1 | MODULE prognostic_equations_mod |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Actual revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: prognostic_equations.f90 198 2008-09-17 08:55:28Z raasch $ |
---|
11 | ! |
---|
12 | ! 153 2008-03-19 09:41:30Z steinfeld |
---|
13 | ! add call of plant_canopy_model in the prognostic equation for |
---|
14 | ! the potential temperature and for the passive scalar |
---|
15 | ! |
---|
16 | ! 138 2007-11-28 10:03:58Z letzel |
---|
17 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
18 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
19 | ! |
---|
20 | ! 106 2007-08-16 14:30:26Z raasch |
---|
21 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
22 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
23 | ! for non-cyclic boundary conditions) |
---|
24 | ! |
---|
25 | ! 97 2007-06-21 08:23:15Z raasch |
---|
26 | ! prognostic equation for salinity, density is calculated from equation of |
---|
27 | ! state for seawater and is used for calculation of buoyancy, |
---|
28 | ! +eqn_state_seawater_mod |
---|
29 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
30 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
31 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
32 | ! calc_mean_profile |
---|
33 | ! |
---|
34 | ! 75 2007-03-22 09:54:05Z raasch |
---|
35 | ! checking for negative q and limiting for positive values, |
---|
36 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
37 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
38 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
39 | ! _vector-version |
---|
40 | ! |
---|
41 | ! 19 2007-02-23 04:53:48Z raasch |
---|
42 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
43 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
44 | ! |
---|
45 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
46 | ! |
---|
47 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
48 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
49 | ! regardless of the timestep scheme used for the other quantities, |
---|
50 | ! new argument diss in call of diffusion_e |
---|
51 | ! |
---|
52 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
53 | ! Initial revision |
---|
54 | ! |
---|
55 | ! |
---|
56 | ! Description: |
---|
57 | ! ------------ |
---|
58 | ! Solving the prognostic equations. |
---|
59 | !------------------------------------------------------------------------------! |
---|
60 | |
---|
61 | USE arrays_3d |
---|
62 | USE control_parameters |
---|
63 | USE cpulog |
---|
64 | USE eqn_state_seawater_mod |
---|
65 | USE grid_variables |
---|
66 | USE indices |
---|
67 | USE interfaces |
---|
68 | USE pegrid |
---|
69 | USE pointer_interfaces |
---|
70 | USE statistics |
---|
71 | |
---|
72 | USE advec_s_pw_mod |
---|
73 | USE advec_s_up_mod |
---|
74 | USE advec_u_pw_mod |
---|
75 | USE advec_u_up_mod |
---|
76 | USE advec_v_pw_mod |
---|
77 | USE advec_v_up_mod |
---|
78 | USE advec_w_pw_mod |
---|
79 | USE advec_w_up_mod |
---|
80 | USE buoyancy_mod |
---|
81 | USE calc_precipitation_mod |
---|
82 | USE calc_radiation_mod |
---|
83 | USE coriolis_mod |
---|
84 | USE diffusion_e_mod |
---|
85 | USE diffusion_s_mod |
---|
86 | USE diffusion_u_mod |
---|
87 | USE diffusion_v_mod |
---|
88 | USE diffusion_w_mod |
---|
89 | USE impact_of_latent_heat_mod |
---|
90 | USE plant_canopy_model_mod |
---|
91 | USE production_e_mod |
---|
92 | USE user_actions_mod |
---|
93 | |
---|
94 | |
---|
95 | PRIVATE |
---|
96 | PUBLIC prognostic_equations_noopt, prognostic_equations_cache, & |
---|
97 | prognostic_equations_vector |
---|
98 | |
---|
99 | INTERFACE prognostic_equations_noopt |
---|
100 | MODULE PROCEDURE prognostic_equations_noopt |
---|
101 | END INTERFACE prognostic_equations_noopt |
---|
102 | |
---|
103 | INTERFACE prognostic_equations_cache |
---|
104 | MODULE PROCEDURE prognostic_equations_cache |
---|
105 | END INTERFACE prognostic_equations_cache |
---|
106 | |
---|
107 | INTERFACE prognostic_equations_vector |
---|
108 | MODULE PROCEDURE prognostic_equations_vector |
---|
109 | END INTERFACE prognostic_equations_vector |
---|
110 | |
---|
111 | |
---|
112 | CONTAINS |
---|
113 | |
---|
114 | |
---|
115 | SUBROUTINE prognostic_equations_noopt |
---|
116 | |
---|
117 | !------------------------------------------------------------------------------! |
---|
118 | ! Version with single loop optimization |
---|
119 | ! |
---|
120 | ! (Optimized over each single prognostic equation.) |
---|
121 | !------------------------------------------------------------------------------! |
---|
122 | |
---|
123 | IMPLICIT NONE |
---|
124 | |
---|
125 | CHARACTER (LEN=9) :: time_to_string |
---|
126 | INTEGER :: i, j, k |
---|
127 | REAL :: sat, sbt |
---|
128 | |
---|
129 | ! |
---|
130 | !-- Calculate those variables needed in the tendency terms which need |
---|
131 | !-- global communication |
---|
132 | CALL calc_mean_profile( pt, 4 ) |
---|
133 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
134 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
135 | |
---|
136 | ! |
---|
137 | !-- u-velocity component |
---|
138 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
139 | |
---|
140 | ! |
---|
141 | !-- u-tendency terms with communication |
---|
142 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
143 | tend = 0.0 |
---|
144 | CALL advec_u_ups |
---|
145 | ENDIF |
---|
146 | |
---|
147 | ! |
---|
148 | !-- u-tendency terms with no communication |
---|
149 | DO i = nxlu, nxr |
---|
150 | DO j = nys, nyn |
---|
151 | ! |
---|
152 | !-- Tendency terms |
---|
153 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
154 | tend(:,j,i) = 0.0 |
---|
155 | CALL advec_u_pw( i, j ) |
---|
156 | ELSE |
---|
157 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
158 | tend(:,j,i) = 0.0 |
---|
159 | CALL advec_u_up( i, j ) |
---|
160 | ENDIF |
---|
161 | ENDIF |
---|
162 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
163 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
164 | usws_m, uswst_m, v_m, w_m ) |
---|
165 | ELSE |
---|
166 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
167 | uswst, v, w ) |
---|
168 | ENDIF |
---|
169 | CALL coriolis( i, j, 1 ) |
---|
170 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, 4 ) |
---|
171 | |
---|
172 | ! |
---|
173 | !-- Drag by plant canopy |
---|
174 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
175 | CALL user_actions( i, j, 'u-tendency' ) |
---|
176 | |
---|
177 | ! |
---|
178 | !-- Prognostic equation for u-velocity component |
---|
179 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
180 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
181 | dt_3d * ( & |
---|
182 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
183 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
184 | ) - & |
---|
185 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
186 | ENDDO |
---|
187 | |
---|
188 | ! |
---|
189 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
190 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
191 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
192 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
193 | tu_m(k,j,i) = tend(k,j,i) |
---|
194 | ENDDO |
---|
195 | ELSEIF ( intermediate_timestep_count < & |
---|
196 | intermediate_timestep_count_max ) THEN |
---|
197 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
198 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
199 | ENDDO |
---|
200 | ENDIF |
---|
201 | ENDIF |
---|
202 | |
---|
203 | ENDDO |
---|
204 | ENDDO |
---|
205 | |
---|
206 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
207 | |
---|
208 | ! |
---|
209 | !-- v-velocity component |
---|
210 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
211 | |
---|
212 | ! |
---|
213 | !-- v-tendency terms with communication |
---|
214 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
215 | tend = 0.0 |
---|
216 | CALL advec_v_ups |
---|
217 | ENDIF |
---|
218 | |
---|
219 | ! |
---|
220 | !-- v-tendency terms with no communication |
---|
221 | DO i = nxl, nxr |
---|
222 | DO j = nysv, nyn |
---|
223 | ! |
---|
224 | !-- Tendency terms |
---|
225 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
226 | tend(:,j,i) = 0.0 |
---|
227 | CALL advec_v_pw( i, j ) |
---|
228 | ELSE |
---|
229 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
230 | tend(:,j,i) = 0.0 |
---|
231 | CALL advec_v_up( i, j ) |
---|
232 | ENDIF |
---|
233 | ENDIF |
---|
234 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
235 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
236 | v_m, vsws_m, vswst_m, w_m ) |
---|
237 | ELSE |
---|
238 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
239 | vsws, vswst, w ) |
---|
240 | ENDIF |
---|
241 | CALL coriolis( i, j, 2 ) |
---|
242 | |
---|
243 | ! |
---|
244 | !-- Drag by plant canopy |
---|
245 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
246 | |
---|
247 | CALL user_actions( i, j, 'v-tendency' ) |
---|
