1 | MODULE prognostic_equations_mod |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Current revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: prognostic_equations.f90 786 2011-11-28 10:06:08Z raasch $ |
---|
11 | ! |
---|
12 | ! 785 2011-11-28 09:47:19Z raasch |
---|
13 | ! new factor rdf_sc allows separate Rayleigh damping of scalars |
---|
14 | ! |
---|
15 | ! 736 2011-08-17 14:13:26Z suehring |
---|
16 | ! Bugfix: determination of first thread index i for WS-scheme |
---|
17 | ! |
---|
18 | ! 709 2011-03-30 09:31:40Z raasch |
---|
19 | ! formatting adjustments |
---|
20 | ! |
---|
21 | ! 673 2011-01-18 16:19:48Z suehring |
---|
22 | ! Consideration of the pressure gradient (steered by tsc(4)) during the time |
---|
23 | ! integration removed. |
---|
24 | ! |
---|
25 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
26 | ! Calls of the advection routines with WS5 added. |
---|
27 | ! Calls of ws_statistics added to set the statistical arrays to zero after each |
---|
28 | ! time step. |
---|
29 | ! |
---|
30 | ! 531 2010-04-21 06:47:21Z heinze |
---|
31 | ! add call of subsidence in the equation for humidity / passive scalar |
---|
32 | ! |
---|
33 | ! 411 2009-12-11 14:15:58Z heinze |
---|
34 | ! add call of subsidence in the equation for potential temperature |
---|
35 | ! |
---|
36 | ! 388 2009-09-23 09:40:33Z raasch |
---|
37 | ! prho is used instead of rho in diffusion_e, |
---|
38 | ! external pressure gradient |
---|
39 | ! |
---|
40 | ! 153 2008-03-19 09:41:30Z steinfeld |
---|
41 | ! add call of plant_canopy_model in the prognostic equation for |
---|
42 | ! the potential temperature and for the passive scalar |
---|
43 | ! |
---|
44 | ! 138 2007-11-28 10:03:58Z letzel |
---|
45 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
46 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
47 | ! |
---|
48 | ! 106 2007-08-16 14:30:26Z raasch |
---|
49 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
50 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
51 | ! for non-cyclic boundary conditions) |
---|
52 | ! |
---|
53 | ! 97 2007-06-21 08:23:15Z raasch |
---|
54 | ! prognostic equation for salinity, density is calculated from equation of |
---|
55 | ! state for seawater and is used for calculation of buoyancy, |
---|
56 | ! +eqn_state_seawater_mod |
---|
57 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
58 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
59 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
60 | ! calc_mean_profile |
---|
61 | ! |
---|
62 | ! 75 2007-03-22 09:54:05Z raasch |
---|
63 | ! checking for negative q and limiting for positive values, |
---|
64 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
65 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
66 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
67 | ! _vector-version |
---|
68 | ! |
---|
69 | ! 19 2007-02-23 04:53:48Z raasch |
---|
70 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
71 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
72 | ! |
---|
73 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
74 | ! |
---|
75 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
76 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
77 | ! regardless of the timestep scheme used for the other quantities, |
---|
78 | ! new argument diss in call of diffusion_e |
---|
79 | ! |
---|
80 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
81 | ! Initial revision |
---|
82 | ! |
---|
83 | ! |
---|
84 | ! Description: |
---|
85 | ! ------------ |
---|
86 | ! Solving the prognostic equations. |
---|
87 | !------------------------------------------------------------------------------! |
---|
88 | |
---|
89 | USE arrays_3d |
---|
90 | USE control_parameters |
---|
91 | USE cpulog |
---|
92 | USE eqn_state_seawater_mod |
---|
93 | USE grid_variables |
---|
94 | USE indices |
---|
95 | USE interfaces |
---|
96 | USE pegrid |
---|
97 | USE pointer_interfaces |
---|
98 | USE statistics |
---|
99 | USE advec_ws |
---|
100 | USE advec_s_pw_mod |
---|
101 | USE advec_s_up_mod |
---|
102 | USE advec_u_pw_mod |
---|
103 | USE advec_u_up_mod |
---|
104 | USE advec_v_pw_mod |
---|
105 | USE advec_v_up_mod |
---|
106 | USE advec_w_pw_mod |
---|
107 | USE advec_w_up_mod |
---|
108 | USE buoyancy_mod |
---|
109 | USE calc_precipitation_mod |
---|
110 | USE calc_radiation_mod |
---|
111 | USE coriolis_mod |
---|
112 | USE diffusion_e_mod |
---|
113 | USE diffusion_s_mod |
---|
114 | USE diffusion_u_mod |
---|
115 | USE diffusion_v_mod |
---|
116 | USE diffusion_w_mod |
---|
117 | USE impact_of_latent_heat_mod |
---|
118 | USE plant_canopy_model_mod |
---|
119 | USE production_e_mod |
---|
120 | USE subsidence_mod |
---|
121 | USE user_actions_mod |
---|
122 | |
---|
123 | |
---|
124 | PRIVATE |
---|
125 | PUBLIC prognostic_equations_noopt, prognostic_equations_cache, & |
---|
126 | prognostic_equations_vector |
---|
127 | |
---|
128 | INTERFACE prognostic_equations_noopt |
---|
129 | MODULE PROCEDURE prognostic_equations_noopt |
---|
130 | END INTERFACE prognostic_equations_noopt |
---|
131 | |
---|
132 | INTERFACE prognostic_equations_cache |
---|
133 | MODULE PROCEDURE prognostic_equations_cache |
---|
134 | END INTERFACE prognostic_equations_cache |
---|
135 | |
---|
136 | INTERFACE prognostic_equations_vector |
---|
137 | MODULE PROCEDURE prognostic_equations_vector |
---|
138 | END INTERFACE prognostic_equations_vector |
---|
139 | |
---|
140 | |
---|
141 | CONTAINS |
---|
142 | |
---|
143 | |
---|
144 | SUBROUTINE prognostic_equations_noopt |
---|
145 | |
---|
146 | !------------------------------------------------------------------------------! |
---|
147 | ! Version with single loop optimization |
