---|
338 | IF ( .NOT. humidity ) THEN |
---|
339 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
340 | ELSE |
---|
341 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
342 | ENDIF |
---|
343 | ENDIF |
---|
344 | |
---|
345 | ! |
---|
346 | !-- Drag by plant canopy |
---|
347 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
348 | |
---|
349 | CALL user_actions( i, j, 'w-tendency' ) |
---|
350 | |
---|
351 | ! |
---|
352 | !-- Prognostic equation for w-velocity component |
---|
353 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
354 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
355 | dt_3d * ( & |
---|
356 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
357 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
358 | ) - & |
---|
359 | tsc(5) * rdf(k) * w(k,j,i) |
---|
360 | ENDDO |
---|
361 | |
---|
362 | ! |
---|
363 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
364 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
365 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
366 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
367 | tw_m(k,j,i) = tend(k,j,i) |
---|
368 | ENDDO |
---|
369 | ELSEIF ( intermediate_timestep_count < & |
---|
370 | intermediate_timestep_count_max ) THEN |
---|
371 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
372 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
373 | ENDDO |
---|
374 | ENDIF |
---|
375 | ENDIF |
---|
376 | |
---|
377 | ENDDO |
---|
378 | ENDDO |
---|
379 | |
---|
380 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
381 | |
---|
382 | ! |
---|
383 | !-- potential temperature |
---|
384 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
385 | |
---|
386 | ! |
---|
387 | !-- pt-tendency terms with communication |
---|
388 | sat = tsc(1) |
---|
389 | sbt = tsc(2) |
---|
390 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
391 | |
---|
392 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
393 | ! |
---|
394 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
395 | !-- switched on. Thus: |
---|
396 | sat = 1.0 |
---|
397 | sbt = 1.0 |
---|
398 | ENDIF |
---|
399 | tend = 0.0 |
---|
400 | CALL advec_s_bc( pt, 'pt' ) |
---|
401 | ELSE |
---|
402 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
403 | tend = 0.0 |
---|
404 | CALL advec_s_ups( pt, 'pt' ) |
---|
405 | ENDIF |
---|
406 | ENDIF |
---|
407 | |
---|
408 | ! |
---|
409 | !-- pt-tendency terms with no communication |
---|
410 | DO i = nxl, nxr |
---|
411 | DO j = nys, nyn |
---|
412 | ! |
---|
413 | !-- Tendency terms |
---|
414 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
415 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
416 | wall_heatflux, tend ) |
---|
417 | ELSE |
---|
418 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
419 | tend(:,j,i) = 0.0 |
---|
420 | CALL advec_s_pw( i, j, pt ) |
---|
421 | ELSE |
---|
422 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
423 | tend(:,j,i) = 0.0 |
---|
424 | CALL advec_s_up( i, j, pt ) |
---|
425 | ENDIF |
---|
426 | ENDIF |
---|
427 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
428 | THEN |
---|
429 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
430 | tswst_m, wall_heatflux, tend ) |
---|
431 | ELSE |
---|
432 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
433 | wall_heatflux, tend ) |
---|
434 | ENDIF |
---|
435 | ENDIF |
---|
436 | |
---|
437 | ! |
---|
438 | !-- If required compute heating/cooling due to long wave radiation |
---|
439 | !-- processes |
---|
440 | IF ( radiation ) THEN |
---|
441 | CALL calc_radiation( i, j ) |
---|
442 | ENDIF |
---|
443 | |
---|
444 | ! |
---|
445 | !-- If required compute impact of latent heat due to precipitation |
---|
446 | IF ( precipitation ) THEN |
---|
447 | CALL impact_of_latent_heat( i, j ) |
---|
448 | ENDIF |
---|
449 | |
---|
450 | ! |
---|
451 | !-- Consideration of heat sources within the plant canopy |
---|
452 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
453 | CALL plant_canopy_model( i, j, 4 ) |
---|
454 | ENDIF |
---|
455 | |
---|
456 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
457 | |
---|
458 | ! |
---|
459 | !-- Prognostic equation for potential temperature |
---|
460 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
461 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
462 | dt_3d * ( & |
---|
463 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
464 | ) - & |
---|
465 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
466 | ENDDO |
---|
467 | |
---|
468 | ! |
---|
469 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
470 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
471 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
472 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
473 | tpt_m(k,j,i) = tend(k,j,i) |
---|
474 | ENDDO |
---|
475 | ELSEIF ( intermediate_timestep_count < & |
---|
476 | intermediate_timestep_count_max ) THEN |
---|
477 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
478 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
479 | ENDDO |
---|
480 | ENDIF |
---|
481 | ENDIF |
---|
482 | |
---|
483 | ENDDO |
---|
484 | ENDDO |
---|
485 | |
---|
486 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
487 | |
---|
488 | ! |
---|
489 | !-- If required, compute prognostic equation for salinity |
---|
490 | IF ( ocean ) THEN |
---|
491 | |
---|
492 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
493 | |
---|
494 | ! |
---|
495 | !-- sa-tendency terms with communication |
---|
496 | sat = tsc(1) |
---|
497 | sbt = tsc(2) |
---|
498 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
499 | |
---|
500 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
501 | ! |
---|
502 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
503 | !-- switched on. Thus: |
---|
504 | sat = 1.0 |
---|
505 | sbt = 1.0 |
---|
506 | ENDIF |
---|
507 | tend = 0.0 |
---|
508 | CALL advec_s_bc( sa, 'sa' ) |
---|
509 | ELSE |
---|
510 | IF ( tsc(2) /= 2.0 ) THEN |
---|
511 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
512 | tend = 0.0 |
---|
513 | CALL advec_s_ups( sa, 'sa' ) |
---|
514 | ENDIF |
---|
515 | ENDIF |
---|
516 | ENDIF |
---|
517 | |
---|
518 | ! |
---|
519 | !-- sa terms with no communication |
---|
520 | DO i = nxl, nxr |
---|
521 | DO j = nys, nyn |
---|
522 | ! |
---|
523 | !-- Tendency-terms |
---|
524 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
525 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
526 | wall_salinityflux, tend ) |
---|
527 | ELSE |
---|
528 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
529 | tend(:,j,i) = 0.0 |
---|
530 | CALL advec_s_pw( i, j, sa ) |
---|
531 | ELSE |
---|
532 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
533 | tend(:,j,i) = 0.0 |
---|
534 | CALL advec_s_up( i, j, sa ) |
---|
535 | ENDIF |
---|
536 | ENDIF |
---|
537 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
538 | wall_salinityflux, tend ) |
---|
539 | ENDIF |
---|
540 | |
---|
541 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
542 | |
---|
543 | ! |
---|
544 | !-- Prognostic equation for salinity |
---|
545 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
546 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
547 | dt_3d * ( & |
---|
548 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
549 | ) - & |
---|
550 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
551 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
552 | ENDDO |
---|
553 | |
---|
554 | ! |
---|
555 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
556 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
557 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
558 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
