1 | MODULE prognostic_equations_mod |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! unused variables removed |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: prognostic_equations.f90 1092 2013-02-02 11:24:22Z raasch $ |
---|
27 | ! |
---|
28 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
29 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
30 | ! and rain water content (qr) |
---|
31 | ! |
---|
32 | ! currently, only available for cache loop optimization |
---|
33 | ! |
---|
34 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
35 | ! code put under GPL (PALM 3.9) |
---|
36 | ! |
---|
37 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
38 | ! non-optimized version of prognostic_equations removed |
---|
39 | ! |
---|
40 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
41 | ! new branch prognostic_equations_acc |
---|
42 | ! OpenACC statements added + code changes required for GPU optimization |
---|
43 | ! |
---|
44 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
45 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
46 | ! |
---|
47 | ! 978 2012-08-09 08:28:32Z fricke |
---|
48 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
49 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
50 | ! boundary in case of non-cyclic lateral boundaries |
---|
51 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
52 | ! |
---|
53 | ! 940 2012-07-09 14:31:00Z raasch |
---|
54 | ! temperature equation can be switched off |
---|
55 | ! |
---|
56 | ! 785 2011-11-28 09:47:19Z raasch |
---|
57 | ! new factor rdf_sc allows separate Rayleigh damping of scalars |
---|
58 | ! |
---|
59 | ! 736 2011-08-17 14:13:26Z suehring |
---|
60 | ! Bugfix: determination of first thread index i for WS-scheme |
---|
61 | ! |
---|
62 | ! 709 2011-03-30 09:31:40Z raasch |
---|
63 | ! formatting adjustments |
---|
64 | ! |
---|
65 | ! 673 2011-01-18 16:19:48Z suehring |
---|
66 | ! Consideration of the pressure gradient (steered by tsc(4)) during the time |
---|
67 | ! integration removed. |
---|
68 | ! |
---|
69 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
70 | ! Calls of the advection routines with WS5 added. |
---|
71 | ! Calls of ws_statistics added to set the statistical arrays to zero after each |
---|
72 | ! time step. |
---|
73 | ! |
---|
74 | ! 531 2010-04-21 06:47:21Z heinze |
---|
75 | ! add call of subsidence in the equation for humidity / passive scalar |
---|
76 | ! |
---|
77 | ! 411 2009-12-11 14:15:58Z heinze |
---|
78 | ! add call of subsidence in the equation for potential temperature |
---|
79 | ! |
---|
80 | ! 388 2009-09-23 09:40:33Z raasch |
---|
81 | ! prho is used instead of rho in diffusion_e, |
---|
82 | ! external pressure gradient |
---|
83 | ! |
---|
84 | ! 153 2008-03-19 09:41:30Z steinfeld |
---|
85 | ! add call of plant_canopy_model in the prognostic equation for |
---|
86 | ! the potential temperature and for the passive scalar |
---|
87 | ! |
---|
88 | ! 138 2007-11-28 10:03:58Z letzel |
---|
89 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
90 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
91 | ! |
---|
92 | ! 106 2007-08-16 14:30:26Z raasch |
---|
93 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
94 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
95 | ! for non-cyclic boundary conditions) |
---|
96 | ! |
---|
97 | ! 97 2007-06-21 08:23:15Z raasch |
---|
98 | ! prognostic equation for salinity, density is calculated from equation of |
---|
99 | ! state for seawater and is used for calculation of buoyancy, |
---|
100 | ! +eqn_state_seawater_mod |
---|
101 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
102 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
103 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
104 | ! calc_mean_profile |
---|
105 | ! |
---|
106 | ! 75 2007-03-22 09:54:05Z raasch |
---|
107 | ! checking for negative q and limiting for positive values, |
---|
108 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
109 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
110 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
111 | ! _vector-version |
---|
112 | ! |
---|
113 | ! 19 2007-02-23 04:53:48Z raasch |
---|
114 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
115 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
116 | ! |
---|
117 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
118 | ! |
---|
119 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
120 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
121 | ! regardless of the timestep scheme used for the other quantities, |
---|
122 | ! new argument diss in call of diffusion_e |
---|
123 | ! |
---|
124 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
125 | ! Initial revision |
---|
126 | ! |
---|
127 | ! |
---|
128 | ! Description: |
---|
129 | ! ------------ |
---|
130 | ! Solving the prognostic equations. |
---|
131 | !------------------------------------------------------------------------------! |
---|
132 | |
---|
133 | USE arrays_3d |
---|
134 | USE control_parameters |
---|
135 | USE cpulog |
---|
136 | USE eqn_state_seawater_mod |
---|
137 | USE grid_variables |
---|
138 | USE indices |
---|
139 | USE interfaces |
---|
140 | USE pegrid |
---|
141 | USE pointer_interfaces |
---|
142 | USE statistics |
---|
143 | USE advec_ws |
---|
144 | USE advec_s_pw_mod |
---|
145 | USE advec_s_up_mod |
---|
146 | USE advec_u_pw_mod |
---|
147 | USE advec_u_up_mod |
---|
148 | USE advec_v_pw_mod |
---|
149 | USE advec_v_up_mod |
---|
150 | USE advec_w_pw_mod |
---|
151 | USE advec_w_up_mod |
---|
152 | USE buoyancy_mod |
---|
153 | USE calc_precipitation_mod |
---|
154 | USE calc_radiation_mod |
---|
155 | USE coriolis_mod |
---|
156 | USE diffusion_e_mod |
---|
157 | USE diffusion_s_mod |
---|
158 | USE diffusion_u_mod |
---|
159 | USE diffusion_v_mod |
---|
160 | USE diffusion_w_mod |
---|
161 | USE impact_of_latent_heat_mod |
---|
162 | USE microphysics_mod |
---|
163 | USE plant_canopy_model_mod |
---|
164 | USE production_e_mod |
---|
165 | USE subsidence_mod |
---|
166 | USE user_actions_mod |
---|
167 | |
---|
168 | |
---|
169 | PRIVATE |
---|
170 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
171 | prognostic_equations_acc |
---|
172 | |
---|
173 | INTERFACE prognostic_equations_cache |
---|
174 | MODULE PROCEDURE prognostic_equations_cache |
---|
175 | END INTERFACE prognostic_equations_cache |
---|
176 | |
---|
177 | INTERFACE prognostic_equations_vector |
---|
178 | MODULE PROCEDURE prognostic_equations_vector |
---|
179 | END INTERFACE prognostic_equations_vector |
---|
180 | |
---|
181 | INTERFACE prognostic_equations_acc |
---|
182 | MODULE PROCEDURE prognostic_equations_acc |
---|
183 | END INTERFACE prognostic_equations_acc |
---|
184 | |
---|
185 | |
---|
186 | CONTAINS |
---|
187 | |
---|
188 | |
---|
189 | SUBROUTINE prognostic_equations_cache |
---|
190 | |
---|
191 | !------------------------------------------------------------------------------! |
---|
192 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
193 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
194 | ! |
---|
195 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
196 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
197 | ! these loops. |
---|
198 | ! |
---|
199 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
200 | !------------------------------------------------------------------------------! |
---|
201 | |
---|
202 | IMPLICIT NONE |
---|
203 | |
---|
204 | INTEGER :: i, i_omp_start, j, k, omp_get_thread_num, tn = 0 |
---|
205 | LOGICAL :: loop_start |
---|
206 | |
---|
207 | |
---|
208 | ! |
---|
209 | !-- Time measurement can only be performed for the whole set of equations |
---|
210 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
211 | |
---|
212 | |
---|
213 | ! |
---|
214 | !-- Calculate those variables needed in the tendency terms which need |
---|
215 | !-- global communication |
---|
216 | IF ( .NOT. neutral ) CALL calc_mean_profile( pt, 4 ) |
---|
217 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
218 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
219 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
220 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
221 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
222 | |
---|
223 | ! |
---|
224 | !-- Loop over all prognostic equations |
---|
225 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
226 | |
---|
227 | !$ tn = omp_get_thread_num() |
---|
228 | loop_start = .TRUE. |
---|
229 | !$OMP DO |
---|
230 | DO i = nxl, nxr |
---|
231 | |
---|
232 | ! |
---|
233 | !-- Store the first loop index. It differs for each thread and is required |
---|
234 | !-- later in advec_ws |
---|
235 | IF ( loop_start ) THEN |
---|
236 | loop_start = .FALSE. |
---|
237 | i_omp_start = i |
---|
238 | ENDIF |
---|
239 | |
---|
240 | DO j = nys, nyn |
---|
241 | ! |
---|
242 | !-- Tendency terms for u-velocity component |
---|
243 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
244 | |
---|
245 | tend(:,j,i) = 0.0 |