---|
148 | ! |
---|
149 | ! (Optimized over each single prognostic equation.) |
---|
150 | !------------------------------------------------------------------------------! |
---|
151 | |
---|
152 | IMPLICIT NONE |
---|
153 | |
---|
154 | CHARACTER (LEN=9) :: time_to_string |
---|
155 | INTEGER :: i, i_omp_start, j, k, tn = 0 |
---|
156 | REAL :: sat, sbt |
---|
157 | |
---|
158 | ! |
---|
159 | !-- Calculate those variables needed in the tendency terms which need |
---|
160 | !-- global communication |
---|
161 | CALL calc_mean_profile( pt, 4 ) |
---|
162 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
163 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
164 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
165 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
166 | |
---|
167 | ! |
---|
168 | !-- u-velocity component |
---|
169 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
170 | |
---|
171 | ! |
---|
172 | !-- u-tendency terms with communication |
---|
173 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
174 | tend = 0.0 |
---|
175 | CALL advec_u_ups |
---|
176 | ENDIF |
---|
177 | |
---|
178 | ! |
---|
179 | !-- u-tendency terms with no communication |
---|
180 | i_omp_start = nxlu |
---|
181 | DO i = nxlu, nxr |
---|
182 | DO j = nys, nyn |
---|
183 | ! |
---|
184 | !-- Tendency terms |
---|
185 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
186 | tend(:,j,i) = 0.0 |
---|
187 | IF ( ws_scheme_mom ) THEN |
---|
188 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
189 | ELSE |
---|
190 | CALL advec_u_pw( i, j ) |
---|
191 | ENDIF |
---|
192 | |
---|
193 | ELSE |
---|
194 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
195 | tend(:,j,i) = 0.0 |
---|
196 | CALL advec_u_up( i, j ) |
---|
197 | ENDIF |
---|
198 | ENDIF |
---|
199 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
200 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
201 | usws_m, uswst_m, v_m, w_m ) |
---|
202 | ELSE |
---|
203 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
204 | uswst, v, w ) |
---|
205 | ENDIF |
---|
206 | CALL coriolis( i, j, 1 ) |
---|
207 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, 4 ) |
---|
208 | |
---|
209 | ! |
---|
210 | !-- Drag by plant canopy |
---|
211 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
212 | |
---|
213 | ! |
---|
214 | !-- External pressure gradient |
---|
215 | IF ( dp_external ) THEN |
---|
216 | DO k = dp_level_ind_b+1, nzt |
---|
217 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
218 | ENDDO |
---|
219 | ENDIF |
---|
220 | |
---|
221 | CALL user_actions( i, j, 'u-tendency' ) |
---|
222 | |
---|
223 | ! |
---|
224 | !-- Prognostic equation for u-velocity component |
---|
225 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
226 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
227 | dt_3d * ( & |
---|
228 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
229 | ) - & |
---|
230 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
231 | ENDDO |
---|
232 | |
---|
233 | ! |
---|
234 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
235 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
236 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
237 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
238 | tu_m(k,j,i) = tend(k,j,i) |
---|
239 | ENDDO |
---|
240 | ELSEIF ( intermediate_timestep_count < & |
---|
241 | intermediate_timestep_count_max ) THEN |
---|
242 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
243 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
244 | ENDDO |
---|
245 | ENDIF |
---|
246 | ENDIF |
---|
247 | |
---|
248 | ENDDO |
---|
249 | ENDDO |
---|
250 | |
---|
251 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
252 | |
---|
253 | ! |
---|
254 | !-- v-velocity component |
---|
255 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
256 | |
---|
257 | ! |
---|
258 | !-- v-tendency terms with communication |
---|
259 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
260 | tend = 0.0 |
---|
261 | CALL advec_v_ups |
---|
262 | ENDIF |
---|
263 | |
---|
264 | ! |
---|
265 | !-- v-tendency terms with no communication |
---|
266 | i_omp_start = nxl |
---|
267 | DO i = nxl, nxr |
---|
268 | DO j = nysv, nyn |
---|
269 | ! |
---|
270 | !-- Tendency terms |
---|
271 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
272 | tend(:,j,i) = 0.0 |
---|
273 | IF ( ws_scheme_mom ) THEN |
---|
274 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
275 | ELSE |
---|
276 | CALL advec_v_pw( i, j ) |
---|
277 | ENDIF |
---|
278 | |
---|
279 | ELSE |
---|
280 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
281 | tend(:,j,i) = 0.0 |
---|
282 | CALL advec_v_up( i, j ) |
---|
283 | ENDIF |
---|
284 | ENDIF |
---|
285 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
286 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
287 | v_m, vsws_m, vswst_m, w_m ) |
---|
288 | ELSE |
---|
289 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
290 | vsws, vswst, w ) |
---|
291 | ENDIF |
---|
292 | CALL coriolis( i, j, 2 ) |
---|
293 | |
---|
294 | ! |
---|
295 | !-- Drag by plant canopy |
---|
296 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
297 | |
---|
298 | ! |
---|
299 | !-- External pressure gradient |
---|
300 | IF ( dp_external ) THEN |
---|
301 | DO k = dp_level_ind_b+1, nzt |
---|
302 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
303 | ENDDO |
---|
304 | ENDIF |
---|
305 | |
---|
306 | CALL user_actions( i, j, 'v-tendency' ) |
---|
307 | |
---|
308 | ! |
---|
309 | !-- Prognostic equation for v-velocity component |
---|
310 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
311 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
312 | dt_3d * ( & |
