1 | MODULE prognostic_equations_mod |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: prognostic_equations.f90 1321 2014-03-20 09:40:40Z maronga $ |
---|
27 | ! |
---|
28 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
29 | ! ONLY-attribute added to USE-statements, |
---|
30 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
31 | ! kinds are defined in new module kinds, |
---|
32 | ! old module precision_kind is removed, |
---|
33 | ! revision history before 2012 removed, |
---|
34 | ! comment fields (!:) to be used for variable explanations added to |
---|
35 | ! all variable declaration statements |
---|
36 | ! |
---|
37 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
38 | ! module interfaces removed |
---|
39 | ! |
---|
40 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
41 | ! openacc loop vector clauses removed, independent clauses added |
---|
42 | ! |
---|
43 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
44 | ! enable nudging also for accelerator version |
---|
45 | ! |
---|
46 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
47 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
48 | ! |
---|
49 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
50 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
51 | ! |
---|
52 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
53 | ! those parts requiring global communication moved to time_integration, |
---|
54 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
55 | ! j_north |
---|
56 | ! |
---|
57 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
58 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
59 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
60 | ! |
---|
61 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
62 | ! update directives for prognostic quantities removed |
---|
63 | ! |
---|
64 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
65 | ! small changes in code formatting |
---|
66 | ! |
---|
67 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
68 | ! unused variables removed |
---|
69 | ! |
---|
70 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
71 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
72 | ! and rain water content (qr) |
---|
73 | ! |
---|
74 | ! currently, only available for cache loop optimization |
---|
75 | ! |
---|
76 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
77 | ! code put under GPL (PALM 3.9) |
---|
78 | ! |
---|
79 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
80 | ! non-optimized version of prognostic_equations removed |
---|
81 | ! |
---|
82 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
83 | ! new branch prognostic_equations_acc |
---|
84 | ! OpenACC statements added + code changes required for GPU optimization |
---|
85 | ! |
---|
86 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
87 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
88 | ! |
---|
89 | ! 978 2012-08-09 08:28:32Z fricke |
---|
90 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
91 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
92 | ! boundary in case of non-cyclic lateral boundaries |
---|
93 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
94 | ! |
---|
95 | ! 940 2012-07-09 14:31:00Z raasch |
---|
96 | ! temperature equation can be switched off |
---|
97 | ! |
---|
98 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
99 | ! Initial revision |
---|
100 | ! |
---|
101 | ! |
---|
102 | ! Description: |
---|
103 | ! ------------ |
---|
104 | ! Solving the prognostic equations. |
---|
105 | !------------------------------------------------------------------------------! |
---|
106 | |
---|
107 | USE arrays_3d, & |
---|
108 | ONLY: diss_l_e, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qr, & |
---|
109 | diss_l_sa, diss_s_e, diss_s_nr, diss_s_pt, diss_s_q, & |
---|
110 | diss_s_qr, diss_s_sa, e, e_p, flux_s_e, flux_s_nr, flux_s_pt, & |
---|
111 | flux_s_q, flux_s_qr, flux_s_sa, flux_l_e, flux_l_nr, & |
---|
112 | flux_l_pt, flux_l_q, flux_l_qr, flux_l_sa, nr, nr_p, nrsws, & |
---|
113 | nrswst, pt, ptdf_x, ptdf_y, pt_init, pt_p, prho, q, q_init, & |
---|
114 | q_p, qsws, qswst, qr, qr_p, qrsws, qrswst, rdf, rdf_sc, rho, & |
---|
115 | sa, sa_init, sa_p, saswsb, saswst, shf, tend, tend_nr, & |
---|
116 | tend_pt, tend_q, tend_qr, te_m, tnr_m, tpt_m, tq_m, tqr_m, & |
---|
117 | tsa_m, tswst, tu_m, tv_m, tw_m, u, ug, u_p, v, vg, vpt, v_p, & |
---|
118 | w, w_p |
---|
119 | |
---|
120 | USE control_parameters, & |
---|
121 | ONLY: cloud_physics, constant_diffusion, cthf, dp_external, & |
---|
122 | dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, humidity, & |
---|
123 | icloud_scheme, inflow_l, intermediate_timestep_count, & |
---|
124 | intermediate_timestep_count_max, large_scale_subsidence, & |
---|
125 | neutral, nudging, ocean, outflow_l, outflow_s, passive_scalar, & |
---|
126 | plant_canopy, precipitation, prho_reference, prho_reference, & |
---|
127 | prho_reference, pt_reference, pt_reference, pt_reference, & |
---|
128 | radiation, scalar_advec, scalar_advec, simulated_time, & |
---|
129 | sloping_surface, timestep_scheme, tsc, use_upstream_for_tke, & |
---|
130 | use_upstream_for_tke, use_upstream_for_tke, wall_heatflux, & |
---|
131 | wall_nrflux, wall_qflux, wall_qflux, wall_qflux, wall_qrflux, & |
---|
132 | wall_salinityflux, ws_scheme_mom, ws_scheme_sca |
---|
133 | |
---|
134 | USE cpulog, & |
---|
135 | ONLY: cpu_log, log_point |
---|
136 | |
---|
137 | USE eqn_state_seawater_mod, & |
---|
138 | ONLY: eqn_state_seawater |
---|
139 | |
---|
140 | USE indices, & |
---|
141 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlu, nxr, nyn, nys, & |
---|
142 | nysv, nzb_s_inner, nzb_u_inner, nzb_v_inner, nzb_w_inner, nzt |
---|
143 | |
---|
144 | USE advec_ws, & |
---|
145 | ONLY: advec_s_ws, advec_s_ws_acc, advec_u_ws, advec_u_ws_acc, & |
---|
146 | advec_v_ws, advec_v_ws_acc, advec_w_ws, advec_w_ws_acc |
---|
147 | |
---|
148 | USE advec_s_pw_mod, & |
---|
149 | ONLY: advec_s_pw |
---|
150 | |
---|
151 | USE advec_s_up_mod, & |
---|
152 | ONLY: advec_s_up |
---|
153 | |
---|
154 | USE advec_u_pw_mod, & |
---|
155 | ONLY: advec_u_pw |
---|
156 | |
---|
157 | USE advec_u_up_mod, & |
---|
158 | ONLY: advec_u_up |
---|
159 | |
---|
160 | USE advec_v_pw_mod, & |
---|
161 | ONLY: advec_v_pw |
---|
162 | |
---|
163 | USE advec_v_up_mod, & |
---|
164 | ONLY: advec_v_up |
---|
165 | |
---|
166 | USE advec_w_pw_mod, & |
---|
167 | ONLY: advec_w_pw |
---|
168 | |
---|
169 | USE advec_w_up_mod, & |
---|
170 | ONLY: advec_w_up |
---|
171 | |
---|
172 | USE buoyancy_mod, & |
---|
173 | ONLY: buoyancy, buoyancy_acc |
---|
174 | |
---|
175 | USE calc_precipitation_mod, & |
---|
176 | ONLY: calc_precipitation |
---|
177 | |
---|
178 | USE calc_radiation_mod, & |
---|
179 | ONLY: calc_radiation |
---|
180 | |
---|
181 | USE coriolis_mod, & |
---|
182 | ONLY: coriolis, coriolis_acc |
---|
183 | |
---|
184 | USE diffusion_e_mod, & |
---|
185 | ONLY: diffusion_e, diffusion_e_acc |
---|
186 | |
---|
187 | USE diffusion_s_mod, & |
---|
188 | ONLY: diffusion_s, diffusion_s_acc |
---|
189 | |
---|
190 | USE diffusion_u_mod, & |
---|
191 | ONLY: diffusion_u, diffusion_u_acc |
---|
192 | |
---|
193 | USE diffusion_v_mod, & |
---|
194 | ONLY: diffusion_v, diffusion_v_acc |
---|
195 | |
---|
196 | USE diffusion_w_mod, & |
---|
197 | ONLY: diffusion_w, diffusion_w_acc |
---|
198 | |
---|
199 | USE impact_of_latent_heat_mod, & |
---|
200 | ONLY: impact_of_latent_heat |
---|
201 | |
---|
202 | USE kinds |
---|
203 | |
---|
204 | USE microphysics_mod, & |
---|
205 | ONLY: microphysics_control |
---|
206 | |
---|
207 | USE nudge_mod, & |
---|
208 | ONLY: nudge |
---|
209 | |
---|
210 | USE plant_canopy_model_mod, & |
---|
211 | ONLY: plant_canopy_model |
---|
212 | |
---|
213 | USE production_e_mod, & |
---|
214 | ONLY: production_e, production_e_acc |
---|
215 | |
---|
216 | USE subsidence_mod, & |
---|
217 | ONLY: subsidence |
---|
218 | |
---|
219 | USE user_actions_mod, & |
---|
220 | ONLY: user_actions |
---|
221 | |
---|
222 | |
---|
223 | PRIVATE |
---|
224 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
225 | prognostic_equations_acc |
---|
226 | |
---|
227 | INTERFACE prognostic_equations_cache |
---|
228 | MODULE PROCEDURE prognostic_equations_cache |
---|
229 | END INTERFACE prognostic_equations_cache |
---|
230 | |
---|
231 | INTERFACE prognostic_equations_vector |
---|
232 | MODULE PROCEDURE prognostic_equations_vector |
---|
233 | END INTERFACE prognostic_equations_vector |
---|
234 | |
---|
235 | INTERFACE prognostic_equations_acc |
---|
236 | MODULE PROCEDURE prognostic_equations_acc |
---|
237 | END INTERFACE prognostic_equations_acc |
---|
238 | |
---|
239 | |
---|
240 | CONTAINS |
---|
241 | |
---|
242 | |
---|
243 | SUBROUTINE prognostic_equations_cache |
---|
244 | |
---|
245 | !------------------------------------------------------------------------------! |
---|
246 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
247 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
248 | ! |
---|
249 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