248 | |
---|
249 | ! |
---|
250 | !-- Prognostic equation for v-velocity component |
---|
251 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
252 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
253 | dt_3d * ( & |
---|
254 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
255 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
256 | ) - & |
---|
257 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
258 | ENDDO |
---|
259 | |
---|
260 | ! |
---|
261 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
262 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
263 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
264 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
265 | tv_m(k,j,i) = tend(k,j,i) |
---|
266 | ENDDO |
---|
267 | ELSEIF ( intermediate_timestep_count < & |
---|
268 | intermediate_timestep_count_max ) THEN |
---|
269 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
270 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
271 | ENDDO |
---|
272 | ENDIF |
---|
273 | ENDIF |
---|
274 | |
---|
275 | ENDDO |
---|
276 | ENDDO |
---|
277 | |
---|
278 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
279 | |
---|
280 | ! |
---|
281 | !-- w-velocity component |
---|
282 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
283 | |
---|
284 | ! |
---|
285 | !-- w-tendency terms with communication |
---|
286 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
287 | tend = 0.0 |
---|
288 | CALL advec_w_ups |
---|
289 | ENDIF |
---|
290 | |
---|
291 | ! |
---|
292 | !-- w-tendency terms with no communication |
---|
293 | DO i = nxl, nxr |
---|
294 | DO j = nys, nyn |
---|
295 | ! |
---|
296 | !-- Tendency terms |
---|
297 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
298 | tend(:,j,i) = 0.0 |
---|
299 | CALL advec_w_pw( i, j ) |
---|
300 | ELSE |
---|
301 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
302 | tend(:,j,i) = 0.0 |
---|
303 | CALL advec_w_up( i, j ) |
---|
304 | ENDIF |
---|
305 | ENDIF |
---|
306 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
307 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
308 | tend, u_m, v_m, w_m ) |
---|
309 | ELSE |
---|
310 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
311 | tend, u, v, w ) |
---|
312 | ENDIF |
---|
313 | CALL coriolis( i, j, 3 ) |
---|
314 | IF ( ocean ) THEN |
---|
315 | CALL buoyancy( i, j, rho, prho_reference, 3, 64 ) |
---|
316 | ELSE |
---|
317 | IF ( .NOT. humidity ) THEN |
---|
318 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
319 | ELSE |
---|
320 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
321 | ENDIF |
---|
322 | ENDIF |
---|
323 | |
---|
324 | ! |
---|
325 | !-- Drag by plant canopy |
---|
326 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
327 | |
---|
328 | CALL user_actions( i, j, 'w-tendency' ) |
---|
329 | |
---|
330 | ! |
---|
331 | !-- Prognostic equation for w-velocity component |
---|
332 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
333 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
334 | dt_3d * ( & |
---|
335 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
336 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
337 | ) - & |
---|
338 | tsc(5) * rdf(k) * w(k,j,i) |
---|
339 | ENDDO |
---|
340 | |
---|
341 | ! |
---|
342 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
343 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
344 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
345 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
346 | tw_m(k,j,i) = tend(k,j,i) |
---|
347 | ENDDO |
---|
348 | ELSEIF ( intermediate_timestep_count < & |
---|
349 | intermediate_timestep_count_max ) THEN |
---|
350 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
351 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
352 | ENDDO |
---|
353 | ENDIF |
---|
354 | ENDIF |
---|
355 | |
---|
356 | ENDDO |
---|
357 | ENDDO |
---|
358 | |
---|
359 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
360 | |
---|
361 | ! |
---|
362 | !-- potential temperature |
---|
363 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
364 | |
---|
365 | ! |
---|
366 | !-- pt-tendency terms with communication |
---|
367 | sat = tsc(1) |
---|
368 | sbt = tsc(2) |
---|
369 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
370 | |
---|
371 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
372 | ! |
---|
373 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
374 | !-- switched on. Thus: |
---|
375 | sat = 1.0 |
---|
376 | sbt = 1.0 |
---|
377 | ENDIF |
---|
378 | tend = 0.0 |
---|
379 | CALL advec_s_bc( pt, 'pt' ) |
---|
380 | ELSE |
---|
381 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
382 | tend = 0.0 |
---|
383 | CALL advec_s_ups( pt, 'pt' ) |
---|
384 | ENDIF |
---|
385 | ENDIF |
---|
386 | |
---|
387 | ! |
---|
388 | !-- pt-tendency terms with no communication |
---|
389 | DO i = nxl, nxr |
---|
390 | DO j = nys, nyn |
---|
391 | ! |
---|
392 | !-- Tendency terms |
---|
393 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
394 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
395 | wall_heatflux, tend ) |
---|
396 | ELSE |
---|
397 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
398 | tend(:,j,i) = 0.0 |
---|
399 | CALL advec_s_pw( i, j, pt ) |
---|
400 | ELSE |
---|
401 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
402 | tend(:,j,i) = 0.0 |
---|
403 | CALL advec_s_up( i, j, pt ) |
---|
404 | ENDIF |
---|
405 | ENDIF |
---|
406 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
407 | THEN |
---|
408 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
409 | tswst_m, wall_heatflux, tend ) |
---|
410 | ELSE |
---|
411 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
412 | wall_heatflux, tend ) |
---|
413 | ENDIF |
---|
414 | ENDIF |
---|
415 | |
---|
416 | ! |
---|
417 | !-- If required compute heating/cooling due to long wave radiation |
---|
418 | !-- processes |
---|
419 | IF ( radiation ) THEN |
---|
420 | CALL calc_radiation( i, j ) |
---|
421 | ENDIF |
---|
422 | |
---|
423 | ! |
---|
424 | !-- If required compute impact of latent heat due to precipitation |
---|
425 | IF ( precipitation ) THEN |
---|
426 | CALL impact_of_latent_heat( i, j ) |
---|
427 | ENDIF |
---|
428 | |
---|
429 | ! |
---|
430 | !-- Consideration of heat sources within the plant canopy |
---|
431 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
432 | CALL plant_canopy_model( i, j, 4 ) |
---|
433 | ENDIF |
---|
434 | |
---|
435 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
436 | |
---|
437 | ! |
---|
438 | !-- Prognostic equation for potential temperature |
---|
439 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
440 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
441 | dt_3d * ( & |
---|
442 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
443 | ) - & |
---|
444 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
445 | ENDDO |
---|
446 | |
---|
447 | ! |
---|
448 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
449 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
450 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
451 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
452 | tpt_m(k,j,i) = tend(k,j,i) |
---|
453 | ENDDO |
---|
454 | ELSEIF ( intermediate_timestep_count < & |
---|
455 | intermediate_timestep_count_max ) THEN |
---|
456 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
457 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
458 | ENDDO |
---|
459 | ENDIF |
---|
460 | ENDIF |
---|
461 | |
---|
462 | ENDDO |
---|
463 | ENDDO |
---|
464 | |
---|
465 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
466 | |
---|
467 | ! |
---|
468 | !-- If required, compute prognostic equation for salinity |
---|
469 | IF ( ocean ) THEN |
---|
470 | |
---|
471 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
472 | |
---|
473 | ! |
---|
474 | !-- sa-tendency terms with communication |
---|
475 | sat = tsc(1) |
---|
476 | sbt = tsc(2) |
---|
477 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
478 | |
---|
479 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
480 | ! |
---|
481 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
482 | !-- switched on. Thus: |
---|
483 | sat = 1.0 |
---|
484 | sbt = 1.0 |
---|
485 | ENDIF |
---|
486 | tend = 0.0 |
---|
487 | CALL advec_s_bc( sa, 'sa' ) |
---|
488 | ELSE |
---|
489 | IF ( tsc(2) /= 2.0 ) THEN |
---|
490 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
491 | tend = 0.0 |
---|
492 | CALL advec_s_ups( sa, 'sa' ) |
---|
493 | ENDIF |
---|
494 | ENDIF |
---|
495 | ENDIF |
---|
496 | |
---|
497 | ! |
---|
498 | !-- sa terms with no communication |
---|
499 | DO i = nxl, nxr |
---|
500 | DO j = nys, nyn |
---|
501 | ! |
---|
502 | !-- Tendency-terms |
---|
503 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
504 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
505 | wall_salinityflux, tend ) |
---|
506 | ELSE |
---|
507 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