---|
313 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
314 | ) - & |
---|
315 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
316 | ENDDO |
---|
317 | |
---|
318 | ! |
---|
319 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
320 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
321 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
322 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
323 | tv_m(k,j,i) = tend(k,j,i) |
---|
324 | ENDDO |
---|
325 | ELSEIF ( intermediate_timestep_count < & |
---|
326 | intermediate_timestep_count_max ) THEN |
---|
327 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
328 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
329 | ENDDO |
---|
330 | ENDIF |
---|
331 | ENDIF |
---|
332 | |
---|
333 | ENDDO |
---|
334 | ENDDO |
---|
335 | |
---|
336 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
337 | |
---|
338 | ! |
---|
339 | !-- w-velocity component |
---|
340 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
341 | |
---|
342 | ! |
---|
343 | !-- w-tendency terms with communication |
---|
344 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
345 | tend = 0.0 |
---|
346 | CALL advec_w_ups |
---|
347 | ENDIF |
---|
348 | |
---|
349 | ! |
---|
350 | !-- w-tendency terms with no communication |
---|
351 | DO i = nxl, nxr |
---|
352 | DO j = nys, nyn |
---|
353 | ! |
---|
354 | !-- Tendency terms |
---|
355 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
356 | tend(:,j,i) = 0.0 |
---|
357 | IF ( ws_scheme_mom ) THEN |
---|
358 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
359 | ELSE |
---|
360 | CALL advec_w_pw( i, j ) |
---|
361 | ENDIF |
---|
362 | |
---|
363 | ELSE |
---|
364 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
365 | tend(:,j,i) = 0.0 |
---|
366 | CALL advec_w_up( i, j ) |
---|
367 | ENDIF |
---|
368 | ENDIF |
---|
369 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
370 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
371 | tend, u_m, v_m, w_m ) |
---|
372 | ELSE |
---|
373 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
374 | tend, u, v, w ) |
---|
375 | ENDIF |
---|
376 | CALL coriolis( i, j, 3 ) |
---|
377 | IF ( ocean ) THEN |
---|
378 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
379 | ELSE |
---|
380 | IF ( .NOT. humidity ) THEN |
---|
381 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
382 | ELSE |
---|
383 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
384 | ENDIF |
---|
385 | ENDIF |
---|
386 | |
---|
387 | ! |
---|
388 | !-- Drag by plant canopy |
---|
389 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
390 | |
---|
391 | CALL user_actions( i, j, 'w-tendency' ) |
---|
392 | |
---|
393 | ! |
---|
394 | !-- Prognostic equation for w-velocity component |
---|
395 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
396 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
397 | dt_3d * ( & |
---|
398 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
399 | ) - & |
---|
400 | tsc(5) * rdf(k) * w(k,j,i) |
---|
401 | ENDDO |
---|
402 | |
---|
403 | ! |
---|
404 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
405 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
406 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
407 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
408 | tw_m(k,j,i) = tend(k,j,i) |
---|
409 | ENDDO |
---|
410 | ELSEIF ( intermediate_timestep_count < & |
---|
411 | intermediate_timestep_count_max ) THEN |
---|
412 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
413 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
414 | ENDDO |
---|
415 | ENDIF |
---|
416 | ENDIF |
---|
417 | |
---|
418 | ENDDO |
---|
419 | ENDDO |
---|
420 | |
---|
421 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
422 | |
---|
423 | ! |
---|
424 | !-- potential temperature |
---|
425 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
426 | |
---|
427 | ! |
---|
428 | !-- pt-tendency terms with communication |
---|
429 | sat = tsc(1) |
---|
430 | sbt = tsc(2) |
---|
431 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
432 | |
---|
433 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
434 | ! |
---|
435 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
436 | !-- switched on. Thus: |
---|
437 | sat = 1.0 |
---|
438 | sbt = 1.0 |
---|
439 | ENDIF |
---|
440 | tend = 0.0 |
---|
441 | CALL advec_s_bc( pt, 'pt' ) |
---|
442 | ELSE |
---|
443 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
444 | tend = 0.0 |
---|
445 | CALL advec_s_ups( pt, 'pt' ) |
---|
446 | ENDIF |
---|
447 | ENDIF |
---|
448 | |
---|
449 | ! |
---|
450 | !-- pt-tendency terms with no communication |
---|
451 | DO i = nxl, nxr |
---|
452 | DO j = nys, nyn |
---|
453 | ! |
---|
454 | !-- Tendency terms |
---|
455 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
456 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
457 | wall_heatflux, tend ) |
---|
458 | ELSE |
---|
459 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
460 | tend(:,j,i) = 0.0 |
---|
461 | IF ( ws_scheme_sca ) THEN |
---|
462 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, & |
---|
463 | diss_s_pt, flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
464 | ELSE |
---|
465 | CALL advec_s_pw( i, j, pt ) |
---|
466 | ENDIF |
---|
467 | ELSE |
---|
468 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
469 | tend(:,j,i) = 0.0 |
---|
470 | CALL advec_s_up( i, j, pt ) |
---|
471 | ENDIF |
---|
472 | ENDIF |
---|
473 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
474 | THEN |
---|
475 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
476 | tswst_m, wall_heatflux, tend ) |
---|
477 | ELSE |
---|
478 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