559 | tsa_m(k,j,i) = tend(k,j,i) |
---|
560 | ENDDO |
---|
561 | ELSEIF ( intermediate_timestep_count < & |
---|
562 | intermediate_timestep_count_max ) THEN |
---|
563 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
564 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
565 | 5.3125 * tsa_m(k,j,i) |
---|
566 | ENDDO |
---|
567 | ENDIF |
---|
568 | ENDIF |
---|
569 | |
---|
570 | ! |
---|
571 | !-- Calculate density by the equation of state for seawater |
---|
572 | CALL eqn_state_seawater( i, j ) |
---|
573 | |
---|
574 | ENDDO |
---|
575 | ENDDO |
---|
576 | |
---|
577 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
578 | |
---|
579 | ENDIF |
---|
580 | |
---|
581 | ! |
---|
582 | !-- If required, compute prognostic equation for total water content / scalar |
---|
583 | IF ( humidity .OR. passive_scalar ) THEN |
---|
584 | |
---|
585 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
586 | |
---|
587 | ! |
---|
588 | !-- Scalar/q-tendency terms with communication |
---|
589 | sat = tsc(1) |
---|
590 | sbt = tsc(2) |
---|
591 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
592 | |
---|
593 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
594 | ! |
---|
595 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
596 | !-- switched on. Thus: |
---|
597 | sat = 1.0 |
---|
598 | sbt = 1.0 |
---|
599 | ENDIF |
---|
600 | tend = 0.0 |
---|
601 | CALL advec_s_bc( q, 'q' ) |
---|
602 | ELSE |
---|
603 | IF ( tsc(2) /= 2.0 ) THEN |
---|
604 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
605 | tend = 0.0 |
---|
606 | CALL advec_s_ups( q, 'q' ) |
---|
607 | ENDIF |
---|
608 | ENDIF |
---|
609 | ENDIF |
---|
610 | |
---|
611 | ! |
---|
612 | !-- Scalar/q-tendency terms with no communication |
---|
613 | DO i = nxl, nxr |
---|
614 | DO j = nys, nyn |
---|
615 | ! |
---|
616 | !-- Tendency-terms |
---|
617 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
618 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
619 | wall_qflux, tend ) |
---|
620 | ELSE |
---|
621 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
622 | tend(:,j,i) = 0.0 |
---|
623 | CALL advec_s_pw( i, j, q ) |
---|
624 | ELSE |
---|
625 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
626 | tend(:,j,i) = 0.0 |
---|
627 | CALL advec_s_up( i, j, q ) |
---|
628 | ENDIF |
---|
629 | ENDIF |
---|
630 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
631 | THEN |
---|
632 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
633 | qswst_m, wall_qflux, tend ) |
---|
634 | ELSE |
---|
635 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
636 | wall_qflux, tend ) |
---|
637 | ENDIF |
---|
638 | ENDIF |
---|
639 | |
---|
640 | ! |
---|
641 | !-- If required compute decrease of total water content due to |
---|
642 | !-- precipitation |
---|
643 | IF ( precipitation ) THEN |
---|
644 | CALL calc_precipitation( i, j ) |
---|
645 | ENDIF |
---|
646 | |
---|
647 | ! |
---|
648 | !-- Sink or source of scalar concentration due to canopy elements |
---|
649 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
650 | |
---|
651 | CALL user_actions( i, j, 'q-tendency' ) |
---|
652 | |
---|
653 | ! |
---|
654 | !-- Prognostic equation for total water content / scalar |
---|
655 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
656 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
657 | dt_3d * ( & |
---|
658 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
659 | ) - & |
---|
660 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
661 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
662 | ENDDO |
---|
663 | |
---|
664 | ! |
---|
665 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
666 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
667 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
668 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
669 | tq_m(k,j,i) = tend(k,j,i) |
---|
670 | ENDDO |
---|
671 | ELSEIF ( intermediate_timestep_count < & |
---|
672 | intermediate_timestep_count_max ) THEN |
---|
673 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
674 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
675 | ENDDO |
---|
676 | ENDIF |
---|
677 | ENDIF |
---|
678 | |
---|
679 | ENDDO |
---|
680 | ENDDO |
---|
681 | |
---|
682 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
683 | |
---|
684 | ENDIF |
---|
685 | |
---|
686 | ! |
---|
687 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
688 | !-- energy (TKE) |
---|
689 | IF ( .NOT. constant_diffusion ) THEN |
---|
690 | |
---|
691 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
692 | |
---|
693 | ! |
---|
694 | !-- TKE-tendency terms with communication |
---|
695 | CALL production_e_init |
---|
696 | |
---|
697 | sat = tsc(1) |
---|
698 | sbt = tsc(2) |
---|
699 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
700 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
701 | |
---|
702 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
703 | ! |
---|
704 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
705 | !-- switched on. Thus: |
---|
706 | sat = 1.0 |
---|
707 | sbt = 1.0 |
---|
708 | ENDIF |
---|
709 | tend = 0.0 |
---|
710 | CALL advec_s_bc( e, 'e' ) |
---|
711 | ELSE |
---|
712 | IF ( tsc(2) /= 2.0 ) THEN |
---|
713 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
714 | tend = 0.0 |
---|
715 | CALL advec_s_ups( e, 'e' ) |
---|
716 | ENDIF |
---|
717 | ENDIF |
---|
718 | ENDIF |
---|
719 | ENDIF |
---|
720 | |
---|
721 | ! |
---|
722 | !-- TKE-tendency terms with no communication |
---|
723 | DO i = nxl, nxr |
---|
724 | DO j = nys, nyn |
---|
725 | ! |
---|
726 | !-- Tendency-terms |
---|
727 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
728 | .NOT. use_upstream_for_tke ) THEN |
---|
729 | IF ( .NOT. humidity ) THEN |
---|
730 | IF ( ocean ) THEN |
---|
731 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
732 | l_grid, prho, prho_reference, rif, & |
---|
733 | tend, zu, zw ) |
---|
734 | ELSE |
---|
735 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
736 | l_grid, pt, pt_reference, rif, tend, & |
---|
737 | zu, zw ) |
---|
738 | ENDIF |
---|
739 | ELSE |
---|
740 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
741 | l_grid, vpt, pt_reference, rif, tend, zu, & |
---|
742 | zw ) |
---|
743 | ENDIF |
---|
744 | ELSE |
---|
745 | IF ( use_upstream_for_tke ) THEN |
---|
746 | tend(:,j,i) = 0.0 |
---|
747 | CALL advec_s_up( i, j, e ) |
---|
748 | ELSE |
---|
749 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
750 | THEN |
---|
751 | tend(:,j,i) = 0.0 |
---|
752 | CALL advec_s_pw( i, j, e ) |
---|
753 | ELSE |
---|
754 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
755 | tend(:,j,i) = 0.0 |
---|
756 | CALL advec_s_up( i, j, e ) |
---|
757 | ENDIF |
---|
758 | ENDIF |
---|
759 | ENDIF |
---|
760 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
761 | THEN |
---|
762 | IF ( .NOT. humidity ) THEN |
---|
763 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
764 | km_m, l_grid, pt_m, pt_reference, & |
---|
765 | rif_m, tend, zu, zw ) |
---|
766 | ELSE |
---|
767 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
768 | km_m, l_grid, vpt_m, pt_reference, & |
---|
769 | rif_m, tend, zu, zw ) |
---|
770 | ENDIF |
---|
771 | ELSE |
---|
772 | IF ( .NOT. humidity ) THEN |
---|
773 | IF ( ocean ) THEN |
---|
774 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
775 | km, l_grid, prho, prho_reference, & |
---|
776 | rif, tend, zu, zw ) |
---|
777 | ELSE |
---|
778 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
779 | km, l_grid, pt, pt_reference, rif, & |
---|
780 | tend, zu, zw ) |
---|
781 | ENDIF |
---|
782 | ELSE |
---|
783 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
784 | l_grid, vpt, pt_reference, rif, tend, & |