250 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
251 | ! these loops. |
---|
252 | ! |
---|
253 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
254 | !------------------------------------------------------------------------------! |
---|
255 | |
---|
256 | IMPLICIT NONE |
---|
257 | |
---|
258 | INTEGER(iwp) :: i !: |
---|
259 | INTEGER(iwp) :: i_omp_start !: |
---|
260 | INTEGER(iwp) :: j !: |
---|
261 | INTEGER(iwp) :: k !: |
---|
262 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
263 | INTEGER(iwp) :: tn = 0 !: |
---|
264 | |
---|
265 | LOGICAL :: loop_start !: |
---|
266 | |
---|
267 | |
---|
268 | ! |
---|
269 | !-- Time measurement can only be performed for the whole set of equations |
---|
270 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
271 | |
---|
272 | ! |
---|
273 | !-- Loop over all prognostic equations |
---|
274 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
275 | |
---|
276 | !$ tn = omp_get_thread_num() |
---|
277 | loop_start = .TRUE. |
---|
278 | !$OMP DO |
---|
279 | DO i = nxl, nxr |
---|
280 | |
---|
281 | ! |
---|
282 | !-- Store the first loop index. It differs for each thread and is required |
---|
283 | !-- later in advec_ws |
---|
284 | IF ( loop_start ) THEN |
---|
285 | loop_start = .FALSE. |
---|
286 | i_omp_start = i |
---|
287 | ENDIF |
---|
288 | |
---|
289 | DO j = nys, nyn |
---|
290 | ! |
---|
291 | !-- Tendency terms for u-velocity component |
---|
292 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
293 | |
---|
294 | tend(:,j,i) = 0.0 |
---|
295 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
296 | IF ( ws_scheme_mom ) THEN |
---|
297 | IF ( ( inflow_l .OR. outflow_l ) .AND. i_omp_start == nxl ) THEN |
---|
298 | CALL advec_u_ws( i, j, i_omp_start + 1, tn ) |
---|
299 | ELSE |
---|
300 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
301 | ENDIF |
---|
302 | ELSE |
---|
303 | CALL advec_u_pw( i, j ) |
---|
304 | ENDIF |
---|
305 | ELSE |
---|
306 | CALL advec_u_up( i, j ) |
---|
307 | ENDIF |
---|
308 | CALL diffusion_u( i, j ) |
---|
309 | CALL coriolis( i, j, 1 ) |
---|
310 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
311 | CALL buoyancy( i, j, pt, 1 ) |
---|
312 | ENDIF |
---|
313 | |
---|
314 | ! |
---|
315 | !-- Drag by plant canopy |
---|
316 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
317 | |
---|
318 | ! |
---|
319 | !-- External pressure gradient |
---|
320 | IF ( dp_external ) THEN |
---|
321 | DO k = dp_level_ind_b+1, nzt |
---|
322 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
323 | ENDDO |
---|
324 | ENDIF |
---|
325 | |
---|
326 | ! |
---|
327 | !-- Nudging |
---|
328 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
329 | |
---|
330 | CALL user_actions( i, j, 'u-tendency' ) |
---|
331 | ! |
---|
332 | !-- Prognostic equation for u-velocity component |
---|
333 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
334 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
335 | tsc(3) * tu_m(k,j,i) ) & |
---|
336 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
337 | ENDDO |
---|
338 | |
---|
339 | ! |
---|
340 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
341 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
342 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
343 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
344 | tu_m(k,j,i) = tend(k,j,i) |
---|
345 | ENDDO |
---|
346 | ELSEIF ( intermediate_timestep_count < & |
---|
347 | intermediate_timestep_count_max ) THEN |
---|
348 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
349 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
350 | ENDDO |
---|
351 | ENDIF |
---|
352 | ENDIF |
---|
353 | |
---|
354 | ENDIF |
---|
355 | |
---|
356 | ! |
---|
357 | !-- Tendency terms for v-velocity component |
---|
358 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
359 | |
---|
360 | tend(:,j,i) = 0.0 |
---|
361 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
362 | IF ( ws_scheme_mom ) THEN |
---|
363 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
364 | ELSE |
---|
365 | CALL advec_v_pw( i, j ) |
---|
366 | ENDIF |
---|
367 | ELSE |
---|
368 | CALL advec_v_up( i, j ) |
---|
369 | ENDIF |
---|
370 | CALL diffusion_v( i, j ) |
---|
371 | CALL coriolis( i, j, 2 ) |
---|
372 | |
---|
373 | ! |
---|
374 | !-- Drag by plant canopy |
---|
375 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
376 | |
---|
377 | ! |
---|
378 | !-- External pressure gradient |
---|
379 | IF ( dp_external ) THEN |
---|
380 | DO k = dp_level_ind_b+1, nzt |
---|
381 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
382 | ENDDO |
---|
383 | ENDIF |
---|
384 | |
---|
385 | ! |
---|
386 | !-- Nudging |
---|
387 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
388 | |
---|
389 | CALL user_actions( i, j, 'v-tendency' ) |
---|
390 | ! |
---|
391 | !-- Prognostic equation for v-velocity component |
---|
392 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
393 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
394 | tsc(3) * tv_m(k,j,i) ) & |
---|
395 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
396 | ENDDO |
---|
397 | |
---|
398 | ! |
---|
399 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
400 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
401 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
402 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
403 | tv_m(k,j,i) = tend(k,j,i) |
---|
404 | ENDDO |
---|
405 | ELSEIF ( intermediate_timestep_count < & |
---|
406 | intermediate_timestep_count_max ) THEN |
---|
407 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
408 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
409 | ENDDO |
---|
410 | ENDIF |
---|
411 | ENDIF |
---|
412 | |
---|
413 | ENDIF |
---|
414 | |
---|
415 | ! |
---|
416 | !-- Tendency terms for w-velocity component |
---|
417 | tend(:,j,i) = 0.0 |
---|
418 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
419 | IF ( ws_scheme_mom ) THEN |
---|
420 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
421 | ELSE |
---|
422 | CALL advec_w_pw( i, j ) |
---|
423 | END IF |
---|
424 | ELSE |
---|
425 | CALL advec_w_up( i, j ) |
---|
426 | ENDIF |
---|
427 | CALL diffusion_w( i, j ) |
---|
428 | CALL coriolis( i, j, 3 ) |
---|
429 | |
---|
430 | IF ( .NOT. neutral ) THEN |
---|
431 | IF ( ocean ) THEN |
---|
432 | CALL buoyancy( i, j, rho, 3 ) |
---|
433 | ELSE |
---|
434 | IF ( .NOT. humidity ) THEN |
---|
435 | CALL buoyancy( i, j, pt, 3 ) |
---|
436 | ELSE |
---|
437 | CALL buoyancy( i, j, vpt, 3 ) |
---|
438 | ENDIF |
---|
439 | ENDIF |
---|
440 | ENDIF |
---|
441 | |
---|
442 | ! |
---|
443 | !-- Drag by plant canopy |
---|
444 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
445 | |
---|
446 | CALL user_actions( i, j, 'w-tendency' ) |
---|
447 | |
---|
448 | ! |
---|
449 | !-- Prognostic equation for w-velocity component |
---|
450 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
451 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
452 | tsc(3) * tw_m(k,j,i) ) & |
---|
453 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
454 | ENDDO |
---|
455 | |
---|
456 | ! |
---|
457 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
458 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
459 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
460 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
461 | tw_m(k,j,i) = tend(k,j,i) |
---|
462 | ENDDO |
---|
463 | ELSEIF ( intermediate_timestep_count < & |
---|
464 | intermediate_timestep_count_max ) THEN |
---|
465 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
466 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
467 | ENDDO |
---|
468 | ENDIF |
---|
469 | ENDIF |
---|
470 | ! |
---|
471 | !-- If required, calculate tendencies for total water content, liquid water |
---|
472 | !-- potential temperature, rain water content and rain drop concentration |
---|
473 | IF ( cloud_physics .AND. icloud_scheme == 0 ) CALL microphysics_control( i, j ) |
---|
474 | ! |
---|
475 | !-- If required, compute prognostic equation for potential temperature |
---|
476 | IF ( .NOT. neutral ) THEN |
---|
477 | ! |
---|
478 | !-- Tendency terms for potential temperature |
---|
479 | tend(:,j,i) = 0.0 |
---|
480 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
481 | IF ( ws_scheme_sca ) THEN |
---|
482 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
483 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
484 | ELSE |
---|
485 | CALL advec_s_pw( i, j, pt ) |
---|
486 | ENDIF |
---|
487 | ELSE |
---|
488 | CALL advec_s_up( i, j, pt ) |
---|
489 | ENDIF |
---|
490 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
491 | |
---|
492 | ! |
---|
493 | !-- If required compute heating/cooling due to long wave radiation |
---|
494 | !-- processes |
---|
495 | IF ( radiation ) THEN |
---|
496 | CALL calc_radiation( i, j ) |
---|
497 | ENDIF |
---|
498 | |
---|
499 | ! |
---|
500 | !-- Using microphysical tendencies (latent heat) |
---|
501 | IF ( cloud_physics ) THEN |
---|
502 | IF ( icloud_scheme == 0 ) THEN |
---|
503 | tend(:,j,i) = tend(:,j,i) + tend_pt(:,j,i) |
---|
504 | ELSEIF ( icloud_scheme == 1 .AND. precipitation ) THEN |