479 | wall_heatflux, tend ) |
---|
480 | ENDIF |
---|
481 | ENDIF |
---|
482 | |
---|
483 | ! |
---|
484 | !-- If required compute heating/cooling due to long wave radiation |
---|
485 | !-- processes |
---|
486 | IF ( radiation ) THEN |
---|
487 | CALL calc_radiation( i, j ) |
---|
488 | ENDIF |
---|
489 | |
---|
490 | ! |
---|
491 | !-- If required compute impact of latent heat due to precipitation |
---|
492 | IF ( precipitation ) THEN |
---|
493 | CALL impact_of_latent_heat( i, j ) |
---|
494 | ENDIF |
---|
495 | |
---|
496 | ! |
---|
497 | !-- Consideration of heat sources within the plant canopy |
---|
498 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
499 | CALL plant_canopy_model( i, j, 4 ) |
---|
500 | ENDIF |
---|
501 | |
---|
502 | ! |
---|
503 | !-- If required compute influence of large-scale subsidence/ascent |
---|
504 | IF ( large_scale_subsidence ) THEN |
---|
505 | CALL subsidence ( i, j, tend, pt, pt_init ) |
---|
506 | ENDIF |
---|
507 | |
---|
508 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
509 | |
---|
510 | ! |
---|
511 | !-- Prognostic equation for potential temperature |
---|
512 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
513 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
514 | dt_3d * ( & |
---|
515 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
516 | ) - & |
---|
517 | tsc(5) * rdf_sc(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
518 | ENDDO |
---|
519 | |
---|
520 | ! |
---|
521 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
522 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
523 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
524 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
525 | tpt_m(k,j,i) = tend(k,j,i) |
---|
526 | ENDDO |
---|
527 | ELSEIF ( intermediate_timestep_count < & |
---|
528 | intermediate_timestep_count_max ) THEN |
---|
529 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
530 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
531 | ENDDO |
---|
532 | ENDIF |
---|
533 | ENDIF |
---|
534 | |
---|
535 | ENDDO |
---|
536 | ENDDO |
---|
537 | |
---|
538 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
539 | |
---|
540 | ! |
---|
541 | !-- If required, compute prognostic equation for salinity |
---|
542 | IF ( ocean ) THEN |
---|
543 | |
---|
544 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
545 | |
---|
546 | ! |
---|
547 | !-- sa-tendency terms with communication |
---|
548 | sat = tsc(1) |
---|
549 | sbt = tsc(2) |
---|
550 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
551 | |
---|
552 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
553 | ! |
---|
554 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
555 | !-- switched on. Thus: |
---|
556 | sat = 1.0 |
---|
557 | sbt = 1.0 |
---|
558 | ENDIF |
---|
559 | tend = 0.0 |
---|
560 | CALL advec_s_bc( sa, 'sa' ) |
---|
561 | ELSE |
---|
562 | IF ( tsc(2) /= 2.0 ) THEN |
---|
563 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
564 | tend = 0.0 |
---|
565 | CALL advec_s_ups( sa, 'sa' ) |
---|
566 | ENDIF |
---|
567 | ENDIF |
---|
568 | ENDIF |
---|
569 | |
---|
570 | ! |
---|
571 | !-- sa terms with no communication |
---|
572 | DO i = nxl, nxr |
---|
573 | DO j = nys, nyn |
---|
574 | ! |
---|
575 | !-- Tendency-terms |
---|
576 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
577 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
578 | wall_salinityflux, tend ) |
---|
579 | ELSE |
---|
580 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
581 | tend(:,j,i) = 0.0 |
---|
582 | IF ( ws_scheme_sca ) THEN |
---|
583 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
584 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
585 | ELSE |
---|
586 | CALL advec_s_pw( i, j, sa ) |
---|
587 | ENDIF |
---|
588 | |
---|
589 | ELSE |
---|
590 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
591 | tend(:,j,i) = 0.0 |
---|
592 | CALL advec_s_up( i, j, sa ) |
---|
593 | ENDIF |
---|
594 | ENDIF |
---|
595 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
596 | wall_salinityflux, tend ) |
---|
597 | ENDIF |
---|
598 | |
---|
599 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
600 | |
---|
601 | ! |
---|
602 | !-- Prognostic equation for salinity |
---|
603 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
604 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
605 | dt_3d * ( & |
---|
606 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
607 | ) - & |
---|
608 | tsc(5) * rdf_sc(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
609 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
610 | ENDDO |
---|
611 | |
---|
612 | ! |
---|
613 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
614 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
615 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
616 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
617 | tsa_m(k,j,i) = tend(k,j,i) |
---|
618 | ENDDO |
---|
619 | ELSEIF ( intermediate_timestep_count < & |
---|
620 | intermediate_timestep_count_max ) THEN |
---|
621 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
622 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
623 | 5.3125 * tsa_m(k,j,i) |
---|
624 | ENDDO |
---|
625 | ENDIF |
---|
626 | ENDIF |
---|
627 | |
---|
628 | ! |
---|
629 | !-- Calculate density by the equation of state for seawater |
---|
630 | CALL eqn_state_seawater( i, j ) |
---|
631 | |
---|
632 | ENDDO |
---|
633 | ENDDO |
---|
634 | |
---|
635 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
636 | |
---|
637 | ENDIF |
---|
638 | |
---|
639 | ! |
---|
640 | !-- If required, compute prognostic equation for total water content / scalar |
---|
641 | IF ( humidity .OR. passive_scalar ) THEN |
---|
642 | |
---|