---|
785 | zu, zw ) |
---|
786 | ENDIF |
---|
787 | ENDIF |
---|
788 | ENDIF |
---|
789 | CALL production_e( i, j ) |
---|
790 | |
---|
791 | ! |
---|
792 | !-- Additional sink term for flows through plant canopies |
---|
793 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
794 | |
---|
795 | CALL user_actions( i, j, 'e-tendency' ) |
---|
796 | |
---|
797 | ! |
---|
798 | !-- Prognostic equation for TKE. |
---|
799 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
800 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
801 | !-- value is reduced by 90%. |
---|
802 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
803 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
804 | dt_3d * ( & |
---|
805 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
806 | ) |
---|
807 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
808 | ENDDO |
---|
809 | |
---|
810 | ! |
---|
811 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
812 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
813 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
814 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
815 | te_m(k,j,i) = tend(k,j,i) |
---|
816 | ENDDO |
---|
817 | ELSEIF ( intermediate_timestep_count < & |
---|
818 | intermediate_timestep_count_max ) THEN |
---|
819 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
820 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
821 | ENDDO |
---|
822 | ENDIF |
---|
823 | ENDIF |
---|
824 | |
---|
825 | ENDDO |
---|
826 | ENDDO |
---|
827 | |
---|
828 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
829 | |
---|
830 | ENDIF |
---|
831 | |
---|
832 | |
---|
833 | END SUBROUTINE prognostic_equations_noopt |
---|
834 | |
---|
835 | |
---|
836 | SUBROUTINE prognostic_equations_cache |
---|
837 | |
---|
838 | !------------------------------------------------------------------------------! |
---|
839 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
840 | ! be called for the standard Piascek-Williams advection scheme. |
---|
841 | ! |
---|
842 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
843 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
844 | ! these loops. |
---|
845 | ! |
---|
846 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
847 | !------------------------------------------------------------------------------! |
---|
848 | |
---|
849 | IMPLICIT NONE |
---|
850 | |
---|
851 | CHARACTER (LEN=9) :: time_to_string |
---|
852 | INTEGER :: i, j, k |
---|
853 | |
---|
854 | |
---|
855 | ! |
---|
856 | !-- Time measurement can only be performed for the whole set of equations |
---|
857 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
858 | |
---|
859 | |
---|
860 | ! |
---|
861 | !-- Calculate those variables needed in the tendency terms which need |
---|
862 | !-- global communication |
---|
863 | CALL calc_mean_profile( pt, 4 ) |
---|
864 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
865 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
866 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
867 | |
---|
868 | |
---|
869 | ! |
---|
870 | !-- Loop over all prognostic equations |
---|
871 | !$OMP PARALLEL private (i,j,k) |
---|
872 | !$OMP DO |
---|
873 | DO i = nxl, nxr |
---|
874 | DO j = nys, nyn |
---|
875 | ! |
---|
876 | !-- Tendency terms for u-velocity component |
---|
877 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
878 | |
---|
879 | tend(:,j,i) = 0.0 |
---|
880 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
881 | CALL advec_u_pw( i, j ) |
---|
882 | ELSE |
---|
883 | CALL advec_u_up( i, j ) |
---|
884 | ENDIF |
---|
885 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
886 | THEN |
---|
887 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
888 | u_m, usws_m, uswst_m, v_m, w_m ) |
---|
889 | ELSE |
---|
890 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
891 | usws, uswst, v, w ) |
---|
892 | ENDIF |
---|
893 | CALL coriolis( i, j, 1 ) |
---|
894 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, & |
---|
895 | 4 ) |
---|
896 | |
---|
897 | ! |
---|
898 | !-- Drag by plant canopy |
---|
899 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
900 | |
---|
901 | ! |
---|
902 | !-- External pressure gradient |
---|
903 | IF ( dp_external ) THEN |
---|
904 | DO k = dp_level_ind_b+1, nzt |
---|
905 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
906 | ENDDO |
---|
907 | ENDIF |
---|
908 | |
---|
909 | CALL user_actions( i, j, 'u-tendency' ) |
---|
910 | |
---|
911 | ! |
---|
912 | !-- Prognostic equation for u-velocity component |
---|
913 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
914 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
915 | dt_3d * ( & |
---|
916 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
917 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
918 | ) - & |
---|
919 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
920 | ENDDO |
---|
921 | |
---|
922 | ! |
---|
923 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
924 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
925 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
926 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
927 | tu_m(k,j,i) = tend(k,j,i) |
---|
928 | ENDDO |
---|
929 | ELSEIF ( intermediate_timestep_count < & |
---|
930 | intermediate_timestep_count_max ) THEN |
---|
931 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
932 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
933 | ENDDO |
---|
934 | ENDIF |
---|
935 | ENDIF |
---|
936 | |
---|
937 | ENDIF |
---|
938 | |
---|
939 | ! |
---|
940 | !-- Tendency terms for v-velocity component |
---|
941 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
942 | |
---|
943 | tend(:,j,i) = 0.0 |
---|
944 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
945 | CALL advec_v_pw( i, j ) |
---|
946 | ELSE |
---|
947 | CALL advec_v_up( i, j ) |
---|
948 | ENDIF |
---|
949 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
950 | THEN |
---|
951 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
952 | u_m, v_m, vsws_m, vswst_m, w_m ) |
---|
953 | ELSE |
---|
954 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
955 | vsws, vswst, w ) |
---|
956 | ENDIF |
---|
957 | CALL coriolis( i, j, 2 ) |
---|
958 | |
---|
959 | ! |
---|
960 | !-- Drag by plant canopy |
---|
961 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
962 | |
---|
963 | ! |
---|
964 | !-- External pressure gradient |
---|
965 | IF ( dp_external ) THEN |
---|
966 | DO k = dp_level_ind_b+1, nzt |
---|
967 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
968 | ENDDO |
---|
969 | ENDIF |
---|
970 | |
---|
971 | CALL user_actions( i, j, 'v-tendency' ) |
---|
972 | |
---|
973 | ! |
---|
974 | !-- Prognostic equation for v-velocity component |
---|
975 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
976 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
977 | dt_3d * ( & |
---|
978 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
979 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
980 | ) - & |
---|
981 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
982 | ENDDO |
---|
983 | |
---|
984 | ! |
---|
985 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
986 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
987 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
988 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
989 | tv_m(k,j,i) = tend(k,j,i) |
---|
990 | ENDDO |
---|
991 | ELSEIF ( intermediate_timestep_count < & |
---|
992 | intermediate_timestep_count_max ) THEN |
---|
993 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
994 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
995 | ENDDO |