---|
246 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
247 | IF ( ws_scheme_mom ) THEN |
---|
248 | IF ( ( inflow_l .OR. outflow_l ) .AND. i_omp_start == nxl ) THEN |
---|
249 | CALL advec_u_ws( i, j, i_omp_start + 1, tn ) |
---|
250 | ELSE |
---|
251 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
252 | ENDIF |
---|
253 | ELSE |
---|
254 | CALL advec_u_pw( i, j ) |
---|
255 | ENDIF |
---|
256 | ELSE |
---|
257 | CALL advec_u_up( i, j ) |
---|
258 | ENDIF |
---|
259 | CALL diffusion_u( i, j ) |
---|
260 | CALL coriolis( i, j, 1 ) |
---|
261 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
262 | CALL buoyancy( i, j, pt, pt_reference, 1, 4 ) |
---|
263 | ENDIF |
---|
264 | |
---|
265 | ! |
---|
266 | !-- Drag by plant canopy |
---|
267 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
268 | |
---|
269 | ! |
---|
270 | !-- External pressure gradient |
---|
271 | IF ( dp_external ) THEN |
---|
272 | DO k = dp_level_ind_b+1, nzt |
---|
273 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
274 | ENDDO |
---|
275 | ENDIF |
---|
276 | |
---|
277 | CALL user_actions( i, j, 'u-tendency' ) |
---|
278 | |
---|
279 | ! |
---|
280 | !-- Prognostic equation for u-velocity component |
---|
281 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
282 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
283 | tsc(3) * tu_m(k,j,i) ) & |
---|
284 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
285 | ENDDO |
---|
286 | |
---|
287 | ! |
---|
288 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
289 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
290 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
291 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
292 | tu_m(k,j,i) = tend(k,j,i) |
---|
293 | ENDDO |
---|
294 | ELSEIF ( intermediate_timestep_count < & |
---|
295 | intermediate_timestep_count_max ) THEN |
---|
296 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
297 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
298 | ENDDO |
---|
299 | ENDIF |
---|
300 | ENDIF |
---|
301 | |
---|
302 | ENDIF |
---|
303 | |
---|
304 | ! |
---|
305 | !-- Tendency terms for v-velocity component |
---|
306 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
307 | |
---|
308 | tend(:,j,i) = 0.0 |
---|
309 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
310 | IF ( ws_scheme_mom ) THEN |
---|
311 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
312 | ELSE |
---|
313 | CALL advec_v_pw( i, j ) |
---|
314 | ENDIF |
---|
315 | ELSE |
---|
316 | CALL advec_v_up( i, j ) |
---|
317 | ENDIF |
---|
318 | CALL diffusion_v( i, j ) |
---|
319 | CALL coriolis( i, j, 2 ) |
---|
320 | |
---|
321 | ! |
---|
322 | !-- Drag by plant canopy |
---|
323 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
324 | |
---|
325 | ! |
---|
326 | !-- External pressure gradient |
---|
327 | IF ( dp_external ) THEN |
---|
328 | DO k = dp_level_ind_b+1, nzt |
---|
329 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
330 | ENDDO |
---|
331 | ENDIF |
---|
332 | |
---|
333 | CALL user_actions( i, j, 'v-tendency' ) |
---|
334 | |
---|
335 | ! |
---|
336 | !-- Prognostic equation for v-velocity component |
---|
337 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
338 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
339 | tsc(3) * tv_m(k,j,i) ) & |
---|
340 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
341 | ENDDO |
---|
342 | |
---|
343 | ! |
---|
344 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
345 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
346 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
347 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
348 | tv_m(k,j,i) = tend(k,j,i) |
---|
349 | ENDDO |
---|
350 | ELSEIF ( intermediate_timestep_count < & |
---|
351 | intermediate_timestep_count_max ) THEN |
---|
352 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
353 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
354 | ENDDO |
---|
355 | ENDIF |
---|
356 | ENDIF |
---|
357 | |
---|
358 | ENDIF |
---|
359 | |
---|
360 | ! |
---|
361 | !-- Tendency terms for w-velocity component |
---|
362 | tend(:,j,i) = 0.0 |
---|
363 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
364 | IF ( ws_scheme_mom ) THEN |
---|
365 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
366 | ELSE |
---|
367 | CALL advec_w_pw( i, j ) |
---|
368 | END IF |
---|
369 | ELSE |
---|
370 | CALL advec_w_up( i, j ) |
---|
371 | ENDIF |
---|
372 | CALL diffusion_w( i, j ) |
---|
373 | CALL coriolis( i, j, 3 ) |
---|
374 | |
---|
375 | IF ( .NOT. neutral ) THEN |
---|
376 | IF ( ocean ) THEN |
---|
377 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
378 | ELSE |
---|
379 | IF ( .NOT. humidity ) THEN |
---|
380 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
381 | ELSE |
---|
382 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
383 | ENDIF |
---|
384 | ENDIF |
---|
385 | ENDIF |
---|
386 | |
---|
387 | ! |
---|
388 | !-- Drag by plant canopy |
---|
389 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
390 | |
---|
391 | CALL user_actions( i, j, 'w-tendency' ) |
---|
392 | |
---|
393 | ! |
---|
394 | !-- Prognostic equation for w-velocity component |
---|
395 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
396 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
397 | tsc(3) * tw_m(k,j,i) ) & |
---|
398 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
399 | ENDDO |
---|
400 | |
---|
401 | ! |
---|
402 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
403 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
404 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
405 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
406 | tw_m(k,j,i) = tend(k,j,i) |
---|
407 | ENDDO |
---|
408 | ELSEIF ( intermediate_timestep_count < & |
---|
409 | intermediate_timestep_count_max ) THEN |
---|
410 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
411 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
412 | ENDDO |
---|
413 | ENDIF |
---|
414 | ENDIF |
---|
415 | |
---|
416 | ! |
---|
417 | !-- If required, calculate tendencies for total water content, rain water |
---|
418 | !-- content, rain drop concentration and liquid temperature |
---|
419 | |
---|
420 | IF ( cloud_physics .AND. icloud_scheme == 0 ) THEN |
---|
421 | |
---|
422 | tend_q(:,j,i) = 0.0 |
---|
423 | tend_qr(:,j,i) = 0.0 |
---|
424 | tend_nr(:,j,i) = 0.0 |
---|
425 | tend_pt(:,j,i) = 0.0 |
---|
426 | ! |
---|
427 | !-- Droplet size distribution (dsd) properties are needed for the |
---|
428 | !-- computation of selfcollection, breakup, evaporation and |
---|
429 | !-- sedimentation of rain. |
---|
430 | IF ( precipitation ) THEN |
---|
431 | CALL dsd_properties( i,j ) |
---|
432 | CALL autoconversion( i,j ) |
---|
433 | CALL accretion( i,j ) |
---|
434 | CALL selfcollection_breakup( i,j ) |
---|
435 | CALL evaporation_rain( i,j ) |
---|
436 | CALL sedimentation_rain( i,j ) |
---|
437 | ENDIF |
---|
438 | |
---|
439 | IF ( drizzle ) CALL sedimentation_cloud( i,j ) |
---|
440 | |
---|
441 | ENDIF |
---|
442 | |
---|
443 | ! |
---|
444 | !-- If required, compute prognostic equation for potential temperature |
---|
445 | IF ( .NOT. neutral ) THEN |
---|
446 | ! |
---|
447 | !-- Tendency terms for potential temperature |
---|
448 | tend(:,j,i) = 0.0 |
---|
449 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
450 | IF ( ws_scheme_sca ) THEN |
---|
451 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
452 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
453 | ELSE |
---|
454 | CALL advec_s_pw( i, j, pt ) |
---|
455 | ENDIF |
---|
456 | ELSE |
---|
457 | CALL advec_s_up( i, j, pt ) |
---|
458 | ENDIF |
---|
459 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
460 | |
---|
461 | ! |
---|
462 | !-- If required compute heating/cooling due to long wave radiation |
---|
463 | !-- processes |
---|
464 | IF ( radiation ) THEN |
---|
465 | CALL calc_radiation( i, j ) |
---|
466 | ENDIF |
---|
467 | |
---|
468 | !-- Using microphysical tendencies (latent heat) |
---|
469 | IF ( cloud_physics ) THEN |
---|
470 | IF ( icloud_scheme == 0 ) THEN |
---|
471 | tend(:,j,i) = tend(:,j,i) + tend_pt(:,j,i) |
---|
472 | ELSEIF ( icloud_scheme == 1 .AND. precipitation) THEN |
---|
473 | CALL impact_of_latent_heat( i, j ) |
---|
474 | ENDIF |
---|
475 | ENDIF |
---|
476 | |
---|
477 | ! |
---|
478 | !-- Consideration of heat sources within the plant canopy |
---|
479 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
480 | CALL plant_canopy_model( i, j, 4 ) |
---|
481 | ENDIF |
---|
482 | |
---|
483 | ! |
---|
484 | !-- If required, compute influence of large-scale subsidence/ascent |
---|
485 | IF ( large_scale_subsidence ) THEN |
---|
486 | CALL subsidence( i, j, tend, pt, pt_init ) |
---|
487 | ENDIF |
---|
488 | |
---|
489 | |
---|
490 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
491 | |
---|
492 | ! |
---|
493 | !-- Prognostic equation for potential temperature |
---|
494 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
495 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