508 | tend(:,j,i) = 0.0 |
---|
509 | CALL advec_s_pw( i, j, sa ) |
---|
510 | ELSE |
---|
511 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
512 | tend(:,j,i) = 0.0 |
---|
513 | CALL advec_s_up( i, j, sa ) |
---|
514 | ENDIF |
---|
515 | ENDIF |
---|
516 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
517 | wall_salinityflux, tend ) |
---|
518 | ENDIF |
---|
519 | |
---|
520 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
521 | |
---|
522 | ! |
---|
523 | !-- Prognostic equation for salinity |
---|
524 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
525 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
526 | dt_3d * ( & |
---|
527 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
528 | ) - & |
---|
529 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
530 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
531 | ENDDO |
---|
532 | |
---|
533 | ! |
---|
534 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
535 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
536 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
537 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
538 | tsa_m(k,j,i) = tend(k,j,i) |
---|
539 | ENDDO |
---|
540 | ELSEIF ( intermediate_timestep_count < & |
---|
541 | intermediate_timestep_count_max ) THEN |
---|
542 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
543 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
544 | 5.3125 * tsa_m(k,j,i) |
---|
545 | ENDDO |
---|
546 | ENDIF |
---|
547 | ENDIF |
---|
548 | |
---|
549 | ! |
---|
550 | !-- Calculate density by the equation of state for seawater |
---|
551 | CALL eqn_state_seawater( i, j ) |
---|
552 | |
---|
553 | ENDDO |
---|
554 | ENDDO |
---|
555 | |
---|
556 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
557 | |
---|
558 | ENDIF |
---|
559 | |
---|
560 | ! |
---|
561 | !-- If required, compute prognostic equation for total water content / scalar |
---|
562 | IF ( humidity .OR. passive_scalar ) THEN |
---|
563 | |
---|
564 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
565 | |
---|
566 | ! |
---|
567 | !-- Scalar/q-tendency terms with communication |
---|
568 | sat = tsc(1) |
---|
569 | sbt = tsc(2) |
---|
570 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
571 | |
---|
572 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
573 | ! |
---|
574 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
575 | !-- switched on. Thus: |
---|
576 | sat = 1.0 |
---|
577 | sbt = 1.0 |
---|
578 | ENDIF |
---|
579 | tend = 0.0 |
---|
580 | CALL advec_s_bc( q, 'q' ) |
---|
581 | ELSE |
---|
582 | IF ( tsc(2) /= 2.0 ) THEN |
---|
583 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
584 | tend = 0.0 |
---|
585 | CALL advec_s_ups( q, 'q' ) |
---|
586 | ENDIF |
---|
587 | ENDIF |
---|
588 | ENDIF |
---|
589 | |
---|
590 | ! |
---|
591 | !-- Scalar/q-tendency terms with no communication |
---|
592 | DO i = nxl, nxr |
---|
593 | DO j = nys, nyn |
---|
594 | ! |
---|
595 | !-- Tendency-terms |
---|
596 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
597 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
598 | wall_qflux, tend ) |
---|
599 | ELSE |
---|
600 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
601 | tend(:,j,i) = 0.0 |
---|
602 | CALL advec_s_pw( i, j, q ) |
---|
603 | ELSE |
---|
604 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
605 | tend(:,j,i) = 0.0 |
---|
606 | CALL advec_s_up( i, j, q ) |
---|
607 | ENDIF |
---|
608 | ENDIF |
---|
609 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
610 | THEN |
---|
611 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
612 | qswst_m, wall_qflux, tend ) |
---|
613 | ELSE |
---|
614 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
615 | wall_qflux, tend ) |
---|
616 | ENDIF |
---|
617 | ENDIF |
---|
618 | |
---|
619 | ! |
---|
620 | !-- If required compute decrease of total water content due to |
---|
621 | !-- precipitation |
---|
622 | IF ( precipitation ) THEN |
---|
623 | CALL calc_precipitation( i, j ) |
---|
624 | ENDIF |
---|
625 | |
---|
626 | ! |
---|
627 | !-- Sink or source of scalar concentration due to canopy elements |
---|
628 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
629 | |
---|
630 | CALL user_actions( i, j, 'q-tendency' ) |
---|
631 | |
---|
632 | ! |
---|
633 | !-- Prognostic equation for total water content / scalar |
---|
634 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
635 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
636 | dt_3d * ( & |
---|
637 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
638 | ) - & |
---|
639 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
640 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
641 | ENDDO |
---|
642 | |
---|
643 | ! |
---|
644 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
645 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
646 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
647 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
648 | tq_m(k,j,i) = tend(k,j,i) |
---|
649 | ENDDO |
---|
650 | ELSEIF ( intermediate_timestep_count < & |
---|
651 | intermediate_timestep_count_max ) THEN |
---|
652 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
653 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
654 | ENDDO |
---|
655 | ENDIF |
---|
656 | ENDIF |
---|
657 | |
---|
658 | ENDDO |
---|
659 | ENDDO |
---|
660 | |
---|
661 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
662 | |
---|
663 | ENDIF |
---|
664 | |
---|
665 | ! |
---|
666 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
667 | !-- energy (TKE) |
---|
668 | IF ( .NOT. constant_diffusion ) THEN |
---|
669 | |
---|
670 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
671 | |
---|
672 | ! |
---|
673 | !-- TKE-tendency terms with communication |
---|
674 | CALL production_e_init |
---|
675 | |
---|
676 | sat = tsc(1) |
---|
677 | sbt = tsc(2) |
---|
678 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
679 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
680 | |
---|
681 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
682 | ! |
---|
683 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
684 | !-- switched on. Thus: |
---|
685 | sat = 1.0 |
---|
686 | sbt = 1.0 |
---|
687 | ENDIF |
---|
688 | tend = 0.0 |
---|
689 | CALL advec_s_bc( e, 'e' ) |
---|
690 | ELSE |
---|
691 | IF ( tsc(2) /= 2.0 ) THEN |
---|
692 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
693 | tend = 0.0 |
---|
694 | CALL advec_s_ups( e, 'e' ) |
---|
695 | ENDIF |
---|
696 | ENDIF |
---|
697 | ENDIF |
---|
698 | ENDIF |
---|
699 | |
---|
700 | ! |
---|
701 | !-- TKE-tendency terms with no communication |
---|
702 | DO i = nxl, nxr |
---|
703 | DO j = nys, nyn |
---|
704 | ! |
---|
705 | !-- Tendency-terms |
---|
706 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
707 | .NOT. use_upstream_for_tke ) THEN |
---|
708 | IF ( .NOT. humidity ) THEN |
---|
709 | IF ( ocean ) THEN |
---|
710 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
711 | l_grid, rho, prho_reference, rif, tend, & |
---|
712 | zu, zw ) |
---|
713 | ELSE |
---|
714 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
715 | l_grid, pt, pt_reference, rif, tend, & |
---|
716 | zu, zw ) |
---|
717 | ENDIF |
---|
718 | ELSE |
---|
719 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
720 | l_grid, vpt, pt_reference, rif, tend, zu, & |
---|
721 | zw ) |
---|
722 | ENDIF |
---|
723 | ELSE |
---|
724 | IF ( use_upstream_for_tke ) THEN |
---|
725 | tend(:,j,i) = 0.0 |
---|
726 | CALL advec_s_up( i, j, e ) |
---|
727 | ELSE |
---|
728 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
729 | THEN |
---|
730 | tend(:,j,i) = 0.0 |
---|
731 | CALL advec_s_pw( i, j, e ) |
---|
732 | ELSE |
---|
733 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
734 | tend(:,j,i) = 0.0 |
---|
735 | CALL advec_s_up( i, j, e ) |
---|
736 | ENDIF |
---|
737 | ENDIF |
---|
738 | ENDIF |
---|
739 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
740 | THEN |
---|
741 | IF ( .NOT. humidity ) THEN |
---|
742 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
743 | km_m, l_grid, pt_m, pt_reference, & |
---|
744 | rif_m, tend, zu, zw ) |
---|
745 | ELSE |
---|
746 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
747 | km_m, l_grid, vpt_m, pt_reference, & |
---|
748 | rif_m, tend, zu, zw ) |
---|
749 | ENDIF |
---|
750 | ELSE |
---|
751 | IF ( .NOT. humidity ) THEN |
---|
752 | IF ( ocean ) THEN |
---|
753 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
754 | km, l_grid, rho, prho_reference, & |
---|
755 | rif, tend, zu, zw ) |
---|
756 | ELSE |
---|
757 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
758 | km, l_grid, pt, pt_reference, rif, & |
---|
759 | tend, zu, zw ) |
---|
760 | ENDIF |
---|
761 | ELSE |
---|
762 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
763 | l_grid, vpt, pt_reference, rif, tend, & |
---|
764 | zu, zw ) |
---|
765 | ENDIF |
---|
766 | ENDIF |
---|
767 | ENDIF |
---|