---|
996 | ENDIF |
---|
997 | ENDIF |
---|
998 | |
---|
999 | ENDIF |
---|
1000 | |
---|
1001 | ! |
---|
1002 | !-- Tendency terms for w-velocity component |
---|
1003 | tend(:,j,i) = 0.0 |
---|
1004 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1005 | CALL advec_w_pw( i, j ) |
---|
1006 | ELSE |
---|
1007 | CALL advec_w_up( i, j ) |
---|
1008 | ENDIF |
---|
1009 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
1010 | THEN |
---|
1011 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
1012 | km_damp_y, tend, u_m, v_m, w_m ) |
---|
1013 | ELSE |
---|
1014 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
1015 | tend, u, v, w ) |
---|
1016 | ENDIF |
---|
1017 | CALL coriolis( i, j, 3 ) |
---|
1018 | IF ( ocean ) THEN |
---|
1019 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
1020 | ELSE |
---|
1021 | IF ( .NOT. humidity ) THEN |
---|
1022 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
1023 | ELSE |
---|
1024 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
1025 | ENDIF |
---|
1026 | ENDIF |
---|
1027 | |
---|
1028 | ! |
---|
1029 | !-- Drag by plant canopy |
---|
1030 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
1031 | |
---|
1032 | CALL user_actions( i, j, 'w-tendency' ) |
---|
1033 | |
---|
1034 | ! |
---|
1035 | !-- Prognostic equation for w-velocity component |
---|
1036 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1037 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
1038 | dt_3d * ( & |
---|
1039 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
1040 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
1041 | ) - & |
---|
1042 | tsc(5) * rdf(k) * w(k,j,i) |
---|
1043 | ENDDO |
---|
1044 | |
---|
1045 | ! |
---|
1046 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1047 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1048 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1049 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1050 | tw_m(k,j,i) = tend(k,j,i) |
---|
1051 | ENDDO |
---|
1052 | ELSEIF ( intermediate_timestep_count < & |
---|
1053 | intermediate_timestep_count_max ) THEN |
---|
1054 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1055 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1056 | ENDDO |
---|
1057 | ENDIF |
---|
1058 | ENDIF |
---|
1059 | |
---|
1060 | ! |
---|
1061 | !-- Tendency terms for potential temperature |
---|
1062 | tend(:,j,i) = 0.0 |
---|
1063 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1064 | CALL advec_s_pw( i, j, pt ) |
---|
1065 | ELSE |
---|
1066 | CALL advec_s_up( i, j, pt ) |
---|
1067 | ENDIF |
---|
1068 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
1069 | THEN |
---|
1070 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
1071 | tswst_m, wall_heatflux, tend ) |
---|
1072 | ELSE |
---|
1073 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
1074 | wall_heatflux, tend ) |
---|
1075 | ENDIF |
---|
1076 | |
---|
1077 | ! |
---|
1078 | !-- If required compute heating/cooling due to long wave radiation |
---|
1079 | !-- processes |
---|
1080 | IF ( radiation ) THEN |
---|
1081 | CALL calc_radiation( i, j ) |
---|
1082 | ENDIF |
---|
1083 | |
---|
1084 | ! |
---|
1085 | !-- If required compute impact of latent heat due to precipitation |
---|
1086 | IF ( precipitation ) THEN |
---|
1087 | CALL impact_of_latent_heat( i, j ) |
---|
1088 | ENDIF |
---|
1089 | |
---|
1090 | ! |
---|
1091 | !-- Consideration of heat sources within the plant canopy |
---|
1092 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
1093 | CALL plant_canopy_model( i, j, 4 ) |
---|
1094 | ENDIF |
---|
1095 | |
---|
1096 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
1097 | |
---|
1098 | ! |
---|
1099 | !-- Prognostic equation for potential temperature |
---|
1100 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1101 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
1102 | dt_3d * ( & |
---|
1103 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
1104 | ) - & |
---|
1105 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
1106 | ENDDO |
---|
1107 | |
---|
1108 | ! |
---|
1109 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1110 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1111 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1112 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1113 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1114 | ENDDO |
---|
1115 | ELSEIF ( intermediate_timestep_count < & |
---|
1116 | intermediate_timestep_count_max ) THEN |
---|
1117 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1118 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1119 | 5.3125 * tpt_m(k,j,i) |
---|
1120 | ENDDO |
---|
1121 | ENDIF |
---|
1122 | ENDIF |
---|
1123 | |
---|
1124 | ! |
---|
1125 | !-- If required, compute prognostic equation for salinity |
---|
1126 | IF ( ocean ) THEN |
---|
1127 | |
---|
1128 | ! |
---|
1129 | !-- Tendency-terms for salinity |
---|
1130 | tend(:,j,i) = 0.0 |
---|
1131 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
1132 | THEN |
---|
1133 | CALL advec_s_pw( i, j, sa ) |
---|
1134 | ELSE |
---|
1135 | CALL advec_s_up( i, j, sa ) |
---|
1136 | ENDIF |
---|
1137 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
1138 | wall_salinityflux, tend ) |
---|
1139 | |
---|
1140 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
1141 | |
---|
1142 | ! |
---|
1143 | !-- Prognostic equation for salinity |
---|
1144 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1145 | sa_p(k,j,i) = tsc(1) * sa(k,j,i) + & |
---|
1146 | dt_3d * ( & |
---|
1147 | tsc(2) * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
1148 | ) - & |
---|
1149 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
1150 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
1151 | ENDDO |
---|
1152 | |
---|
1153 | ! |
---|
1154 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1155 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1156 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1157 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1158 | tsa_m(k,j,i) = tend(k,j,i) |
---|
1159 | ENDDO |
---|
1160 | ELSEIF ( intermediate_timestep_count < & |
---|
1161 | intermediate_timestep_count_max ) THEN |
---|
1162 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1163 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1164 | 5.3125 * tsa_m(k,j,i) |
---|
1165 | ENDDO |
---|
1166 | ENDIF |
---|
1167 | ENDIF |
---|
1168 | |
---|
1169 | ! |
---|
1170 | !-- Calculate density by the equation of state for seawater |
---|
1171 | CALL eqn_state_seawater( i, j ) |
---|
1172 | |
---|
1173 | ENDIF |
---|
1174 | |
---|
1175 | ! |
---|
1176 | !-- If required, compute prognostic equation for total water content / |
---|
1177 | !-- scalar |
---|
1178 | IF ( humidity .OR. passive_scalar ) THEN |
---|
1179 | |
---|
1180 | ! |
---|
1181 | !-- Tendency-terms for total water content / scalar |
---|
1182 | tend(:,j,i) = 0.0 |
---|
1183 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
1184 | THEN |
---|
1185 | CALL advec_s_pw( i, j, q ) |
---|
1186 | ELSE |
---|
1187 | CALL advec_s_up( i, j, q ) |
---|
1188 | ENDIF |
---|
1189 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
1190 | THEN |
---|
1191 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
1192 | qswst_m, wall_qflux, tend ) |
---|
1193 | ELSE |
---|
1194 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
1195 | wall_qflux, tend ) |
---|
1196 | ENDIF |
---|
1197 | |
---|
1198 | ! |
---|
1199 | !-- If required compute decrease of total water content due to |
---|
1200 | !-- precipitation |
---|
1201 | IF ( precipitation ) THEN |
---|
1202 | CALL calc_precipitation( i, j ) |
---|
1203 | ENDIF |
---|
1204 | |
---|
1205 | ! |