496 | tsc(3) * tpt_m(k,j,i) ) & |
---|
497 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
498 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
499 | ENDDO |
---|
500 | |
---|
501 | ! |
---|
502 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
503 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
504 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
505 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
506 | tpt_m(k,j,i) = tend(k,j,i) |
---|
507 | ENDDO |
---|
508 | ELSEIF ( intermediate_timestep_count < & |
---|
509 | intermediate_timestep_count_max ) THEN |
---|
510 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
511 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
512 | 5.3125 * tpt_m(k,j,i) |
---|
513 | ENDDO |
---|
514 | ENDIF |
---|
515 | ENDIF |
---|
516 | |
---|
517 | ENDIF |
---|
518 | |
---|
519 | ! |
---|
520 | !-- If required, compute prognostic equation for salinity |
---|
521 | IF ( ocean ) THEN |
---|
522 | |
---|
523 | ! |
---|
524 | !-- Tendency-terms for salinity |
---|
525 | tend(:,j,i) = 0.0 |
---|
526 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
527 | THEN |
---|
528 | IF ( ws_scheme_sca ) THEN |
---|
529 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
530 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
531 | ELSE |
---|
532 | CALL advec_s_pw( i, j, sa ) |
---|
533 | ENDIF |
---|
534 | ELSE |
---|
535 | CALL advec_s_up( i, j, sa ) |
---|
536 | ENDIF |
---|
537 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
538 | |
---|
539 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
540 | |
---|
541 | ! |
---|
542 | !-- Prognostic equation for salinity |
---|
543 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
544 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
545 | tsc(3) * tsa_m(k,j,i) ) & |
---|
546 | - tsc(5) * rdf_sc(k) * & |
---|
547 | ( sa(k,j,i) - sa_init(k) ) |
---|
548 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
549 | ENDDO |
---|
550 | |
---|
551 | ! |
---|
552 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
553 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
554 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
555 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
556 | tsa_m(k,j,i) = tend(k,j,i) |
---|
557 | ENDDO |
---|
558 | ELSEIF ( intermediate_timestep_count < & |
---|
559 | intermediate_timestep_count_max ) THEN |
---|
560 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
561 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
562 | 5.3125 * tsa_m(k,j,i) |
---|
563 | ENDDO |
---|
564 | ENDIF |
---|
565 | ENDIF |
---|
566 | |
---|
567 | ! |
---|
568 | !-- Calculate density by the equation of state for seawater |
---|
569 | CALL eqn_state_seawater( i, j ) |
---|
570 | |
---|
571 | ENDIF |
---|
572 | |
---|
573 | ! |
---|
574 | !-- If required, compute prognostic equation for total water content / |
---|
575 | !-- scalar |
---|
576 | IF ( humidity .OR. passive_scalar ) THEN |
---|
577 | |
---|
578 | ! |
---|
579 | !-- Tendency-terms for total water content / scalar |
---|
580 | tend(:,j,i) = 0.0 |
---|
581 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
582 | THEN |
---|
583 | IF ( ws_scheme_sca ) THEN |
---|
584 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
585 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
586 | ELSE |
---|
587 | CALL advec_s_pw( i, j, q ) |
---|
588 | ENDIF |
---|
589 | ELSE |
---|
590 | CALL advec_s_up( i, j, q ) |
---|
591 | ENDIF |
---|
592 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
593 | |
---|
594 | ! |
---|
595 | !-- Using microphysical tendencies |
---|
596 | IF ( cloud_physics ) THEN |
---|
597 | IF ( icloud_scheme == 0 ) THEN |
---|
598 | tend(:,j,i) = tend(:,j,i) + tend_q(:,j,i) |
---|
599 | ELSEIF ( icloud_scheme == 1 .AND. precipitation ) THEN |
---|
600 | CALL calc_precipitation( i, j ) |
---|
601 | ENDIF |
---|
602 | ENDIF |
---|
603 | ! |
---|
604 | !-- Sink or source of scalar concentration due to canopy elements |
---|
605 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
606 | |
---|
607 | ! |
---|
608 | !-- If required compute influence of large-scale subsidence/ascent |
---|
609 | IF ( large_scale_subsidence ) THEN |
---|
610 | CALL subsidence( i, j, tend, q, q_init ) |
---|
611 | ENDIF |
---|
612 | |
---|
613 | CALL user_actions( i, j, 'q-tendency' ) |
---|
614 | |
---|
615 | ! |
---|
616 | !-- Prognostic equation for total water content / scalar |
---|
617 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
618 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
619 | tsc(3) * tq_m(k,j,i) ) & |
---|
620 | - tsc(5) * rdf_sc(k) * & |
---|
621 | ( q(k,j,i) - q_init(k) ) |
---|
622 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
623 | ENDDO |
---|
624 | |
---|
625 | ! |
---|
626 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
627 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
628 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
629 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
630 | tq_m(k,j,i) = tend(k,j,i) |
---|
631 | ENDDO |
---|
632 | ELSEIF ( intermediate_timestep_count < & |
---|
633 | intermediate_timestep_count_max ) THEN |
---|
634 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
635 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
636 | 5.3125 * tq_m(k,j,i) |
---|
637 | ENDDO |
---|
638 | ENDIF |
---|
639 | ENDIF |
---|
640 | |
---|
641 | ! |
---|
642 | !-- If required, calculate prognostic equations for rain water content |
---|
643 | !-- and rain drop concentration |
---|
644 | IF ( cloud_physics .AND. icloud_scheme == 0 ) THEN |
---|
645 | ! |
---|
646 | !-- Calculate prognostic equation for rain water content |
---|
647 | tend(:,j,i) = 0.0 |
---|
648 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
649 | THEN |
---|
650 | IF ( ws_scheme_sca ) THEN |
---|
651 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
652 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
653 | i_omp_start, tn ) |
---|
654 | ELSE |
---|
655 | CALL advec_s_pw( i, j, qr ) |
---|
656 | ENDIF |
---|
657 | ELSE |
---|
658 | CALL advec_s_up( i, j, qr ) |
---|
659 | ENDIF |
---|
660 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
661 | |
---|
662 | ! |
---|
663 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
664 | !-- evaporation; if required: sedimentation) |
---|
665 | tend(:,j,i) = tend(:,j,i) + tend_qr(:,j,i) |
---|
666 | |
---|
667 | ! |
---|
668 | !-- If required, compute influence of large-scale subsidence/ascent |
---|
669 | IF ( large_scale_subsidence ) THEN |
---|
670 | CALL subsidence( i, j, tend, qr, qr_init ) |
---|
671 | ENDIF |
---|
672 | |
---|
673 | ! CALL user_actions( i, j, 'qr-tendency' ) |
---|
674 | |
---|
675 | ! |
---|
676 | !-- Prognostic equation for rain water content |
---|
677 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
678 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
679 | tsc(3) * tqr_m(k,j,i) ) & |
---|
680 | - tsc(5) * rdf_sc(k) * & |
---|
681 | ( qr(k,j,i) - qr_init(k) ) |
---|
682 | IF ( qr_p(k,j,i) < 0.0 ) qr_p(k,j,i) = 0.1 * qr(k,j,i) |
---|
683 | ENDDO |
---|
684 | ! |
---|
685 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
686 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
687 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
688 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
689 | tqr_m(k,j,i) = tend(k,j,i) |
---|
690 | ENDDO |
---|
691 | ELSEIF ( intermediate_timestep_count < & |
---|
692 | intermediate_timestep_count_max ) THEN |
---|
693 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
694 | tqr_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
695 | 5.3125 * tqr_m(k,j,i) |
---|
696 | ENDDO |
---|
697 | ENDIF |
---|
698 | ENDIF |
---|
699 | |
---|
700 | ! |
---|
701 | !-- Calculate prognostic equation for rain drop concentration. |
---|
702 | tend(:,j,i) = 0.0 |
---|
703 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
704 | IF ( ws_scheme_sca ) THEN |
---|
705 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
706 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
707 | i_omp_start, tn ) |
---|
708 | ELSE |
---|
709 | CALL advec_s_pw( i, j, nr ) |
---|
710 | ENDIF |
---|
711 | ELSE |
---|
712 | CALL advec_s_up( i, j, nr ) |
---|
713 | ENDIF |
---|
714 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
715 | |
---|
716 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
717 | !-- selfcollection, breakup, evaporation; |
---|
718 | !-- if required: sedimentation) |
---|
719 | tend(:,j,i) = tend(:,j,i) + tend_nr(:,j,i) |
---|
720 | |
---|
721 | ! |
---|
722 | !-- If required, compute influence of large-scale subsidence/ascent |
---|
723 | IF ( large_scale_subsidence ) THEN |
---|
724 | CALL subsidence( i, j, tend, nr, nr_init ) |
---|
725 | ENDIF |
---|
726 | |
---|
727 | ! CALL user_actions( i, j, 'nr-tendency' ) |
---|
728 | |
---|
729 | ! |
---|
730 | !-- Prognostic equation for rain drop concentration |
---|
731 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
732 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