768 | CALL production_e( i, j ) |
---|
769 | |
---|
770 | ! |
---|
771 | !-- Additional sink term for flows through plant canopies |
---|
772 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
773 | |
---|
774 | CALL user_actions( i, j, 'e-tendency' ) |
---|
775 | |
---|
776 | ! |
---|
777 | !-- Prognostic equation for TKE. |
---|
778 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
779 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
780 | !-- value is reduced by 90%. |
---|
781 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
782 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
783 | dt_3d * ( & |
---|
784 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
785 | ) |
---|
786 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
787 | ENDDO |
---|
788 | |
---|
789 | ! |
---|
790 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
791 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
792 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
793 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
794 | te_m(k,j,i) = tend(k,j,i) |
---|
795 | ENDDO |
---|
796 | ELSEIF ( intermediate_timestep_count < & |
---|
797 | intermediate_timestep_count_max ) THEN |
---|
798 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
799 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
800 | ENDDO |
---|
801 | ENDIF |
---|
802 | ENDIF |
---|
803 | |
---|
804 | ENDDO |
---|
805 | ENDDO |
---|
806 | |
---|
807 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
808 | |
---|
809 | ENDIF |
---|
810 | |
---|
811 | |
---|
812 | END SUBROUTINE prognostic_equations_noopt |
---|
813 | |
---|
814 | |
---|
815 | SUBROUTINE prognostic_equations_cache |
---|
816 | |
---|
817 | !------------------------------------------------------------------------------! |
---|
818 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
819 | ! be called for the standard Piascek-Williams advection scheme. |
---|
820 | ! |
---|
821 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
822 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
823 | ! these loops. |
---|
824 | ! |
---|
825 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
826 | !------------------------------------------------------------------------------! |
---|
827 | |
---|
828 | IMPLICIT NONE |
---|
829 | |
---|
830 | CHARACTER (LEN=9) :: time_to_string |
---|
831 | INTEGER :: i, j, k |
---|
832 | |
---|
833 | |
---|
834 | ! |
---|
835 | !-- Time measurement can only be performed for the whole set of equations |
---|
836 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
837 | |
---|
838 | |
---|
839 | ! |
---|
840 | !-- Calculate those variables needed in the tendency terms which need |
---|
841 | !-- global communication |
---|
842 | CALL calc_mean_profile( pt, 4 ) |
---|
843 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
844 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
845 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
846 | |
---|
847 | |
---|
848 | ! |
---|
849 | !-- Loop over all prognostic equations |
---|
850 | !$OMP PARALLEL private (i,j,k) |
---|
851 | !$OMP DO |
---|
852 | DO i = nxl, nxr |
---|
853 | DO j = nys, nyn |
---|
854 | ! |
---|
855 | !-- Tendency terms for u-velocity component |
---|
856 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
857 | |
---|
858 | tend(:,j,i) = 0.0 |
---|
859 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
860 | CALL advec_u_pw( i, j ) |
---|
861 | ELSE |
---|
862 | CALL advec_u_up( i, j ) |
---|
863 | ENDIF |
---|
864 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
865 | THEN |
---|
866 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
867 | u_m, usws_m, uswst_m, v_m, w_m ) |
---|
868 | ELSE |
---|
869 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
870 | usws, uswst, v, w ) |
---|
871 | ENDIF |
---|
872 | CALL coriolis( i, j, 1 ) |
---|
873 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, & |
---|
874 | 4 ) |
---|
875 | |
---|
876 | ! |
---|
877 | !-- Drag by plant canopy |
---|
878 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
879 | |
---|
880 | CALL user_actions( i, j, 'u-tendency' ) |
---|
881 | |
---|
882 | ! |
---|
883 | !-- Prognostic equation for u-velocity component |
---|
884 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
885 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
886 | dt_3d * ( & |
---|
887 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
888 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
889 | ) - & |
---|
890 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
891 | ENDDO |
---|
892 | |
---|
893 | ! |
---|
894 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
895 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
896 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
897 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
898 | tu_m(k,j,i) = tend(k,j,i) |
---|
899 | ENDDO |
---|
900 | ELSEIF ( intermediate_timestep_count < & |
---|
901 | intermediate_timestep_count_max ) THEN |
---|
902 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
903 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
904 | ENDDO |
---|
905 | ENDIF |
---|
906 | ENDIF |
---|
907 | |
---|
908 | ENDIF |
---|
909 | |
---|
910 | ! |
---|
911 | !-- Tendency terms for v-velocity component |
---|
912 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
913 | |
---|
914 | tend(:,j,i) = 0.0 |
---|
915 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
916 | CALL advec_v_pw( i, j ) |
---|
917 | ELSE |
---|
918 | CALL advec_v_up( i, j ) |
---|
919 | ENDIF |
---|
920 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
921 | THEN |
---|
922 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
923 | u_m, v_m, vsws_m, vswst_m, w_m ) |
---|
924 | ELSE |
---|
925 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
926 | vsws, vswst, w ) |
---|
927 | ENDIF |
---|
928 | CALL coriolis( i, j, 2 ) |
---|
929 | |
---|
930 | ! |
---|
931 | !-- Drag by plant canopy |
---|
932 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
933 | |
---|
934 | CALL user_actions( i, j, 'v-tendency' ) |
---|
935 | |
---|
936 | ! |
---|
937 | !-- Prognostic equation for v-velocity component |
---|
938 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
939 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
940 | dt_3d * ( & |
---|
941 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
942 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
943 | ) - & |
---|
944 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
945 | ENDDO |
---|
946 | |
---|
947 | ! |
---|
948 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
949 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
950 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
951 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
952 | tv_m(k,j,i) = tend(k,j,i) |
---|
953 | ENDDO |
---|
954 | ELSEIF ( intermediate_timestep_count < & |
---|
955 | intermediate_timestep_count_max ) THEN |
---|
956 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
957 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
958 | ENDDO |
---|
959 | ENDIF |
---|
960 | ENDIF |
---|
961 | |
---|
962 | ENDIF |
---|
963 | |
---|
964 | ! |
---|
965 | !-- Tendency terms for w-velocity component |
---|
966 | tend(:,j,i) = 0.0 |
---|
967 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
968 | CALL advec_w_pw( i, j ) |
---|
969 | ELSE |
---|
970 | CALL advec_w_up( i, j ) |
---|
971 | ENDIF |
---|
972 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
973 | THEN |
---|
974 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
975 | km_damp_y, tend, u_m, v_m, w_m ) |
---|
976 | ELSE |
---|
977 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
978 | tend, u, v, w ) |
---|
979 | ENDIF |
---|
980 | CALL coriolis( i, j, 3 ) |
---|
981 | IF ( ocean ) THEN |
---|
982 | CALL buoyancy( i, j, rho, prho_reference, 3, 64 ) |
---|
983 | ELSE |
---|
984 | IF ( .NOT. humidity ) THEN |
---|
985 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
986 | ELSE |
---|
987 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
988 | ENDIF |
---|
989 | ENDIF |
---|
990 | |
---|
991 | ! |
---|
992 | !-- Drag by plant canopy |
---|
993 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
994 | |
---|
995 | CALL user_actions( i, j, 'w-tendency' ) |
---|
996 | |
---|
997 | ! |
---|
998 | !-- Prognostic equation for w-velocity component |
---|
999 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1000 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
1001 | dt_3d * ( & |
---|
1002 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
1003 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
1004 | ) - & |
---|
1005 | tsc(5) * rdf(k) * w(k,j,i) |
---|
1006 | ENDDO |
---|
1007 | |
---|
1008 | ! |
---|
1009 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1010 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1011 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1012 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1013 | tw_m(k,j,i) = tend(k,j,i) |