---|
1206 | !-- Sink or source of scalar concentration due to canopy elements |
---|
1207 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
1208 | |
---|
1209 | |
---|
1210 | CALL user_actions( i, j, 'q-tendency' ) |
---|
1211 | |
---|
1212 | ! |
---|
1213 | !-- Prognostic equation for total water content / scalar |
---|
1214 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1215 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
1216 | dt_3d * ( & |
---|
1217 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
1218 | ) - & |
---|
1219 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
1220 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
1221 | ENDDO |
---|
1222 | |
---|
1223 | ! |
---|
1224 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1225 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1226 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1227 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1228 | tq_m(k,j,i) = tend(k,j,i) |
---|
1229 | ENDDO |
---|
1230 | ELSEIF ( intermediate_timestep_count < & |
---|
1231 | intermediate_timestep_count_max ) THEN |
---|
1232 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1233 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1234 | 5.3125 * tq_m(k,j,i) |
---|
1235 | ENDDO |
---|
1236 | ENDIF |
---|
1237 | ENDIF |
---|
1238 | |
---|
1239 | ENDIF |
---|
1240 | |
---|
1241 | ! |
---|
1242 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1243 | !-- energy (TKE) |
---|
1244 | IF ( .NOT. constant_diffusion ) THEN |
---|
1245 | |
---|
1246 | ! |
---|
1247 | !-- Tendency-terms for TKE |
---|
1248 | tend(:,j,i) = 0.0 |
---|
1249 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
1250 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
1251 | CALL advec_s_pw( i, j, e ) |
---|
1252 | ELSE |
---|
1253 | CALL advec_s_up( i, j, e ) |
---|
1254 | ENDIF |
---|
1255 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
1256 | THEN |
---|
1257 | IF ( .NOT. humidity ) THEN |
---|
1258 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
1259 | km_m, l_grid, pt_m, pt_reference, & |
---|
1260 | rif_m, tend, zu, zw ) |
---|
1261 | ELSE |
---|
1262 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
1263 | km_m, l_grid, vpt_m, pt_reference, & |
---|
1264 | rif_m, tend, zu, zw ) |
---|
1265 | ENDIF |
---|
1266 | ELSE |
---|
1267 | IF ( .NOT. humidity ) THEN |
---|
1268 | IF ( ocean ) THEN |
---|
1269 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
1270 | km, l_grid, prho, prho_reference, & |
---|
1271 | rif, tend, zu, zw ) |
---|
1272 | ELSE |
---|
1273 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
1274 | km, l_grid, pt, pt_reference, rif, & |
---|
1275 | tend, zu, zw ) |
---|
1276 | ENDIF |
---|
1277 | ELSE |
---|
1278 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
1279 | l_grid, vpt, pt_reference, rif, tend, & |
---|
1280 | zu, zw ) |
---|
1281 | ENDIF |
---|
1282 | ENDIF |
---|
1283 | CALL production_e( i, j ) |
---|
1284 | |
---|
1285 | ! |
---|
1286 | !-- Additional sink term for flows through plant canopies |
---|
1287 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
1288 | |
---|
1289 | CALL user_actions( i, j, 'e-tendency' ) |
---|
1290 | |
---|
1291 | ! |
---|
1292 | !-- Prognostic equation for TKE. |
---|
1293 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
1294 | !-- reasons in the course of the integration. In such cases the old |
---|
1295 | !-- TKE value is reduced by 90%. |
---|
1296 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1297 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
1298 | dt_3d * ( & |
---|
1299 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
1300 | ) |
---|
1301 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
1302 | ENDDO |
---|
1303 | |
---|
1304 | ! |
---|
1305 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1306 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1307 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1308 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1309 | te_m(k,j,i) = tend(k,j,i) |
---|
1310 | ENDDO |
---|
1311 | ELSEIF ( intermediate_timestep_count < & |
---|
1312 | intermediate_timestep_count_max ) THEN |
---|
1313 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1314 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1315 | 5.3125 * te_m(k,j,i) |
---|
1316 | ENDDO |
---|
1317 | ENDIF |
---|
1318 | ENDIF |
---|
1319 | |
---|
1320 | ENDIF ! TKE equation |
---|
1321 | |
---|
1322 | ENDDO |
---|
1323 | ENDDO |
---|
1324 | !$OMP END PARALLEL |
---|
1325 | |
---|
1326 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
1327 | |
---|
1328 | |
---|
1329 | END SUBROUTINE prognostic_equations_cache |
---|
1330 | |
---|
1331 | |
---|
1332 | SUBROUTINE prognostic_equations_vector |
---|
1333 | |
---|
1334 | !------------------------------------------------------------------------------! |
---|
1335 | ! Version for vector machines |
---|
1336 | !------------------------------------------------------------------------------! |
---|
1337 | |
---|
1338 | IMPLICIT NONE |
---|
1339 | |
---|
1340 | CHARACTER (LEN=9) :: time_to_string |
---|
1341 | INTEGER :: i, j, k |
---|
1342 | REAL :: sat, sbt |
---|
1343 | |
---|
1344 | ! |
---|
1345 | !-- Calculate those variables needed in the tendency terms which need |
---|
1346 | !-- global communication |
---|
1347 | CALL calc_mean_profile( pt, 4 ) |
---|
1348 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
1349 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
1350 | |
---|
1351 | ! |
---|
1352 | !-- u-velocity component |
---|
1353 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
1354 | |
---|
1355 | ! |
---|
1356 | !-- u-tendency terms with communication |
---|
1357 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1358 | tend = 0.0 |
---|
1359 | CALL advec_u_ups |
---|
1360 | ENDIF |
---|
1361 | |
---|
1362 | ! |
---|
1363 | !-- u-tendency terms with no communication |
---|
1364 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1365 | tend = 0.0 |
---|
1366 | CALL advec_u_pw |
---|
1367 | ELSE |
---|
1368 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1369 | tend = 0.0 |
---|
1370 | CALL advec_u_up |
---|
1371 | ENDIF |
---|
1372 | ENDIF |
---|
1373 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1374 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, & |
---|
1375 | uswst_m, v_m, w_m ) |
---|
1376 | ELSE |
---|
1377 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, uswst, v, w ) |
---|
1378 | ENDIF |
---|
1379 | CALL coriolis( 1 ) |
---|
1380 | IF ( sloping_surface ) CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
1381 | |
---|
1382 | ! |
---|
1383 | !-- Drag by plant canopy |
---|
1384 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
1385 | |
---|
1386 | ! |
---|
1387 | !-- External pressure gradient |
---|
1388 | IF ( dp_external ) THEN |
---|
1389 | DO i = nxlu, nxr |
---|
1390 | DO j = nys, nyn |
---|
1391 | DO k = dp_level_ind_b+1, nzt |
---|
1392 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
1393 | ENDDO |
---|
1394 | ENDDO |
---|
1395 | ENDDO |
---|
1396 | ENDIF |
---|
1397 | |
---|
1398 | CALL user_actions( 'u-tendency' ) |
---|
1399 | |
---|
1400 | ! |
---|
1401 | !-- Prognostic equation for u-velocity component |
---|
1402 | DO i = nxlu, nxr |
---|
1403 | DO j = nys, nyn |
---|
1404 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1405 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
1406 | dt_3d * ( & |
---|
1407 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
1408 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
1409 | ) - & |
---|
1410 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
1411 | ENDDO |
---|
1412 | ENDDO |
