1 | !> @file prognostic_equations.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: prognostic_equations.f90 2119 2017-01-17 16:51:50Z raasch $ |
---|
27 | ! |
---|
28 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
29 | ! OpenACC version of subroutine removed |
---|
30 | ! |
---|
31 | ! 2031 2016-10-21 15:11:58Z knoop |
---|
32 | ! renamed variable rho to rho_ocean |
---|
33 | ! |
---|
34 | ! 2011 2016-09-19 17:29:57Z kanani |
---|
35 | ! Flag urban_surface is now defined in module control_parameters. |
---|
36 | ! |
---|
37 | ! 2007 2016-08-24 15:47:17Z kanani |
---|
38 | ! Added pt tendency calculation based on energy balance at urban surfaces |
---|
39 | ! (new urban surface model) |
---|
40 | ! |
---|
41 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
42 | ! Forced header and separation lines into 80 columns |
---|
43 | ! |
---|
44 | ! 1976 2016-07-27 13:28:04Z maronga |
---|
45 | ! Simplied calls to radiation model |
---|
46 | ! |
---|
47 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
48 | ! Separate humidity and passive scalar |
---|
49 | ! |
---|
50 | ! 1914 2016-05-26 14:44:07Z witha |
---|
51 | ! Added calls for wind turbine model |
---|
52 | ! |
---|
53 | ! 1873 2016-04-18 14:50:06Z maronga |
---|
54 | ! Module renamed (removed _mod) |
---|
55 | ! |
---|
56 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
57 | ! Module renamed |
---|
58 | ! |
---|
59 | ! 1826 2016-04-07 12:01:39Z maronga |
---|
60 | ! Renamed canopy model calls. |
---|
61 | ! |
---|
62 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
63 | ! Kessler microphysics scheme moved to microphysics. |
---|
64 | ! |
---|
65 | ! 1757 2016-02-22 15:49:32Z maronga |
---|
66 | ! |
---|
67 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
68 | ! Added optional model spin-up without radiation / land surface model calls. |
---|
69 | ! Formatting corrections. |
---|
70 | ! |
---|
71 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
72 | ! Code annotations made doxygen readable |
---|
73 | ! |
---|
74 | ! 1585 2015-04-30 07:05:52Z maronga |
---|
75 | ! Added call for temperature tendency calculation due to radiative flux divergence |
---|
76 | ! |
---|
77 | ! 1517 2015-01-07 19:12:25Z hoffmann |
---|
78 | ! advec_s_bc_mod addded, since advec_s_bc is now a module |
---|
79 | ! |
---|
80 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
81 | ! Renamed "radiation" -> "cloud_top_radiation" |
---|
82 | ! |
---|
83 | ! 1484 2014-10-21 10:53:05Z kanani |
---|
84 | ! Changes due to new module structure of the plant canopy model: |
---|
85 | ! parameters cthf and plant_canopy moved to module plant_canopy_model_mod. |
---|
86 | ! Removed double-listing of use_upstream_for_tke in ONLY-list of module |
---|
87 | ! control_parameters |
---|
88 | ! |
---|
89 | ! 1409 2014-05-23 12:11:32Z suehring |
---|
90 | ! Bugfix: i_omp_start changed for advec_u_ws at left inflow and outflow boundary. |
---|
91 | ! This ensures that left-hand side fluxes are also calculated for nxl in that |
---|
92 | ! case, even though the solution at nxl is overwritten in boundary_conds() |
---|
93 | ! |
---|
94 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
95 | ! Rayleigh-damping for horizontal velocity components changed: instead of damping |
---|
96 | ! against ug and vg, damping against u_init and v_init is used to allow for a |
---|
97 | ! homogenized treatment in case of nudging |
---|
98 | ! |
---|
99 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
100 | ! Change order of calls for scalar prognostic quantities: |
---|
101 | ! ls_advec -> nudging -> subsidence since initial profiles |
---|
102 | ! |
---|
103 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
104 | ! missing variables added to ONLY lists |
---|
105 | ! |
---|
106 | ! 1365 2014-04-22 15:03:56Z boeske |
---|
107 | ! Calls of ls_advec for large scale advection added, |
---|
108 | ! subroutine subsidence is only called if use_subsidence_tendencies = .F., |
---|
109 | ! new argument ls_index added to the calls of subsidence |
---|
110 | ! +ls_index |
---|
111 | ! |
---|
112 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
113 | ! Two-moment microphysics moved to the start of prognostic equations. This makes |
---|
114 | ! the 3d arrays for tend_q, tend_qr, tend_pt and tend_pt redundant. |
---|
115 | ! Additionally, it is allowed to call the microphysics just once during the time |
---|
116 | ! step (not at each sub-time step). |
---|
117 | ! |
---|
118 | ! Two-moment cloud physics added for vector and accelerator optimization. |
---|
119 | ! |
---|
120 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
121 | ! REAL constants provided with KIND-attribute |
---|
122 | ! |
---|
123 | ! 1337 2014-03-25 15:11:48Z heinze |
---|
124 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
125 | ! |
---|
126 | ! 1332 2014-03-25 11:59:43Z suehring |
---|
127 | ! Bugfix: call advec_ws or advec_pw for TKE only if NOT use_upstream_for_tke |
---|
128 | ! |
---|
129 | ! 1330 2014-03-24 17:29:32Z suehring |
---|
130 | ! In case of SGS-particle velocity advection of TKE is also allowed with |
---|
131 | ! dissipative 5th-order scheme. |
---|
132 | ! |
---|
133 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
134 | ! ONLY-attribute added to USE-statements, |
---|
135 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
136 | ! kinds are defined in new module kinds, |
---|
137 | ! old module precision_kind is removed, |
---|
138 | ! revision history before 2012 removed, |
---|
139 | ! comment fields (!:) to be used for variable explanations added to |
---|
140 | ! all variable declaration statements |
---|
141 | ! |
---|
142 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
143 | ! module interfaces removed |
---|
144 | ! |
---|
145 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
146 | ! openacc loop vector clauses removed, independent clauses added |
---|
147 | ! |
---|
148 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
149 | ! enable nudging also for accelerator version |
---|
150 | ! |
---|
151 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
152 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
153 | ! |
---|
154 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
155 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
156 | ! |
---|
157 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
158 | ! those parts requiring global communication moved to time_integration, |
---|
159 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
160 | ! j_north |
---|
161 | ! |
---|
162 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
163 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
164 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
165 | ! |
---|
166 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
167 | ! update directives for prognostic quantities removed |
---|
168 | ! |
---|
169 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
170 | ! small changes in code formatting |
---|
171 | ! |
---|
172 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
173 | ! unused variables removed |
---|
174 | ! |
---|
175 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
176 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
177 | ! and rain water content (qr) |
---|
178 | ! |
---|
179 | ! currently, only available for cache loop optimization |
---|
180 | ! |
---|
181 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
182 | ! code put under GPL (PALM 3.9) |
---|
183 | ! |
---|
184 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
185 | ! non-optimized version of prognostic_equations removed |
---|
186 | ! |
---|
187 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
188 | ! new branch prognostic_equations_acc |
---|
189 | ! OpenACC statements added + code changes required for GPU optimization |
---|
190 | ! |
---|
191 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
192 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
193 | ! |
---|
194 | ! 978 2012-08-09 08:28:32Z fricke |
---|
195 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
196 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
197 | ! boundary in case of non-cyclic lateral boundaries |
---|
198 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
199 | ! |
---|
200 | ! 940 2012-07-09 14:31:00Z raasch |
---|
201 | ! temperature equation can be switched off |
---|
202 | ! |
---|
203 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
204 | ! Initial revision |
---|
205 | ! |
---|
206 | ! |
---|
207 | ! Description: |
---|
208 | ! ------------ |
---|
209 | !> Solving the prognostic equations. |
---|
210 | !------------------------------------------------------------------------------! |
---|
211 | MODULE prognostic_equations_mod |
---|
212 | |
---|
213 | |
---|
214 | |
---|
215 | USE arrays_3d, & |
---|
216 | ONLY: diss_l_e, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qr, & |
---|
217 | diss_l_s, diss_l_sa, diss_s_e, diss_s_nr, diss_s_pt, diss_s_q, & |
---|