733 | tsc(3) * tnr_m(k,j,i) ) & |
---|
734 | - tsc(5) * rdf_sc(k) * & |
---|
735 | ( nr(k,j,i) - nr_init(k) ) |
---|
736 | IF ( nr_p(k,j,i) < 0.0 ) nr_p(k,j,i) = 0.1 * nr(k,j,i) |
---|
737 | ENDDO |
---|
738 | ! |
---|
739 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
740 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
741 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
742 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
743 | tnr_m(k,j,i) = tend(k,j,i) |
---|
744 | ENDDO |
---|
745 | ELSEIF ( intermediate_timestep_count < & |
---|
746 | intermediate_timestep_count_max ) THEN |
---|
747 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
748 | tnr_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
749 | 5.3125 * tnr_m(k,j,i) |
---|
750 | ENDDO |
---|
751 | ENDIF |
---|
752 | ENDIF |
---|
753 | |
---|
754 | ENDIF |
---|
755 | |
---|
756 | ENDIF |
---|
757 | |
---|
758 | ! |
---|
759 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
760 | !-- energy (TKE) |
---|
761 | IF ( .NOT. constant_diffusion ) THEN |
---|
762 | |
---|
763 | ! |
---|
764 | !-- Tendency-terms for TKE |
---|
765 | tend(:,j,i) = 0.0 |
---|
766 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
767 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
768 | IF ( ws_scheme_sca ) THEN |
---|
769 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
770 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
771 | ELSE |
---|
772 | CALL advec_s_pw( i, j, e ) |
---|
773 | ENDIF |
---|
774 | ELSE |
---|
775 | CALL advec_s_up( i, j, e ) |
---|
776 | ENDIF |
---|
777 | IF ( .NOT. humidity ) THEN |
---|
778 | IF ( ocean ) THEN |
---|
779 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
780 | ELSE |
---|
781 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
782 | ENDIF |
---|
783 | ELSE |
---|
784 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
785 | ENDIF |
---|
786 | CALL production_e( i, j ) |
---|
787 | |
---|
788 | ! |
---|
789 | !-- Additional sink term for flows through plant canopies |
---|
790 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
791 | |
---|
792 | CALL user_actions( i, j, 'e-tendency' ) |
---|
793 | |
---|
794 | ! |
---|
795 | !-- Prognostic equation for TKE. |
---|
796 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
797 | !-- reasons in the course of the integration. In such cases the old |
---|
798 | !-- TKE value is reduced by 90%. |
---|
799 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
800 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
801 | tsc(3) * te_m(k,j,i) ) |
---|
802 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
803 | ENDDO |
---|
804 | |
---|
805 | ! |
---|
806 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
807 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
808 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
809 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
810 | te_m(k,j,i) = tend(k,j,i) |
---|
811 | ENDDO |
---|
812 | ELSEIF ( intermediate_timestep_count < & |
---|
813 | intermediate_timestep_count_max ) THEN |
---|
814 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
815 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
816 | 5.3125 * te_m(k,j,i) |
---|
817 | ENDDO |
---|
818 | ENDIF |
---|
819 | ENDIF |
---|
820 | |
---|
821 | ENDIF ! TKE equation |
---|
822 | |
---|
823 | ENDDO |
---|
824 | ENDDO |
---|
825 | !$OMP END PARALLEL |
---|
826 | |
---|
827 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
828 | |
---|
829 | |
---|
830 | END SUBROUTINE prognostic_equations_cache |
---|
831 | |
---|
832 | |
---|
833 | SUBROUTINE prognostic_equations_vector |
---|
834 | |
---|
835 | !------------------------------------------------------------------------------! |
---|
836 | ! Version for vector machines |
---|
837 | !------------------------------------------------------------------------------! |
---|
838 | |
---|
839 | IMPLICIT NONE |
---|
840 | |
---|
841 | INTEGER :: i, j, k |
---|
842 | REAL :: sbt |
---|
843 | |
---|
844 | ! |
---|
845 | !-- Calculate those variables needed in the tendency terms which need |
---|
846 | !-- global communication |
---|
847 | IF ( .NOT. neutral ) CALL calc_mean_profile( pt, 4 ) |
---|
848 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
849 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
850 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
851 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
852 | |
---|
853 | ! |
---|
854 | !-- u-velocity component |
---|
855 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
856 | |
---|
857 | tend = 0.0 |
---|
858 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
859 | IF ( ws_scheme_mom ) THEN |
---|
860 | CALL advec_u_ws |
---|
861 | ELSE |
---|
862 | CALL advec_u_pw |
---|
863 | ENDIF |
---|
864 | ELSE |
---|
865 | CALL advec_u_up |
---|
866 | ENDIF |
---|
867 | CALL diffusion_u |
---|
868 | CALL coriolis( 1 ) |
---|
869 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
870 | CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
871 | ENDIF |
---|
872 | |
---|
873 | ! |
---|
874 | !-- Drag by plant canopy |
---|
875 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
876 | |
---|
877 | ! |
---|
878 | !-- External pressure gradient |
---|
879 | IF ( dp_external ) THEN |
---|
880 | DO i = nxlu, nxr |
---|
881 | DO j = nys, nyn |
---|
882 | DO k = dp_level_ind_b+1, nzt |
---|
883 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
884 | ENDDO |
---|
885 | ENDDO |
---|
886 | ENDDO |
---|
887 | ENDIF |
---|
888 | |
---|
889 | CALL user_actions( 'u-tendency' ) |
---|
890 | |
---|
891 | ! |
---|
892 | !-- Prognostic equation for u-velocity component |
---|
893 | DO i = nxlu, nxr |
---|
894 | DO j = nys, nyn |
---|
895 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
896 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
897 | tsc(3) * tu_m(k,j,i) ) & |
---|
898 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
899 | ENDDO |
---|
900 | ENDDO |
---|
901 | ENDDO |
---|
902 | |
---|
903 | ! |
---|
904 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
905 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
906 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
907 | DO i = nxlu, nxr |
---|
908 | DO j = nys, nyn |
---|
909 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
910 | tu_m(k,j,i) = tend(k,j,i) |
---|
911 | ENDDO |
---|
912 | ENDDO |
---|
913 | ENDDO |
---|
914 | ELSEIF ( intermediate_timestep_count < & |
---|
915 | intermediate_timestep_count_max ) THEN |
---|
916 | DO i = nxlu, nxr |
---|
917 | DO j = nys, nyn |
---|
918 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
919 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
920 | ENDDO |
---|
921 | ENDDO |
---|
922 | ENDDO |
---|
923 | ENDIF |
---|
924 | ENDIF |
---|
925 | |
---|
926 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
927 | |
---|
928 | ! |
---|
929 | !-- v-velocity component |
---|
930 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
931 | |
---|
932 | tend = 0.0 |
---|
933 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
934 | IF ( ws_scheme_mom ) THEN |
---|
935 | CALL advec_v_ws |
---|
936 | ELSE |
---|
937 | CALL advec_v_pw |
---|
938 | END IF |
---|
939 | ELSE |
---|
940 | CALL advec_v_up |
---|
941 | ENDIF |
---|
942 | CALL diffusion_v |
---|
943 | CALL coriolis( 2 ) |
---|
944 | |
---|
945 | ! |
---|
946 | !-- Drag by plant canopy |
---|
947 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
948 | |
---|
949 | ! |
---|
950 | !-- External pressure gradient |
---|
951 | IF ( dp_external ) THEN |
---|
952 | DO i = nxl, nxr |
---|
953 | DO j = nysv, nyn |
---|
954 | DO k = dp_level_ind_b+1, nzt |
---|
955 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
956 | ENDDO |
---|
957 | ENDDO |
---|
958 | ENDDO |
---|
959 | ENDIF |
---|
960 | |
---|
961 | CALL user_actions( 'v-tendency' ) |
---|
962 | |
---|
963 | ! |
---|
964 | !-- Prognostic equation for v-velocity component |
---|
965 | DO i = nxl, nxr |
---|
966 | DO j = nysv, nyn |
---|
967 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
968 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
969 | tsc(3) * tv_m(k,j,i) ) & |
---|
970 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
971 | ENDDO |
---|
972 | ENDDO |
---|
973 | ENDDO |
---|
974 | |
---|
975 | ! |
---|
976 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
977 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
978 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
979 | DO i = nxl, nxr |
---|
980 | DO j = nysv, nyn |
---|
981 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
982 | tv_m(k,j,i) = tend(k,j,i) |
---|
983 | ENDDO |
---|
984 | ENDDO |
---|
985 | ENDDO |
---|
986 | ELSEIF ( intermediate_timestep_count < & |
---|
987 | intermediate_timestep_count_max ) THEN |
---|
988 | DO i = nxl, nxr |
---|
989 | DO j = nysv, nyn |
---|
990 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
991 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
992 | ENDDO |
---|
993 | ENDDO |
---|