---|
505 | CALL impact_of_latent_heat( i, j ) |
---|
506 | ENDIF |
---|
507 | ENDIF |
---|
508 | |
---|
509 | ! |
---|
510 | !-- Consideration of heat sources within the plant canopy |
---|
511 | IF ( plant_canopy .AND. cthf /= 0.0 ) THEN |
---|
512 | CALL plant_canopy_model( i, j, 4 ) |
---|
513 | ENDIF |
---|
514 | |
---|
515 | ! |
---|
516 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
517 | IF ( large_scale_subsidence ) THEN |
---|
518 | CALL subsidence( i, j, tend, pt, pt_init ) |
---|
519 | ENDIF |
---|
520 | |
---|
521 | ! |
---|
522 | !-- Nudging |
---|
523 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
524 | |
---|
525 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
526 | |
---|
527 | ! |
---|
528 | !-- Prognostic equation for potential temperature |
---|
529 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
530 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
531 | tsc(3) * tpt_m(k,j,i) ) & |
---|
532 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
533 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
534 | ENDDO |
---|
535 | |
---|
536 | ! |
---|
537 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
538 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
539 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
540 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
541 | tpt_m(k,j,i) = tend(k,j,i) |
---|
542 | ENDDO |
---|
543 | ELSEIF ( intermediate_timestep_count < & |
---|
544 | intermediate_timestep_count_max ) THEN |
---|
545 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
546 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
547 | 5.3125 * tpt_m(k,j,i) |
---|
548 | ENDDO |
---|
549 | ENDIF |
---|
550 | ENDIF |
---|
551 | |
---|
552 | ENDIF |
---|
553 | |
---|
554 | ! |
---|
555 | !-- If required, compute prognostic equation for salinity |
---|
556 | IF ( ocean ) THEN |
---|
557 | |
---|
558 | ! |
---|
559 | !-- Tendency-terms for salinity |
---|
560 | tend(:,j,i) = 0.0 |
---|
561 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
562 | THEN |
---|
563 | IF ( ws_scheme_sca ) THEN |
---|
564 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
565 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
566 | ELSE |
---|
567 | CALL advec_s_pw( i, j, sa ) |
---|
568 | ENDIF |
---|
569 | ELSE |
---|
570 | CALL advec_s_up( i, j, sa ) |
---|
571 | ENDIF |
---|
572 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
573 | |
---|
574 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
575 | |
---|
576 | ! |
---|
577 | !-- Prognostic equation for salinity |
---|
578 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
579 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
580 | tsc(3) * tsa_m(k,j,i) ) & |
---|
581 | - tsc(5) * rdf_sc(k) * & |
---|
582 | ( sa(k,j,i) - sa_init(k) ) |
---|
583 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
584 | ENDDO |
---|
585 | |
---|
586 | ! |
---|
587 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
588 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
589 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
590 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
591 | tsa_m(k,j,i) = tend(k,j,i) |
---|
592 | ENDDO |
---|
593 | ELSEIF ( intermediate_timestep_count < & |
---|
594 | intermediate_timestep_count_max ) THEN |
---|
595 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
596 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
597 | 5.3125 * tsa_m(k,j,i) |
---|
598 | ENDDO |
---|
599 | ENDIF |
---|
600 | ENDIF |
---|
601 | |
---|
602 | ! |
---|
603 | !-- Calculate density by the equation of state for seawater |
---|
604 | CALL eqn_state_seawater( i, j ) |
---|
605 | |
---|
606 | ENDIF |
---|
607 | |
---|
608 | ! |
---|
609 | !-- If required, compute prognostic equation for total water content / |
---|
610 | !-- scalar |
---|
611 | IF ( humidity .OR. passive_scalar ) THEN |
---|
612 | |
---|
613 | ! |
---|
614 | !-- Tendency-terms for total water content / scalar |
---|
615 | tend(:,j,i) = 0.0 |
---|
616 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
617 | THEN |
---|
618 | IF ( ws_scheme_sca ) THEN |
---|
619 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
620 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
621 | ELSE |
---|
622 | CALL advec_s_pw( i, j, q ) |
---|
623 | ENDIF |
---|
624 | ELSE |
---|
625 | CALL advec_s_up( i, j, q ) |
---|
626 | ENDIF |
---|
627 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
628 | |
---|
629 | ! |
---|
630 | !-- Using microphysical tendencies |
---|
631 | IF ( cloud_physics ) THEN |
---|
632 | IF ( icloud_scheme == 0 ) THEN |
---|
633 | tend(:,j,i) = tend(:,j,i) + tend_q(:,j,i) |
---|
634 | ELSEIF ( icloud_scheme == 1 .AND. precipitation ) THEN |
---|
635 | CALL calc_precipitation( i, j ) |
---|
636 | ENDIF |
---|
637 | ENDIF |
---|
638 | ! |
---|
639 | !-- Sink or source of scalar concentration due to canopy elements |
---|
640 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
641 | |
---|
642 | ! |
---|
643 | !-- If required compute influence of large-scale subsidence/ascent |
---|
644 | IF ( large_scale_subsidence ) THEN |
---|
645 | CALL subsidence( i, j, tend, q, q_init ) |
---|
646 | ENDIF |
---|
647 | |
---|
648 | ! |
---|
649 | !-- Nudging |
---|
650 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
651 | |
---|
652 | CALL user_actions( i, j, 'q-tendency' ) |
---|
653 | |
---|
654 | ! |
---|
655 | !-- Prognostic equation for total water content / scalar |
---|
656 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
657 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
658 | tsc(3) * tq_m(k,j,i) ) & |
---|
659 | - tsc(5) * rdf_sc(k) * & |
---|
660 | ( q(k,j,i) - q_init(k) ) |
---|
661 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
662 | ENDDO |
---|
663 | |
---|
664 | ! |
---|
665 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
666 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
667 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
668 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
669 | tq_m(k,j,i) = tend(k,j,i) |
---|
670 | ENDDO |
---|
671 | ELSEIF ( intermediate_timestep_count < & |
---|
672 | intermediate_timestep_count_max ) THEN |
---|
673 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
674 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
675 | 5.3125 * tq_m(k,j,i) |
---|
676 | ENDDO |
---|
677 | ENDIF |
---|
678 | ENDIF |
---|
679 | |
---|
680 | ! |
---|
681 | !-- If required, calculate prognostic equations for rain water content |
---|
682 | !-- and rain drop concentration |
---|
683 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
684 | precipitation ) THEN |
---|
685 | ! |
---|
686 | !-- Calculate prognostic equation for rain water content |
---|
687 | tend(:,j,i) = 0.0 |
---|
688 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
689 | THEN |
---|
690 | IF ( ws_scheme_sca ) THEN |
---|
691 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
692 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
693 | i_omp_start, tn ) |
---|
694 | ELSE |
---|
695 | CALL advec_s_pw( i, j, qr ) |
---|
696 | ENDIF |
---|
697 | ELSE |
---|
698 | CALL advec_s_up( i, j, qr ) |
---|
699 | ENDIF |
---|
700 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
701 | ! |
---|
702 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
703 | !-- evaporation; if required: sedimentation) |
---|
704 | tend(:,j,i) = tend(:,j,i) + tend_qr(:,j,i) |
---|
705 | |
---|
706 | CALL user_actions( i, j, 'qr-tendency' ) |
---|
707 | ! |
---|
708 | !-- Prognostic equation for rain water content |
---|
709 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
710 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
711 | tsc(3) * tqr_m(k,j,i) ) & |
---|
712 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
713 | IF ( qr_p(k,j,i) < 0.0 ) qr_p(k,j,i) = 0.0 |
---|
714 | ENDDO |
---|
715 | ! |
---|
716 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
717 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
718 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
719 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
720 | tqr_m(k,j,i) = tend(k,j,i) |
---|
721 | ENDDO |
---|
722 | ELSEIF ( intermediate_timestep_count < & |
---|
723 | intermediate_timestep_count_max ) THEN |
---|
724 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
725 | tqr_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
726 | 5.3125 * tqr_m(k,j,i) |
---|
727 | ENDDO |
---|
728 | ENDIF |
---|
729 | ENDIF |
---|
730 | |
---|
731 | ! |
---|
732 | !-- Calculate prognostic equation for rain drop concentration. |
---|
733 | tend(:,j,i) = 0.0 |
---|
734 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
735 | IF ( ws_scheme_sca ) THEN |
---|
736 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
737 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
738 | i_omp_start, tn ) |
---|
739 | ELSE |
---|
740 | CALL advec_s_pw( i, j, nr ) |
---|
741 | ENDIF |
---|
742 | ELSE |
---|
743 | CALL advec_s_up( i, j, nr ) |
---|
744 | ENDIF |
---|
745 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
746 | ! |
---|