218 | diss_s_qr, diss_s_s, diss_s_sa, e, e_p, flux_s_e, flux_s_nr, & |
---|
219 | flux_s_pt, flux_s_q, flux_s_qr, flux_s_s, flux_s_sa, flux_l_e, & |
---|
220 | flux_l_nr, flux_l_pt, flux_l_q, flux_l_qr, flux_l_s, flux_l_sa, & |
---|
221 | nr, nr_p, nrsws, nrswst, pt, ptdf_x, ptdf_y, pt_init, pt_p, & |
---|
222 | prho, q, q_init, q_p, qsws, qswst, qr, qr_p, qrsws, qrswst, rdf,& |
---|
223 | rdf_sc, ref_state, rho_ocean, s, s_init, s_p, sa, sa_init, sa_p, & |
---|
224 | saswsb, saswst, shf, ssws, sswst, tend, & |
---|
225 | te_m, tnr_m, tpt_m, tq_m, tqr_m, ts_m, tsa_m, tswst, tu_m, tv_m,& |
---|
226 | tw_m, u, ug, u_init, u_p, v, vg, vpt, v_init, v_p, w, w_p |
---|
227 | |
---|
228 | USE control_parameters, & |
---|
229 | ONLY: call_microphysics_at_all_substeps, cloud_physics, & |
---|
230 | cloud_top_radiation, constant_diffusion, dp_external, & |
---|
231 | dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, humidity, & |
---|
232 | inflow_l, intermediate_timestep_count, & |
---|
233 | intermediate_timestep_count_max, large_scale_forcing, & |
---|
234 | large_scale_subsidence, microphysics_seifert, & |
---|
235 | microphysics_sat_adjust, neutral, nudging, ocean, outflow_l, & |
---|
236 | outflow_s, passive_scalar, prho_reference, prho_reference, & |
---|
237 | prho_reference, pt_reference, pt_reference, pt_reference, & |
---|
238 | scalar_advec, scalar_advec, simulated_time, sloping_surface, & |
---|
239 | timestep_scheme, tsc, urban_surface, use_subsidence_tendencies, & |
---|
240 | use_upstream_for_tke, wall_heatflux, & |
---|
241 | wall_nrflux, wall_qflux, wall_qflux, wall_qflux, wall_qrflux, & |
---|
242 | wall_salinityflux, wall_sflux, ws_scheme_mom, ws_scheme_sca |
---|
243 | |
---|
244 | USE cpulog, & |
---|
245 | ONLY: cpu_log, log_point |
---|
246 | |
---|
247 | USE eqn_state_seawater_mod, & |
---|
248 | ONLY: eqn_state_seawater |
---|
249 | |
---|
250 | USE indices, & |
---|
251 | ONLY: nxl, nxlu, nxr, nyn, nys, nysv, nzb_s_inner, nzb_u_inner, & |
---|
252 | nzb_v_inner, nzb_w_inner, nzt |
---|
253 | |
---|
254 | USE advec_ws, & |
---|
255 | ONLY: advec_s_ws, advec_u_ws, advec_v_ws, advec_w_ws |
---|
256 | |
---|
257 | USE advec_s_bc_mod, & |
---|
258 | ONLY: advec_s_bc |
---|
259 | |
---|
260 | USE advec_s_pw_mod, & |
---|
261 | ONLY: advec_s_pw |
---|
262 | |
---|
263 | USE advec_s_up_mod, & |
---|
264 | ONLY: advec_s_up |
---|
265 | |
---|
266 | USE advec_u_pw_mod, & |
---|
267 | ONLY: advec_u_pw |
---|
268 | |
---|
269 | USE advec_u_up_mod, & |
---|
270 | ONLY: advec_u_up |
---|
271 | |
---|
272 | USE advec_v_pw_mod, & |
---|
273 | ONLY: advec_v_pw |
---|
274 | |
---|
275 | USE advec_v_up_mod, & |
---|
276 | ONLY: advec_v_up |
---|
277 | |
---|
278 | USE advec_w_pw_mod, & |
---|
279 | ONLY: advec_w_pw |
---|
280 | |
---|
281 | USE advec_w_up_mod, & |
---|
282 | ONLY: advec_w_up |
---|
283 | |
---|
284 | USE buoyancy_mod, & |
---|
285 | ONLY: buoyancy |
---|
286 | |
---|
287 | USE calc_radiation_mod, & |
---|
288 | ONLY: calc_radiation |
---|
289 | |
---|
290 | USE coriolis_mod, & |
---|
291 | ONLY: coriolis |
---|
292 | |
---|
293 | USE diffusion_e_mod, & |
---|
294 | ONLY: diffusion_e |
---|
295 | |
---|
296 | USE diffusion_s_mod, & |
---|
297 | ONLY: diffusion_s |
---|
298 | |
---|
299 | USE diffusion_u_mod, & |
---|
300 | ONLY: diffusion_u |
---|
301 | |
---|
302 | USE diffusion_v_mod, & |
---|
303 | ONLY: diffusion_v |
---|
304 | |
---|
305 | USE diffusion_w_mod, & |
---|
306 | ONLY: diffusion_w |
---|
307 | |
---|
308 | USE kinds |
---|
309 | |
---|
310 | USE ls_forcing_mod, & |
---|
311 | ONLY: ls_advec |
---|
312 | |
---|
313 | USE microphysics_mod, & |
---|
314 | ONLY: microphysics_control |
---|
315 | |
---|
316 | USE nudge_mod, & |
---|
317 | ONLY: nudge |
---|
318 | |
---|
319 | USE plant_canopy_model_mod, & |
---|
320 | ONLY: cthf, plant_canopy, pcm_tendency |
---|
321 | |
---|
322 | USE production_e_mod, & |
---|
323 | ONLY: production_e |
---|
324 | |
---|
325 | USE radiation_model_mod, & |
---|
326 | ONLY: radiation, radiation_tendency, & |
---|
327 | skip_time_do_radiation |
---|
328 | |
---|
329 | USE statistics, & |
---|
330 | ONLY: hom |
---|
331 | |
---|
332 | USE subsidence_mod, & |
---|
333 | ONLY: subsidence |
---|
334 | |
---|
335 | USE urban_surface_mod, & |
---|
336 | ONLY: usm_wall_heat_flux |
---|
337 | |
---|
338 | USE user_actions_mod, & |
---|
339 | ONLY: user_actions |
---|
340 | |
---|
341 | USE wind_turbine_model_mod, & |
---|
342 | ONLY: wind_turbine, wtm_tendencies |
---|
343 | |
---|
344 | |
---|
345 | PRIVATE |
---|
346 | PUBLIC prognostic_equations_cache, prognostic_equations_vector |
---|
347 | |
---|
348 | INTERFACE prognostic_equations_cache |
---|
349 | MODULE PROCEDURE prognostic_equations_cache |
---|
350 | END INTERFACE prognostic_equations_cache |
---|
351 | |
---|
352 | INTERFACE prognostic_equations_vector |
---|
353 | MODULE PROCEDURE prognostic_equations_vector |
---|
354 | END INTERFACE prognostic_equations_vector |
---|
355 | |
---|
356 | |
---|
357 | CONTAINS |
---|
358 | |
---|
359 | |
---|
360 | !------------------------------------------------------------------------------! |
---|
361 | ! Description: |
---|
362 | ! ------------ |
---|
363 | !> Version with one optimized loop over all equations. It is only allowed to |
---|
364 | !> be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
365 | !> |
---|
366 | !> Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
367 | !> so communication between CPUs is not allowed (does not make sense) within |
---|
368 | !> these loops. |
---|
369 | !> |
---|
370 | !> (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
371 | !------------------------------------------------------------------------------! |
---|
372 | |
---|
373 | SUBROUTINE prognostic_equations_cache |
---|
374 | |
---|
375 | |
---|
376 | IMPLICIT NONE |
---|
377 | |
---|
378 | INTEGER(iwp) :: i !< |
---|
379 | INTEGER(iwp) :: i_omp_start !< |
---|
380 | INTEGER(iwp) :: j !< |
---|
381 | INTEGER(iwp) :: k !< |
---|
382 | INTEGER(iwp) :: omp_get_thread_num !< |
---|
383 | INTEGER(iwp) :: tn = 0 !< |
---|
384 | |
---|
385 | LOGICAL :: loop_start !< |
---|
386 | |
---|
387 | |
---|
388 | ! |
---|
389 | !-- Time measurement can only be performed for the whole set of equations |
---|
390 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
391 | |
---|
392 | ! |
---|
393 | !-- Loop over all prognostic equations |
---|
394 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
395 | |
---|
396 | !$ tn = omp_get_thread_num() |
---|
397 | loop_start = .TRUE. |
---|
398 | !$OMP DO |
---|
399 | DO i = nxl, nxr |
---|
400 | |
---|
401 | ! |
---|
402 | !-- Store the first loop index. It differs for each thread and is required |
---|
403 | !-- later in advec_ws |
---|
404 | IF ( loop_start ) THEN |
---|
405 | loop_start = .FALSE. |
---|
406 | i_omp_start = i |
---|
407 | ENDIF |
---|
408 | |
---|
409 | DO j = nys, nyn |
---|
410 | ! |
---|
411 | !-- If required, calculate cloud microphysics |
---|
412 | IF ( cloud_physics .AND. .NOT. microphysics_sat_adjust .AND. & |
---|
413 | ( intermediate_timestep_count == 1 .OR. & |
---|
414 | call_microphysics_at_all_substeps ) & |
---|
415 | ) THEN |
---|
416 | CALL microphysics_control( i, j ) |
---|
417 | ENDIF |
---|
418 | ! |
---|
419 | !-- Tendency terms for u-velocity component |
---|
420 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
421 | |
---|
422 | tend(:,j,i) = 0.0_wp |
---|
423 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
424 | IF ( ws_scheme_mom ) THEN |
---|
425 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
426 | ELSE |
---|
427 | CALL advec_u_pw( i, j ) |
---|
428 | ENDIF |
---|
429 | ELSE |
---|
430 | CALL advec_u_up( i, j ) |
---|
431 | ENDIF |
---|
432 | CALL diffusion_u( i, j ) |
---|
433 | CALL coriolis( i, j, 1 ) |
---|
434 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
435 | CALL buoyancy( i, j, pt, 1 ) |
---|
436 | ENDIF |
---|
437 | |
---|
438 | ! |
---|
439 | !-- Drag by plant canopy |
---|
440 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 1 ) |
---|
441 | |
---|
442 | ! |
---|
443 | !-- External pressure gradient |
---|
444 | IF ( dp_external ) THEN |
---|
445 | DO k = dp_level_ind_b+1, nzt |
---|
446 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
447 | ENDDO |
---|
448 | ENDIF |
---|
449 | |
---|
450 | ! |
---|
451 | !-- Nudging |
---|
452 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
453 | |
---|
454 | ! |
---|
455 | !-- Forces by wind turbines |
---|
456 | IF ( wind_turbine ) CALL wtm_tendencies( i, j, 1 ) |
---|
457 | |
---|
458 | CALL user_actions( i, j, 'u-tendency' ) |
---|
459 | ! |
---|
460 | !-- Prognostic equation for u-velocity component |
---|
461 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
462 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
463 | tsc(3) * tu_m(k,j,i) ) & |
---|
464 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
465 | ENDDO |
---|
466 | |
---|
467 | ! |
---|
468 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