643 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
644 | |
---|
645 | ! |
---|
646 | !-- Scalar/q-tendency terms with communication |
---|
647 | sat = tsc(1) |
---|
648 | sbt = tsc(2) |
---|
649 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
650 | |
---|
651 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
652 | ! |
---|
653 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
654 | !-- switched on. Thus: |
---|
655 | sat = 1.0 |
---|
656 | sbt = 1.0 |
---|
657 | ENDIF |
---|
658 | tend = 0.0 |
---|
659 | CALL advec_s_bc( q, 'q' ) |
---|
660 | ELSE |
---|
661 | IF ( tsc(2) /= 2.0 ) THEN |
---|
662 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
663 | tend = 0.0 |
---|
664 | CALL advec_s_ups( q, 'q' ) |
---|
665 | ENDIF |
---|
666 | ENDIF |
---|
667 | ENDIF |
---|
668 | |
---|
669 | ! |
---|
670 | !-- Scalar/q-tendency terms with no communication |
---|
671 | DO i = nxl, nxr |
---|
672 | DO j = nys, nyn |
---|
673 | ! |
---|
674 | !-- Tendency-terms |
---|
675 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
676 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
677 | wall_qflux, tend ) |
---|
678 | ELSE |
---|
679 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
680 | tend(:,j,i) = 0.0 |
---|
681 | IF ( ws_scheme_sca ) THEN |
---|
682 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
683 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
684 | ELSE |
---|
685 | CALL advec_s_pw( i, j, q ) |
---|
686 | ENDIF |
---|
687 | ELSE |
---|
688 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
689 | tend(:,j,i) = 0.0 |
---|
690 | CALL advec_s_up( i, j, q ) |
---|
691 | ENDIF |
---|
692 | ENDIF |
---|
693 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
694 | THEN |
---|
695 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
696 | qswst_m, wall_qflux, tend ) |
---|
697 | ELSE |
---|
698 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
699 | wall_qflux, tend ) |
---|
700 | ENDIF |
---|
701 | ENDIF |
---|
702 | |
---|
703 | ! |
---|
704 | !-- If required compute decrease of total water content due to |
---|
705 | !-- precipitation |
---|
706 | IF ( precipitation ) THEN |
---|
707 | CALL calc_precipitation( i, j ) |
---|
708 | ENDIF |
---|
709 | |
---|
710 | ! |
---|
711 | !-- Sink or source of scalar concentration due to canopy elements |
---|
712 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
713 | |
---|
714 | ! |
---|
715 | !-- If required compute influence of large-scale subsidence/ascent |
---|
716 | IF ( large_scale_subsidence ) THEN |
---|
717 | CALL subsidence ( i, j, tend, q, q_init ) |
---|
718 | ENDIF |
---|
719 | |
---|
720 | CALL user_actions( i, j, 'q-tendency' ) |
---|
721 | |
---|
722 | ! |
---|
723 | !-- Prognostic equation for total water content / scalar |
---|
724 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
725 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
726 | dt_3d * ( & |
---|
727 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
728 | ) - & |
---|
729 | tsc(5) * rdf_sc(k) * ( q(k,j,i) - q_init(k) ) |
---|
730 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
731 | ENDDO |
---|
732 | |
---|
733 | ! |
---|
734 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
735 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
736 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
737 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
738 | tq_m(k,j,i) = tend(k,j,i) |
---|
739 | ENDDO |
---|
740 | ELSEIF ( intermediate_timestep_count < & |
---|
741 | intermediate_timestep_count_max ) THEN |
---|
742 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
743 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
744 | ENDDO |
---|
745 | ENDIF |
---|
746 | ENDIF |
---|
747 | |
---|
748 | ENDDO |
---|
749 | ENDDO |
---|
750 | |
---|
751 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
752 | |
---|
753 | ENDIF |
---|
754 | |
---|
755 | ! |
---|
756 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
757 | !-- energy (TKE) |
---|
758 | IF ( .NOT. constant_diffusion ) THEN |
---|
759 | |
---|
760 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
761 | |
---|
762 | ! |
---|
763 | !-- TKE-tendency terms with communication |
---|
764 | CALL production_e_init |
---|
765 | |
---|
766 | sat = tsc(1) |
---|
767 | sbt = tsc(2) |
---|
768 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
769 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
770 | |
---|
771 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
772 | ! |
---|
773 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
774 | !-- switched on. Thus: |
---|
775 | sat = 1.0 |
---|
776 | sbt = 1.0 |
---|
777 | ENDIF |
---|
778 | tend = 0.0 |
---|
779 | CALL advec_s_bc( e, 'e' ) |
---|
780 | ELSE |
---|
781 | IF ( tsc(2) /= 2.0 ) THEN |
---|
782 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
783 | tend = 0.0 |
---|
784 | CALL advec_s_ups( e, 'e' ) |
---|
785 | ENDIF |
---|
786 | ENDIF |
---|
787 | ENDIF |
---|
788 | ENDIF |
---|
789 | |
---|
790 | ! |
---|
791 | !-- TKE-tendency terms with no communication |
---|
792 | DO i = nxl, nxr |
---|
793 | DO j = nys, nyn |
---|
794 | ! |
---|
795 | !-- Tendency-terms |
---|
796 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
797 | .NOT. use_upstream_for_tke ) THEN |
---|
798 | IF ( .NOT. humidity ) THEN |
---|
799 | IF ( ocean ) THEN |
---|
800 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
801 | l_grid, prho, prho_reference, rif, & |
---|
802 | tend, zu, zw ) |
---|
803 | ELSE |
---|
804 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
805 | l_grid, pt, pt_reference, rif, tend, & |
---|
806 | zu, zw ) |
---|
807 | ENDIF |
---|
808 | ELSE |
---|
809 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