994 | ENDDO |
---|
995 | ENDIF |
---|
996 | ENDIF |
---|
997 | |
---|
998 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
999 | |
---|
1000 | ! |
---|
1001 | !-- w-velocity component |
---|
1002 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
1003 | |
---|
1004 | tend = 0.0 |
---|
1005 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1006 | IF ( ws_scheme_mom ) THEN |
---|
1007 | CALL advec_w_ws |
---|
1008 | ELSE |
---|
1009 | CALL advec_w_pw |
---|
1010 | ENDIF |
---|
1011 | ELSE |
---|
1012 | CALL advec_w_up |
---|
1013 | ENDIF |
---|
1014 | CALL diffusion_w |
---|
1015 | CALL coriolis( 3 ) |
---|
1016 | |
---|
1017 | IF ( .NOT. neutral ) THEN |
---|
1018 | IF ( ocean ) THEN |
---|
1019 | CALL buoyancy( rho, rho_reference, 3, 64 ) |
---|
1020 | ELSE |
---|
1021 | IF ( .NOT. humidity ) THEN |
---|
1022 | CALL buoyancy( pt, pt_reference, 3, 4 ) |
---|
1023 | ELSE |
---|
1024 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
1025 | ENDIF |
---|
1026 | ENDIF |
---|
1027 | ENDIF |
---|
1028 | |
---|
1029 | ! |
---|
1030 | !-- Drag by plant canopy |
---|
1031 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
1032 | |
---|
1033 | CALL user_actions( 'w-tendency' ) |
---|
1034 | |
---|
1035 | ! |
---|
1036 | !-- Prognostic equation for w-velocity component |
---|
1037 | DO i = nxl, nxr |
---|
1038 | DO j = nys, nyn |
---|
1039 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1040 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1041 | tsc(3) * tw_m(k,j,i) ) & |
---|
1042 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
1043 | ENDDO |
---|
1044 | ENDDO |
---|
1045 | ENDDO |
---|
1046 | |
---|
1047 | ! |
---|
1048 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1049 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1050 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1051 | DO i = nxl, nxr |
---|
1052 | DO j = nys, nyn |
---|
1053 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1054 | tw_m(k,j,i) = tend(k,j,i) |
---|
1055 | ENDDO |
---|
1056 | ENDDO |
---|
1057 | ENDDO |
---|
1058 | ELSEIF ( intermediate_timestep_count < & |
---|
1059 | intermediate_timestep_count_max ) THEN |
---|
1060 | DO i = nxl, nxr |
---|
1061 | DO j = nys, nyn |
---|
1062 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1063 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1064 | ENDDO |
---|
1065 | ENDDO |
---|
1066 | ENDDO |
---|
1067 | ENDIF |
---|
1068 | ENDIF |
---|
1069 | |
---|
1070 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
1071 | |
---|
1072 | |
---|
1073 | ! |
---|
1074 | !-- If required, compute prognostic equation for potential temperature |
---|
1075 | IF ( .NOT. neutral ) THEN |
---|
1076 | |
---|
1077 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
1078 | |
---|
1079 | ! |
---|
1080 | !-- pt-tendency terms with communication |
---|
1081 | sbt = tsc(2) |
---|
1082 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1083 | |
---|
1084 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1085 | ! |
---|
1086 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1087 | sbt = 1.0 |
---|
1088 | ENDIF |
---|
1089 | tend = 0.0 |
---|
1090 | CALL advec_s_bc( pt, 'pt' ) |
---|
1091 | |
---|
1092 | ENDIF |
---|
1093 | |
---|
1094 | ! |
---|
1095 | !-- pt-tendency terms with no communication |
---|
1096 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1097 | tend = 0.0 |
---|
1098 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1099 | IF ( ws_scheme_sca ) THEN |
---|
1100 | CALL advec_s_ws( pt, 'pt' ) |
---|
1101 | ELSE |
---|
1102 | CALL advec_s_pw( pt ) |
---|
1103 | ENDIF |
---|
1104 | ELSE |
---|
1105 | CALL advec_s_up( pt ) |
---|
1106 | ENDIF |
---|
1107 | ENDIF |
---|
1108 | |
---|
1109 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
1110 | |
---|
1111 | ! |
---|
1112 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
1113 | IF ( radiation ) THEN |
---|
1114 | CALL calc_radiation |
---|
1115 | ENDIF |
---|
1116 | |
---|
1117 | ! |
---|
1118 | !-- If required compute impact of latent heat due to precipitation |
---|
1119 | IF ( precipitation ) THEN |
---|
1120 | CALL impact_of_latent_heat |
---|
1121 | ENDIF |
---|
1122 | |
---|
1123 | ! |
---|
1124 | !-- Consideration of heat sources within the plant canopy |
---|
1125 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
1126 | CALL plant_canopy_model( 4 ) |
---|
1127 | ENDIF |
---|
1128 | |
---|
1129 | ! |
---|
1130 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1131 | IF ( large_scale_subsidence ) THEN |
---|
1132 | CALL subsidence( tend, pt, pt_init ) |
---|
1133 | ENDIF |
---|
1134 | |
---|
1135 | CALL user_actions( 'pt-tendency' ) |
---|
1136 | |
---|
1137 | ! |
---|
1138 | !-- Prognostic equation for potential temperature |
---|
1139 | DO i = nxl, nxr |
---|
1140 | DO j = nys, nyn |
---|
1141 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1142 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1143 | tsc(3) * tpt_m(k,j,i) ) & |
---|
1144 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
1145 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
1146 | ENDDO |
---|
1147 | ENDDO |
---|
1148 | ENDDO |
---|
1149 | |
---|
1150 | ! |
---|
1151 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1152 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1153 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1154 | DO i = nxl, nxr |
---|
1155 | DO j = nys, nyn |
---|
1156 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1157 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1158 | ENDDO |
---|
1159 | ENDDO |
---|
1160 | ENDDO |
---|
1161 | ELSEIF ( intermediate_timestep_count < & |
---|
1162 | intermediate_timestep_count_max ) THEN |
---|
1163 | DO i = nxl, nxr |
---|
1164 | DO j = nys, nyn |
---|
1165 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1166 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1167 | 5.3125 * tpt_m(k,j,i) |
---|
1168 | ENDDO |
---|
1169 | ENDDO |
---|
1170 | ENDDO |
---|
1171 | ENDIF |
---|
1172 | ENDIF |
---|
1173 | |
---|
1174 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
1175 | |
---|
1176 | ENDIF |
---|
1177 | |
---|
1178 | ! |
---|
1179 | !-- If required, compute prognostic equation for salinity |
---|
1180 | IF ( ocean ) THEN |
---|
1181 | |
---|
1182 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
1183 | |
---|
1184 | ! |
---|
1185 | !-- sa-tendency terms with communication |
---|
1186 | sbt = tsc(2) |
---|
1187 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1188 | |
---|
1189 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1190 | ! |
---|
1191 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1192 | sbt = 1.0 |
---|
1193 | ENDIF |
---|
1194 | tend = 0.0 |
---|
1195 | CALL advec_s_bc( sa, 'sa' ) |
---|
1196 | |
---|
1197 | ENDIF |
---|
1198 | |
---|
1199 | ! |
---|
1200 | !-- sa-tendency terms with no communication |
---|
1201 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1202 | tend = 0.0 |
---|
1203 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1204 | IF ( ws_scheme_sca ) THEN |
---|
1205 | CALL advec_s_ws( sa, 'sa' ) |
---|
1206 | ELSE |
---|
1207 | CALL advec_s_pw( sa ) |
---|
1208 | ENDIF |
---|
1209 | ELSE |
---|
1210 | CALL advec_s_up( sa ) |
---|
1211 | ENDIF |
---|
1212 | ENDIF |
---|
1213 | |
---|
1214 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
1215 | |
---|
1216 | CALL user_actions( 'sa-tendency' ) |
---|
1217 | |
---|
1218 | ! |
---|
1219 | !-- Prognostic equation for salinity |
---|
1220 | DO i = nxl, nxr |
---|
1221 | DO j = nys, nyn |
---|
1222 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1223 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1224 | tsc(3) * tsa_m(k,j,i) ) & |
---|
1225 | - tsc(5) * rdf_sc(k) * & |
---|
1226 | ( sa(k,j,i) - sa_init(k) ) |
---|
1227 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
1228 | ENDDO |
---|
1229 | ENDDO |
---|
1230 | ENDDO |
---|
1231 | |
---|
1232 | ! |
---|
1233 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1234 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1235 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1236 | DO i = nxl, nxr |
---|
1237 | DO j = nys, nyn |
---|
1238 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1239 | tsa_m(k,j,i) = tend(k,j,i) |
---|
1240 | ENDDO |
---|
1241 | ENDDO |
---|
1242 | ENDDO |
---|
1243 | ELSEIF ( intermediate_timestep_count < & |
---|
1244 | intermediate_timestep_count_max ) THEN |
---|
1245 | DO i = nxl, nxr |
---|
1246 | DO j = nys, nyn |
---|
1247 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1248 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1249 | 5.3125 * tsa_m(k,j,i) |
---|
1250 | ENDDO |
---|
1251 | ENDDO |
---|
1252 | ENDDO |
---|
1253 | ENDIF |
---|
1254 | ENDIF |
---|
1255 | |
---|
1256 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
1257 | |
---|
1258 | ! |
---|
1259 | !-- Calculate density by the equation of state for seawater |
---|
1260 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
1261 | CALL eqn_state_seawater |
---|
1262 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