469 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
470 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
471 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
472 | tu_m(k,j,i) = tend(k,j,i) |
---|
473 | ENDDO |
---|
474 | ELSEIF ( intermediate_timestep_count < & |
---|
475 | intermediate_timestep_count_max ) THEN |
---|
476 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
477 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
478 | ENDDO |
---|
479 | ENDIF |
---|
480 | ENDIF |
---|
481 | |
---|
482 | ENDIF |
---|
483 | |
---|
484 | ! |
---|
485 | !-- Tendency terms for v-velocity component |
---|
486 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
487 | |
---|
488 | tend(:,j,i) = 0.0_wp |
---|
489 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
490 | IF ( ws_scheme_mom ) THEN |
---|
491 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
492 | ELSE |
---|
493 | CALL advec_v_pw( i, j ) |
---|
494 | ENDIF |
---|
495 | ELSE |
---|
496 | CALL advec_v_up( i, j ) |
---|
497 | ENDIF |
---|
498 | CALL diffusion_v( i, j ) |
---|
499 | CALL coriolis( i, j, 2 ) |
---|
500 | |
---|
501 | ! |
---|
502 | !-- Drag by plant canopy |
---|
503 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 2 ) |
---|
504 | |
---|
505 | ! |
---|
506 | !-- External pressure gradient |
---|
507 | IF ( dp_external ) THEN |
---|
508 | DO k = dp_level_ind_b+1, nzt |
---|
509 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
510 | ENDDO |
---|
511 | ENDIF |
---|
512 | |
---|
513 | ! |
---|
514 | !-- Nudging |
---|
515 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
516 | |
---|
517 | ! |
---|
518 | !-- Forces by wind turbines |
---|
519 | IF ( wind_turbine ) CALL wtm_tendencies( i, j, 2 ) |
---|
520 | |
---|
521 | CALL user_actions( i, j, 'v-tendency' ) |
---|
522 | ! |
---|
523 | !-- Prognostic equation for v-velocity component |
---|
524 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
525 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
526 | tsc(3) * tv_m(k,j,i) ) & |
---|
527 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
528 | ENDDO |
---|
529 | |
---|
530 | ! |
---|
531 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
532 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
533 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
534 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
535 | tv_m(k,j,i) = tend(k,j,i) |
---|
536 | ENDDO |
---|
537 | ELSEIF ( intermediate_timestep_count < & |
---|
538 | intermediate_timestep_count_max ) THEN |
---|
539 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
540 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
541 | ENDDO |
---|
542 | ENDIF |
---|
543 | ENDIF |
---|
544 | |
---|
545 | ENDIF |
---|
546 | |
---|
547 | ! |
---|
548 | !-- Tendency terms for w-velocity component |
---|
549 | tend(:,j,i) = 0.0_wp |
---|
550 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
551 | IF ( ws_scheme_mom ) THEN |
---|
552 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
553 | ELSE |
---|
554 | CALL advec_w_pw( i, j ) |
---|
555 | END IF |
---|
556 | ELSE |
---|
557 | CALL advec_w_up( i, j ) |
---|
558 | ENDIF |
---|
559 | CALL diffusion_w( i, j ) |
---|
560 | CALL coriolis( i, j, 3 ) |
---|
561 | |
---|
562 | IF ( .NOT. neutral ) THEN |
---|
563 | IF ( ocean ) THEN |
---|
564 | CALL buoyancy( i, j, rho_ocean, 3 ) |
---|
565 | ELSE |
---|
566 | IF ( .NOT. humidity ) THEN |
---|
567 | CALL buoyancy( i, j, pt, 3 ) |
---|
568 | ELSE |
---|
569 | CALL buoyancy( i, j, vpt, 3 ) |
---|
570 | ENDIF |
---|
571 | ENDIF |
---|
572 | ENDIF |
---|
573 | |
---|
574 | ! |
---|
575 | !-- Drag by plant canopy |
---|
576 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 3 ) |
---|
577 | |
---|
578 | ! |
---|
579 | !-- Forces by wind turbines |
---|
580 | IF ( wind_turbine ) CALL wtm_tendencies( i, j, 3 ) |
---|
581 | |
---|
582 | CALL user_actions( i, j, 'w-tendency' ) |
---|
583 | |
---|
584 | ! |
---|
585 | !-- Prognostic equation for w-velocity component |
---|
586 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
587 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
588 | tsc(3) * tw_m(k,j,i) ) & |
---|
589 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
590 | ENDDO |
---|
591 | |
---|
592 | ! |
---|
593 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
594 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
595 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
596 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
597 | tw_m(k,j,i) = tend(k,j,i) |
---|
598 | ENDDO |
---|
599 | ELSEIF ( intermediate_timestep_count < & |
---|
600 | intermediate_timestep_count_max ) THEN |
---|
601 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
602 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
603 | ENDDO |
---|
604 | ENDIF |
---|
605 | ENDIF |
---|
606 | |
---|
607 | ! |
---|
608 | !-- If required, compute prognostic equation for potential temperature |
---|
609 | IF ( .NOT. neutral ) THEN |
---|
610 | ! |
---|
611 | !-- Tendency terms for potential temperature |
---|
612 | tend(:,j,i) = 0.0_wp |
---|
613 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
614 | IF ( ws_scheme_sca ) THEN |
---|
615 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
616 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
617 | ELSE |
---|
618 | CALL advec_s_pw( i, j, pt ) |
---|
619 | ENDIF |
---|
620 | ELSE |
---|
621 | CALL advec_s_up( i, j, pt ) |
---|
622 | ENDIF |
---|
623 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
624 | |
---|
625 | ! |
---|
626 | !-- Tendency pt from wall heat flux from urban surface |
---|
627 | IF ( urban_surface ) THEN |
---|
628 | CALL usm_wall_heat_flux( i, j ) |
---|
629 | ENDIF |
---|
630 | |
---|
631 | ! |
---|
632 | !-- If required compute heating/cooling due to long wave radiation |
---|
633 | !-- processes |
---|
634 | IF ( cloud_top_radiation ) THEN |
---|
635 | CALL calc_radiation( i, j ) |
---|
636 | ENDIF |
---|
637 | |
---|
638 | ! |
---|
639 | !-- Consideration of heat sources within the plant canopy |
---|
640 | IF ( plant_canopy .AND. cthf /= 0.0_wp ) THEN |
---|
641 | CALL pcm_tendency( i, j, 4 ) |
---|
642 | ENDIF |
---|
643 | |
---|
644 | ! |
---|
645 | !-- Large scale advection |
---|
646 | IF ( large_scale_forcing ) THEN |
---|
647 | CALL ls_advec( i, j, simulated_time, 'pt' ) |
---|
648 | ENDIF |
---|
649 | |
---|
650 | ! |
---|
651 | !-- Nudging |
---|
652 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
653 | |
---|
654 | ! |
---|
655 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
656 | IF ( large_scale_subsidence .AND. & |
---|
657 | .NOT. use_subsidence_tendencies ) THEN |
---|
658 | CALL subsidence( i, j, tend, pt, pt_init, 2 ) |
---|
659 | ENDIF |
---|
660 | |
---|
661 | ! |
---|
662 | !-- If required, add tendency due to radiative heating/cooling |
---|
663 | IF ( radiation .AND. & |
---|
664 | simulated_time > skip_time_do_radiation ) THEN |
---|
665 | CALL radiation_tendency ( i, j, tend ) |
---|
666 | ENDIF |
---|
667 | |
---|
668 | |
---|
669 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
670 | |
---|
671 | ! |
---|
672 | !-- Prognostic equation for potential temperature |
---|
673 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
674 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
675 | tsc(3) * tpt_m(k,j,i) ) & |
---|
676 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
677 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
678 | ENDDO |
---|
679 | |
---|
680 | ! |
---|
681 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
682 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
683 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
684 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
685 | tpt_m(k,j,i) = tend(k,j,i) |
---|
686 | ENDDO |
---|
687 | ELSEIF ( intermediate_timestep_count < & |
---|
688 | intermediate_timestep_count_max ) THEN |
---|
689 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
690 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
691 | 5.3125_wp * tpt_m(k,j,i) |
---|
692 | ENDDO |
---|
693 | ENDIF |
---|
694 | ENDIF |
---|
695 | |
---|
696 | ENDIF |
---|
697 | |
---|
698 | ! |
---|
699 | !-- If required, compute prognostic equation for salinity |
---|
700 | IF ( ocean ) THEN |
---|
701 | |
---|
702 | ! |
---|
703 | !-- Tendency-terms for salinity |
---|
704 | tend(:,j,i) = 0.0_wp |
---|
705 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
706 | THEN |
---|
707 | IF ( ws_scheme_sca ) THEN |
---|
708 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
709 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
710 | ELSE |
---|
711 | CALL advec_s_pw( i, j, sa ) |
---|
712 | ENDIF |
---|
713 | ELSE |
---|
714 | CALL advec_s_up( i, j, sa ) |
---|
715 | ENDIF |
---|
716 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
717 | |
---|
718 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
719 | |
---|
720 | ! |
---|
721 | !-- Prognostic equation for salinity |
---|