810 | l_grid, vpt, pt_reference, rif, tend, zu, & |
---|
811 | zw ) |
---|
812 | ENDIF |
---|
813 | ELSE |
---|
814 | IF ( use_upstream_for_tke ) THEN |
---|
815 | tend(:,j,i) = 0.0 |
---|
816 | CALL advec_s_up( i, j, e ) |
---|
817 | ELSE |
---|
818 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
819 | THEN |
---|
820 | tend(:,j,i) = 0.0 |
---|
821 | IF ( ws_scheme_sca ) THEN |
---|
822 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, & |
---|
823 | diss_s_e, flux_l_e, diss_l_e, i_omp_start, tn ) |
---|
824 | ELSE |
---|
825 | CALL advec_s_pw( i, j, e ) |
---|
826 | ENDIF |
---|
827 | ELSE |
---|
828 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
829 | tend(:,j,i) = 0.0 |
---|
830 | CALL advec_s_up( i, j, e ) |
---|
831 | ENDIF |
---|
832 | ENDIF |
---|
833 | ENDIF |
---|
834 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
835 | THEN |
---|
836 | IF ( .NOT. humidity ) THEN |
---|
837 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
838 | km_m, l_grid, pt_m, pt_reference, & |
---|
839 | rif_m, tend, zu, zw ) |
---|
840 | ELSE |
---|
841 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
842 | km_m, l_grid, vpt_m, pt_reference, & |
---|
843 | rif_m, tend, zu, zw ) |
---|
844 | ENDIF |
---|
845 | ELSE |
---|
846 | IF ( .NOT. humidity ) THEN |
---|
847 | IF ( ocean ) THEN |
---|
848 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
849 | km, l_grid, prho, prho_reference, & |
---|
850 | rif, tend, zu, zw ) |
---|
851 | ELSE |
---|
852 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
853 | km, l_grid, pt, pt_reference, rif, & |
---|
854 | tend, zu, zw ) |
---|
855 | ENDIF |
---|
856 | ELSE |
---|
857 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
858 | l_grid, vpt, pt_reference, rif, tend, & |
---|
859 | zu, zw ) |
---|
860 | ENDIF |
---|
861 | ENDIF |
---|
862 | ENDIF |
---|
863 | CALL production_e( i, j ) |
---|
864 | |
---|
865 | ! |
---|
866 | !-- Additional sink term for flows through plant canopies |
---|
867 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
868 | |
---|
869 | CALL user_actions( i, j, 'e-tendency' ) |
---|
870 | |
---|
871 | ! |
---|
872 | !-- Prognostic equation for TKE. |
---|
873 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
874 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
875 | !-- value is reduced by 90%. |
---|
876 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
877 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
878 | dt_3d * ( & |
---|
879 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
880 | ) |
---|
881 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
882 | ENDDO |
---|
883 | |
---|
884 | ! |
---|
885 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
886 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
887 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
888 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
889 | te_m(k,j,i) = tend(k,j,i) |
---|
890 | ENDDO |
---|
891 | ELSEIF ( intermediate_timestep_count < & |
---|
892 | intermediate_timestep_count_max ) THEN |
---|
893 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
894 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
895 | ENDDO |
---|
896 | ENDIF |
---|
897 | ENDIF |
---|
898 | |
---|
899 | ENDDO |
---|
900 | ENDDO |
---|
901 | |
---|
902 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
903 | |
---|
904 | ENDIF |
---|
905 | |
---|
906 | |
---|
907 | END SUBROUTINE prognostic_equations_noopt |
---|
908 | |
---|
909 | |
---|
910 | SUBROUTINE prognostic_equations_cache |
---|
911 | |
---|
912 | !------------------------------------------------------------------------------! |
---|
913 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
914 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
915 | ! |
---|
916 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
917 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
918 | ! these loops. |
---|
919 | ! |
---|
920 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
921 | !------------------------------------------------------------------------------! |
---|
922 | |
---|
923 | IMPLICIT NONE |
---|
924 | |
---|
925 | CHARACTER (LEN=9) :: time_to_string |
---|
926 | INTEGER :: i, i_omp_start, j, k, omp_get_thread_num, tn = 0 |
---|
927 | LOGICAL :: loop_start |
---|
928 | |
---|
929 | |
---|
930 | ! |
---|
931 | !-- Time measurement can only be performed for the whole set of equations |
---|
932 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
933 | |
---|
934 | |
---|
935 | ! |
---|
936 | !-- Calculate those variables needed in the tendency terms which need |
---|
937 | !-- global communication |
---|
938 | CALL calc_mean_profile( pt, 4 ) |
---|
939 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
940 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
941 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
942 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
943 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
944 | |
---|
945 | ! |
---|
946 | !-- Loop over all prognostic equations |
---|
947 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
948 | |
---|
949 | !$ tn = omp_get_thread_num() |
---|
950 | loop_start = .TRUE. |
---|
951 | !$OMP DO |
---|
952 | DO i = nxl, nxr |
---|
953 | |
---|
954 | ! |
---|
955 | !-- Store the first loop index. It differs for each thread and is required |
---|
956 | !-- later in advec_ws |
---|
957 | IF ( loop_start ) THEN |
---|
958 | loop_start = .FALSE. |
---|
959 | i_omp_start = i |
---|
960 | ENDIF |
---|
961 | |
---|
962 | DO j = nys, nyn |
---|
963 | ! |
---|
964 | !-- Tendency terms for u-velocity component |
---|
965 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
966 | |
---|