747 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
748 | !-- selfcollection, breakup, evaporation; |
---|
749 | !-- if required: sedimentation) |
---|
750 | tend(:,j,i) = tend(:,j,i) + tend_nr(:,j,i) |
---|
751 | |
---|
752 | CALL user_actions( i, j, 'nr-tendency' ) |
---|
753 | ! |
---|
754 | !-- Prognostic equation for rain drop concentration |
---|
755 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
756 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
757 | tsc(3) * tnr_m(k,j,i) ) & |
---|
758 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
759 | IF ( nr_p(k,j,i) < 0.0 ) nr_p(k,j,i) = 0.0 |
---|
760 | ENDDO |
---|
761 | ! |
---|
762 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
763 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
764 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
765 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
766 | tnr_m(k,j,i) = tend(k,j,i) |
---|
767 | ENDDO |
---|
768 | ELSEIF ( intermediate_timestep_count < & |
---|
769 | intermediate_timestep_count_max ) THEN |
---|
770 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
771 | tnr_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
772 | 5.3125 * tnr_m(k,j,i) |
---|
773 | ENDDO |
---|
774 | ENDIF |
---|
775 | ENDIF |
---|
776 | |
---|
777 | ENDIF |
---|
778 | |
---|
779 | ENDIF |
---|
780 | |
---|
781 | ! |
---|
782 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
783 | !-- energy (TKE) |
---|
784 | IF ( .NOT. constant_diffusion ) THEN |
---|
785 | |
---|
786 | ! |
---|
787 | !-- Tendency-terms for TKE |
---|
788 | tend(:,j,i) = 0.0 |
---|
789 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
790 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
791 | IF ( ws_scheme_sca ) THEN |
---|
792 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
793 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
794 | ELSE |
---|
795 | CALL advec_s_pw( i, j, e ) |
---|
796 | ENDIF |
---|
797 | ELSE |
---|
798 | CALL advec_s_up( i, j, e ) |
---|
799 | ENDIF |
---|
800 | IF ( .NOT. humidity ) THEN |
---|
801 | IF ( ocean ) THEN |
---|
802 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
803 | ELSE |
---|
804 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
805 | ENDIF |
---|
806 | ELSE |
---|
807 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
808 | ENDIF |
---|
809 | CALL production_e( i, j ) |
---|
810 | |
---|
811 | ! |
---|
812 | !-- Additional sink term for flows through plant canopies |
---|
813 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
814 | |
---|
815 | CALL user_actions( i, j, 'e-tendency' ) |
---|
816 | |
---|
817 | ! |
---|
818 | !-- Prognostic equation for TKE. |
---|
819 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
820 | !-- reasons in the course of the integration. In such cases the old |
---|
821 | !-- TKE value is reduced by 90%. |
---|
822 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
823 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
824 | tsc(3) * te_m(k,j,i) ) |
---|
825 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
826 | ENDDO |
---|
827 | |
---|
828 | ! |
---|
829 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
830 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
831 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
832 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
833 | te_m(k,j,i) = tend(k,j,i) |
---|
834 | ENDDO |
---|
835 | ELSEIF ( intermediate_timestep_count < & |
---|
836 | intermediate_timestep_count_max ) THEN |
---|
837 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
838 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
839 | 5.3125 * te_m(k,j,i) |
---|
840 | ENDDO |
---|
841 | ENDIF |
---|
842 | ENDIF |
---|
843 | |
---|
844 | ENDIF ! TKE equation |
---|
845 | |
---|
846 | ENDDO |
---|
847 | ENDDO |
---|
848 | !$OMP END PARALLEL |
---|
849 | |
---|
850 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
851 | |
---|
852 | |
---|
853 | END SUBROUTINE prognostic_equations_cache |
---|
854 | |
---|
855 | |
---|
856 | SUBROUTINE prognostic_equations_vector |
---|
857 | |
---|
858 | !------------------------------------------------------------------------------! |
---|
859 | ! Version for vector machines |
---|
860 | !------------------------------------------------------------------------------! |
---|
861 | |
---|
862 | IMPLICIT NONE |
---|
863 | |
---|
864 | INTEGER(iwp) :: i !: |
---|
865 | INTEGER(iwp) :: j !: |
---|
866 | INTEGER(iwp) :: k !: |
---|
867 | |
---|
868 | REAL(wp) :: sbt !: |
---|
869 | |
---|
870 | |
---|
871 | ! |
---|
872 | !-- u-velocity component |
---|
873 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
874 | |
---|
875 | tend = 0.0 |
---|
876 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
877 | IF ( ws_scheme_mom ) THEN |
---|
878 | CALL advec_u_ws |
---|
879 | ELSE |
---|
880 | CALL advec_u_pw |
---|
881 | ENDIF |
---|
882 | ELSE |
---|
883 | CALL advec_u_up |
---|
884 | ENDIF |
---|
885 | CALL diffusion_u |
---|
886 | CALL coriolis( 1 ) |
---|
887 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
888 | CALL buoyancy( pt, 1 ) |
---|
889 | ENDIF |
---|
890 | |
---|
891 | ! |
---|
892 | !-- Drag by plant canopy |
---|
893 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
894 | |
---|
895 | ! |
---|
896 | !-- External pressure gradient |
---|
897 | IF ( dp_external ) THEN |
---|
898 | DO i = nxlu, nxr |
---|
899 | DO j = nys, nyn |
---|
900 | DO k = dp_level_ind_b+1, nzt |
---|
901 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
902 | ENDDO |
---|
903 | ENDDO |
---|
904 | ENDDO |
---|
905 | ENDIF |
---|
906 | |
---|
907 | ! |
---|
908 | !-- Nudging |
---|
909 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
910 | |
---|
911 | CALL user_actions( 'u-tendency' ) |
---|
912 | |
---|
913 | ! |
---|
914 | !-- Prognostic equation for u-velocity component |
---|
915 | DO i = nxlu, nxr |
---|
916 | DO j = nys, nyn |
---|
917 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
918 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
919 | tsc(3) * tu_m(k,j,i) ) & |
---|
920 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
921 | ENDDO |
---|
922 | ENDDO |
---|
923 | ENDDO |
---|
924 | |
---|
925 | ! |
---|
926 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
927 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
928 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
929 | DO i = nxlu, nxr |
---|
930 | DO j = nys, nyn |
---|
931 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
932 | tu_m(k,j,i) = tend(k,j,i) |
---|
933 | ENDDO |
---|
934 | ENDDO |
---|
935 | ENDDO |
---|
936 | ELSEIF ( intermediate_timestep_count < & |
---|
937 | intermediate_timestep_count_max ) THEN |
---|
938 | DO i = nxlu, nxr |
---|
939 | DO j = nys, nyn |
---|
940 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
941 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
942 | ENDDO |
---|
943 | ENDDO |
---|
944 | ENDDO |
---|
945 | ENDIF |
---|
946 | ENDIF |
---|
947 | |
---|
948 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
949 | |
---|
950 | ! |
---|
951 | !-- v-velocity component |
---|
952 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
953 | |
---|
954 | tend = 0.0 |
---|
955 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
956 | IF ( ws_scheme_mom ) THEN |
---|
957 | CALL advec_v_ws |
---|
958 | ELSE |
---|
959 | CALL advec_v_pw |
---|
960 | END IF |
---|
961 | ELSE |
---|
962 | CALL advec_v_up |
---|
963 | ENDIF |
---|
964 | CALL diffusion_v |
---|
965 | CALL coriolis( 2 ) |
---|
966 | |
---|
967 | ! |
---|
968 | !-- Drag by plant canopy |
---|
969 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
970 | |
---|
971 | ! |
---|
972 | !-- External pressure gradient |
---|
973 | IF ( dp_external ) THEN |
---|
974 | DO i = nxl, nxr |
---|
975 | DO j = nysv, nyn |
---|
976 | DO k = dp_level_ind_b+1, nzt |
---|
977 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
978 | ENDDO |
---|
979 | ENDDO |
---|
980 | ENDDO |
---|
981 | ENDIF |
---|
982 | |
---|
983 | ! |
---|
984 | !-- Nudging |
---|
985 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
986 | |
---|
987 | CALL user_actions( 'v-tendency' ) |
---|
988 | |
---|
989 | ! |
---|
990 | !-- Prognostic equation for v-velocity component |
---|
991 | DO i = nxl, nxr |
---|
992 | DO j = nysv, nyn |
---|
993 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
994 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
995 | tsc(3) * tv_m(k,j,i) ) & |
---|
996 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
997 | ENDDO |
---|
998 | ENDDO |
---|
999 | ENDDO |
---|
1000 | |
---|
1001 | ! |
---|
1002 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1003 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1004 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1005 | DO i = nxl, nxr |
---|
1006 | DO j = nysv, nyn |
---|
1007 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1008 | tv_m(k,j,i) = tend(k,j,i) |
---|
1009 | ENDDO |
---|
1010 | ENDDO |
---|
1011 | ENDDO |
---|
1012 | ELSEIF ( intermediate_timestep_count < & |
---|
1013 | intermediate_timestep_count_max ) THEN |
---|
1014 | DO i = nxl, nxr |
---|
1015 | DO j = nysv, nyn |