722 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
723 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
724 | tsc(3) * tsa_m(k,j,i) ) & |
---|
725 | - tsc(5) * rdf_sc(k) * & |
---|
726 | ( sa(k,j,i) - sa_init(k) ) |
---|
727 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
728 | ENDDO |
---|
729 | |
---|
730 | ! |
---|
731 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
732 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
733 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
734 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
735 | tsa_m(k,j,i) = tend(k,j,i) |
---|
736 | ENDDO |
---|
737 | ELSEIF ( intermediate_timestep_count < & |
---|
738 | intermediate_timestep_count_max ) THEN |
---|
739 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
740 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
741 | 5.3125_wp * tsa_m(k,j,i) |
---|
742 | ENDDO |
---|
743 | ENDIF |
---|
744 | ENDIF |
---|
745 | |
---|
746 | ! |
---|
747 | !-- Calculate density by the equation of state for seawater |
---|
748 | CALL eqn_state_seawater( i, j ) |
---|
749 | |
---|
750 | ENDIF |
---|
751 | |
---|
752 | ! |
---|
753 | !-- If required, compute prognostic equation for total water content |
---|
754 | IF ( humidity ) THEN |
---|
755 | |
---|
756 | ! |
---|
757 | !-- Tendency-terms for total water content / scalar |
---|
758 | tend(:,j,i) = 0.0_wp |
---|
759 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
760 | THEN |
---|
761 | IF ( ws_scheme_sca ) THEN |
---|
762 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
763 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
764 | ELSE |
---|
765 | CALL advec_s_pw( i, j, q ) |
---|
766 | ENDIF |
---|
767 | ELSE |
---|
768 | CALL advec_s_up( i, j, q ) |
---|
769 | ENDIF |
---|
770 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
771 | |
---|
772 | ! |
---|
773 | !-- Sink or source of humidity due to canopy elements |
---|
774 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 5 ) |
---|
775 | |
---|
776 | ! |
---|
777 | !-- Large scale advection |
---|
778 | IF ( large_scale_forcing ) THEN |
---|
779 | CALL ls_advec( i, j, simulated_time, 'q' ) |
---|
780 | ENDIF |
---|
781 | |
---|
782 | ! |
---|
783 | !-- Nudging |
---|
784 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
785 | |
---|
786 | ! |
---|
787 | !-- If required compute influence of large-scale subsidence/ascent |
---|
788 | IF ( large_scale_subsidence .AND. & |
---|
789 | .NOT. use_subsidence_tendencies ) THEN |
---|
790 | CALL subsidence( i, j, tend, q, q_init, 3 ) |
---|
791 | ENDIF |
---|
792 | |
---|
793 | CALL user_actions( i, j, 'q-tendency' ) |
---|
794 | |
---|
795 | ! |
---|
796 | !-- Prognostic equation for total water content / scalar |
---|
797 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
798 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
799 | tsc(3) * tq_m(k,j,i) ) & |
---|
800 | - tsc(5) * rdf_sc(k) * & |
---|
801 | ( q(k,j,i) - q_init(k) ) |
---|
802 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
803 | ENDDO |
---|
804 | |
---|
805 | ! |
---|
806 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
807 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
808 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
809 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
810 | tq_m(k,j,i) = tend(k,j,i) |
---|
811 | ENDDO |
---|
812 | ELSEIF ( intermediate_timestep_count < & |
---|
813 | intermediate_timestep_count_max ) THEN |
---|
814 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
815 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
816 | 5.3125_wp * tq_m(k,j,i) |
---|
817 | ENDDO |
---|
818 | ENDIF |
---|
819 | ENDIF |
---|
820 | |
---|
821 | ! |
---|
822 | !-- If required, calculate prognostic equations for rain water content |
---|
823 | !-- and rain drop concentration |
---|
824 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
825 | ! |
---|
826 | !-- Calculate prognostic equation for rain water content |
---|
827 | tend(:,j,i) = 0.0_wp |
---|
828 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
829 | THEN |
---|
830 | IF ( ws_scheme_sca ) THEN |
---|
831 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
832 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
833 | i_omp_start, tn ) |
---|
834 | ELSE |
---|
835 | CALL advec_s_pw( i, j, qr ) |
---|
836 | ENDIF |
---|
837 | ELSE |
---|
838 | CALL advec_s_up( i, j, qr ) |
---|
839 | ENDIF |
---|
840 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
841 | |
---|
842 | ! |
---|
843 | !-- Prognostic equation for rain water content |
---|
844 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
845 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
846 | tsc(3) * tqr_m(k,j,i) ) & |
---|
847 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
848 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
849 | ENDDO |
---|
850 | ! |
---|
851 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
852 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
853 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
854 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
855 | tqr_m(k,j,i) = tend(k,j,i) |
---|
856 | ENDDO |
---|
857 | ELSEIF ( intermediate_timestep_count < & |
---|
858 | intermediate_timestep_count_max ) THEN |
---|
859 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
860 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
861 | 5.3125_wp * tqr_m(k,j,i) |
---|
862 | ENDDO |
---|
863 | ENDIF |
---|
864 | ENDIF |
---|
865 | |
---|
866 | ! |
---|
867 | !-- Calculate prognostic equation for rain drop concentration. |
---|
868 | tend(:,j,i) = 0.0_wp |
---|
869 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
870 | IF ( ws_scheme_sca ) THEN |
---|
871 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
872 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
873 | i_omp_start, tn ) |
---|
874 | ELSE |
---|
875 | CALL advec_s_pw( i, j, nr ) |
---|
876 | ENDIF |
---|
877 | ELSE |
---|
878 | CALL advec_s_up( i, j, nr ) |
---|
879 | ENDIF |
---|
880 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
881 | |
---|
882 | ! |
---|
883 | !-- Prognostic equation for rain drop concentration |
---|
884 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
885 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
886 | tsc(3) * tnr_m(k,j,i) ) & |
---|
887 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
888 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
889 | ENDDO |
---|
890 | ! |
---|
891 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
892 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
893 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
894 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
895 | tnr_m(k,j,i) = tend(k,j,i) |
---|
896 | ENDDO |
---|
897 | ELSEIF ( intermediate_timestep_count < & |
---|
898 | intermediate_timestep_count_max ) THEN |
---|
899 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
900 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
901 | 5.3125_wp * tnr_m(k,j,i) |
---|
902 | ENDDO |
---|
903 | ENDIF |
---|
904 | ENDIF |
---|
905 | |
---|
906 | ENDIF |
---|
907 | |
---|
908 | ENDIF |
---|
909 | |
---|
910 | ! |
---|
911 | !-- If required, compute prognostic equation for scalar |
---|
912 | IF ( passive_scalar ) THEN |
---|
913 | ! |
---|
914 | !-- Tendency-terms for total water content / scalar |
---|
915 | tend(:,j,i) = 0.0_wp |
---|
916 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
917 | THEN |
---|
918 | IF ( ws_scheme_sca ) THEN |
---|
919 | CALL advec_s_ws( i, j, s, 's', flux_s_s, & |
---|
920 | diss_s_s, flux_l_s, diss_l_s, i_omp_start, tn ) |
---|
921 | ELSE |
---|
922 | CALL advec_s_pw( i, j, s ) |
---|
923 | ENDIF |
---|
924 | ELSE |
---|
925 | CALL advec_s_up( i, j, s ) |
---|
926 | ENDIF |
---|
927 | CALL diffusion_s( i, j, s, ssws, sswst, wall_sflux ) |
---|
928 | |
---|
929 | ! |
---|
930 | !-- Sink or source of scalar concentration due to canopy elements |
---|
931 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 7 ) |
---|
932 | |
---|
933 | ! |
---|
934 | !-- Large scale advection, still need to be extended for scalars |
---|
935 | ! IF ( large_scale_forcing ) THEN |
---|
936 | ! CALL ls_advec( i, j, simulated_time, 's' ) |
---|
937 | ! ENDIF |
---|
938 | |
---|
939 | ! |
---|
940 | !-- Nudging, still need to be extended for scalars |
---|
941 | ! IF ( nudging ) CALL nudge( i, j, simulated_time, 's' ) |
---|
942 | |
---|
943 | ! |
---|
944 | !-- If required compute influence of large-scale subsidence/ascent. |
---|
945 | !-- Note, the last argument is of no meaning in this case, as it is |
---|
946 | !-- only used in conjunction with large_scale_forcing, which is to |
---|
947 | !-- date not implemented for scalars. |
---|
948 | IF ( large_scale_subsidence .AND. & |
---|
949 | .NOT. use_subsidence_tendencies .AND. & |
---|
950 | .NOT. large_scale_forcing ) THEN |
---|
951 | CALL subsidence( i, j, tend, s, s_init, 3 ) |
---|
952 | ENDIF |
---|
953 | |
---|