967 | tend(:,j,i) = 0.0 |
---|
968 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
969 | IF ( ws_scheme_mom ) THEN |
---|
970 | IF ( outflow_l .AND. i_omp_start == nxl ) THEN |
---|
971 | ! CALL local_diss( i, j, u) ! dissipation control |
---|
972 | CALL advec_u_ws( i, j, i_omp_start + 1, tn ) |
---|
973 | ELSE |
---|
974 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
975 | ENDIF |
---|
976 | ELSE |
---|
977 | CALL advec_u_pw( i, j ) |
---|
978 | ENDIF |
---|
979 | ELSE |
---|
980 | CALL advec_u_up( i, j ) |
---|
981 | ENDIF |
---|
982 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
983 | THEN |
---|
984 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
985 | u_m, usws_m, uswst_m, v_m, w_m ) |
---|
986 | ELSE |
---|
987 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
988 | usws, uswst, v, w ) |
---|
989 | ENDIF |
---|
990 | CALL coriolis( i, j, 1 ) |
---|
991 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, & |
---|
992 | 4 ) |
---|
993 | |
---|
994 | ! |
---|
995 | !-- Drag by plant canopy |
---|
996 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
997 | |
---|
998 | ! |
---|
999 | !-- External pressure gradient |
---|
1000 | IF ( dp_external ) THEN |
---|
1001 | DO k = dp_level_ind_b+1, nzt |
---|
1002 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
1003 | ENDDO |
---|
1004 | ENDIF |
---|
1005 | |
---|
1006 | CALL user_actions( i, j, 'u-tendency' ) |
---|
1007 | |
---|
1008 | ! |
---|
1009 | !-- Prognostic equation for u-velocity component |
---|
1010 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1011 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
1012 | dt_3d * ( & |
---|
1013 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
1014 | ) - & |
---|
1015 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
1016 | ENDDO |
---|
1017 | |
---|
1018 | ! |
---|
1019 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1020 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1021 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1022 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1023 | tu_m(k,j,i) = tend(k,j,i) |
---|
1024 | ENDDO |
---|
1025 | ELSEIF ( intermediate_timestep_count < & |
---|
1026 | intermediate_timestep_count_max ) THEN |
---|
1027 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1028 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
1029 | ENDDO |
---|
1030 | ENDIF |
---|
1031 | ENDIF |
---|
1032 | |
---|
1033 | ENDIF |
---|
1034 | |
---|
1035 | ! |
---|
1036 | !-- Tendency terms for v-velocity component |
---|
1037 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
1038 | |
---|
1039 | tend(:,j,i) = 0.0 |
---|
1040 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1041 | IF ( ws_scheme_mom ) THEN |
---|
1042 | ! CALL local_diss( i, j, v) |
---|
1043 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
1044 | ELSE |
---|
1045 | CALL advec_v_pw( i, j ) |
---|
1046 | ENDIF |
---|
1047 | ELSE |
---|
1048 | CALL advec_v_up( i, j ) |
---|
1049 | ENDIF |
---|
1050 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
1051 | THEN |
---|
1052 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
1053 | u_m, v_m, vsws_m, vswst_m, w_m ) |
---|
1054 | ELSE |
---|
1055 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
1056 | vsws, vswst, w ) |
---|
1057 | ENDIF |
---|
1058 | CALL coriolis( i, j, 2 ) |
---|
1059 | |
---|
1060 | ! |
---|
1061 | !-- Drag by plant canopy |
---|
1062 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
1063 | |
---|
1064 | ! |
---|
1065 | !-- External pressure gradient |
---|
1066 | IF ( dp_external ) THEN |
---|
1067 | DO k = dp_level_ind_b+1, nzt |
---|
1068 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
1069 | ENDDO |
---|
1070 | ENDIF |
---|
1071 | |
---|
1072 | CALL user_actions( i, j, 'v-tendency' ) |
---|
1073 | |
---|
1074 | ! |
---|
1075 | !-- Prognostic equation for v-velocity component |
---|
1076 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1077 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
1078 | dt_3d * ( & |
---|
1079 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
1080 | ) - & |
---|
1081 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
1082 | ENDDO |
---|
1083 | |
---|
1084 | ! |
---|
1085 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1086 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1087 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1088 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1089 | tv_m(k,j,i) = tend(k,j,i) |
---|
1090 | ENDDO |
---|
1091 | ELSEIF ( intermediate_timestep_count < & |
---|
1092 | intermediate_timestep_count_max ) THEN |
---|
1093 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1094 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
1095 | ENDDO |
---|
1096 | ENDIF |
---|
1097 | ENDIF |
---|
1098 | |
---|
1099 | ENDIF |
---|
1100 | |
---|
1101 | ! |
---|
1102 | !-- Tendency terms for w-velocity component |
---|
1103 | tend(:,j,i) = 0.0 |
---|
1104 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1105 | IF ( ws_scheme_mom ) THEN |
---|
1106 | ! CALL local_diss( i, j, w) |
---|
1107 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
1108 | ELSE |
---|
1109 | CALL advec_w_pw( i, j ) |
---|
1110 | END IF |
---|
1111 | ELSE |
---|
1112 | CALL advec_w_up( i, j ) |
---|
1113 | ENDIF |
---|
1114 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
1115 | THEN |
---|
1116 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
1117 | km_damp_y, tend, u_m, v_m, w_m ) |
---|
1118 | ELSE |
---|
1119 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
1120 | tend, u, v, w ) |
---|
1121 | ENDIF |
---|
1122 | CALL coriolis( i, j, 3 ) |
---|
1123 | IF ( ocean ) THEN |
---|