---|
1016 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1017 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
1018 | ENDDO |
---|
1019 | ENDDO |
---|
1020 | ENDDO |
---|
1021 | ENDIF |
---|
1022 | ENDIF |
---|
1023 | |
---|
1024 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
1025 | |
---|
1026 | ! |
---|
1027 | !-- w-velocity component |
---|
1028 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
1029 | |
---|
1030 | tend = 0.0 |
---|
1031 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1032 | IF ( ws_scheme_mom ) THEN |
---|
1033 | CALL advec_w_ws |
---|
1034 | ELSE |
---|
1035 | CALL advec_w_pw |
---|
1036 | ENDIF |
---|
1037 | ELSE |
---|
1038 | CALL advec_w_up |
---|
1039 | ENDIF |
---|
1040 | CALL diffusion_w |
---|
1041 | CALL coriolis( 3 ) |
---|
1042 | |
---|
1043 | IF ( .NOT. neutral ) THEN |
---|
1044 | IF ( ocean ) THEN |
---|
1045 | CALL buoyancy( rho, 3 ) |
---|
1046 | ELSE |
---|
1047 | IF ( .NOT. humidity ) THEN |
---|
1048 | CALL buoyancy( pt, 3 ) |
---|
1049 | ELSE |
---|
1050 | CALL buoyancy( vpt, 3 ) |
---|
1051 | ENDIF |
---|
1052 | ENDIF |
---|
1053 | ENDIF |
---|
1054 | |
---|
1055 | ! |
---|
1056 | !-- Drag by plant canopy |
---|
1057 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
1058 | |
---|
1059 | CALL user_actions( 'w-tendency' ) |
---|
1060 | |
---|
1061 | ! |
---|
1062 | !-- Prognostic equation for w-velocity component |
---|
1063 | DO i = nxl, nxr |
---|
1064 | DO j = nys, nyn |
---|
1065 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1066 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1067 | tsc(3) * tw_m(k,j,i) ) & |
---|
1068 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
1069 | ENDDO |
---|
1070 | ENDDO |
---|
1071 | ENDDO |
---|
1072 | |
---|
1073 | ! |
---|
1074 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1075 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1076 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1077 | DO i = nxl, nxr |
---|
1078 | DO j = nys, nyn |
---|
1079 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1080 | tw_m(k,j,i) = tend(k,j,i) |
---|
1081 | ENDDO |
---|
1082 | ENDDO |
---|
1083 | ENDDO |
---|
1084 | ELSEIF ( intermediate_timestep_count < & |
---|
1085 | intermediate_timestep_count_max ) THEN |
---|
1086 | DO i = nxl, nxr |
---|
1087 | DO j = nys, nyn |
---|
1088 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1089 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1090 | ENDDO |
---|
1091 | ENDDO |
---|
1092 | ENDDO |
---|
1093 | ENDIF |
---|
1094 | ENDIF |
---|
1095 | |
---|
1096 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
1097 | |
---|
1098 | |
---|
1099 | ! |
---|
1100 | !-- If required, compute prognostic equation for potential temperature |
---|
1101 | IF ( .NOT. neutral ) THEN |
---|
1102 | |
---|
1103 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
1104 | |
---|
1105 | ! |
---|
1106 | !-- pt-tendency terms with communication |
---|
1107 | sbt = tsc(2) |
---|
1108 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1109 | |
---|
1110 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1111 | ! |
---|
1112 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1113 | sbt = 1.0 |
---|
1114 | ENDIF |
---|
1115 | tend = 0.0 |
---|
1116 | CALL advec_s_bc( pt, 'pt' ) |
---|
1117 | |
---|
1118 | ENDIF |
---|
1119 | |
---|
1120 | ! |
---|
1121 | !-- pt-tendency terms with no communication |
---|
1122 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1123 | tend = 0.0 |
---|
1124 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1125 | IF ( ws_scheme_sca ) THEN |
---|
1126 | CALL advec_s_ws( pt, 'pt' ) |
---|
1127 | ELSE |
---|
1128 | CALL advec_s_pw( pt ) |
---|
1129 | ENDIF |
---|
1130 | ELSE |
---|
1131 | CALL advec_s_up( pt ) |
---|
1132 | ENDIF |
---|
1133 | ENDIF |
---|
1134 | |
---|
1135 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
1136 | |
---|
1137 | ! |
---|
1138 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
1139 | IF ( radiation ) THEN |
---|
1140 | CALL calc_radiation |
---|
1141 | ENDIF |
---|
1142 | |
---|
1143 | ! |
---|
1144 | !-- If required compute impact of latent heat due to precipitation |
---|
1145 | IF ( precipitation ) THEN |
---|
1146 | CALL impact_of_latent_heat |
---|
1147 | ENDIF |
---|
1148 | |
---|
1149 | ! |
---|
1150 | !-- Consideration of heat sources within the plant canopy |
---|
1151 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
1152 | CALL plant_canopy_model( 4 ) |
---|
1153 | ENDIF |
---|
1154 | |
---|
1155 | ! |
---|
1156 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1157 | IF ( large_scale_subsidence ) THEN |
---|
1158 | CALL subsidence( tend, pt, pt_init ) |
---|
1159 | ENDIF |
---|
1160 | |
---|
1161 | ! |
---|
1162 | !-- Nudging |
---|
1163 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
1164 | |
---|
1165 | CALL user_actions( 'pt-tendency' ) |
---|
1166 | |
---|
1167 | ! |
---|
1168 | !-- Prognostic equation for potential temperature |
---|
1169 | DO i = nxl, nxr |
---|
1170 | DO j = nys, nyn |
---|
1171 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1172 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1173 | tsc(3) * tpt_m(k,j,i) ) & |
---|
1174 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
1175 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
1176 | ENDDO |
---|
1177 | ENDDO |
---|
1178 | ENDDO |
---|
1179 | |
---|
1180 | ! |
---|
1181 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1182 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1183 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1184 | DO i = nxl, nxr |
---|
1185 | DO j = nys, nyn |
---|
1186 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1187 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1188 | ENDDO |
---|
1189 | ENDDO |
---|
1190 | ENDDO |
---|
1191 | ELSEIF ( intermediate_timestep_count < & |
---|
1192 | intermediate_timestep_count_max ) THEN |
---|
1193 | DO i = nxl, nxr |
---|
1194 | DO j = nys, nyn |
---|
1195 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1196 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1197 | 5.3125 * tpt_m(k,j,i) |
---|
1198 | ENDDO |
---|
1199 | ENDDO |
---|
1200 | ENDDO |
---|
1201 | ENDIF |
---|
1202 | ENDIF |
---|
1203 | |
---|
1204 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
1205 | |
---|
1206 | ENDIF |
---|
1207 | |
---|
1208 | ! |
---|
1209 | !-- If required, compute prognostic equation for salinity |
---|
1210 | IF ( ocean ) THEN |
---|
1211 | |
---|
1212 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
1213 | |
---|
1214 | ! |
---|
1215 | !-- sa-tendency terms with communication |
---|
1216 | sbt = tsc(2) |
---|
1217 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1218 | |
---|
1219 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1220 | ! |
---|
1221 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1222 | sbt = 1.0 |
---|
1223 | ENDIF |
---|
1224 | tend = 0.0 |
---|
1225 | CALL advec_s_bc( sa, 'sa' ) |
---|
1226 | |
---|
1227 | ENDIF |
---|
1228 | |
---|
1229 | ! |
---|
1230 | !-- sa-tendency terms with no communication |
---|
1231 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1232 | tend = 0.0 |
---|
1233 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1234 | IF ( ws_scheme_sca ) THEN |
---|
1235 | CALL advec_s_ws( sa, 'sa' ) |
---|
1236 | ELSE |
---|
1237 | CALL advec_s_pw( sa ) |
---|
1238 | ENDIF |
---|
1239 | ELSE |
---|
1240 | CALL advec_s_up( sa ) |
---|
1241 | ENDIF |
---|
1242 | ENDIF |
---|
1243 | |
---|
1244 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
1245 | |
---|
1246 | CALL user_actions( 'sa-tendency' ) |
---|
1247 | |
---|
1248 | ! |
---|
1249 | !-- Prognostic equation for salinity |
---|
1250 | DO i = nxl, nxr |
---|
1251 | DO j = nys, nyn |
---|
1252 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1253 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1254 | tsc(3) * tsa_m(k,j,i) ) & |
---|
1255 | - tsc(5) * rdf_sc(k) * & |
---|
1256 | ( sa(k,j,i) - sa_init(k) ) |
---|
1257 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
1258 | ENDDO |
---|
1259 | ENDDO |
---|
1260 | ENDDO |
---|
1261 | |
---|
1262 | ! |
---|
1263 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1264 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1265 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1266 | DO i = nxl, nxr |
---|
1267 | DO j = nys, nyn |
---|
1268 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1269 | tsa_m(k,j,i) = tend(k,j,i) |
---|
1270 | ENDDO |
---|
1271 | ENDDO |
---|
1272 | ENDDO |
---|
1273 | ELSEIF ( intermediate_timestep_count < & |
---|
1274 | intermediate_timestep_count_max ) THEN |
---|
1275 | DO i = nxl, nxr |
---|
1276 | DO j = nys, nyn |
---|
1277 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1278 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1279 | 5.3125 * tsa_m(k,j,i) |
---|
1280 | ENDDO |
---|
1281 | ENDDO |
---|
1282 | ENDDO |
---|
1283 | ENDIF |
---|
1284 | ENDIF |
---|
1285 | |
---|
1286 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
1287 | |
---|
1288 | ! |
---|
1289 | !-- Calculate density by the equation of state for seawater |
---|