---|
1014 | ENDDO |
---|
1015 | ELSEIF ( intermediate_timestep_count < & |
---|
1016 | intermediate_timestep_count_max ) THEN |
---|
1017 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1018 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1019 | ENDDO |
---|
1020 | ENDIF |
---|
1021 | ENDIF |
---|
1022 | |
---|
1023 | ! |
---|
1024 | !-- Tendency terms for potential temperature |
---|
1025 | tend(:,j,i) = 0.0 |
---|
1026 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1027 | CALL advec_s_pw( i, j, pt ) |
---|
1028 | ELSE |
---|
1029 | CALL advec_s_up( i, j, pt ) |
---|
1030 | ENDIF |
---|
1031 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
1032 | THEN |
---|
1033 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
1034 | tswst_m, wall_heatflux, tend ) |
---|
1035 | ELSE |
---|
1036 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
1037 | wall_heatflux, tend ) |
---|
1038 | ENDIF |
---|
1039 | |
---|
1040 | ! |
---|
1041 | !-- If required compute heating/cooling due to long wave radiation |
---|
1042 | !-- processes |
---|
1043 | IF ( radiation ) THEN |
---|
1044 | CALL calc_radiation( i, j ) |
---|
1045 | ENDIF |
---|
1046 | |
---|
1047 | ! |
---|
1048 | !-- If required compute impact of latent heat due to precipitation |
---|
1049 | IF ( precipitation ) THEN |
---|
1050 | CALL impact_of_latent_heat( i, j ) |
---|
1051 | ENDIF |
---|
1052 | |
---|
1053 | ! |
---|
1054 | !-- Consideration of heat sources within the plant canopy |
---|
1055 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
1056 | CALL plant_canopy_model( i, j, 4 ) |
---|
1057 | ENDIF |
---|
1058 | |
---|
1059 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
1060 | |
---|
1061 | ! |
---|
1062 | !-- Prognostic equation for potential temperature |
---|
1063 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1064 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
1065 | dt_3d * ( & |
---|
1066 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
1067 | ) - & |
---|
1068 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
1069 | ENDDO |
---|
1070 | |
---|
1071 | ! |
---|
1072 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1073 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1074 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1075 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1076 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1077 | ENDDO |
---|
1078 | ELSEIF ( intermediate_timestep_count < & |
---|
1079 | intermediate_timestep_count_max ) THEN |
---|
1080 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1081 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1082 | 5.3125 * tpt_m(k,j,i) |
---|
1083 | ENDDO |
---|
1084 | ENDIF |
---|
1085 | ENDIF |
---|
1086 | |
---|
1087 | ! |
---|
1088 | !-- If required, compute prognostic equation for salinity |
---|
1089 | IF ( ocean ) THEN |
---|
1090 | |
---|
1091 | ! |
---|
1092 | !-- Tendency-terms for salinity |
---|
1093 | tend(:,j,i) = 0.0 |
---|
1094 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
1095 | THEN |
---|
1096 | CALL advec_s_pw( i, j, sa ) |
---|
1097 | ELSE |
---|
1098 | CALL advec_s_up( i, j, sa ) |
---|
1099 | ENDIF |
---|
1100 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
1101 | wall_salinityflux, tend ) |
---|
1102 | |
---|
1103 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
1104 | |
---|
1105 | ! |
---|
1106 | !-- Prognostic equation for salinity |
---|
1107 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1108 | sa_p(k,j,i) = tsc(1) * sa(k,j,i) + & |
---|
1109 | dt_3d * ( & |
---|
1110 | tsc(2) * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
1111 | ) - & |
---|
1112 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
1113 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
1114 | ENDDO |
---|
1115 | |
---|
1116 | ! |
---|
1117 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1118 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1119 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1120 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1121 | tsa_m(k,j,i) = tend(k,j,i) |
---|
1122 | ENDDO |
---|
1123 | ELSEIF ( intermediate_timestep_count < & |
---|
1124 | intermediate_timestep_count_max ) THEN |
---|
1125 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1126 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1127 | 5.3125 * tsa_m(k,j,i) |
---|
1128 | ENDDO |
---|
1129 | ENDIF |
---|
1130 | ENDIF |
---|
1131 | |
---|
1132 | ! |
---|
1133 | !-- Calculate density by the equation of state for seawater |
---|
1134 | CALL eqn_state_seawater( i, j ) |
---|
1135 | |
---|
1136 | ENDIF |
---|
1137 | |
---|
1138 | ! |
---|
1139 | !-- If required, compute prognostic equation for total water content / |
---|
1140 | !-- scalar |
---|
1141 | IF ( humidity .OR. passive_scalar ) THEN |
---|
1142 | |
---|
1143 | ! |
---|
1144 | !-- Tendency-terms for total water content / scalar |
---|
1145 | tend(:,j,i) = 0.0 |
---|
1146 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
1147 | THEN |
---|
1148 | CALL advec_s_pw( i, j, q ) |
---|
1149 | ELSE |
---|
1150 | CALL advec_s_up( i, j, q ) |
---|
1151 | ENDIF |
---|
1152 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
1153 | THEN |
---|
1154 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
1155 | qswst_m, wall_qflux, tend ) |
---|
1156 | ELSE |
---|
1157 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
1158 | wall_qflux, tend ) |
---|
1159 | ENDIF |
---|
1160 | |
---|
1161 | ! |
---|
1162 | !-- If required compute decrease of total water content due to |
---|
1163 | !-- precipitation |
---|
1164 | IF ( precipitation ) THEN |
---|
1165 | CALL calc_precipitation( i, j ) |
---|
1166 | ENDIF |
---|
1167 | |
---|
1168 | ! |
---|
1169 | !-- Sink or source of scalar concentration due to canopy elements |
---|
1170 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
1171 | |
---|
1172 | |
---|
1173 | CALL user_actions( i, j, 'q-tendency' ) |
---|
1174 | |
---|
1175 | ! |
---|
1176 | !-- Prognostic equation for total water content / scalar |
---|
1177 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1178 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
1179 | dt_3d * ( & |
---|
1180 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
1181 | ) - & |
---|
1182 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
1183 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
1184 | ENDDO |
---|
1185 | |
---|
1186 | ! |
---|
1187 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1188 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1189 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1190 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1191 | tq_m(k,j,i) = tend(k,j,i) |
---|
1192 | ENDDO |
---|
1193 | ELSEIF ( intermediate_timestep_count < & |
---|
1194 | intermediate_timestep_count_max ) THEN |
---|
1195 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1196 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1197 | 5.3125 * tq_m(k,j,i) |
---|
1198 | ENDDO |
---|
1199 | ENDIF |
---|
1200 | ENDIF |
---|
1201 | |
---|
1202 | ENDIF |
---|
1203 | |
---|
1204 | ! |
---|
1205 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1206 | !-- energy (TKE) |
---|
1207 | IF ( .NOT. constant_diffusion ) THEN |
---|
1208 | |
---|
1209 | ! |
---|
1210 | !-- Tendency-terms for TKE |
---|
1211 | tend(:,j,i) = 0.0 |
---|
1212 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
1213 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
1214 | CALL advec_s_pw( i, j, e ) |
---|
1215 | ELSE |
---|
1216 | CALL advec_s_up( i, j, e ) |
---|
1217 | ENDIF |
---|
1218 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
1219 | THEN |
---|
1220 | IF ( .NOT. humidity ) THEN |
---|
1221 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
1222 | km_m, l_grid, pt_m, pt_reference, & |
---|
1223 | rif_m, tend, zu, zw ) |
---|
1224 | ELSE |
---|
1225 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
1226 | km_m, l_grid, vpt_m, pt_reference, & |
---|
1227 | rif_m, tend, zu, zw ) |
---|
1228 | ENDIF |
---|
1229 | ELSE |
---|
1230 | IF ( .NOT. humidity ) THEN |
---|
1231 | IF ( ocean ) THEN |
---|
1232 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
1233 | km, l_grid, rho, prho_reference, & |
---|
1234 | rif, tend, zu, zw ) |
---|
1235 | ELSE |
---|
1236 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
1237 | km, l_grid, pt, pt_reference, rif, & |
---|
1238 | tend, zu, zw ) |
---|
1239 | ENDIF |
---|
1240 | ELSE |
---|
1241 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
1242 | l_grid, vpt, pt_reference, rif, tend, & |
---|
1243 | zu, zw ) |
---|
1244 | ENDIF |
---|
1245 | ENDIF |
---|
1246 | CALL production_e( i, j ) |
---|
1247 | |
---|
1248 | ! |
---|
1249 | !-- Additional sink term for flows through plant canopies |
---|
1250 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
1251 | |
---|
1252 | CALL user_actions( i, j, 'e-tendency' ) |