1263 | |
---|
1264 | ENDIF |
---|
1265 | |
---|
1266 | ! |
---|
1267 | !-- If required, compute prognostic equation for total water content / scalar |
---|
1268 | IF ( humidity .OR. passive_scalar ) THEN |
---|
1269 | |
---|
1270 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
1271 | |
---|
1272 | ! |
---|
1273 | !-- Scalar/q-tendency terms with communication |
---|
1274 | sbt = tsc(2) |
---|
1275 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1276 | |
---|
1277 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1278 | ! |
---|
1279 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1280 | sbt = 1.0 |
---|
1281 | ENDIF |
---|
1282 | tend = 0.0 |
---|
1283 | CALL advec_s_bc( q, 'q' ) |
---|
1284 | |
---|
1285 | ENDIF |
---|
1286 | |
---|
1287 | ! |
---|
1288 | !-- Scalar/q-tendency terms with no communication |
---|
1289 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1290 | tend = 0.0 |
---|
1291 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1292 | IF ( ws_scheme_sca ) THEN |
---|
1293 | CALL advec_s_ws( q, 'q' ) |
---|
1294 | ELSE |
---|
1295 | CALL advec_s_pw( q ) |
---|
1296 | ENDIF |
---|
1297 | ELSE |
---|
1298 | CALL advec_s_up( q ) |
---|
1299 | ENDIF |
---|
1300 | ENDIF |
---|
1301 | |
---|
1302 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
1303 | |
---|
1304 | ! |
---|
1305 | !-- If required compute decrease of total water content due to |
---|
1306 | !-- precipitation |
---|
1307 | IF ( precipitation ) THEN |
---|
1308 | CALL calc_precipitation |
---|
1309 | ENDIF |
---|
1310 | |
---|
1311 | ! |
---|
1312 | !-- Sink or source of scalar concentration due to canopy elements |
---|
1313 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
1314 | |
---|
1315 | ! |
---|
1316 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1317 | IF ( large_scale_subsidence ) THEN |
---|
1318 | CALL subsidence( tend, q, q_init ) |
---|
1319 | ENDIF |
---|
1320 | |
---|
1321 | CALL user_actions( 'q-tendency' ) |
---|
1322 | |
---|
1323 | ! |
---|
1324 | !-- Prognostic equation for total water content / scalar |
---|
1325 | DO i = nxl, nxr |
---|
1326 | DO j = nys, nyn |
---|
1327 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1328 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1329 | tsc(3) * tq_m(k,j,i) ) & |
---|
1330 | - tsc(5) * rdf_sc(k) * & |
---|
1331 | ( q(k,j,i) - q_init(k) ) |
---|
1332 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
1333 | ENDDO |
---|
1334 | ENDDO |
---|
1335 | ENDDO |
---|
1336 | |
---|
1337 | ! |
---|
1338 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1339 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1340 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1341 | DO i = nxl, nxr |
---|
1342 | DO j = nys, nyn |
---|
1343 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1344 | tq_m(k,j,i) = tend(k,j,i) |
---|
1345 | ENDDO |
---|
1346 | ENDDO |
---|
1347 | ENDDO |
---|
1348 | ELSEIF ( intermediate_timestep_count < & |
---|
1349 | intermediate_timestep_count_max ) THEN |
---|
1350 | DO i = nxl, nxr |
---|
1351 | DO j = nys, nyn |
---|
1352 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1353 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
1354 | ENDDO |
---|
1355 | ENDDO |
---|
1356 | ENDDO |
---|
1357 | ENDIF |
---|
1358 | ENDIF |
---|
1359 | |
---|
1360 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
1361 | |
---|
1362 | ENDIF |
---|
1363 | |
---|
1364 | ! |
---|
1365 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1366 | !-- energy (TKE) |
---|
1367 | IF ( .NOT. constant_diffusion ) THEN |
---|
1368 | |
---|
1369 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
1370 | |
---|
1371 | ! |
---|
1372 | !-- TKE-tendency terms with communication |
---|
1373 | CALL production_e_init |
---|
1374 | |
---|
1375 | sbt = tsc(2) |
---|
1376 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
1377 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1378 | |
---|
1379 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1380 | ! |
---|
1381 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1382 | sbt = 1.0 |
---|
1383 | ENDIF |
---|
1384 | tend = 0.0 |
---|
1385 | CALL advec_s_bc( e, 'e' ) |
---|
1386 | |
---|
1387 | ENDIF |
---|
1388 | ENDIF |
---|
1389 | |
---|
1390 | ! |
---|
1391 | !-- TKE-tendency terms with no communication |
---|
1392 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
1393 | IF ( use_upstream_for_tke ) THEN |
---|
1394 | tend = 0.0 |
---|
1395 | CALL advec_s_up( e ) |
---|
1396 | ELSE |
---|
1397 | tend = 0.0 |
---|
1398 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1399 | IF ( ws_scheme_sca ) THEN |
---|
1400 | CALL advec_s_ws( e, 'e' ) |
---|
1401 | ELSE |
---|
1402 | CALL advec_s_pw( e ) |
---|
1403 | ENDIF |
---|
1404 | ELSE |
---|
1405 | CALL advec_s_up( e ) |
---|
1406 | ENDIF |
---|
1407 | ENDIF |
---|
1408 | ENDIF |
---|
1409 | |
---|
1410 | IF ( .NOT. humidity ) THEN |
---|
1411 | IF ( ocean ) THEN |
---|
1412 | CALL diffusion_e( prho, prho_reference ) |
---|
1413 | ELSE |
---|
1414 | CALL diffusion_e( pt, pt_reference ) |
---|
1415 | ENDIF |
---|
1416 | ELSE |
---|
1417 | CALL diffusion_e( vpt, pt_reference ) |
---|
1418 | ENDIF |
---|
1419 | |
---|
1420 | CALL production_e |
---|
1421 | |
---|
1422 | ! |
---|
1423 | !-- Additional sink term for flows through plant canopies |
---|
1424 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
1425 | CALL user_actions( 'e-tendency' ) |
---|
1426 | |
---|
1427 | ! |
---|
1428 | !-- Prognostic equation for TKE. |
---|
1429 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
1430 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
1431 | !-- value is reduced by 90%. |
---|
1432 | DO i = nxl, nxr |
---|
1433 | DO j = nys, nyn |
---|
1434 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1435 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1436 | tsc(3) * te_m(k,j,i) ) |
---|
1437 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
1438 | ENDDO |
---|
1439 | ENDDO |
---|
1440 | ENDDO |
---|
1441 | |
---|
1442 | ! |
---|
1443 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1444 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1445 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1446 | DO i = nxl, nxr |
---|
1447 | DO j = nys, nyn |
---|
1448 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1449 | te_m(k,j,i) = tend(k,j,i) |
---|
1450 | ENDDO |
---|
1451 | ENDDO |
---|
1452 | ENDDO |
---|
1453 | ELSEIF ( intermediate_timestep_count < & |
---|
1454 | intermediate_timestep_count_max ) THEN |
---|
1455 | DO i = nxl, nxr |
---|
1456 | DO j = nys, nyn |
---|
1457 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1458 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
1459 | ENDDO |
---|
1460 | ENDDO |
---|
1461 | ENDDO |
---|
1462 | ENDIF |
---|
1463 | ENDIF |
---|
1464 | |
---|
1465 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
1466 | |
---|
1467 | ENDIF |
---|
1468 | |
---|
1469 | |
---|
1470 | END SUBROUTINE prognostic_equations_vector |
---|
1471 | |
---|
1472 | |
---|
1473 | SUBROUTINE prognostic_equations_acc |
---|
1474 | |
---|
1475 | !------------------------------------------------------------------------------! |
---|
1476 | ! Version for accelerator boards |
---|
1477 | !------------------------------------------------------------------------------! |
---|
1478 | |
---|
1479 | IMPLICIT NONE |
---|
1480 | |
---|
1481 | INTEGER :: i, j, k, runge_step |
---|
1482 | REAL :: sbt |
---|
1483 | |
---|
1484 | ! |
---|
1485 | !-- Set switch for intermediate Runge-Kutta step |
---|
1486 | runge_step = 0 |
---|
1487 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1488 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1489 | runge_step = 1 |
---|
1490 | ELSEIF ( intermediate_timestep_count < & |
---|
1491 | intermediate_timestep_count_max ) THEN |
---|
1492 | runge_step = 2 |
---|
1493 | ENDIF |
---|
1494 | ENDIF |
---|
1495 | |
---|
1496 | ! |
---|
1497 | !-- Calculate those variables needed in the tendency terms which need |
---|
1498 | !-- global communication |
---|
1499 | IF ( .NOT. neutral ) CALL calc_mean_profile( pt, 4 ) |
---|
1500 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
1501 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
1502 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
1503 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
1504 | |
---|
1505 | ! |
---|
1506 | !-- u-velocity component |
---|
1507 | !++ Statistics still not ported to accelerators |
---|
1508 | !$acc update device( hom ) |
---|
1509 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
1510 | |
---|
1511 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1512 | IF ( ws_scheme_mom ) THEN |
---|
1513 | CALL advec_u_ws_acc |
---|
1514 | ELSE |
---|
1515 | tend = 0.0 ! to be removed later?? |
---|
1516 | CALL advec_u_pw |
---|
1517 | ENDIF |
---|
1518 | ELSE |
---|
1519 | CALL advec_u_up |
---|
1520 | ENDIF |
---|
1521 | CALL diffusion_u_acc |
---|
1522 | CALL coriolis_acc( 1 ) |
---|
1523 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