954 | CALL user_actions( i, j, 's-tendency' ) |
---|
955 | |
---|
956 | ! |
---|
957 | !-- Prognostic equation for scalar |
---|
958 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
959 | s_p(k,j,i) = s(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
960 | tsc(3) * ts_m(k,j,i) ) & |
---|
961 | - tsc(5) * rdf_sc(k) * & |
---|
962 | ( s(k,j,i) - s_init(k) ) |
---|
963 | IF ( s_p(k,j,i) < 0.0_wp ) s_p(k,j,i) = 0.1_wp * s(k,j,i) |
---|
964 | ENDDO |
---|
965 | |
---|
966 | ! |
---|
967 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
968 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
969 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
970 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
971 | ts_m(k,j,i) = tend(k,j,i) |
---|
972 | ENDDO |
---|
973 | ELSEIF ( intermediate_timestep_count < & |
---|
974 | intermediate_timestep_count_max ) THEN |
---|
975 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
976 | ts_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
977 | 5.3125_wp * ts_m(k,j,i) |
---|
978 | ENDDO |
---|
979 | ENDIF |
---|
980 | ENDIF |
---|
981 | |
---|
982 | ENDIF |
---|
983 | ! |
---|
984 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
985 | !-- energy (TKE) |
---|
986 | IF ( .NOT. constant_diffusion ) THEN |
---|
987 | |
---|
988 | ! |
---|
989 | !-- Tendency-terms for TKE |
---|
990 | tend(:,j,i) = 0.0_wp |
---|
991 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
992 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
993 | IF ( ws_scheme_sca ) THEN |
---|
994 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
995 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
996 | ELSE |
---|
997 | CALL advec_s_pw( i, j, e ) |
---|
998 | ENDIF |
---|
999 | ELSE |
---|
1000 | CALL advec_s_up( i, j, e ) |
---|
1001 | ENDIF |
---|
1002 | IF ( .NOT. humidity ) THEN |
---|
1003 | IF ( ocean ) THEN |
---|
1004 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
1005 | ELSE |
---|
1006 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
1007 | ENDIF |
---|
1008 | ELSE |
---|
1009 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
1010 | ENDIF |
---|
1011 | CALL production_e( i, j ) |
---|
1012 | |
---|
1013 | ! |
---|
1014 | !-- Additional sink term for flows through plant canopies |
---|
1015 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 6 ) |
---|
1016 | |
---|
1017 | CALL user_actions( i, j, 'e-tendency' ) |
---|
1018 | |
---|
1019 | ! |
---|
1020 | !-- Prognostic equation for TKE. |
---|
1021 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
1022 | !-- reasons in the course of the integration. In such cases the old |
---|
1023 | !-- TKE value is reduced by 90%. |
---|
1024 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1025 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1026 | tsc(3) * te_m(k,j,i) ) |
---|
1027 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
1028 | ENDDO |
---|
1029 | |
---|
1030 | ! |
---|
1031 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1032 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1033 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1034 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1035 | te_m(k,j,i) = tend(k,j,i) |
---|
1036 | ENDDO |
---|
1037 | ELSEIF ( intermediate_timestep_count < & |
---|
1038 | intermediate_timestep_count_max ) THEN |
---|
1039 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1040 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
1041 | 5.3125_wp * te_m(k,j,i) |
---|
1042 | ENDDO |
---|
1043 | ENDIF |
---|
1044 | ENDIF |
---|
1045 | |
---|
1046 | ENDIF ! TKE equation |
---|
1047 | |
---|
1048 | ENDDO |
---|
1049 | ENDDO |
---|
1050 | !$OMP END PARALLEL |
---|
1051 | |
---|
1052 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
1053 | |
---|
1054 | |
---|
1055 | END SUBROUTINE prognostic_equations_cache |
---|
1056 | |
---|
1057 | |
---|
1058 | !------------------------------------------------------------------------------! |
---|
1059 | ! Description: |
---|
1060 | ! ------------ |
---|
1061 | !> Version for vector machines |
---|
1062 | !------------------------------------------------------------------------------! |
---|
1063 | |
---|
1064 | SUBROUTINE prognostic_equations_vector |
---|
1065 | |
---|
1066 | |
---|
1067 | IMPLICIT NONE |
---|
1068 | |
---|
1069 | INTEGER(iwp) :: i !< |
---|
1070 | INTEGER(iwp) :: j !< |
---|
1071 | INTEGER(iwp) :: k !< |
---|
1072 | |
---|
1073 | REAL(wp) :: sbt !< |
---|
1074 | |
---|
1075 | |
---|
1076 | ! |
---|
1077 | !-- If required, calculate cloud microphysical impacts |
---|
1078 | IF ( cloud_physics .AND. .NOT. microphysics_sat_adjust .AND. & |
---|
1079 | ( intermediate_timestep_count == 1 .OR. & |
---|
1080 | call_microphysics_at_all_substeps ) & |
---|
1081 | ) THEN |
---|
1082 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
1083 | CALL microphysics_control |
---|
1084 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
1085 | ENDIF |
---|
1086 | |
---|
1087 | ! |
---|
1088 | !-- u-velocity component |
---|
1089 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
1090 | |
---|
1091 | tend = 0.0_wp |
---|
1092 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1093 | IF ( ws_scheme_mom ) THEN |
---|
1094 | CALL advec_u_ws |
---|
1095 | ELSE |
---|
1096 | CALL advec_u_pw |
---|
1097 | ENDIF |
---|
1098 | ELSE |
---|
1099 | CALL advec_u_up |
---|
1100 | ENDIF |
---|
1101 | CALL diffusion_u |
---|
1102 | CALL coriolis( 1 ) |
---|
1103 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
1104 | CALL buoyancy( pt, 1 ) |
---|
1105 | ENDIF |
---|
1106 | |
---|
1107 | ! |
---|
1108 | !-- Drag by plant canopy |
---|
1109 | IF ( plant_canopy ) CALL pcm_tendency( 1 ) |
---|
1110 | |
---|
1111 | ! |
---|
1112 | !-- External pressure gradient |
---|
1113 | IF ( dp_external ) THEN |
---|
1114 | DO i = nxlu, nxr |
---|
1115 | DO j = nys, nyn |
---|
1116 | DO k = dp_level_ind_b+1, nzt |
---|
1117 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
1118 | ENDDO |
---|
1119 | ENDDO |
---|
1120 | ENDDO |
---|
1121 | ENDIF |
---|
1122 | |
---|
1123 | ! |
---|
1124 | !-- Nudging |
---|
1125 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
1126 | |
---|
1127 | ! |
---|
1128 | !-- Forces by wind turbines |
---|
1129 | IF ( wind_turbine ) CALL wtm_tendencies( 1 ) |
---|
1130 | |
---|
1131 | CALL user_actions( 'u-tendency' ) |
---|
1132 | |
---|
1133 | ! |
---|
1134 | !-- Prognostic equation for u-velocity component |
---|
1135 | DO i = nxlu, nxr |
---|
1136 | DO j = nys, nyn |
---|
1137 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1138 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1139 | tsc(3) * tu_m(k,j,i) ) & |
---|
1140 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
1141 | ENDDO |
---|
1142 | ENDDO |
---|
1143 | ENDDO |
---|
1144 | |
---|
1145 | ! |
---|
1146 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1147 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1148 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1149 | DO i = nxlu, nxr |
---|
1150 | DO j = nys, nyn |
---|
1151 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1152 | tu_m(k,j,i) = tend(k,j,i) |
---|
1153 | ENDDO |
---|
1154 | ENDDO |
---|
1155 | ENDDO |
---|
1156 | ELSEIF ( intermediate_timestep_count < & |
---|
1157 | intermediate_timestep_count_max ) THEN |
---|
1158 | DO i = nxlu, nxr |
---|
1159 | DO j = nys, nyn |
---|
1160 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1161 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
1162 | ENDDO |
---|
1163 | ENDDO |
---|
1164 | ENDDO |
---|
1165 | ENDIF |
---|
1166 | ENDIF |
---|
1167 | |
---|
1168 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
1169 | |
---|
1170 | ! |
---|
1171 | !-- v-velocity component |
---|
1172 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
1173 | |
---|
1174 | tend = 0.0_wp |
---|
1175 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1176 | IF ( ws_scheme_mom ) THEN |
---|
1177 | CALL advec_v_ws |
---|
1178 | ELSE |
---|
1179 | CALL advec_v_pw |
---|
1180 | END IF |
---|
1181 | ELSE |
---|
1182 | CALL advec_v_up |
---|
1183 | ENDIF |
---|
1184 | CALL diffusion_v |
---|
1185 | CALL coriolis( 2 ) |
---|
1186 | |
---|
1187 | ! |
---|
1188 | !-- Drag by plant canopy |
---|
1189 | IF ( plant_canopy ) CALL pcm_tendency( 2 ) |
---|
1190 | |
---|
1191 | ! |
---|
1192 | !-- External pressure gradient |
---|
1193 | IF ( dp_external ) THEN |
---|
1194 | DO i = nxl, nxr |
---|
1195 | DO j = nysv, nyn |
---|
1196 | DO k = dp_level_ind_b+1, nzt |
---|
1197 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
1198 | ENDDO |
---|
1199 | ENDDO |
---|
1200 | ENDDO |
---|
1201 | ENDIF |
---|
1202 | |
---|
1203 | ! |
---|
1204 | !-- Nudging |
---|
1205 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
1206 | |
---|
1207 | ! |
---|
1208 | !-- Forces by wind turbines |
---|
1209 | IF ( wind_turbine ) CALL wtm_tendencies( 2 ) |
---|
1210 | |
---|
1211 | CALL user_actions( 'v-tendency' ) |
---|
1212 | |
---|
1213 | ! |
---|