---|
1253 | |
---|
1254 | ! |
---|
1255 | !-- Prognostic equation for TKE. |
---|
1256 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
1257 | !-- reasons in the course of the integration. In such cases the old |
---|
1258 | !-- TKE value is reduced by 90%. |
---|
1259 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1260 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
1261 | dt_3d * ( & |
---|
1262 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
1263 | ) |
---|
1264 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
1265 | ENDDO |
---|
1266 | |
---|
1267 | ! |
---|
1268 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1269 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1270 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1271 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1272 | te_m(k,j,i) = tend(k,j,i) |
---|
1273 | ENDDO |
---|
1274 | ELSEIF ( intermediate_timestep_count < & |
---|
1275 | intermediate_timestep_count_max ) THEN |
---|
1276 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1277 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1278 | 5.3125 * te_m(k,j,i) |
---|
1279 | ENDDO |
---|
1280 | ENDIF |
---|
1281 | ENDIF |
---|
1282 | |
---|
1283 | ENDIF ! TKE equation |
---|
1284 | |
---|
1285 | ENDDO |
---|
1286 | ENDDO |
---|
1287 | !$OMP END PARALLEL |
---|
1288 | |
---|
1289 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
1290 | |
---|
1291 | |
---|
1292 | END SUBROUTINE prognostic_equations_cache |
---|
1293 | |
---|
1294 | |
---|
1295 | SUBROUTINE prognostic_equations_vector |
---|
1296 | |
---|
1297 | !------------------------------------------------------------------------------! |
---|
1298 | ! Version for vector machines |
---|
1299 | !------------------------------------------------------------------------------! |
---|
1300 | |
---|
1301 | IMPLICIT NONE |
---|
1302 | |
---|
1303 | CHARACTER (LEN=9) :: time_to_string |
---|
1304 | INTEGER :: i, j, k |
---|
1305 | REAL :: sat, sbt |
---|
1306 | |
---|
1307 | ! |
---|
1308 | !-- Calculate those variables needed in the tendency terms which need |
---|
1309 | !-- global communication |
---|
1310 | CALL calc_mean_profile( pt, 4 ) |
---|
1311 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
1312 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
1313 | |
---|
1314 | ! |
---|
1315 | !-- u-velocity component |
---|
1316 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
1317 | |
---|
1318 | ! |
---|
1319 | !-- u-tendency terms with communication |
---|
1320 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1321 | tend = 0.0 |
---|
1322 | CALL advec_u_ups |
---|
1323 | ENDIF |
---|
1324 | |
---|
1325 | ! |
---|
1326 | !-- u-tendency terms with no communication |
---|
1327 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1328 | tend = 0.0 |
---|
1329 | CALL advec_u_pw |
---|
1330 | ELSE |
---|
1331 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1332 | tend = 0.0 |
---|
1333 | CALL advec_u_up |
---|
1334 | ENDIF |
---|
1335 | ENDIF |
---|
1336 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1337 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, & |
---|
1338 | uswst_m, v_m, w_m ) |
---|
1339 | ELSE |
---|
1340 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, uswst, v, w ) |
---|
1341 | ENDIF |
---|
1342 | CALL coriolis( 1 ) |
---|
1343 | IF ( sloping_surface ) CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
1344 | |
---|
1345 | ! |
---|
1346 | !-- Drag by plant canopy |
---|
1347 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
1348 | |
---|
1349 | CALL user_actions( 'u-tendency' ) |
---|
1350 | |
---|
1351 | ! |
---|
1352 | !-- Prognostic equation for u-velocity component |
---|
1353 | DO i = nxlu, nxr |
---|
1354 | DO j = nys, nyn |
---|
1355 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1356 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
1357 | dt_3d * ( & |
---|
1358 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
1359 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
1360 | ) - & |
---|
1361 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
1362 | ENDDO |
---|
1363 | ENDDO |
---|
1364 | ENDDO |
---|
1365 | |
---|
1366 | ! |
---|
1367 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1368 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1369 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1370 | DO i = nxlu, nxr |
---|
1371 | DO j = nys, nyn |
---|
1372 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1373 | tu_m(k,j,i) = tend(k,j,i) |
---|
1374 | ENDDO |
---|
1375 | ENDDO |
---|
1376 | ENDDO |
---|
1377 | ELSEIF ( intermediate_timestep_count < & |
---|
1378 | intermediate_timestep_count_max ) THEN |
---|
1379 | DO i = nxlu, nxr |
---|
1380 | DO j = nys, nyn |
---|
1381 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1382 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
1383 | ENDDO |
---|
1384 | ENDDO |
---|
1385 | ENDDO |
---|
1386 | ENDIF |
---|
1387 | ENDIF |
---|
1388 | |
---|
1389 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
1390 | |
---|
1391 | ! |
---|
1392 | !-- v-velocity component |
---|
1393 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
1394 | |
---|
1395 | ! |
---|
1396 | !-- v-tendency terms with communication |
---|
1397 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1398 | tend = 0.0 |
---|
1399 | CALL advec_v_ups |
---|
1400 | ENDIF |
---|
1401 | |
---|
1402 | ! |
---|
1403 | !-- v-tendency terms with no communication |
---|
1404 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1405 | tend = 0.0 |
---|
1406 | CALL advec_v_pw |
---|
1407 | ELSE |
---|
1408 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1409 | tend = 0.0 |
---|
1410 | CALL advec_v_up |
---|
1411 | ENDIF |
---|
1412 | ENDIF |
---|
1413 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1414 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
1415 | vswst_m, w_m ) |
---|
1416 | ELSE |
---|
1417 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, vswst, w ) |
---|
1418 | ENDIF |
---|
1419 | CALL coriolis( 2 ) |
---|
1420 | |
---|
1421 | ! |
---|
1422 | !-- Drag by plant canopy |
---|
1423 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
1424 | CALL user_actions( 'v-tendency' ) |
---|
1425 | |
---|
1426 | ! |
---|
1427 | !-- Prognostic equation for v-velocity component |
---|
1428 | DO i = nxl, nxr |
---|
1429 | DO j = nysv, nyn |
---|
1430 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1431 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
1432 | dt_3d * ( & |
---|
1433 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
1434 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
1435 | ) - & |
---|
1436 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
1437 | ENDDO |
---|
1438 | ENDDO |
---|
1439 | ENDDO |
---|
1440 | |
---|
1441 | ! |
---|
1442 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1443 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1444 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1445 | DO i = nxl, nxr |
---|
1446 | DO j = nysv, nyn |
---|
1447 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1448 | tv_m(k,j,i) = tend(k,j,i) |
---|
1449 | ENDDO |
---|
1450 | ENDDO |
---|
1451 | ENDDO |
---|
1452 | ELSEIF ( intermediate_timestep_count < & |
---|
1453 | intermediate_timestep_count_max ) THEN |
---|
1454 | DO i = nxl, nxr |
---|
1455 | DO j = nysv, nyn |
---|
1456 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1457 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
1458 | ENDDO |
---|
1459 | ENDDO |
---|
1460 | ENDDO |
---|
1461 | ENDIF |
---|
1462 | ENDIF |
---|
1463 | |
---|
1464 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
1465 | |
---|
1466 | ! |
---|
1467 | !-- w-velocity component |
---|
1468 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
1469 | |
---|
1470 | ! |
---|
1471 | !-- w-tendency terms with communication |
---|
1472 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1473 | tend = 0.0 |
---|
1474 | CALL advec_w_ups |
---|
1475 | ENDIF |
---|
1476 | |
---|
1477 | ! |
---|
1478 | !-- w-tendency terms with no communication |
---|
1479 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1480 | tend = 0.0 |
---|
1481 | CALL advec_w_pw |
---|
1482 | ELSE |
---|
1483 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1484 | tend = 0.0 |
---|
1485 | CALL advec_w_up |
---|
1486 | ENDIF |
---|
1487 | ENDIF |
---|
1488 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1489 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
1490 | v_m, w_m ) |
---|
1491 | ELSE |
---|
1492 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w ) |
---|
1493 | ENDIF |
---|
1494 | CALL coriolis( 3 ) |
---|
1495 | IF ( ocean ) THEN |
---|
1496 | CALL buoyancy( rho, prho_reference, 3, 64 ) |
---|
1497 | ELSE |
---|
1498 | IF ( .NOT. humidity ) THEN |
---|
1499 | CALL buoyancy( pt, pt_reference, 3, 4 ) |
---|
1500 | ELSE |
---|
1501 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