1524 | CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
1525 | ENDIF |
---|
1526 | |
---|
1527 | ! |
---|
1528 | !-- Drag by plant canopy |
---|
1529 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
1530 | |
---|
1531 | ! |
---|
1532 | !-- External pressure gradient |
---|
1533 | IF ( dp_external ) THEN |
---|
1534 | DO i = nxlu, nxr |
---|
1535 | DO j = nys, nyn |
---|
1536 | DO k = dp_level_ind_b+1, nzt |
---|
1537 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
1538 | ENDDO |
---|
1539 | ENDDO |
---|
1540 | ENDDO |
---|
1541 | ENDIF |
---|
1542 | |
---|
1543 | CALL user_actions( 'u-tendency' ) |
---|
1544 | |
---|
1545 | ! |
---|
1546 | !-- Prognostic equation for u-velocity component |
---|
1547 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, ug, u_p ) |
---|
1548 | !$acc loop |
---|
1549 | DO i = nxlu, nxr |
---|
1550 | DO j = nys, nyn |
---|
1551 | !$acc loop vector( 32 ) |
---|
1552 | DO k = 1, nzt |
---|
1553 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
1554 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1555 | tsc(3) * tu_m(k,j,i) ) & |
---|
1556 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
1557 | ! |
---|
1558 | !-- Tendencies for the next Runge-Kutta step |
---|
1559 | IF ( runge_step == 1 ) THEN |
---|
1560 | tu_m(k,j,i) = tend(k,j,i) |
---|
1561 | ELSEIF ( runge_step == 2 ) THEN |
---|
1562 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
1563 | ENDIF |
---|
1564 | ENDIF |
---|
1565 | ENDDO |
---|
1566 | ENDDO |
---|
1567 | ENDDO |
---|
1568 | !$acc end kernels |
---|
1569 | |
---|
1570 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
1571 | !$acc update host( u_p ) |
---|
1572 | |
---|
1573 | ! |
---|
1574 | !-- v-velocity component |
---|
1575 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
1576 | |
---|
1577 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1578 | IF ( ws_scheme_mom ) THEN |
---|
1579 | CALL advec_v_ws_acc |
---|
1580 | ELSE |
---|
1581 | tend = 0.0 ! to be removed later?? |
---|
1582 | CALL advec_v_pw |
---|
1583 | END IF |
---|
1584 | ELSE |
---|
1585 | CALL advec_v_up |
---|
1586 | ENDIF |
---|
1587 | CALL diffusion_v_acc |
---|
1588 | CALL coriolis_acc( 2 ) |
---|
1589 | |
---|
1590 | ! |
---|
1591 | !-- Drag by plant canopy |
---|
1592 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
1593 | |
---|
1594 | ! |
---|
1595 | !-- External pressure gradient |
---|
1596 | IF ( dp_external ) THEN |
---|
1597 | DO i = nxl, nxr |
---|
1598 | DO j = nysv, nyn |
---|
1599 | DO k = dp_level_ind_b+1, nzt |
---|
1600 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
1601 | ENDDO |
---|
1602 | ENDDO |
---|
1603 | ENDDO |
---|
1604 | ENDIF |
---|
1605 | |
---|
1606 | CALL user_actions( 'v-tendency' ) |
---|
1607 | |
---|
1608 | ! |
---|
1609 | !-- Prognostic equation for v-velocity component |
---|
1610 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, vg, v_p ) |
---|
1611 | !$acc loop |
---|
1612 | DO i = nxl, nxr |
---|
1613 | DO j = nysv, nyn |
---|
1614 | !$acc loop vector( 32 ) |
---|
1615 | DO k = 1, nzt |
---|
1616 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
1617 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1618 | tsc(3) * tv_m(k,j,i) ) & |
---|
1619 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
1620 | ! |
---|
1621 | !-- Tendencies for the next Runge-Kutta step |
---|
1622 | IF ( runge_step == 1 ) THEN |
---|
1623 | tv_m(k,j,i) = tend(k,j,i) |
---|
1624 | ELSEIF ( runge_step == 2 ) THEN |
---|
1625 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
1626 | ENDIF |
---|
1627 | ENDIF |
---|
1628 | ENDDO |
---|
1629 | ENDDO |
---|
1630 | ENDDO |
---|
1631 | !$acc end kernels |
---|
1632 | |
---|
1633 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
1634 | !$acc update host( v_p ) |
---|
1635 | |
---|
1636 | ! |
---|
1637 | !-- w-velocity component |
---|
1638 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
1639 | |
---|
1640 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1641 | IF ( ws_scheme_mom ) THEN |
---|
1642 | CALL advec_w_ws_acc |
---|
1643 | ELSE |
---|
1644 | tend = 0.0 ! to be removed later?? |
---|
1645 | CALL advec_w_pw |
---|
1646 | ENDIF |
---|
1647 | ELSE |
---|
1648 | CALL advec_w_up |
---|
1649 | ENDIF |
---|
1650 | CALL diffusion_w_acc |
---|
1651 | CALL coriolis_acc( 3 ) |
---|
1652 | |
---|
1653 | IF ( .NOT. neutral ) THEN |
---|
1654 | IF ( ocean ) THEN |
---|
1655 | CALL buoyancy( rho, rho_reference, 3, 64 ) |
---|
1656 | ELSE |
---|
1657 | IF ( .NOT. humidity ) THEN |
---|
1658 | CALL buoyancy_acc( pt, pt_reference, 3, 4 ) |
---|
1659 | ELSE |
---|
1660 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
1661 | ENDIF |
---|
1662 | ENDIF |
---|
1663 | ENDIF |
---|
1664 | |
---|
1665 | ! |
---|
1666 | !-- Drag by plant canopy |
---|
1667 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
1668 | |
---|
1669 | CALL user_actions( 'w-tendency' ) |
---|
1670 | |
---|
1671 | ! |
---|
1672 | !-- Prognostic equation for w-velocity component |
---|
1673 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
1674 | !$acc loop |
---|
1675 | DO i = nxl, nxr |
---|
1676 | DO j = nys, nyn |
---|
1677 | !$acc loop vector( 32 ) |
---|
1678 | DO k = 1, nzt-1 |
---|
1679 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
1680 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1681 | tsc(3) * tw_m(k,j,i) ) & |
---|
1682 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
1683 | ! |
---|
1684 | !-- Tendencies for the next Runge-Kutta step |
---|
1685 | IF ( runge_step == 1 ) THEN |
---|
1686 | tw_m(k,j,i) = tend(k,j,i) |
---|
1687 | ELSEIF ( runge_step == 2 ) THEN |
---|
1688 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1689 | ENDIF |
---|
1690 | ENDIF |
---|
1691 | ENDDO |
---|
1692 | ENDDO |
---|
1693 | ENDDO |
---|
1694 | !$acc end kernels |
---|
1695 | |
---|
1696 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
1697 | !$acc update host( w_p ) |
---|
1698 | |
---|
1699 | |
---|
1700 | ! |
---|
1701 | !-- If required, compute prognostic equation for potential temperature |
---|
1702 | IF ( .NOT. neutral ) THEN |
---|
1703 | |
---|
1704 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
1705 | |
---|
1706 | ! |
---|
1707 | !-- pt-tendency terms with communication |
---|
1708 | sbt = tsc(2) |
---|
1709 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1710 | |
---|
1711 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1712 | ! |
---|
1713 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1714 | sbt = 1.0 |
---|
1715 | ENDIF |
---|
1716 | tend = 0.0 |
---|
1717 | CALL advec_s_bc( pt, 'pt' ) |
---|
1718 | |
---|
1719 | ENDIF |
---|
1720 | |
---|
1721 | ! |
---|
1722 | !-- pt-tendency terms with no communication |
---|
1723 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1724 | tend = 0.0 |
---|
1725 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1726 | IF ( ws_scheme_sca ) THEN |
---|
1727 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
1728 | ELSE |
---|
1729 | tend = 0.0 ! to be removed later?? |
---|
1730 | CALL advec_s_pw( pt ) |
---|
1731 | ENDIF |
---|
1732 | ELSE |
---|
1733 | CALL advec_s_up( pt ) |
---|
1734 | ENDIF |
---|
1735 | ENDIF |
---|
1736 | |
---|
1737 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
1738 | |
---|
1739 | ! |
---|
1740 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
1741 | IF ( radiation ) THEN |
---|
1742 | CALL calc_radiation |
---|
1743 | ENDIF |
---|
1744 | |
---|
1745 | ! |
---|
1746 | !-- If required compute impact of latent heat due to precipitation |
---|
1747 | IF ( precipitation ) THEN |
---|
1748 | CALL impact_of_latent_heat |
---|
1749 | ENDIF |
---|
1750 | |
---|
1751 | ! |
---|
1752 | !-- Consideration of heat sources within the plant canopy |
---|
1753 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
1754 | CALL plant_canopy_model( 4 ) |
---|
1755 | ENDIF |
---|
1756 | |
---|
1757 | ! |
---|
1758 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1759 | IF ( large_scale_subsidence ) THEN |
---|
1760 | CALL subsidence( tend, pt, pt_init ) |
---|
1761 | ENDIF |
---|
1762 | |
---|
1763 | CALL user_actions( 'pt-tendency' ) |
---|
1764 | |
---|
1765 | ! |
---|
1766 | !-- Prognostic equation for potential temperature |
---|
1767 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
1768 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
1769 | !$acc loop |
---|
1770 | DO i = nxl, nxr |
---|
1771 | DO j = nys, nyn |
---|
1772 | !$acc loop vector( 32 ) |
---|
1773 | DO k = 1, nzt |
---|
1774 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
1775 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1776 | tsc(3) * tpt_m(k,j,i) ) & |
---|
1777 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
1778 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
1779 | ! |
---|
1780 | !-- Tendencies for the next Runge-Kutta step |
---|
1781 | IF ( runge_step == 1 ) THEN |
---|
1782 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1783 | ELSEIF ( runge_step == 2 ) THEN |
---|
1784 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