---|
1413 | ENDDO |
---|
1414 | |
---|
1415 | ! |
---|
1416 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1417 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1418 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1419 | DO i = nxlu, nxr |
---|
1420 | DO j = nys, nyn |
---|
1421 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1422 | tu_m(k,j,i) = tend(k,j,i) |
---|
1423 | ENDDO |
---|
1424 | ENDDO |
---|
1425 | ENDDO |
---|
1426 | ELSEIF ( intermediate_timestep_count < & |
---|
1427 | intermediate_timestep_count_max ) THEN |
---|
1428 | DO i = nxlu, nxr |
---|
1429 | DO j = nys, nyn |
---|
1430 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1431 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
1432 | ENDDO |
---|
1433 | ENDDO |
---|
1434 | ENDDO |
---|
1435 | ENDIF |
---|
1436 | ENDIF |
---|
1437 | |
---|
1438 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
1439 | |
---|
1440 | ! |
---|
1441 | !-- v-velocity component |
---|
1442 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
1443 | |
---|
1444 | ! |
---|
1445 | !-- v-tendency terms with communication |
---|
1446 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1447 | tend = 0.0 |
---|
1448 | CALL advec_v_ups |
---|
1449 | ENDIF |
---|
1450 | |
---|
1451 | ! |
---|
1452 | !-- v-tendency terms with no communication |
---|
1453 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1454 | tend = 0.0 |
---|
1455 | CALL advec_v_pw |
---|
1456 | ELSE |
---|
1457 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1458 | tend = 0.0 |
---|
1459 | CALL advec_v_up |
---|
1460 | ENDIF |
---|
1461 | ENDIF |
---|
1462 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1463 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
1464 | vswst_m, w_m ) |
---|
1465 | ELSE |
---|
1466 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, vswst, w ) |
---|
1467 | ENDIF |
---|
1468 | CALL coriolis( 2 ) |
---|
1469 | |
---|
1470 | ! |
---|
1471 | !-- Drag by plant canopy |
---|
1472 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
1473 | |
---|
1474 | ! |
---|
1475 | !-- External pressure gradient |
---|
1476 | IF ( dp_external ) THEN |
---|
1477 | DO i = nxl, nxr |
---|
1478 | DO j = nysv, nyn |
---|
1479 | DO k = dp_level_ind_b+1, nzt |
---|
1480 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
1481 | ENDDO |
---|
1482 | ENDDO |
---|
1483 | ENDDO |
---|
1484 | ENDIF |
---|
1485 | |
---|
1486 | CALL user_actions( 'v-tendency' ) |
---|
1487 | |
---|
1488 | ! |
---|
1489 | !-- Prognostic equation for v-velocity component |
---|
1490 | DO i = nxl, nxr |
---|
1491 | DO j = nysv, nyn |
---|
1492 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1493 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
1494 | dt_3d * ( & |
---|
1495 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
1496 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
1497 | ) - & |
---|
1498 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
1499 | ENDDO |
---|
1500 | ENDDO |
---|
1501 | ENDDO |
---|
1502 | |
---|
1503 | ! |
---|
1504 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1505 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1506 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1507 | DO i = nxl, nxr |
---|
1508 | DO j = nysv, nyn |
---|
1509 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1510 | tv_m(k,j,i) = tend(k,j,i) |
---|
1511 | ENDDO |
---|
1512 | ENDDO |
---|
1513 | ENDDO |
---|
1514 | ELSEIF ( intermediate_timestep_count < & |
---|
1515 | intermediate_timestep_count_max ) THEN |
---|
1516 | DO i = nxl, nxr |
---|
1517 | DO j = nysv, nyn |
---|
1518 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1519 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
1520 | ENDDO |
---|
1521 | ENDDO |
---|
1522 | ENDDO |
---|
1523 | ENDIF |
---|
1524 | ENDIF |
---|
1525 | |
---|
1526 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
1527 | |
---|
1528 | ! |
---|
1529 | !-- w-velocity component |
---|
1530 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
1531 | |
---|
1532 | ! |
---|
1533 | !-- w-tendency terms with communication |
---|
1534 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1535 | tend = 0.0 |
---|
1536 | CALL advec_w_ups |
---|
1537 | ENDIF |
---|
1538 | |
---|
1539 | ! |
---|
1540 | !-- w-tendency terms with no communication |
---|
1541 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1542 | tend = 0.0 |
---|
1543 | CALL advec_w_pw |
---|
1544 | ELSE |
---|
1545 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1546 | tend = 0.0 |
---|
1547 | CALL advec_w_up |
---|
1548 | ENDIF |
---|
1549 | ENDIF |
---|
1550 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1551 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
1552 | v_m, w_m ) |
---|
1553 | ELSE |
---|
1554 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w ) |
---|
1555 | ENDIF |
---|
1556 | CALL coriolis( 3 ) |
---|
1557 | IF ( ocean ) THEN |
---|
1558 | CALL buoyancy( rho, rho_reference, 3, 64 ) |
---|
1559 | ELSE |
---|
1560 | IF ( .NOT. humidity ) THEN |
---|
1561 | CALL buoyancy( pt, pt_reference, 3, 4 ) |
---|
1562 | ELSE |
---|
1563 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
1564 | ENDIF |
---|
1565 | ENDIF |
---|
1566 | |
---|
1567 | ! |
---|
1568 | !-- Drag by plant canopy |
---|
1569 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
1570 | |
---|
1571 | CALL user_actions( 'w-tendency' ) |
---|
1572 | |
---|
1573 | ! |
---|
1574 | !-- Prognostic equation for w-velocity component |
---|
1575 | DO i = nxl, nxr |
---|
1576 | DO j = nys, nyn |
---|
1577 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1578 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
1579 | dt_3d * ( & |
---|
1580 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
1581 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
1582 | ) - & |
---|
1583 | tsc(5) * rdf(k) * w(k,j,i) |
---|
1584 | ENDDO |
---|
1585 | ENDDO |
---|
1586 | ENDDO |
---|
1587 | |
---|
1588 | ! |
---|
1589 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1590 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1591 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1592 | DO i = nxl, nxr |
---|
1593 | DO j = nys, nyn |
---|
1594 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1595 | tw_m(k,j,i) = tend(k,j,i) |
---|
1596 | ENDDO |
---|
1597 | ENDDO |
---|
1598 | ENDDO |
---|
1599 | ELSEIF ( intermediate_timestep_count < & |
---|
1600 | intermediate_timestep_count_max ) THEN |
---|
1601 | DO i = nxl, nxr |
---|
1602 | DO j = nys, nyn |
---|
1603 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1604 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1605 | ENDDO |
---|
1606 | ENDDO |
---|
1607 | ENDDO |
---|
1608 | ENDIF |
---|
1609 | ENDIF |
---|
1610 | |
---|
1611 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
1612 | |
---|
1613 | ! |
---|
1614 | !-- potential temperature |
---|
1615 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
1616 | |
---|
1617 | ! |
---|
1618 | !-- pt-tendency terms with communication |
---|
1619 | sat = tsc(1) |
---|
1620 | sbt = tsc(2) |
---|
1621 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1622 | |
---|
1623 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1624 | ! |
---|
1625 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1626 | !-- switched on. Thus: |
---|
1627 | sat = 1.0 |
---|
1628 | sbt = 1.0 |
---|
1629 | ENDIF |
---|
1630 | tend = 0.0 |
---|
1631 | CALL advec_s_bc( pt, 'pt' ) |
---|
1632 | ELSE |
---|
1633 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
1634 | tend = 0.0 |
---|
1635 | CALL advec_s_ups( pt, 'pt' ) |
---|
1636 | ENDIF |
---|
1637 | ENDIF |
---|
1638 | |
---|
1639 | ! |
---|