1290 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
1291 | CALL eqn_state_seawater |
---|
1292 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
1293 | |
---|
1294 | ENDIF |
---|
1295 | |
---|
1296 | ! |
---|
1297 | !-- If required, compute prognostic equation for total water content / scalar |
---|
1298 | IF ( humidity .OR. passive_scalar ) THEN |
---|
1299 | |
---|
1300 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
1301 | |
---|
1302 | ! |
---|
1303 | !-- Scalar/q-tendency terms with communication |
---|
1304 | sbt = tsc(2) |
---|
1305 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1306 | |
---|
1307 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1308 | ! |
---|
1309 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1310 | sbt = 1.0 |
---|
1311 | ENDIF |
---|
1312 | tend = 0.0 |
---|
1313 | CALL advec_s_bc( q, 'q' ) |
---|
1314 | |
---|
1315 | ENDIF |
---|
1316 | |
---|
1317 | ! |
---|
1318 | !-- Scalar/q-tendency terms with no communication |
---|
1319 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1320 | tend = 0.0 |
---|
1321 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1322 | IF ( ws_scheme_sca ) THEN |
---|
1323 | CALL advec_s_ws( q, 'q' ) |
---|
1324 | ELSE |
---|
1325 | CALL advec_s_pw( q ) |
---|
1326 | ENDIF |
---|
1327 | ELSE |
---|
1328 | CALL advec_s_up( q ) |
---|
1329 | ENDIF |
---|
1330 | ENDIF |
---|
1331 | |
---|
1332 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
1333 | |
---|
1334 | ! |
---|
1335 | !-- If required compute decrease of total water content due to |
---|
1336 | !-- precipitation |
---|
1337 | IF ( precipitation ) THEN |
---|
1338 | CALL calc_precipitation |
---|
1339 | ENDIF |
---|
1340 | |
---|
1341 | ! |
---|
1342 | !-- Sink or source of scalar concentration due to canopy elements |
---|
1343 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
1344 | |
---|
1345 | ! |
---|
1346 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1347 | IF ( large_scale_subsidence ) THEN |
---|
1348 | CALL subsidence( tend, q, q_init ) |
---|
1349 | ENDIF |
---|
1350 | |
---|
1351 | ! |
---|
1352 | !-- Nudging |
---|
1353 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
1354 | |
---|
1355 | CALL user_actions( 'q-tendency' ) |
---|
1356 | |
---|
1357 | ! |
---|
1358 | !-- Prognostic equation for total water content / scalar |
---|
1359 | DO i = nxl, nxr |
---|
1360 | DO j = nys, nyn |
---|
1361 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1362 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1363 | tsc(3) * tq_m(k,j,i) ) & |
---|
1364 | - tsc(5) * rdf_sc(k) * & |
---|
1365 | ( q(k,j,i) - q_init(k) ) |
---|
1366 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
1367 | ENDDO |
---|
1368 | ENDDO |
---|
1369 | ENDDO |
---|
1370 | |
---|
1371 | ! |
---|
1372 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1373 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1374 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1375 | DO i = nxl, nxr |
---|
1376 | DO j = nys, nyn |
---|
1377 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1378 | tq_m(k,j,i) = tend(k,j,i) |
---|
1379 | ENDDO |
---|
1380 | ENDDO |
---|
1381 | ENDDO |
---|
1382 | ELSEIF ( intermediate_timestep_count < & |
---|
1383 | intermediate_timestep_count_max ) THEN |
---|
1384 | DO i = nxl, nxr |
---|
1385 | DO j = nys, nyn |
---|
1386 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1387 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
1388 | ENDDO |
---|
1389 | ENDDO |
---|
1390 | ENDDO |
---|
1391 | ENDIF |
---|
1392 | ENDIF |
---|
1393 | |
---|
1394 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
1395 | |
---|
1396 | ENDIF |
---|
1397 | |
---|
1398 | ! |
---|
1399 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1400 | !-- energy (TKE) |
---|
1401 | IF ( .NOT. constant_diffusion ) THEN |
---|
1402 | |
---|
1403 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
1404 | |
---|
1405 | sbt = tsc(2) |
---|
1406 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
1407 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1408 | |
---|
1409 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1410 | ! |
---|
1411 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1412 | sbt = 1.0 |
---|
1413 | ENDIF |
---|
1414 | tend = 0.0 |
---|
1415 | CALL advec_s_bc( e, 'e' ) |
---|
1416 | |
---|
1417 | ENDIF |
---|
1418 | ENDIF |
---|
1419 | |
---|
1420 | ! |
---|
1421 | !-- TKE-tendency terms with no communication |
---|
1422 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
1423 | IF ( use_upstream_for_tke ) THEN |
---|
1424 | tend = 0.0 |
---|
1425 | CALL advec_s_up( e ) |
---|
1426 | ELSE |
---|
1427 | tend = 0.0 |
---|
1428 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1429 | IF ( ws_scheme_sca ) THEN |
---|
1430 | CALL advec_s_ws( e, 'e' ) |
---|
1431 | ELSE |
---|
1432 | CALL advec_s_pw( e ) |
---|
1433 | ENDIF |
---|
1434 | ELSE |
---|
1435 | CALL advec_s_up( e ) |
---|
1436 | ENDIF |
---|
1437 | ENDIF |
---|
1438 | ENDIF |
---|
1439 | |
---|
1440 | IF ( .NOT. humidity ) THEN |
---|
1441 | IF ( ocean ) THEN |
---|
1442 | CALL diffusion_e( prho, prho_reference ) |
---|
1443 | ELSE |
---|
1444 | CALL diffusion_e( pt, pt_reference ) |
---|
1445 | ENDIF |
---|
1446 | ELSE |
---|
1447 | CALL diffusion_e( vpt, pt_reference ) |
---|
1448 | ENDIF |
---|
1449 | |
---|
1450 | CALL production_e |
---|
1451 | |
---|
1452 | ! |
---|
1453 | !-- Additional sink term for flows through plant canopies |
---|
1454 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
1455 | CALL user_actions( 'e-tendency' ) |
---|
1456 | |
---|
1457 | ! |
---|
1458 | !-- Prognostic equation for TKE. |
---|
1459 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
1460 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
1461 | !-- value is reduced by 90%. |
---|
1462 | DO i = nxl, nxr |
---|
1463 | DO j = nys, nyn |
---|
1464 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1465 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1466 | tsc(3) * te_m(k,j,i) ) |
---|
1467 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
1468 | ENDDO |
---|
1469 | ENDDO |
---|
1470 | ENDDO |
---|
1471 | |
---|
1472 | ! |
---|
1473 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1474 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1475 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1476 | DO i = nxl, nxr |
---|
1477 | DO j = nys, nyn |
---|
1478 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1479 | te_m(k,j,i) = tend(k,j,i) |
---|
1480 | ENDDO |
---|
1481 | ENDDO |
---|
1482 | ENDDO |
---|
1483 | ELSEIF ( intermediate_timestep_count < & |
---|
1484 | intermediate_timestep_count_max ) THEN |
---|
1485 | DO i = nxl, nxr |
---|
1486 | DO j = nys, nyn |
---|
1487 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1488 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
1489 | ENDDO |
---|
1490 | ENDDO |
---|
1491 | ENDDO |
---|
1492 | ENDIF |
---|
1493 | ENDIF |
---|
1494 | |
---|
1495 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
1496 | |
---|
1497 | ENDIF |
---|
1498 | |
---|
1499 | |
---|
1500 | END SUBROUTINE prognostic_equations_vector |
---|
1501 | |
---|
1502 | |
---|
1503 | SUBROUTINE prognostic_equations_acc |
---|
1504 | |
---|
1505 | !------------------------------------------------------------------------------! |
---|
1506 | ! Version for accelerator boards |
---|
1507 | !------------------------------------------------------------------------------! |
---|
1508 | |
---|
1509 | IMPLICIT NONE |
---|
1510 | |
---|
1511 | INTEGER(iwp) :: i !: |
---|
1512 | INTEGER(iwp) :: j !: |
---|
1513 | INTEGER(iwp) :: k !: |
---|
1514 | INTEGER(iwp) :: runge_step !: |
---|
1515 | |
---|
1516 | REAL(wp) :: sbt !: |
---|
1517 | |
---|
1518 | ! |
---|
1519 | !-- Set switch for intermediate Runge-Kutta step |
---|
1520 | runge_step = 0 |
---|
1521 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1522 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1523 | runge_step = 1 |
---|
1524 | ELSEIF ( intermediate_timestep_count < & |
---|
1525 | intermediate_timestep_count_max ) THEN |
---|
1526 | runge_step = 2 |
---|
1527 | ENDIF |
---|
1528 | ENDIF |
---|
1529 | |
---|
1530 | ! |
---|
1531 | !-- u-velocity component |
---|
1532 | !++ Statistics still not ported to accelerators |
---|
1533 | !$acc update device( hom, ref_state ) |
---|
1534 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
1535 | |
---|
1536 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1537 | IF ( ws_scheme_mom ) THEN |
---|
1538 | CALL advec_u_ws_acc |
---|
1539 | ELSE |
---|
1540 | tend = 0.0 ! to be removed later?? |
---|
1541 | CALL advec_u_pw |
---|
1542 | ENDIF |
---|
1543 | ELSE |
---|
1544 | CALL advec_u_up |
---|
1545 | ENDIF |
---|
1546 | CALL diffusion_u_acc |
---|
1547 | CALL coriolis_acc( 1 ) |
---|
1548 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
1549 | CALL buoyancy( pt, 1 ) |
---|
1550 | ENDIF |
---|
1551 | |
---|
1552 | ! |
---|
1553 | !-- Drag by plant canopy |
---|
1554 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
1555 | |
---|
1556 | ! |
---|
1557 | !-- External pressure gradient |
---|