1785 | ENDIF |
---|
1786 | ENDIF |
---|
1787 | ENDDO |
---|
1788 | ENDDO |
---|
1789 | ENDDO |
---|
1790 | !$acc end kernels |
---|
1791 | |
---|
1792 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
1793 | !$acc update host( pt_p ) |
---|
1794 | |
---|
1795 | ENDIF |
---|
1796 | |
---|
1797 | ! |
---|
1798 | !-- If required, compute prognostic equation for salinity |
---|
1799 | IF ( ocean ) THEN |
---|
1800 | |
---|
1801 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
1802 | |
---|
1803 | ! |
---|
1804 | !-- sa-tendency terms with communication |
---|
1805 | sbt = tsc(2) |
---|
1806 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1807 | |
---|
1808 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1809 | ! |
---|
1810 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1811 | sbt = 1.0 |
---|
1812 | ENDIF |
---|
1813 | tend = 0.0 |
---|
1814 | CALL advec_s_bc( sa, 'sa' ) |
---|
1815 | |
---|
1816 | ENDIF |
---|
1817 | |
---|
1818 | ! |
---|
1819 | !-- sa-tendency terms with no communication |
---|
1820 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1821 | tend = 0.0 |
---|
1822 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1823 | IF ( ws_scheme_sca ) THEN |
---|
1824 | CALL advec_s_ws( sa, 'sa' ) |
---|
1825 | ELSE |
---|
1826 | CALL advec_s_pw( sa ) |
---|
1827 | ENDIF |
---|
1828 | ELSE |
---|
1829 | CALL advec_s_up( sa ) |
---|
1830 | ENDIF |
---|
1831 | ENDIF |
---|
1832 | |
---|
1833 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
1834 | |
---|
1835 | CALL user_actions( 'sa-tendency' ) |
---|
1836 | |
---|
1837 | ! |
---|
1838 | !-- Prognostic equation for salinity |
---|
1839 | DO i = nxl, nxr |
---|
1840 | DO j = nys, nyn |
---|
1841 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1842 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1843 | tsc(3) * tsa_m(k,j,i) ) & |
---|
1844 | - tsc(5) * rdf_sc(k) * & |
---|
1845 | ( sa(k,j,i) - sa_init(k) ) |
---|
1846 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
1847 | ! |
---|
1848 | !-- Tendencies for the next Runge-Kutta step |
---|
1849 | IF ( runge_step == 1 ) THEN |
---|
1850 | tsa_m(k,j,i) = tend(k,j,i) |
---|
1851 | ELSEIF ( runge_step == 2 ) THEN |
---|
1852 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tsa_m(k,j,i) |
---|
1853 | ENDIF |
---|
1854 | ENDDO |
---|
1855 | ENDDO |
---|
1856 | ENDDO |
---|
1857 | |
---|
1858 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
1859 | |
---|
1860 | ! |
---|
1861 | !-- Calculate density by the equation of state for seawater |
---|
1862 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
1863 | CALL eqn_state_seawater |
---|
1864 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
1865 | |
---|
1866 | ENDIF |
---|
1867 | |
---|
1868 | ! |
---|
1869 | !-- If required, compute prognostic equation for total water content / scalar |
---|
1870 | IF ( humidity .OR. passive_scalar ) THEN |
---|
1871 | |
---|
1872 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
1873 | |
---|
1874 | ! |
---|
1875 | !-- Scalar/q-tendency terms with communication |
---|
1876 | sbt = tsc(2) |
---|
1877 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1878 | |
---|
1879 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1880 | ! |
---|
1881 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1882 | sbt = 1.0 |
---|
1883 | ENDIF |
---|
1884 | tend = 0.0 |
---|
1885 | CALL advec_s_bc( q, 'q' ) |
---|
1886 | |
---|
1887 | ENDIF |
---|
1888 | |
---|
1889 | ! |
---|
1890 | !-- Scalar/q-tendency terms with no communication |
---|
1891 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1892 | tend = 0.0 |
---|
1893 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1894 | IF ( ws_scheme_sca ) THEN |
---|
1895 | CALL advec_s_ws( q, 'q' ) |
---|
1896 | ELSE |
---|
1897 | CALL advec_s_pw( q ) |
---|
1898 | ENDIF |
---|
1899 | ELSE |
---|
1900 | CALL advec_s_up( q ) |
---|
1901 | ENDIF |
---|
1902 | ENDIF |
---|
1903 | |
---|
1904 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
1905 | |
---|
1906 | ! |
---|
1907 | !-- If required compute decrease of total water content due to |
---|
1908 | !-- precipitation |
---|
1909 | IF ( precipitation ) THEN |
---|
1910 | CALL calc_precipitation |
---|
1911 | ENDIF |
---|
1912 | |
---|
1913 | ! |
---|
1914 | !-- Sink or source of scalar concentration due to canopy elements |
---|
1915 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
1916 | |
---|
1917 | ! |
---|
1918 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1919 | IF ( large_scale_subsidence ) THEN |
---|
1920 | CALL subsidence( tend, q, q_init ) |
---|
1921 | ENDIF |
---|
1922 | |
---|
1923 | CALL user_actions( 'q-tendency' ) |
---|
1924 | |
---|
1925 | ! |
---|
1926 | !-- Prognostic equation for total water content / scalar |
---|
1927 | DO i = nxl, nxr |
---|
1928 | DO j = nys, nyn |
---|
1929 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1930 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1931 | tsc(3) * tq_m(k,j,i) ) & |
---|
1932 | - tsc(5) * rdf_sc(k) * & |
---|
1933 | ( q(k,j,i) - q_init(k) ) |
---|
1934 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
1935 | ! |
---|
1936 | !-- Tendencies for the next Runge-Kutta step |
---|
1937 | IF ( runge_step == 1 ) THEN |
---|
1938 | tq_m(k,j,i) = tend(k,j,i) |
---|
1939 | ELSEIF ( runge_step == 2 ) THEN |
---|
1940 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
1941 | ENDIF |
---|
1942 | ENDDO |
---|
1943 | ENDDO |
---|
1944 | ENDDO |
---|
1945 | |
---|
1946 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
1947 | |
---|
1948 | ENDIF |
---|
1949 | |
---|
1950 | ! |
---|
1951 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1952 | !-- energy (TKE) |
---|
1953 | IF ( .NOT. constant_diffusion ) THEN |
---|
1954 | |
---|
1955 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
1956 | |
---|
1957 | ! |
---|
1958 | !-- TKE-tendency terms with communication |
---|
1959 | CALL production_e_init |
---|
1960 | |
---|
1961 | sbt = tsc(2) |
---|
1962 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
1963 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1964 | |
---|
1965 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1966 | ! |
---|
1967 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1968 | sbt = 1.0 |
---|
1969 | ENDIF |
---|
1970 | tend = 0.0 |
---|
1971 | CALL advec_s_bc( e, 'e' ) |
---|
1972 | |
---|
1973 | ENDIF |
---|
1974 | ENDIF |
---|
1975 | |
---|
1976 | ! |
---|
1977 | !-- TKE-tendency terms with no communication |
---|
1978 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
1979 | IF ( use_upstream_for_tke ) THEN |
---|
1980 | tend = 0.0 |
---|
1981 | CALL advec_s_up( e ) |
---|
1982 | ELSE |
---|
1983 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1984 | IF ( ws_scheme_sca ) THEN |
---|
1985 | CALL advec_s_ws_acc( e, 'e' ) |
---|
1986 | ELSE |
---|
1987 | tend = 0.0 ! to be removed later?? |
---|
1988 | CALL advec_s_pw( e ) |
---|
1989 | ENDIF |
---|
1990 | ELSE |
---|
1991 | tend = 0.0 ! to be removed later?? |
---|
1992 | CALL advec_s_up( e ) |
---|
1993 | ENDIF |
---|
1994 | ENDIF |
---|
1995 | ENDIF |
---|
1996 | |
---|
1997 | IF ( .NOT. humidity ) THEN |
---|
1998 | IF ( ocean ) THEN |
---|
1999 | CALL diffusion_e( prho, prho_reference ) |
---|
2000 | ELSE |
---|
2001 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
2002 | ENDIF |
---|
2003 | ELSE |
---|
2004 | CALL diffusion_e( vpt, pt_reference ) |
---|
2005 | ENDIF |
---|
2006 | |
---|
2007 | CALL production_e_acc |
---|
2008 | |
---|
2009 | ! |
---|
2010 | !-- Additional sink term for flows through plant canopies |
---|
2011 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
2012 | CALL user_actions( 'e-tendency' ) |
---|
2013 | |
---|
2014 | ! |
---|
2015 | !-- Prognostic equation for TKE. |
---|
2016 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
2017 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
2018 | !-- value is reduced by 90%. |
---|
2019 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
2020 | !$acc loop |
---|
2021 | DO i = nxl, nxr |
---|
2022 | DO j = nys, nyn |
---|
2023 | !$acc loop vector( 32 ) |
---|
2024 | DO k = 1, nzt |
---|
2025 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
2026 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
2027 | tsc(3) * te_m(k,j,i) ) |
---|
2028 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
2029 | ! |
---|
2030 | !-- Tendencies for the next Runge-Kutta step |
---|
2031 | IF ( runge_step == 1 ) THEN |
---|
2032 | te_m(k,j,i) = tend(k,j,i) |
---|
2033 | ELSEIF ( runge_step == 2 ) THEN |
---|
2034 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
2035 | ENDIF |
---|
2036 | ENDIF |
---|
2037 | ENDDO |
---|
2038 | ENDDO |
---|
2039 | ENDDO |
---|
2040 | !$acc end kernels |
---|
2041 | |
---|
2042 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
2043 | !$acc update host( e_p ) |
---|
2044 | |
---|
2045 | ENDIF |
---|
2046 | |
---|
2047 | |
---|
2048 | END SUBROUTINE prognostic_equations_acc |
---|
2049 | |
---|
2050 | |
---|
2051 | END MODULE prognostic_equations_mod |
---|