1640 | !-- pt-tendency terms with no communication |
---|
1641 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1642 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
1643 | tend ) |
---|
1644 | ELSE |
---|
1645 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1646 | tend = 0.0 |
---|
1647 | CALL advec_s_pw( pt ) |
---|
1648 | ELSE |
---|
1649 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1650 | tend = 0.0 |
---|
1651 | CALL advec_s_up( pt ) |
---|
1652 | ENDIF |
---|
1653 | ENDIF |
---|
1654 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1655 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tswst_m, & |
---|
1656 | wall_heatflux, tend ) |
---|
1657 | ELSE |
---|
1658 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
1659 | tend ) |
---|
1660 | ENDIF |
---|
1661 | ENDIF |
---|
1662 | |
---|
1663 | ! |
---|
1664 | !-- If required compute heating/cooling due to long wave radiation |
---|
1665 | !-- processes |
---|
1666 | IF ( radiation ) THEN |
---|
1667 | CALL calc_radiation |
---|
1668 | ENDIF |
---|
1669 | |
---|
1670 | ! |
---|
1671 | !-- If required compute impact of latent heat due to precipitation |
---|
1672 | IF ( precipitation ) THEN |
---|
1673 | CALL impact_of_latent_heat |
---|
1674 | ENDIF |
---|
1675 | |
---|
1676 | ! |
---|
1677 | !-- Consideration of heat sources within the plant canopy |
---|
1678 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
1679 | CALL plant_canopy_model( 4 ) |
---|
1680 | ENDIF |
---|
1681 | |
---|
1682 | |
---|
1683 | CALL user_actions( 'pt-tendency' ) |
---|
1684 | |
---|
1685 | ! |
---|
1686 | !-- Prognostic equation for potential temperature |
---|
1687 | DO i = nxl, nxr |
---|
1688 | DO j = nys, nyn |
---|
1689 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1690 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
1691 | dt_3d * ( & |
---|
1692 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
1693 | ) - & |
---|
1694 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
1695 | ENDDO |
---|
1696 | ENDDO |
---|
1697 | ENDDO |
---|
1698 | |
---|
1699 | ! |
---|
1700 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1701 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1702 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1703 | DO i = nxl, nxr |
---|
1704 | DO j = nys, nyn |
---|
1705 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1706 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1707 | ENDDO |
---|
1708 | ENDDO |
---|
1709 | ENDDO |
---|
1710 | ELSEIF ( intermediate_timestep_count < & |
---|
1711 | intermediate_timestep_count_max ) THEN |
---|
1712 | DO i = nxl, nxr |
---|
1713 | DO j = nys, nyn |
---|
1714 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1715 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
1716 | ENDDO |
---|
1717 | ENDDO |
---|
1718 | ENDDO |
---|
1719 | ENDIF |
---|
1720 | ENDIF |
---|
1721 | |
---|
1722 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
1723 | |
---|
1724 | ! |
---|
1725 | !-- If required, compute prognostic equation for salinity |
---|
1726 | IF ( ocean ) THEN |
---|
1727 | |
---|
1728 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
1729 | |
---|
1730 | ! |
---|
1731 | !-- sa-tendency terms with communication |
---|
1732 | sat = tsc(1) |
---|
1733 | sbt = tsc(2) |
---|
1734 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1735 | |
---|
1736 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1737 | ! |
---|
1738 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1739 | !-- switched on. Thus: |
---|
1740 | sat = 1.0 |
---|
1741 | sbt = 1.0 |
---|
1742 | ENDIF |
---|
1743 | tend = 0.0 |
---|
1744 | CALL advec_s_bc( sa, 'sa' ) |
---|
1745 | ELSE |
---|
1746 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1747 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1748 | tend = 0.0 |
---|
1749 | CALL advec_s_ups( sa, 'sa' ) |
---|
1750 | ENDIF |
---|
1751 | ENDIF |
---|
1752 | ENDIF |
---|
1753 | |
---|
1754 | ! |
---|
1755 | !-- sa-tendency terms with no communication |
---|
1756 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1757 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
1758 | wall_salinityflux, tend ) |
---|
1759 | ELSE |
---|
1760 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1761 | tend = 0.0 |
---|
1762 | CALL advec_s_pw( sa ) |
---|
1763 | ELSE |
---|
1764 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1765 | tend = 0.0 |
---|
1766 | CALL advec_s_up( sa ) |
---|
1767 | ENDIF |
---|
1768 | ENDIF |
---|
1769 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
1770 | wall_salinityflux, tend ) |
---|
1771 | ENDIF |
---|
1772 | |
---|
1773 | CALL user_actions( 'sa-tendency' ) |
---|
1774 | |
---|
1775 | ! |
---|
1776 | !-- Prognostic equation for salinity |
---|
1777 | DO i = nxl, nxr |
---|
1778 | DO j = nys, nyn |
---|
1779 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1780 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
1781 | dt_3d * ( & |
---|
1782 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
1783 | ) - & |
---|
1784 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
1785 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
1786 | ENDDO |
---|
1787 | ENDDO |
---|
1788 | ENDDO |
---|
1789 | |
---|
1790 | ! |
---|
1791 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1792 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1793 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1794 | DO i = nxl, nxr |
---|
1795 | DO j = nys, nyn |
---|
1796 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1797 | tsa_m(k,j,i) = tend(k,j,i) |
---|
1798 | ENDDO |
---|
1799 | ENDDO |
---|
1800 | ENDDO |
---|
1801 | ELSEIF ( intermediate_timestep_count < & |
---|
1802 | intermediate_timestep_count_max ) THEN |
---|
1803 | DO i = nxl, nxr |
---|
1804 | DO j = nys, nyn |
---|
1805 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1806 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1807 | 5.3125 * tsa_m(k,j,i) |
---|
1808 | ENDDO |
---|
1809 | ENDDO |
---|
1810 | ENDDO |
---|
1811 | ENDIF |
---|
1812 | ENDIF |
---|
1813 | |
---|
1814 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
1815 | |
---|
1816 | ! |
---|
1817 | !-- Calculate density by the equation of state for seawater |
---|
1818 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
1819 | CALL eqn_state_seawater |
---|
1820 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
1821 | |
---|
1822 | ENDIF |
---|
1823 | |
---|
1824 | ! |
---|
1825 | !-- If required, compute prognostic equation for total water content / scalar |
---|
1826 | IF ( humidity .OR. passive_scalar ) THEN |
---|
1827 | |
---|
1828 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
1829 | |
---|
1830 | ! |
---|
1831 | !-- Scalar/q-tendency terms with communication |
---|
1832 | sat = tsc(1) |
---|
1833 | sbt = tsc(2) |
---|
1834 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1835 | |
---|
1836 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1837 | ! |
---|
1838 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1839 | !-- switched on. Thus: |
---|
1840 | sat = 1.0 |
---|
1841 | sbt = 1.0 |
---|
1842 | ENDIF |
---|
1843 | tend = 0.0 |
---|
1844 | CALL advec_s_bc( q, 'q' ) |
---|
1845 | ELSE |
---|
1846 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1847 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1848 | tend = 0.0 |
---|
1849 | CALL advec_s_ups( q, 'q' ) |
---|
1850 | ENDIF |
---|
1851 | ENDIF |
---|
1852 | ENDIF |
---|
1853 | |
---|
1854 | ! |
---|
1855 | !-- Scalar/q-tendency terms with no communication |
---|
1856 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1857 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, wall_qflux, tend ) |
---|
1858 | ELSE |