1558 | IF ( dp_external ) THEN |
---|
1559 | DO i = i_left, i_right |
---|
1560 | DO j = j_south, j_north |
---|
1561 | DO k = dp_level_ind_b+1, nzt |
---|
1562 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
1563 | ENDDO |
---|
1564 | ENDDO |
---|
1565 | ENDDO |
---|
1566 | ENDIF |
---|
1567 | |
---|
1568 | ! |
---|
1569 | !-- Nudging |
---|
1570 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
1571 | |
---|
1572 | CALL user_actions( 'u-tendency' ) |
---|
1573 | |
---|
1574 | ! |
---|
1575 | !-- Prognostic equation for u-velocity component |
---|
1576 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, ug, u_p ) |
---|
1577 | !$acc loop independent |
---|
1578 | DO i = i_left, i_right |
---|
1579 | !$acc loop independent |
---|
1580 | DO j = j_south, j_north |
---|
1581 | !$acc loop independent |
---|
1582 | DO k = 1, nzt |
---|
1583 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
1584 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1585 | tsc(3) * tu_m(k,j,i) ) & |
---|
1586 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
1587 | ! |
---|
1588 | !-- Tendencies for the next Runge-Kutta step |
---|
1589 | IF ( runge_step == 1 ) THEN |
---|
1590 | tu_m(k,j,i) = tend(k,j,i) |
---|
1591 | ELSEIF ( runge_step == 2 ) THEN |
---|
1592 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
1593 | ENDIF |
---|
1594 | ENDIF |
---|
1595 | ENDDO |
---|
1596 | ENDDO |
---|
1597 | ENDDO |
---|
1598 | !$acc end kernels |
---|
1599 | |
---|
1600 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
1601 | |
---|
1602 | ! |
---|
1603 | !-- v-velocity component |
---|
1604 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
1605 | |
---|
1606 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1607 | IF ( ws_scheme_mom ) THEN |
---|
1608 | CALL advec_v_ws_acc |
---|
1609 | ELSE |
---|
1610 | tend = 0.0 ! to be removed later?? |
---|
1611 | CALL advec_v_pw |
---|
1612 | END IF |
---|
1613 | ELSE |
---|
1614 | CALL advec_v_up |
---|
1615 | ENDIF |
---|
1616 | CALL diffusion_v_acc |
---|
1617 | CALL coriolis_acc( 2 ) |
---|
1618 | |
---|
1619 | ! |
---|
1620 | !-- Drag by plant canopy |
---|
1621 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
1622 | |
---|
1623 | ! |
---|
1624 | !-- External pressure gradient |
---|
1625 | IF ( dp_external ) THEN |
---|
1626 | DO i = i_left, i_right |
---|
1627 | DO j = j_south, j_north |
---|
1628 | DO k = dp_level_ind_b+1, nzt |
---|
1629 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
1630 | ENDDO |
---|
1631 | ENDDO |
---|
1632 | ENDDO |
---|
1633 | ENDIF |
---|
1634 | |
---|
1635 | ! |
---|
1636 | !-- Nudging |
---|
1637 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
1638 | |
---|
1639 | CALL user_actions( 'v-tendency' ) |
---|
1640 | |
---|
1641 | ! |
---|
1642 | !-- Prognostic equation for v-velocity component |
---|
1643 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, vg, v_p ) |
---|
1644 | !$acc loop independent |
---|
1645 | DO i = i_left, i_right |
---|
1646 | !$acc loop independent |
---|
1647 | DO j = j_south, j_north |
---|
1648 | !$acc loop independent |
---|
1649 | DO k = 1, nzt |
---|
1650 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
1651 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1652 | tsc(3) * tv_m(k,j,i) ) & |
---|
1653 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
1654 | ! |
---|
1655 | !-- Tendencies for the next Runge-Kutta step |
---|
1656 | IF ( runge_step == 1 ) THEN |
---|
1657 | tv_m(k,j,i) = tend(k,j,i) |
---|
1658 | ELSEIF ( runge_step == 2 ) THEN |
---|
1659 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
1660 | ENDIF |
---|
1661 | ENDIF |
---|
1662 | ENDDO |
---|
1663 | ENDDO |
---|
1664 | ENDDO |
---|
1665 | !$acc end kernels |
---|
1666 | |
---|
1667 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
1668 | |
---|
1669 | ! |
---|
1670 | !-- w-velocity component |
---|
1671 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
1672 | |
---|
1673 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1674 | IF ( ws_scheme_mom ) THEN |
---|
1675 | CALL advec_w_ws_acc |
---|
1676 | ELSE |
---|
1677 | tend = 0.0 ! to be removed later?? |
---|
1678 | CALL advec_w_pw |
---|
1679 | ENDIF |
---|
1680 | ELSE |
---|
1681 | CALL advec_w_up |
---|
1682 | ENDIF |
---|
1683 | CALL diffusion_w_acc |
---|
1684 | CALL coriolis_acc( 3 ) |
---|
1685 | |
---|
1686 | IF ( .NOT. neutral ) THEN |
---|
1687 | IF ( ocean ) THEN |
---|
1688 | CALL buoyancy( rho, 3 ) |
---|
1689 | ELSE |
---|
1690 | IF ( .NOT. humidity ) THEN |
---|
1691 | CALL buoyancy_acc( pt, 3 ) |
---|
1692 | ELSE |
---|
1693 | CALL buoyancy( vpt, 3 ) |
---|
1694 | ENDIF |
---|
1695 | ENDIF |
---|
1696 | ENDIF |
---|
1697 | |
---|
1698 | ! |
---|
1699 | !-- Drag by plant canopy |
---|
1700 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
1701 | |
---|
1702 | CALL user_actions( 'w-tendency' ) |
---|
1703 | |
---|
1704 | ! |
---|
1705 | !-- Prognostic equation for w-velocity component |
---|
1706 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
1707 | !$acc loop independent |
---|
1708 | DO i = i_left, i_right |
---|
1709 | !$acc loop independent |
---|
1710 | DO j = j_south, j_north |
---|
1711 | !$acc loop independent |
---|
1712 | DO k = 1, nzt-1 |
---|
1713 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
1714 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1715 | tsc(3) * tw_m(k,j,i) ) & |
---|
1716 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
1717 | ! |
---|
1718 | !-- Tendencies for the next Runge-Kutta step |
---|
1719 | IF ( runge_step == 1 ) THEN |
---|
1720 | tw_m(k,j,i) = tend(k,j,i) |
---|
1721 | ELSEIF ( runge_step == 2 ) THEN |
---|
1722 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1723 | ENDIF |
---|
1724 | ENDIF |
---|
1725 | ENDDO |
---|
1726 | ENDDO |
---|
1727 | ENDDO |
---|
1728 | !$acc end kernels |
---|
1729 | |
---|
1730 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
1731 | |
---|
1732 | |
---|
1733 | ! |
---|
1734 | !-- If required, compute prognostic equation for potential temperature |
---|
1735 | IF ( .NOT. neutral ) THEN |
---|
1736 | |
---|
1737 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
1738 | |
---|
1739 | ! |
---|
1740 | !-- pt-tendency terms with communication |
---|
1741 | sbt = tsc(2) |
---|
1742 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1743 | |
---|
1744 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1745 | ! |
---|
1746 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1747 | sbt = 1.0 |
---|
1748 | ENDIF |
---|
1749 | tend = 0.0 |
---|
1750 | CALL advec_s_bc( pt, 'pt' ) |
---|
1751 | |
---|
1752 | ENDIF |
---|
1753 | |
---|
1754 | ! |
---|
1755 | !-- pt-tendency terms with no communication |
---|
1756 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1757 | tend = 0.0 |
---|
1758 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1759 | IF ( ws_scheme_sca ) THEN |
---|
1760 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
1761 | ELSE |
---|
1762 | tend = 0.0 ! to be removed later?? |
---|
1763 | CALL advec_s_pw( pt ) |
---|
1764 | ENDIF |
---|
1765 | ELSE |
---|
1766 | CALL advec_s_up( pt ) |
---|
1767 | ENDIF |
---|
1768 | ENDIF |
---|
1769 | |
---|
1770 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
1771 | |
---|
1772 | ! |
---|
1773 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
1774 | IF ( radiation ) THEN |
---|
1775 | CALL calc_radiation |
---|
1776 | ENDIF |
---|
1777 | |
---|
1778 | ! |
---|
1779 | !-- If required compute impact of latent heat due to precipitation |
---|
1780 | IF ( precipitation ) THEN |
---|
1781 | CALL impact_of_latent_heat |
---|
1782 | ENDIF |
---|
1783 | |
---|
1784 | ! |
---|
1785 | !-- Consideration of heat sources within the plant canopy |
---|
1786 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
1787 | CALL plant_canopy_model( 4 ) |
---|
1788 | ENDIF |
---|
1789 | |
---|
1790 | ! |
---|
1791 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1792 | IF ( large_scale_subsidence ) THEN |
---|
1793 | CALL subsidence( tend, pt, pt_init ) |
---|
1794 | ENDIF |
---|
1795 | |
---|
1796 | ! |
---|
1797 | !-- Nudging |
---|
1798 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
1799 | |
---|
1800 | CALL user_actions( 'pt-tendency' ) |
---|
1801 | |
---|
1802 | ! |
---|
1803 | !-- Prognostic equation for potential temperature |
---|
1804 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
1805 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
1806 | !$acc loop independent |
---|
1807 | DO i = i_left, i_right |
---|
1808 | !$acc loop independent |
---|
1809 | DO j = j_south, j_north |
---|
1810 | !$acc loop independent |
---|
1811 | DO k = 1, nzt |
---|
1812 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
1813 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1814 | tsc(3) * tpt_m(k,j,i) ) & |
---|
1815 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
1816 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
1817 | ! |
---|
1818 | !-- Tendencies for the next Runge-Kutta step |
---|
1819 | IF ( runge_step == 1 ) THEN |
---|
1820 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1821 | ELSEIF ( runge_step == 2 ) THEN |