1502 | ENDIF |
---|
1503 | ENDIF |
---|
1504 | |
---|
1505 | ! |
---|
1506 | !-- Drag by plant canopy |
---|
1507 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
1508 | |
---|
1509 | CALL user_actions( 'w-tendency' ) |
---|
1510 | |
---|
1511 | ! |
---|
1512 | !-- Prognostic equation for w-velocity component |
---|
1513 | DO i = nxl, nxr |
---|
1514 | DO j = nys, nyn |
---|
1515 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1516 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
1517 | dt_3d * ( & |
---|
1518 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
1519 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
1520 | ) - & |
---|
1521 | tsc(5) * rdf(k) * w(k,j,i) |
---|
1522 | ENDDO |
---|
1523 | ENDDO |
---|
1524 | ENDDO |
---|
1525 | |
---|
1526 | ! |
---|
1527 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1528 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1529 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1530 | DO i = nxl, nxr |
---|
1531 | DO j = nys, nyn |
---|
1532 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1533 | tw_m(k,j,i) = tend(k,j,i) |
---|
1534 | ENDDO |
---|
1535 | ENDDO |
---|
1536 | ENDDO |
---|
1537 | ELSEIF ( intermediate_timestep_count < & |
---|
1538 | intermediate_timestep_count_max ) THEN |
---|
1539 | DO i = nxl, nxr |
---|
1540 | DO j = nys, nyn |
---|
1541 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1542 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1543 | ENDDO |
---|
1544 | ENDDO |
---|
1545 | ENDDO |
---|
1546 | ENDIF |
---|
1547 | ENDIF |
---|
1548 | |
---|
1549 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
1550 | |
---|
1551 | ! |
---|
1552 | !-- potential temperature |
---|
1553 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
1554 | |
---|
1555 | ! |
---|
1556 | !-- pt-tendency terms with communication |
---|
1557 | sat = tsc(1) |
---|
1558 | sbt = tsc(2) |
---|
1559 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1560 | |
---|
1561 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1562 | ! |
---|
1563 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1564 | !-- switched on. Thus: |
---|
1565 | sat = 1.0 |
---|
1566 | sbt = 1.0 |
---|
1567 | ENDIF |
---|
1568 | tend = 0.0 |
---|
1569 | CALL advec_s_bc( pt, 'pt' ) |
---|
1570 | ELSE |
---|
1571 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
1572 | tend = 0.0 |
---|
1573 | CALL advec_s_ups( pt, 'pt' ) |
---|
1574 | ENDIF |
---|
1575 | ENDIF |
---|
1576 | |
---|
1577 | ! |
---|
1578 | !-- pt-tendency terms with no communication |
---|
1579 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1580 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
1581 | tend ) |
---|
1582 | ELSE |
---|
1583 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1584 | tend = 0.0 |
---|
1585 | CALL advec_s_pw( pt ) |
---|
1586 | ELSE |
---|
1587 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1588 | tend = 0.0 |
---|
1589 | CALL advec_s_up( pt ) |
---|
1590 | ENDIF |
---|
1591 | ENDIF |
---|
1592 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1593 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tswst_m, & |
---|
1594 | wall_heatflux, tend ) |
---|
1595 | ELSE |
---|
1596 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
1597 | tend ) |
---|
1598 | ENDIF |
---|
1599 | ENDIF |
---|
1600 | |
---|
1601 | ! |
---|
1602 | !-- If required compute heating/cooling due to long wave radiation |
---|
1603 | !-- processes |
---|
1604 | IF ( radiation ) THEN |
---|
1605 | CALL calc_radiation |
---|
1606 | ENDIF |
---|
1607 | |
---|
1608 | ! |
---|
1609 | !-- If required compute impact of latent heat due to precipitation |
---|
1610 | IF ( precipitation ) THEN |
---|
1611 | CALL impact_of_latent_heat |
---|
1612 | ENDIF |
---|
1613 | |
---|
1614 | ! |
---|
1615 | !-- Consideration of heat sources within the plant canopy |
---|
1616 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
1617 | CALL plant_canopy_model( 4 ) |
---|
1618 | ENDIF |
---|
1619 | |
---|
1620 | |
---|
1621 | CALL user_actions( 'pt-tendency' ) |
---|
1622 | |
---|
1623 | ! |
---|
1624 | !-- Prognostic equation for potential temperature |
---|
1625 | DO i = nxl, nxr |
---|
1626 | DO j = nys, nyn |
---|
1627 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1628 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
1629 | dt_3d * ( & |
---|
1630 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
1631 | ) - & |
---|
1632 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
1633 | ENDDO |
---|
1634 | ENDDO |
---|
1635 | ENDDO |
---|
1636 | |
---|
1637 | ! |
---|
1638 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1639 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1640 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1641 | DO i = nxl, nxr |
---|
1642 | DO j = nys, nyn |
---|
1643 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1644 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1645 | ENDDO |
---|
1646 | ENDDO |
---|
1647 | ENDDO |
---|
1648 | ELSEIF ( intermediate_timestep_count < & |
---|
1649 | intermediate_timestep_count_max ) THEN |
---|
1650 | DO i = nxl, nxr |
---|
1651 | DO j = nys, nyn |
---|
1652 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1653 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
1654 | ENDDO |
---|
1655 | ENDDO |
---|
1656 | ENDDO |
---|
1657 | ENDIF |
---|
1658 | ENDIF |
---|
1659 | |
---|
1660 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
1661 | |
---|
1662 | ! |
---|
1663 | !-- If required, compute prognostic equation for salinity |
---|
1664 | IF ( ocean ) THEN |
---|
1665 | |
---|
1666 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
1667 | |
---|
1668 | ! |
---|
1669 | !-- sa-tendency terms with communication |
---|
1670 | sat = tsc(1) |
---|
1671 | sbt = tsc(2) |
---|
1672 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1673 | |
---|
1674 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1675 | ! |
---|
1676 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1677 | !-- switched on. Thus: |
---|
1678 | sat = 1.0 |
---|
1679 | sbt = 1.0 |
---|
1680 | ENDIF |
---|
1681 | tend = 0.0 |
---|
1682 | CALL advec_s_bc( sa, 'sa' ) |
---|
1683 | ELSE |
---|
1684 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1685 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1686 | tend = 0.0 |
---|
1687 | CALL advec_s_ups( sa, 'sa' ) |
---|
1688 | ENDIF |
---|
1689 | ENDIF |
---|
1690 | ENDIF |
---|
1691 | |
---|
1692 | ! |
---|
1693 | !-- sa-tendency terms with no communication |
---|
1694 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1695 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
1696 | wall_salinityflux, tend ) |
---|
1697 | ELSE |
---|
1698 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1699 | tend = 0.0 |
---|
1700 | CALL advec_s_pw( sa ) |
---|
1701 | ELSE |
---|
1702 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1703 | tend = 0.0 |
---|
1704 | CALL advec_s_up( sa ) |
---|
1705 | ENDIF |
---|
1706 | ENDIF |
---|
1707 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
1708 | wall_salinityflux, tend ) |
---|
1709 | ENDIF |
---|
1710 | |
---|
1711 | CALL user_actions( 'sa-tendency' ) |
---|
1712 | |
---|
1713 | ! |
---|
1714 | !-- Prognostic equation for salinity |
---|
1715 | DO i = nxl, nxr |
---|
1716 | DO j = nys, nyn |
---|
1717 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1718 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
1719 | dt_3d * ( & |
---|
1720 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
1721 | ) - & |
---|
1722 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
1723 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
1724 | ENDDO |
---|
1725 | ENDDO |
---|
1726 | ENDDO |
---|
1727 | |
---|
1728 | ! |
---|
1729 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1730 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1731 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1732 | DO i = nxl, nxr |
---|
1733 | DO j = nys, nyn |
---|
1734 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1735 | tsa_m(k,j,i) = tend(k,j,i) |
---|
1736 | ENDDO |
---|
1737 | ENDDO |
---|
1738 | ENDDO |
---|
1739 | ELSEIF ( intermediate_timestep_count < & |
---|
1740 | intermediate_timestep_count_max ) THEN |
---|
1741 | DO i = nxl, nxr |
---|
1742 | DO j = nys, nyn |
---|
1743 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1744 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1745 | 5.3125 * tsa_m(k,j,i) |
---|
1746 | ENDDO |
---|
1747 | ENDDO |
---|
1748 | ENDDO |
---|
1749 | ENDIF |
---|
1750 | ENDIF |
---|
1751 | |
---|
1752 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
1753 | |
---|
1754 | ! |
---|
1755 | !-- Calculate density by the equation of state for seawater |
---|
1756 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
1757 | CALL eqn_state_seawater |
---|
1758 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
1759 | |
---|
1760 | ENDIF |
---|
1761 | |
---|
1762 | ! |