1214 | !-- Prognostic equation for v-velocity component |
---|
1215 | DO i = nxl, nxr |
---|
1216 | DO j = nysv, nyn |
---|
1217 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1218 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1219 | tsc(3) * tv_m(k,j,i) ) & |
---|
1220 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
1221 | ENDDO |
---|
1222 | ENDDO |
---|
1223 | ENDDO |
---|
1224 | |
---|
1225 | ! |
---|
1226 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1227 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1228 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1229 | DO i = nxl, nxr |
---|
1230 | DO j = nysv, nyn |
---|
1231 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1232 | tv_m(k,j,i) = tend(k,j,i) |
---|
1233 | ENDDO |
---|
1234 | ENDDO |
---|
1235 | ENDDO |
---|
1236 | ELSEIF ( intermediate_timestep_count < & |
---|
1237 | intermediate_timestep_count_max ) THEN |
---|
1238 | DO i = nxl, nxr |
---|
1239 | DO j = nysv, nyn |
---|
1240 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1241 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
1242 | ENDDO |
---|
1243 | ENDDO |
---|
1244 | ENDDO |
---|
1245 | ENDIF |
---|
1246 | ENDIF |
---|
1247 | |
---|
1248 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
1249 | |
---|
1250 | ! |
---|
1251 | !-- w-velocity component |
---|
1252 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
1253 | |
---|
1254 | tend = 0.0_wp |
---|
1255 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1256 | IF ( ws_scheme_mom ) THEN |
---|
1257 | CALL advec_w_ws |
---|
1258 | ELSE |
---|
1259 | CALL advec_w_pw |
---|
1260 | ENDIF |
---|
1261 | ELSE |
---|
1262 | CALL advec_w_up |
---|
1263 | ENDIF |
---|
1264 | CALL diffusion_w |
---|
1265 | CALL coriolis( 3 ) |
---|
1266 | |
---|
1267 | IF ( .NOT. neutral ) THEN |
---|
1268 | IF ( ocean ) THEN |
---|
1269 | CALL buoyancy( rho_ocean, 3 ) |
---|
1270 | ELSE |
---|
1271 | IF ( .NOT. humidity ) THEN |
---|
1272 | CALL buoyancy( pt, 3 ) |
---|
1273 | ELSE |
---|
1274 | CALL buoyancy( vpt, 3 ) |
---|
1275 | ENDIF |
---|
1276 | ENDIF |
---|
1277 | ENDIF |
---|
1278 | |
---|
1279 | ! |
---|
1280 | !-- Drag by plant canopy |
---|
1281 | IF ( plant_canopy ) CALL pcm_tendency( 3 ) |
---|
1282 | |
---|
1283 | ! |
---|
1284 | !-- Forces by wind turbines |
---|
1285 | IF ( wind_turbine ) CALL wtm_tendencies( 3 ) |
---|
1286 | |
---|
1287 | CALL user_actions( 'w-tendency' ) |
---|
1288 | |
---|
1289 | ! |
---|
1290 | !-- Prognostic equation for w-velocity component |
---|
1291 | DO i = nxl, nxr |
---|
1292 | DO j = nys, nyn |
---|
1293 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1294 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1295 | tsc(3) * tw_m(k,j,i) ) & |
---|
1296 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
1297 | ENDDO |
---|
1298 | ENDDO |
---|
1299 | ENDDO |
---|
1300 | |
---|
1301 | ! |
---|
1302 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1303 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1304 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1305 | DO i = nxl, nxr |
---|
1306 | DO j = nys, nyn |
---|
1307 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1308 | tw_m(k,j,i) = tend(k,j,i) |
---|
1309 | ENDDO |
---|
1310 | ENDDO |
---|
1311 | ENDDO |
---|
1312 | ELSEIF ( intermediate_timestep_count < & |
---|
1313 | intermediate_timestep_count_max ) THEN |
---|
1314 | DO i = nxl, nxr |
---|
1315 | DO j = nys, nyn |
---|
1316 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1317 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
1318 | ENDDO |
---|
1319 | ENDDO |
---|
1320 | ENDDO |
---|
1321 | ENDIF |
---|
1322 | ENDIF |
---|
1323 | |
---|
1324 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
1325 | |
---|
1326 | |
---|
1327 | ! |
---|
1328 | !-- If required, compute prognostic equation for potential temperature |
---|
1329 | IF ( .NOT. neutral ) THEN |
---|
1330 | |
---|
1331 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
1332 | |
---|
1333 | ! |
---|
1334 | !-- pt-tendency terms with communication |
---|
1335 | sbt = tsc(2) |
---|
1336 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1337 | |
---|
1338 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1339 | ! |
---|
1340 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1341 | sbt = 1.0_wp |
---|
1342 | ENDIF |
---|
1343 | tend = 0.0_wp |
---|
1344 | CALL advec_s_bc( pt, 'pt' ) |
---|
1345 | |
---|
1346 | ENDIF |
---|
1347 | |
---|
1348 | ! |
---|
1349 | !-- pt-tendency terms with no communication |
---|
1350 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1351 | tend = 0.0_wp |
---|
1352 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1353 | IF ( ws_scheme_sca ) THEN |
---|
1354 | CALL advec_s_ws( pt, 'pt' ) |
---|
1355 | ELSE |
---|
1356 | CALL advec_s_pw( pt ) |
---|
1357 | ENDIF |
---|
1358 | ELSE |
---|
1359 | CALL advec_s_up( pt ) |
---|
1360 | ENDIF |
---|
1361 | ENDIF |
---|
1362 | |
---|
1363 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
1364 | |
---|
1365 | ! |
---|
1366 | !-- Tendency pt from wall heat flux from urban surface |
---|
1367 | IF ( urban_surface ) THEN |
---|
1368 | CALL usm_wall_heat_flux |
---|
1369 | ENDIF |
---|
1370 | |
---|
1371 | ! |
---|
1372 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
1373 | IF ( cloud_top_radiation ) THEN |
---|
1374 | CALL calc_radiation |
---|
1375 | ENDIF |
---|
1376 | |
---|
1377 | ! |
---|
1378 | !-- Consideration of heat sources within the plant canopy |
---|
1379 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
1380 | CALL pcm_tendency( 4 ) |
---|
1381 | ENDIF |
---|
1382 | |
---|
1383 | ! |
---|
1384 | !-- Large scale advection |
---|
1385 | IF ( large_scale_forcing ) THEN |
---|
1386 | CALL ls_advec( simulated_time, 'pt' ) |
---|
1387 | ENDIF |
---|
1388 | |
---|
1389 | ! |
---|
1390 | !-- Nudging |
---|
1391 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
1392 | |
---|
1393 | ! |
---|
1394 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1395 | IF ( large_scale_subsidence .AND. & |
---|
1396 | .NOT. use_subsidence_tendencies ) THEN |
---|
1397 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
1398 | ENDIF |
---|
1399 | |
---|
1400 | ! |
---|
1401 | !-- If required, add tendency due to radiative heating/cooling |
---|
1402 | IF ( radiation .AND. & |
---|
1403 | simulated_time > skip_time_do_radiation ) THEN |
---|
1404 | CALL radiation_tendency ( tend ) |
---|
1405 | ENDIF |
---|
1406 | |
---|
1407 | CALL user_actions( 'pt-tendency' ) |
---|
1408 | |
---|
1409 | ! |
---|
1410 | !-- Prognostic equation for potential temperature |
---|
1411 | DO i = nxl, nxr |
---|
1412 | DO j = nys, nyn |
---|
1413 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1414 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1415 | tsc(3) * tpt_m(k,j,i) ) & |
---|
1416 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
1417 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
1418 | ENDDO |
---|
1419 | ENDDO |
---|
1420 | ENDDO |
---|
1421 | |
---|
1422 | ! |
---|
1423 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1424 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1425 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1426 | DO i = nxl, nxr |
---|
1427 | DO j = nys, nyn |
---|
1428 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1429 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1430 | ENDDO |
---|
1431 | ENDDO |
---|
1432 | ENDDO |
---|
1433 | ELSEIF ( intermediate_timestep_count < & |
---|
1434 | intermediate_timestep_count_max ) THEN |
---|
1435 | DO i = nxl, nxr |
---|
1436 | DO j = nys, nyn |
---|
1437 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1438 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
1439 | 5.3125_wp * tpt_m(k,j,i) |
---|
1440 | ENDDO |
---|
1441 | ENDDO |
---|
1442 | ENDDO |
---|
1443 | ENDIF |
---|
1444 | ENDIF |
---|
1445 | |
---|
1446 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
1447 | |
---|
1448 | ENDIF |
---|
1449 | |
---|
1450 | ! |
---|
1451 | !-- If required, compute prognostic equation for salinity |
---|
1452 | IF ( ocean ) THEN |
---|
1453 | |
---|
1454 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
1455 | |
---|
1456 | ! |
---|
1457 | !-- sa-tendency terms with communication |
---|
1458 | sbt = tsc(2) |
---|
1459 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1460 | |
---|
1461 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1462 | ! |
---|
1463 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1464 | sbt = 1.0_wp |
---|
1465 | ENDIF |
---|
1466 | tend = 0.0_wp |
---|
1467 | CALL advec_s_bc( sa, 'sa' ) |
---|
1468 | |
---|
1469 | ENDIF |
---|
1470 | |
---|
1471 | ! |
---|
1472 | !-- sa-tendency terms with no communication |
---|
1473 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1474 | tend = 0.0_wp |
---|
1475 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1476 | IF ( ws_scheme_sca ) THEN |
---|
1477 | CALL advec_s_ws( sa, 'sa' ) |
---|
1478 | ELSE |
---|
1479 | CALL advec_s_pw( sa ) |