---|
1822 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
1823 | ENDIF |
---|
1824 | ENDIF |
---|
1825 | ENDDO |
---|
1826 | ENDDO |
---|
1827 | ENDDO |
---|
1828 | !$acc end kernels |
---|
1829 | |
---|
1830 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
1831 | |
---|
1832 | ENDIF |
---|
1833 | |
---|
1834 | ! |
---|
1835 | !-- If required, compute prognostic equation for salinity |
---|
1836 | IF ( ocean ) THEN |
---|
1837 | |
---|
1838 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
1839 | |
---|
1840 | ! |
---|
1841 | !-- sa-tendency terms with communication |
---|
1842 | sbt = tsc(2) |
---|
1843 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1844 | |
---|
1845 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1846 | ! |
---|
1847 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1848 | sbt = 1.0 |
---|
1849 | ENDIF |
---|
1850 | tend = 0.0 |
---|
1851 | CALL advec_s_bc( sa, 'sa' ) |
---|
1852 | |
---|
1853 | ENDIF |
---|
1854 | |
---|
1855 | ! |
---|
1856 | !-- sa-tendency terms with no communication |
---|
1857 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1858 | tend = 0.0 |
---|
1859 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1860 | IF ( ws_scheme_sca ) THEN |
---|
1861 | CALL advec_s_ws( sa, 'sa' ) |
---|
1862 | ELSE |
---|
1863 | CALL advec_s_pw( sa ) |
---|
1864 | ENDIF |
---|
1865 | ELSE |
---|
1866 | CALL advec_s_up( sa ) |
---|
1867 | ENDIF |
---|
1868 | ENDIF |
---|
1869 | |
---|
1870 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
1871 | |
---|
1872 | CALL user_actions( 'sa-tendency' ) |
---|
1873 | |
---|
1874 | ! |
---|
1875 | !-- Prognostic equation for salinity |
---|
1876 | DO i = i_left, i_right |
---|
1877 | DO j = j_south, j_north |
---|
1878 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1879 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1880 | tsc(3) * tsa_m(k,j,i) ) & |
---|
1881 | - tsc(5) * rdf_sc(k) * & |
---|
1882 | ( sa(k,j,i) - sa_init(k) ) |
---|
1883 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
1884 | ! |
---|
1885 | !-- Tendencies for the next Runge-Kutta step |
---|
1886 | IF ( runge_step == 1 ) THEN |
---|
1887 | tsa_m(k,j,i) = tend(k,j,i) |
---|
1888 | ELSEIF ( runge_step == 2 ) THEN |
---|
1889 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tsa_m(k,j,i) |
---|
1890 | ENDIF |
---|
1891 | ENDDO |
---|
1892 | ENDDO |
---|
1893 | ENDDO |
---|
1894 | |
---|
1895 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
1896 | |
---|
1897 | ! |
---|
1898 | !-- Calculate density by the equation of state for seawater |
---|
1899 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
1900 | CALL eqn_state_seawater |
---|
1901 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
1902 | |
---|
1903 | ENDIF |
---|
1904 | |
---|
1905 | ! |
---|
1906 | !-- If required, compute prognostic equation for total water content / scalar |
---|
1907 | IF ( humidity .OR. passive_scalar ) THEN |
---|
1908 | |
---|
1909 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
1910 | |
---|
1911 | ! |
---|
1912 | !-- Scalar/q-tendency terms with communication |
---|
1913 | sbt = tsc(2) |
---|
1914 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1915 | |
---|
1916 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1917 | ! |
---|
1918 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1919 | sbt = 1.0 |
---|
1920 | ENDIF |
---|
1921 | tend = 0.0 |
---|
1922 | CALL advec_s_bc( q, 'q' ) |
---|
1923 | |
---|
1924 | ENDIF |
---|
1925 | |
---|
1926 | ! |
---|
1927 | !-- Scalar/q-tendency terms with no communication |
---|
1928 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1929 | tend = 0.0 |
---|
1930 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1931 | IF ( ws_scheme_sca ) THEN |
---|
1932 | CALL advec_s_ws( q, 'q' ) |
---|
1933 | ELSE |
---|
1934 | CALL advec_s_pw( q ) |
---|
1935 | ENDIF |
---|
1936 | ELSE |
---|
1937 | CALL advec_s_up( q ) |
---|
1938 | ENDIF |
---|
1939 | ENDIF |
---|
1940 | |
---|
1941 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
1942 | |
---|
1943 | ! |
---|
1944 | !-- If required compute decrease of total water content due to |
---|
1945 | !-- precipitation |
---|
1946 | IF ( precipitation ) THEN |
---|
1947 | CALL calc_precipitation |
---|
1948 | ENDIF |
---|
1949 | |
---|
1950 | ! |
---|
1951 | !-- Sink or source of scalar concentration due to canopy elements |
---|
1952 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
1953 | |
---|
1954 | ! |
---|
1955 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1956 | IF ( large_scale_subsidence ) THEN |
---|
1957 | CALL subsidence( tend, q, q_init ) |
---|
1958 | ENDIF |
---|
1959 | |
---|
1960 | ! |
---|
1961 | !-- Nudging |
---|
1962 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
1963 | |
---|
1964 | CALL user_actions( 'q-tendency' ) |
---|
1965 | |
---|
1966 | ! |
---|
1967 | !-- Prognostic equation for total water content / scalar |
---|
1968 | DO i = i_left, i_right |
---|
1969 | DO j = j_south, j_north |
---|
1970 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1971 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1972 | tsc(3) * tq_m(k,j,i) ) & |
---|
1973 | - tsc(5) * rdf_sc(k) * & |
---|
1974 | ( q(k,j,i) - q_init(k) ) |
---|
1975 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
1976 | ! |
---|
1977 | !-- Tendencies for the next Runge-Kutta step |
---|
1978 | IF ( runge_step == 1 ) THEN |
---|
1979 | tq_m(k,j,i) = tend(k,j,i) |
---|
1980 | ELSEIF ( runge_step == 2 ) THEN |
---|
1981 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
1982 | ENDIF |
---|
1983 | ENDDO |
---|
1984 | ENDDO |
---|
1985 | ENDDO |
---|
1986 | |
---|
1987 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
1988 | |
---|
1989 | ENDIF |
---|
1990 | |
---|
1991 | ! |
---|
1992 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1993 | !-- energy (TKE) |
---|
1994 | IF ( .NOT. constant_diffusion ) THEN |
---|
1995 | |
---|
1996 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
1997 | |
---|
1998 | sbt = tsc(2) |
---|
1999 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
2000 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
2001 | |
---|
2002 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
2003 | ! |
---|
2004 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
2005 | sbt = 1.0 |
---|
2006 | ENDIF |
---|
2007 | tend = 0.0 |
---|
2008 | CALL advec_s_bc( e, 'e' ) |
---|
2009 | |
---|
2010 | ENDIF |
---|
2011 | ENDIF |
---|
2012 | |
---|
2013 | ! |
---|
2014 | !-- TKE-tendency terms with no communication |
---|
2015 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
2016 | IF ( use_upstream_for_tke ) THEN |
---|
2017 | tend = 0.0 |
---|
2018 | CALL advec_s_up( e ) |
---|
2019 | ELSE |
---|
2020 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2021 | IF ( ws_scheme_sca ) THEN |
---|
2022 | CALL advec_s_ws_acc( e, 'e' ) |
---|
2023 | ELSE |
---|
2024 | tend = 0.0 ! to be removed later?? |
---|
2025 | CALL advec_s_pw( e ) |
---|
2026 | ENDIF |
---|
2027 | ELSE |
---|
2028 | tend = 0.0 ! to be removed later?? |
---|
2029 | CALL advec_s_up( e ) |
---|
2030 | ENDIF |
---|
2031 | ENDIF |
---|
2032 | ENDIF |
---|
2033 | |
---|
2034 | IF ( .NOT. humidity ) THEN |
---|
2035 | IF ( ocean ) THEN |
---|
2036 | CALL diffusion_e( prho, prho_reference ) |
---|
2037 | ELSE |
---|
2038 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
2039 | ENDIF |
---|
2040 | ELSE |
---|
2041 | CALL diffusion_e( vpt, pt_reference ) |
---|
2042 | ENDIF |
---|
2043 | |
---|
2044 | CALL production_e_acc |
---|
2045 | |
---|
2046 | ! |
---|
2047 | !-- Additional sink term for flows through plant canopies |
---|
2048 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
2049 | CALL user_actions( 'e-tendency' ) |
---|
2050 | |
---|
2051 | ! |
---|
2052 | !-- Prognostic equation for TKE. |
---|
2053 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
2054 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
2055 | !-- value is reduced by 90%. |
---|
2056 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
2057 | !$acc loop independent |
---|
2058 | DO i = i_left, i_right |
---|
2059 | !$acc loop independent |
---|
2060 | DO j = j_south, j_north |
---|
2061 | !$acc loop independent |
---|
2062 | DO k = 1, nzt |
---|
2063 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
2064 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
2065 | tsc(3) * te_m(k,j,i) ) |
---|
2066 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
2067 | ! |
---|
2068 | !-- Tendencies for the next Runge-Kutta step |
---|
2069 | IF ( runge_step == 1 ) THEN |
---|
2070 | te_m(k,j,i) = tend(k,j,i) |
---|
2071 | ELSEIF ( runge_step == 2 ) THEN |
---|
2072 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
2073 | ENDIF |
---|
2074 | ENDIF |
---|
2075 | ENDDO |
---|
2076 | ENDDO |
---|
2077 | ENDDO |
---|
2078 | !$acc end kernels |
---|
2079 | |
---|
2080 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
2081 | |
---|
2082 | ENDIF |
---|
2083 | |
---|
2084 | |
---|
2085 | END SUBROUTINE prognostic_equations_acc |
---|
2086 | |
---|
2087 | |
---|
2088 | END MODULE prognostic_equations_mod |
---|