---|
1763 | !-- If required, compute prognostic equation for total water content / scalar |
---|
1764 | IF ( humidity .OR. passive_scalar ) THEN |
---|
1765 | |
---|
1766 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
1767 | |
---|
1768 | ! |
---|
1769 | !-- Scalar/q-tendency terms with communication |
---|
1770 | sat = tsc(1) |
---|
1771 | sbt = tsc(2) |
---|
1772 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1773 | |
---|
1774 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1775 | ! |
---|
1776 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1777 | !-- switched on. Thus: |
---|
1778 | sat = 1.0 |
---|
1779 | sbt = 1.0 |
---|
1780 | ENDIF |
---|
1781 | tend = 0.0 |
---|
1782 | CALL advec_s_bc( q, 'q' ) |
---|
1783 | ELSE |
---|
1784 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1785 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1786 | tend = 0.0 |
---|
1787 | CALL advec_s_ups( q, 'q' ) |
---|
1788 | ENDIF |
---|
1789 | ENDIF |
---|
1790 | ENDIF |
---|
1791 | |
---|
1792 | ! |
---|
1793 | !-- Scalar/q-tendency terms with no communication |
---|
1794 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1795 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, wall_qflux, tend ) |
---|
1796 | ELSE |
---|
1797 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1798 | tend = 0.0 |
---|
1799 | CALL advec_s_pw( q ) |
---|
1800 | ELSE |
---|
1801 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1802 | tend = 0.0 |
---|
1803 | CALL advec_s_up( q ) |
---|
1804 | ENDIF |
---|
1805 | ENDIF |
---|
1806 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1807 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, qswst_m, & |
---|
1808 | wall_qflux, tend ) |
---|
1809 | ELSE |
---|
1810 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, & |
---|
1811 | wall_qflux, tend ) |
---|
1812 | ENDIF |
---|
1813 | ENDIF |
---|
1814 | |
---|
1815 | ! |
---|
1816 | !-- If required compute decrease of total water content due to |
---|
1817 | !-- precipitation |
---|
1818 | IF ( precipitation ) THEN |
---|
1819 | CALL calc_precipitation |
---|
1820 | ENDIF |
---|
1821 | |
---|
1822 | ! |
---|
1823 | !-- Sink or source of scalar concentration due to canopy elements |
---|
1824 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
1825 | |
---|
1826 | CALL user_actions( 'q-tendency' ) |
---|
1827 | |
---|
1828 | ! |
---|
1829 | !-- Prognostic equation for total water content / scalar |
---|
1830 | DO i = nxl, nxr |
---|
1831 | DO j = nys, nyn |
---|
1832 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1833 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
1834 | dt_3d * ( & |
---|
1835 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
1836 | ) - & |
---|
1837 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
1838 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
1839 | ENDDO |
---|
1840 | ENDDO |
---|
1841 | ENDDO |
---|
1842 | |
---|
1843 | ! |
---|
1844 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1845 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1846 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1847 | DO i = nxl, nxr |
---|
1848 | DO j = nys, nyn |
---|
1849 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1850 | tq_m(k,j,i) = tend(k,j,i) |
---|
1851 | ENDDO |
---|
1852 | ENDDO |
---|
1853 | ENDDO |
---|
1854 | ELSEIF ( intermediate_timestep_count < & |
---|
1855 | intermediate_timestep_count_max ) THEN |
---|
1856 | DO i = nxl, nxr |
---|
1857 | DO j = nys, nyn |
---|
1858 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1859 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
1860 | ENDDO |
---|
1861 | ENDDO |
---|
1862 | ENDDO |
---|
1863 | ENDIF |
---|
1864 | ENDIF |
---|
1865 | |
---|
1866 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
1867 | |
---|
1868 | ENDIF |
---|
1869 | |
---|
1870 | ! |
---|
1871 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1872 | !-- energy (TKE) |
---|
1873 | IF ( .NOT. constant_diffusion ) THEN |
---|
1874 | |
---|
1875 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
1876 | |
---|
1877 | ! |
---|
1878 | !-- TKE-tendency terms with communication |
---|
1879 | CALL production_e_init |
---|
1880 | |
---|
1881 | sat = tsc(1) |
---|
1882 | sbt = tsc(2) |
---|
1883 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
1884 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1885 | |
---|
1886 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1887 | ! |
---|
1888 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1889 | !-- switched on. Thus: |
---|
1890 | sat = 1.0 |
---|
1891 | sbt = 1.0 |
---|
1892 | ENDIF |
---|
1893 | tend = 0.0 |
---|
1894 | CALL advec_s_bc( e, 'e' ) |
---|
1895 | ELSE |
---|
1896 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1897 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1898 | tend = 0.0 |
---|
1899 | CALL advec_s_ups( e, 'e' ) |
---|
1900 | ENDIF |
---|
1901 | ENDIF |
---|
1902 | ENDIF |
---|
1903 | ENDIF |
---|
1904 | |
---|
1905 | ! |
---|
1906 | !-- TKE-tendency terms with no communication |
---|
1907 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
1908 | THEN |
---|
1909 | IF ( .NOT. humidity ) THEN |
---|
1910 | IF ( ocean ) THEN |
---|
1911 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, rho, & |
---|
1912 | prho_reference, rif, tend, zu, zw ) |
---|
1913 | ELSE |
---|
1914 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
1915 | pt_reference, rif, tend, zu, zw ) |
---|
1916 | ENDIF |
---|
1917 | ELSE |
---|
1918 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
1919 | pt_reference, rif, tend, zu, zw ) |
---|
1920 | ENDIF |
---|
1921 | ELSE |
---|
1922 | IF ( use_upstream_for_tke ) THEN |
---|
1923 | tend = 0.0 |
---|
1924 | CALL advec_s_up( e ) |
---|
1925 | ELSE |
---|
1926 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1927 | tend = 0.0 |
---|
1928 | CALL advec_s_pw( e ) |
---|
1929 | ELSE |
---|
1930 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1931 | tend = 0.0 |
---|
1932 | CALL advec_s_up( e ) |
---|
1933 | ENDIF |
---|
1934 | ENDIF |
---|
1935 | ENDIF |
---|
1936 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1937 | IF ( .NOT. humidity ) THEN |
---|
1938 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
1939 | pt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
1940 | ELSE |
---|
1941 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
1942 | vpt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
1943 | ENDIF |
---|
1944 | ELSE |
---|
1945 | IF ( .NOT. humidity ) THEN |
---|
1946 | IF ( ocean ) THEN |
---|
1947 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
1948 | rho, prho_reference, rif, tend, zu, zw ) |
---|
1949 | ELSE |
---|
1950 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
1951 | pt, pt_reference, rif, tend, zu, zw ) |
---|
1952 | ENDIF |
---|
1953 | ELSE |
---|
1954 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
1955 | pt_reference, rif, tend, zu, zw ) |
---|
1956 | ENDIF |
---|
1957 | ENDIF |
---|
1958 | ENDIF |
---|
1959 | CALL production_e |
---|
1960 | |
---|
1961 | ! |
---|
1962 | !-- Additional sink term for flows through plant canopies |
---|
1963 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
1964 | CALL user_actions( 'e-tendency' ) |
---|
1965 | |
---|
1966 | ! |
---|
1967 | !-- Prognostic equation for TKE. |
---|
1968 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
1969 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
1970 | !-- value is reduced by 90%. |
---|
1971 | DO i = nxl, nxr |
---|
1972 | DO j = nys, nyn |
---|
1973 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1974 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
1975 | dt_3d * ( & |
---|
1976 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
1977 | ) |
---|
1978 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
1979 | ENDDO |
---|
1980 | ENDDO |
---|
1981 | ENDDO |
---|
1982 | |
---|
1983 | ! |
---|
1984 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1985 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1986 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1987 | DO i = nxl, nxr |
---|
1988 | DO j = nys, nyn |
---|
1989 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1990 | te_m(k,j,i) = tend(k,j,i) |
---|
1991 | ENDDO |
---|
1992 | ENDDO |
---|
1993 | ENDDO |
---|
1994 | ELSEIF ( intermediate_timestep_count < & |
---|
1995 | intermediate_timestep_count_max ) THEN |
---|
1996 | DO i = nxl, nxr |
---|
1997 | DO j = nys, nyn |
---|
1998 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1999 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
2000 | ENDDO |
---|
2001 | ENDDO |
---|
2002 | ENDDO |
---|
2003 | ENDIF |
---|
2004 | ENDIF |
---|
2005 | |
---|
2006 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
2007 | |
---|
2008 | ENDIF |
---|
2009 | |
---|
2010 | |
---|
2011 | END SUBROUTINE prognostic_equations_vector |
---|
2012 | |
---|
2013 | |
---|
2014 | END MODULE prognostic_equations_mod |
---|