---|
1480 | ENDIF |
---|
1481 | ELSE |
---|
1482 | CALL advec_s_up( sa ) |
---|
1483 | ENDIF |
---|
1484 | ENDIF |
---|
1485 | |
---|
1486 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
1487 | |
---|
1488 | CALL user_actions( 'sa-tendency' ) |
---|
1489 | |
---|
1490 | ! |
---|
1491 | !-- Prognostic equation for salinity |
---|
1492 | DO i = nxl, nxr |
---|
1493 | DO j = nys, nyn |
---|
1494 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1495 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1496 | tsc(3) * tsa_m(k,j,i) ) & |
---|
1497 | - tsc(5) * rdf_sc(k) * & |
---|
1498 | ( sa(k,j,i) - sa_init(k) ) |
---|
1499 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
1500 | ENDDO |
---|
1501 | ENDDO |
---|
1502 | ENDDO |
---|
1503 | |
---|
1504 | ! |
---|
1505 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1506 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1507 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1508 | DO i = nxl, nxr |
---|
1509 | DO j = nys, nyn |
---|
1510 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1511 | tsa_m(k,j,i) = tend(k,j,i) |
---|
1512 | ENDDO |
---|
1513 | ENDDO |
---|
1514 | ENDDO |
---|
1515 | ELSEIF ( intermediate_timestep_count < & |
---|
1516 | intermediate_timestep_count_max ) THEN |
---|
1517 | DO i = nxl, nxr |
---|
1518 | DO j = nys, nyn |
---|
1519 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1520 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
1521 | 5.3125_wp * tsa_m(k,j,i) |
---|
1522 | ENDDO |
---|
1523 | ENDDO |
---|
1524 | ENDDO |
---|
1525 | ENDIF |
---|
1526 | ENDIF |
---|
1527 | |
---|
1528 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
1529 | |
---|
1530 | ! |
---|
1531 | !-- Calculate density by the equation of state for seawater |
---|
1532 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
1533 | CALL eqn_state_seawater |
---|
1534 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
1535 | |
---|
1536 | ENDIF |
---|
1537 | |
---|
1538 | ! |
---|
1539 | !-- If required, compute prognostic equation for total water content |
---|
1540 | IF ( humidity ) THEN |
---|
1541 | |
---|
1542 | CALL cpu_log( log_point(29), 'q-equation', 'start' ) |
---|
1543 | |
---|
1544 | ! |
---|
1545 | !-- Scalar/q-tendency terms with communication |
---|
1546 | sbt = tsc(2) |
---|
1547 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1548 | |
---|
1549 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1550 | ! |
---|
1551 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1552 | sbt = 1.0_wp |
---|
1553 | ENDIF |
---|
1554 | tend = 0.0_wp |
---|
1555 | CALL advec_s_bc( q, 'q' ) |
---|
1556 | |
---|
1557 | ENDIF |
---|
1558 | |
---|
1559 | ! |
---|
1560 | !-- Scalar/q-tendency terms with no communication |
---|
1561 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1562 | tend = 0.0_wp |
---|
1563 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1564 | IF ( ws_scheme_sca ) THEN |
---|
1565 | CALL advec_s_ws( q, 'q' ) |
---|
1566 | ELSE |
---|
1567 | CALL advec_s_pw( q ) |
---|
1568 | ENDIF |
---|
1569 | ELSE |
---|
1570 | CALL advec_s_up( q ) |
---|
1571 | ENDIF |
---|
1572 | ENDIF |
---|
1573 | |
---|
1574 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
1575 | |
---|
1576 | ! |
---|
1577 | !-- Sink or source of humidity due to canopy elements |
---|
1578 | IF ( plant_canopy ) CALL pcm_tendency( 5 ) |
---|
1579 | |
---|
1580 | ! |
---|
1581 | !-- Large scale advection |
---|
1582 | IF ( large_scale_forcing ) THEN |
---|
1583 | CALL ls_advec( simulated_time, 'q' ) |
---|
1584 | ENDIF |
---|
1585 | |
---|
1586 | ! |
---|
1587 | !-- Nudging |
---|
1588 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
1589 | |
---|
1590 | ! |
---|
1591 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1592 | IF ( large_scale_subsidence .AND. & |
---|
1593 | .NOT. use_subsidence_tendencies ) THEN |
---|
1594 | CALL subsidence( tend, q, q_init, 3 ) |
---|
1595 | ENDIF |
---|
1596 | |
---|
1597 | CALL user_actions( 'q-tendency' ) |
---|
1598 | |
---|
1599 | ! |
---|
1600 | !-- Prognostic equation for total water content |
---|
1601 | DO i = nxl, nxr |
---|
1602 | DO j = nys, nyn |
---|
1603 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1604 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1605 | tsc(3) * tq_m(k,j,i) ) & |
---|
1606 | - tsc(5) * rdf_sc(k) * & |
---|
1607 | ( q(k,j,i) - q_init(k) ) |
---|
1608 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
1609 | ENDDO |
---|
1610 | ENDDO |
---|
1611 | ENDDO |
---|
1612 | |
---|
1613 | ! |
---|
1614 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1615 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1616 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1617 | DO i = nxl, nxr |
---|
1618 | DO j = nys, nyn |
---|
1619 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1620 | tq_m(k,j,i) = tend(k,j,i) |
---|
1621 | ENDDO |
---|
1622 | ENDDO |
---|
1623 | ENDDO |
---|
1624 | ELSEIF ( intermediate_timestep_count < & |
---|
1625 | intermediate_timestep_count_max ) THEN |
---|
1626 | DO i = nxl, nxr |
---|
1627 | DO j = nys, nyn |
---|
1628 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1629 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
1630 | ENDDO |
---|
1631 | ENDDO |
---|
1632 | ENDDO |
---|
1633 | ENDIF |
---|
1634 | ENDIF |
---|
1635 | |
---|
1636 | CALL cpu_log( log_point(29), 'q-equation', 'stop' ) |
---|
1637 | |
---|
1638 | ! |
---|
1639 | !-- If required, calculate prognostic equations for rain water content |
---|
1640 | !-- and rain drop concentration |
---|
1641 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
1642 | |
---|
1643 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
1644 | |
---|
1645 | ! |
---|
1646 | !-- Calculate prognostic equation for rain water content |
---|
1647 | sbt = tsc(2) |
---|
1648 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1649 | |
---|
1650 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1651 | ! |
---|
1652 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1653 | sbt = 1.0_wp |
---|
1654 | ENDIF |
---|
1655 | tend = 0.0_wp |
---|
1656 | CALL advec_s_bc( qr, 'qr' ) |
---|
1657 | |
---|
1658 | ENDIF |
---|
1659 | |
---|
1660 | ! |
---|
1661 | !-- qr-tendency terms with no communication |
---|
1662 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1663 | tend = 0.0_wp |
---|
1664 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1665 | IF ( ws_scheme_sca ) THEN |
---|
1666 | CALL advec_s_ws( qr, 'qr' ) |
---|
1667 | ELSE |
---|
1668 | CALL advec_s_pw( qr ) |
---|
1669 | ENDIF |
---|
1670 | ELSE |
---|
1671 | CALL advec_s_up( qr ) |
---|
1672 | ENDIF |
---|
1673 | ENDIF |
---|
1674 | |
---|
1675 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
1676 | |
---|
1677 | CALL user_actions( 'qr-tendency' ) |
---|
1678 | |
---|
1679 | ! |
---|
1680 | !-- Prognostic equation for rain water content |
---|
1681 | DO i = nxl, nxr |
---|
1682 | DO j = nys, nyn |
---|
1683 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1684 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1685 | tsc(3) * tqr_m(k,j,i) ) & |
---|
1686 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
1687 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
1688 | ENDDO |
---|
1689 | ENDDO |
---|
1690 | ENDDO |
---|
1691 | |
---|
1692 | ! |
---|
1693 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1694 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1695 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1696 | DO i = nxl, nxr |
---|
1697 | DO j = nys, nyn |
---|
1698 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1699 | tqr_m(k,j,i) = tend(k,j,i) |
---|
1700 | ENDDO |
---|
1701 | ENDDO |
---|
1702 | ENDDO |
---|
1703 | ELSEIF ( intermediate_timestep_count < & |
---|
1704 | intermediate_timestep_count_max ) THEN |
---|
1705 | DO i = nxl, nxr |
---|
1706 | DO j = nys, nyn |
---|
1707 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1708 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
1709 | tqr_m(k,j,i) |
---|
1710 | ENDDO |
---|
1711 | ENDDO |
---|
1712 | ENDDO |
---|
1713 | ENDIF |
---|
1714 | ENDIF |
---|
1715 | |
---|
1716 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
1717 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
1718 | |
---|
1719 | ! |
---|
1720 | !-- Calculate prognostic equation for rain drop concentration |
---|
1721 | sbt = tsc(2) |
---|
1722 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1723 | |
---|
1724 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1725 | ! |
---|
1726 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1727 | sbt = 1.0_wp |
---|
1728 | ENDIF |
---|
1729 | tend = 0.0_wp |
---|
1730 | CALL advec_s_bc( nr, 'nr' ) |
---|
1731 | |
---|
1732 | ENDIF |
---|
1733 | |
---|
1734 | ! |
---|
1735 | !-- nr-tendency terms with no communication |
---|
1736 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1737 | tend = 0.0_wp |
---|
1738 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1739 | IF ( ws_scheme_sca ) THEN |
---|