---|
1859 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1860 | tend = 0.0 |
---|
1861 | CALL advec_s_pw( q ) |
---|
1862 | ELSE |
---|
1863 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1864 | tend = 0.0 |
---|
1865 | CALL advec_s_up( q ) |
---|
1866 | ENDIF |
---|
1867 | ENDIF |
---|
1868 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1869 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, qswst_m, & |
---|
1870 | wall_qflux, tend ) |
---|
1871 | ELSE |
---|
1872 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, & |
---|
1873 | wall_qflux, tend ) |
---|
1874 | ENDIF |
---|
1875 | ENDIF |
---|
1876 | |
---|
1877 | ! |
---|
1878 | !-- If required compute decrease of total water content due to |
---|
1879 | !-- precipitation |
---|
1880 | IF ( precipitation ) THEN |
---|
1881 | CALL calc_precipitation |
---|
1882 | ENDIF |
---|
1883 | |
---|
1884 | ! |
---|
1885 | !-- Sink or source of scalar concentration due to canopy elements |
---|
1886 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
1887 | |
---|
1888 | CALL user_actions( 'q-tendency' ) |
---|
1889 | |
---|
1890 | ! |
---|
1891 | !-- Prognostic equation for total water content / scalar |
---|
1892 | DO i = nxl, nxr |
---|
1893 | DO j = nys, nyn |
---|
1894 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1895 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
1896 | dt_3d * ( & |
---|
1897 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
1898 | ) - & |
---|
1899 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
1900 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
1901 | ENDDO |
---|
1902 | ENDDO |
---|
1903 | ENDDO |
---|
1904 | |
---|
1905 | ! |
---|
1906 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1907 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1908 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1909 | DO i = nxl, nxr |
---|
1910 | DO j = nys, nyn |
---|
1911 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1912 | tq_m(k,j,i) = tend(k,j,i) |
---|
1913 | ENDDO |
---|
1914 | ENDDO |
---|
1915 | ENDDO |
---|
1916 | ELSEIF ( intermediate_timestep_count < & |
---|
1917 | intermediate_timestep_count_max ) THEN |
---|
1918 | DO i = nxl, nxr |
---|
1919 | DO j = nys, nyn |
---|
1920 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1921 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
1922 | ENDDO |
---|
1923 | ENDDO |
---|
1924 | ENDDO |
---|
1925 | ENDIF |
---|
1926 | ENDIF |
---|
1927 | |
---|
1928 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
1929 | |
---|
1930 | ENDIF |
---|
1931 | |
---|
1932 | ! |
---|
1933 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1934 | !-- energy (TKE) |
---|
1935 | IF ( .NOT. constant_diffusion ) THEN |
---|
1936 | |
---|
1937 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
1938 | |
---|
1939 | ! |
---|
1940 | !-- TKE-tendency terms with communication |
---|
1941 | CALL production_e_init |
---|
1942 | |
---|
1943 | sat = tsc(1) |
---|
1944 | sbt = tsc(2) |
---|
1945 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
1946 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1947 | |
---|
1948 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1949 | ! |
---|
1950 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1951 | !-- switched on. Thus: |
---|
1952 | sat = 1.0 |
---|
1953 | sbt = 1.0 |
---|
1954 | ENDIF |
---|
1955 | tend = 0.0 |
---|
1956 | CALL advec_s_bc( e, 'e' ) |
---|
1957 | ELSE |
---|
1958 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1959 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1960 | tend = 0.0 |
---|
1961 | CALL advec_s_ups( e, 'e' ) |
---|
1962 | ENDIF |
---|
1963 | ENDIF |
---|
1964 | ENDIF |
---|
1965 | ENDIF |
---|
1966 | |
---|
1967 | ! |
---|
1968 | !-- TKE-tendency terms with no communication |
---|
1969 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
1970 | THEN |
---|
1971 | IF ( .NOT. humidity ) THEN |
---|
1972 | IF ( ocean ) THEN |
---|
1973 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
1974 | prho, prho_reference, rif, tend, zu, zw ) |
---|
1975 | ELSE |
---|
1976 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
1977 | pt_reference, rif, tend, zu, zw ) |
---|
1978 | ENDIF |
---|
1979 | ELSE |
---|
1980 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
1981 | pt_reference, rif, tend, zu, zw ) |
---|
1982 | ENDIF |
---|
1983 | ELSE |
---|
1984 | IF ( use_upstream_for_tke ) THEN |
---|
1985 | tend = 0.0 |
---|
1986 | CALL advec_s_up( e ) |
---|
1987 | ELSE |
---|
1988 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1989 | tend = 0.0 |
---|
1990 | CALL advec_s_pw( e ) |
---|
1991 | ELSE |
---|
1992 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1993 | tend = 0.0 |
---|
1994 | CALL advec_s_up( e ) |
---|
1995 | ENDIF |
---|
1996 | ENDIF |
---|
1997 | ENDIF |
---|
1998 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1999 | IF ( .NOT. humidity ) THEN |
---|
2000 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
2001 | pt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
2002 | ELSE |
---|
2003 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
2004 | vpt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
2005 | ENDIF |
---|
2006 | ELSE |
---|
2007 | IF ( .NOT. humidity ) THEN |
---|
2008 | IF ( ocean ) THEN |
---|
2009 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
2010 | prho, prho_reference, rif, tend, zu, zw ) |
---|
2011 | ELSE |
---|
2012 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
2013 | pt, pt_reference, rif, tend, zu, zw ) |
---|
2014 | ENDIF |
---|
2015 | ELSE |
---|
2016 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
2017 | pt_reference, rif, tend, zu, zw ) |
---|
2018 | ENDIF |
---|
2019 | ENDIF |
---|
2020 | ENDIF |
---|
2021 | CALL production_e |
---|
2022 | |
---|
2023 | ! |
---|
2024 | !-- Additional sink term for flows through plant canopies |
---|
2025 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
2026 | CALL user_actions( 'e-tendency' ) |
---|
2027 | |
---|
2028 | ! |
---|
2029 | !-- Prognostic equation for TKE. |
---|
2030 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
2031 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
2032 | !-- value is reduced by 90%. |
---|
2033 | DO i = nxl, nxr |
---|
2034 | DO j = nys, nyn |
---|
2035 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2036 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
2037 | dt_3d * ( & |
---|
2038 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
2039 | ) |
---|
2040 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
2041 | ENDDO |
---|
2042 | ENDDO |
---|
2043 | ENDDO |
---|
2044 | |
---|
2045 | ! |
---|
2046 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2047 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2048 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2049 | DO i = nxl, nxr |
---|
2050 | DO j = nys, nyn |
---|
2051 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2052 | te_m(k,j,i) = tend(k,j,i) |
---|
2053 | ENDDO |
---|
2054 | ENDDO |
---|
2055 | ENDDO |
---|
2056 | ELSEIF ( intermediate_timestep_count < & |
---|
2057 | intermediate_timestep_count_max ) THEN |
---|
2058 | DO i = nxl, nxr |
---|
2059 | DO j = nys, nyn |
---|
2060 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2061 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
2062 | ENDDO |
---|
2063 | ENDDO |
---|
2064 | ENDDO |
---|
2065 | ENDIF |
---|
2066 | ENDIF |
---|
2067 | |
---|
2068 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
2069 | |
---|
2070 | ENDIF |
---|
2071 | |
---|
2072 | |
---|
2073 | END SUBROUTINE prognostic_equations_vector |
---|
2074 | |
---|
2075 | |
---|
2076 | END MODULE prognostic_equations_mod |
---|