1740 | CALL advec_s_ws( nr, 'nr' ) |
---|
1741 | ELSE |
---|
1742 | CALL advec_s_pw( nr ) |
---|
1743 | ENDIF |
---|
1744 | ELSE |
---|
1745 | CALL advec_s_up( nr ) |
---|
1746 | ENDIF |
---|
1747 | ENDIF |
---|
1748 | |
---|
1749 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
1750 | |
---|
1751 | ! |
---|
1752 | !-- Prognostic equation for rain drop concentration |
---|
1753 | DO i = nxl, nxr |
---|
1754 | DO j = nys, nyn |
---|
1755 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1756 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1757 | tsc(3) * tnr_m(k,j,i) ) & |
---|
1758 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
1759 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
1760 | ENDDO |
---|
1761 | ENDDO |
---|
1762 | ENDDO |
---|
1763 | |
---|
1764 | ! |
---|
1765 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1766 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1767 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1768 | DO i = nxl, nxr |
---|
1769 | DO j = nys, nyn |
---|
1770 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1771 | tnr_m(k,j,i) = tend(k,j,i) |
---|
1772 | ENDDO |
---|
1773 | ENDDO |
---|
1774 | ENDDO |
---|
1775 | ELSEIF ( intermediate_timestep_count < & |
---|
1776 | intermediate_timestep_count_max ) THEN |
---|
1777 | DO i = nxl, nxr |
---|
1778 | DO j = nys, nyn |
---|
1779 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1780 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
1781 | tnr_m(k,j,i) |
---|
1782 | ENDDO |
---|
1783 | ENDDO |
---|
1784 | ENDDO |
---|
1785 | ENDIF |
---|
1786 | ENDIF |
---|
1787 | |
---|
1788 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
1789 | |
---|
1790 | ENDIF |
---|
1791 | |
---|
1792 | ENDIF |
---|
1793 | ! |
---|
1794 | !-- If required, compute prognostic equation for scalar |
---|
1795 | IF ( passive_scalar ) THEN |
---|
1796 | |
---|
1797 | CALL cpu_log( log_point(66), 's-equation', 'start' ) |
---|
1798 | |
---|
1799 | ! |
---|
1800 | !-- Scalar/q-tendency terms with communication |
---|
1801 | sbt = tsc(2) |
---|
1802 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1803 | |
---|
1804 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1805 | ! |
---|
1806 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1807 | sbt = 1.0_wp |
---|
1808 | ENDIF |
---|
1809 | tend = 0.0_wp |
---|
1810 | CALL advec_s_bc( s, 's' ) |
---|
1811 | |
---|
1812 | ENDIF |
---|
1813 | |
---|
1814 | ! |
---|
1815 | !-- Scalar/q-tendency terms with no communication |
---|
1816 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1817 | tend = 0.0_wp |
---|
1818 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1819 | IF ( ws_scheme_sca ) THEN |
---|
1820 | CALL advec_s_ws( s, 's' ) |
---|
1821 | ELSE |
---|
1822 | CALL advec_s_pw( s ) |
---|
1823 | ENDIF |
---|
1824 | ELSE |
---|
1825 | CALL advec_s_up( s ) |
---|
1826 | ENDIF |
---|
1827 | ENDIF |
---|
1828 | |
---|
1829 | CALL diffusion_s( s, ssws, sswst, wall_sflux ) |
---|
1830 | |
---|
1831 | ! |
---|
1832 | !-- Sink or source of humidity due to canopy elements |
---|
1833 | IF ( plant_canopy ) CALL pcm_tendency( 7 ) |
---|
1834 | |
---|
1835 | ! |
---|
1836 | !-- Large scale advection. Not implemented for scalars so far. |
---|
1837 | ! IF ( large_scale_forcing ) THEN |
---|
1838 | ! CALL ls_advec( simulated_time, 'q' ) |
---|
1839 | ! ENDIF |
---|
1840 | |
---|
1841 | ! |
---|
1842 | !-- Nudging. Not implemented for scalars so far. |
---|
1843 | ! IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
1844 | |
---|
1845 | ! |
---|
1846 | !-- If required compute influence of large-scale subsidence/ascent. |
---|
1847 | !-- Not implemented for scalars so far. |
---|
1848 | IF ( large_scale_subsidence .AND. & |
---|
1849 | .NOT. use_subsidence_tendencies .AND. & |
---|
1850 | .NOT. large_scale_forcing ) THEN |
---|
1851 | CALL subsidence( tend, s, s_init, 3 ) |
---|
1852 | ENDIF |
---|
1853 | |
---|
1854 | CALL user_actions( 's-tendency' ) |
---|
1855 | |
---|
1856 | ! |
---|
1857 | !-- Prognostic equation for total water content |
---|
1858 | DO i = nxl, nxr |
---|
1859 | DO j = nys, nyn |
---|
1860 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1861 | s_p(k,j,i) = s(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1862 | tsc(3) * ts_m(k,j,i) ) & |
---|
1863 | - tsc(5) * rdf_sc(k) * & |
---|
1864 | ( s(k,j,i) - s_init(k) ) |
---|
1865 | IF ( s_p(k,j,i) < 0.0_wp ) s_p(k,j,i) = 0.1_wp * s(k,j,i) |
---|
1866 | ENDDO |
---|
1867 | ENDDO |
---|
1868 | ENDDO |
---|
1869 | |
---|
1870 | ! |
---|
1871 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1872 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1873 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1874 | DO i = nxl, nxr |
---|
1875 | DO j = nys, nyn |
---|
1876 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1877 | ts_m(k,j,i) = tend(k,j,i) |
---|
1878 | ENDDO |
---|
1879 | ENDDO |
---|
1880 | ENDDO |
---|
1881 | ELSEIF ( intermediate_timestep_count < & |
---|
1882 | intermediate_timestep_count_max ) THEN |
---|
1883 | DO i = nxl, nxr |
---|
1884 | DO j = nys, nyn |
---|
1885 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1886 | ts_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * ts_m(k,j,i) |
---|
1887 | ENDDO |
---|
1888 | ENDDO |
---|
1889 | ENDDO |
---|
1890 | ENDIF |
---|
1891 | ENDIF |
---|
1892 | |
---|
1893 | CALL cpu_log( log_point(66), 's-equation', 'stop' ) |
---|
1894 | |
---|
1895 | ENDIF |
---|
1896 | ! |
---|
1897 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1898 | !-- energy (TKE) |
---|
1899 | IF ( .NOT. constant_diffusion ) THEN |
---|
1900 | |
---|
1901 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
1902 | |
---|
1903 | sbt = tsc(2) |
---|
1904 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
1905 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1906 | |
---|
1907 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1908 | ! |
---|
1909 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1910 | sbt = 1.0_wp |
---|
1911 | ENDIF |
---|
1912 | tend = 0.0_wp |
---|
1913 | CALL advec_s_bc( e, 'e' ) |
---|
1914 | |
---|
1915 | ENDIF |
---|
1916 | ENDIF |
---|
1917 | |
---|
1918 | ! |
---|
1919 | !-- TKE-tendency terms with no communication |
---|
1920 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
1921 | IF ( use_upstream_for_tke ) THEN |
---|
1922 | tend = 0.0_wp |
---|
1923 | CALL advec_s_up( e ) |
---|
1924 | ELSE |
---|
1925 | tend = 0.0_wp |
---|
1926 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1927 | IF ( ws_scheme_sca ) THEN |
---|
1928 | CALL advec_s_ws( e, 'e' ) |
---|
1929 | ELSE |
---|
1930 | CALL advec_s_pw( e ) |
---|
1931 | ENDIF |
---|
1932 | ELSE |
---|
1933 | CALL advec_s_up( e ) |
---|
1934 | ENDIF |
---|
1935 | ENDIF |
---|
1936 | ENDIF |
---|
1937 | |
---|
1938 | IF ( .NOT. humidity ) THEN |
---|
1939 | IF ( ocean ) THEN |
---|
1940 | CALL diffusion_e( prho, prho_reference ) |
---|
1941 | ELSE |
---|
1942 | CALL diffusion_e( pt, pt_reference ) |
---|
1943 | ENDIF |
---|
1944 | ELSE |
---|
1945 | CALL diffusion_e( vpt, pt_reference ) |
---|
1946 | ENDIF |
---|
1947 | |
---|
1948 | CALL production_e |
---|
1949 | |
---|
1950 | ! |
---|
1951 | !-- Additional sink term for flows through plant canopies |
---|
1952 | IF ( plant_canopy ) CALL pcm_tendency( 6 ) |
---|
1953 | CALL user_actions( 'e-tendency' ) |
---|
1954 | |
---|
1955 | ! |
---|
1956 | !-- Prognostic equation for TKE. |
---|
1957 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
1958 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
1959 | !-- value is reduced by 90%. |
---|
1960 | DO i = nxl, nxr |
---|
1961 | DO j = nys, nyn |
---|
1962 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1963 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1964 | tsc(3) * te_m(k,j,i) ) |
---|
1965 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
1966 | ENDDO |
---|
1967 | ENDDO |
---|
1968 | ENDDO |
---|
1969 | |
---|
1970 | ! |
---|
1971 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1972 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1973 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1974 | DO i = nxl, nxr |
---|
1975 | DO j = nys, nyn |
---|
1976 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1977 | te_m(k,j,i) = tend(k,j,i) |
---|
1978 | ENDDO |
---|
1979 | ENDDO |
---|
1980 | ENDDO |
---|
1981 | ELSEIF ( intermediate_timestep_count < & |
---|
1982 | intermediate_timestep_count_max ) THEN |
---|
1983 | DO i = nxl, nxr |
---|
1984 | DO j = nys, nyn |
---|
1985 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1986 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
1987 | ENDDO |
---|
1988 | ENDDO |
---|
1989 | ENDDO |
---|
1990 | ENDIF |
---|
1991 | ENDIF |
---|
1992 | |
---|
1993 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
1994 | |
---|
1995 | ENDIF |
---|
1996 | |
---|
1997 | END SUBROUTINE prognostic_equations_vector |
---|
1998 | |
---|
1999 | |
---|
2000 | END MODULE prognostic_equations_mod |
---|