1124 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
1125 | ELSE |
---|
1126 | IF ( .NOT. humidity ) THEN |
---|
1127 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
1128 | ELSE |
---|
1129 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
1130 | ENDIF |
---|
1131 | ENDIF |
---|
1132 | |
---|
1133 | ! |
---|
1134 | !-- Drag by plant canopy |
---|
1135 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
1136 | |
---|
1137 | CALL user_actions( i, j, 'w-tendency' ) |
---|
1138 | |
---|
1139 | ! |
---|
1140 | !-- Prognostic equation for w-velocity component |
---|
1141 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1142 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
1143 | dt_3d * ( & |
---|
1144 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
1145 | ) - & |
---|
1146 | tsc(5) * rdf(k) * w(k,j,i) |
---|
1147 | ENDDO |
---|
1148 | |
---|
1149 | ! |
---|
1150 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1151 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1152 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1153 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1154 | tw_m(k,j,i) = tend(k,j,i) |
---|
1155 | ENDDO |
---|
1156 | ELSEIF ( intermediate_timestep_count < & |
---|
1157 | intermediate_timestep_count_max ) THEN |
---|
1158 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1159 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1160 | ENDDO |
---|
1161 | ENDIF |
---|
1162 | ENDIF |
---|
1163 | |
---|
1164 | ! |
---|
1165 | !-- Tendency terms for potential temperature |
---|
1166 | tend(:,j,i) = 0.0 |
---|
1167 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1168 | IF ( ws_scheme_sca ) THEN |
---|
1169 | ! CALL local_diss( i, j, pt ) |
---|
1170 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, & |
---|
1171 | diss_s_pt, flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
1172 | ELSE |
---|
1173 | CALL advec_s_pw( i, j, pt ) |
---|
1174 | ENDIF |
---|
1175 | ELSE |
---|
1176 | CALL advec_s_up( i, j, pt ) |
---|
1177 | ENDIF |
---|
1178 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
1179 | THEN |
---|
1180 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
1181 | tswst_m, wall_heatflux, tend ) |
---|
1182 | ELSE |
---|
1183 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
1184 | wall_heatflux, tend ) |
---|
1185 | ENDIF |
---|
1186 | |
---|
1187 | ! |
---|
1188 | !-- If required compute heating/cooling due to long wave radiation |
---|
1189 | !-- processes |
---|
1190 | IF ( radiation ) THEN |
---|
1191 | CALL calc_radiation( i, j ) |
---|
1192 | ENDIF |
---|
1193 | |
---|
1194 | ! |
---|
1195 | !-- If required compute impact of latent heat due to precipitation |
---|
1196 | IF ( precipitation ) THEN |
---|
1197 | CALL impact_of_latent_heat( i, j ) |
---|
1198 | ENDIF |
---|
1199 | |
---|
1200 | ! |
---|
1201 | !-- Consideration of heat sources within the plant canopy |
---|
1202 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
1203 | CALL plant_canopy_model( i, j, 4 ) |
---|
1204 | ENDIF |
---|
1205 | |
---|
1206 | |
---|
1207 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1208 | IF ( large_scale_subsidence ) THEN |
---|
1209 | CALL subsidence ( i, j, tend, pt, pt_init ) |
---|
1210 | ENDIF |
---|
1211 | |
---|
1212 | |
---|
1213 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
1214 | |
---|
1215 | ! |
---|
1216 | !-- Prognostic equation for potential temperature |
---|
1217 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1218 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
1219 | dt_3d * ( & |
---|
1220 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
1221 | ) - & |
---|
1222 | tsc(5) * rdf_sc(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
1223 | ENDDO |
---|
1224 | |
---|
1225 | ! |
---|
1226 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1227 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1228 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1229 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1230 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1231 | ENDDO |
---|
1232 | ELSEIF ( intermediate_timestep_count < & |
---|
1233 | intermediate_timestep_count_max ) THEN |
---|
1234 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1235 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1236 | 5.3125 * tpt_m(k,j,i) |
---|
1237 | ENDDO |
---|
1238 | ENDIF |
---|
1239 | ENDIF |
---|
1240 | |
---|
1241 | ! |
---|
1242 | !-- If required, compute prognostic equation for salinity |
---|
1243 | IF ( ocean ) THEN |
---|
1244 | |
---|
1245 | ! |
---|
1246 | !-- Tendency-terms for salinity |
---|
1247 | tend(:,j,i) = 0.0 |
---|
1248 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
1249 | THEN |
---|
1250 | IF ( ws_scheme_sca ) THEN |
---|
1251 | ! CALL local_diss( i, j, sa ) |
---|
1252 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
1253 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
1254 | ELSE |
---|
1255 | CALL advec_s_pw( i, j, sa ) |
---|
1256 | ENDIF |
---|
1257 | ELSE |
---|
1258 | CALL advec_s_up( i, j, sa ) |
---|
1259 | ENDIF |
---|
1260 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
1261 | wall_salinityflux, tend ) |
---|
1262 | |
---|
1263 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
1264 | |
---|
1265 | ! |
---|
1266 | !-- Prognostic equation for salinity |
---|
1267 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1268 | sa_p(k,j,i) = tsc(1) * sa(k,j,i) + & |
---|
1269 | dt_3d * ( & |
---|
1270 | tsc(2) * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
1271 | ) - & |
---|
1272 | tsc(5) * rdf_sc(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
1273 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
1274 | ENDDO |
---|
1275 | |
---|
1276 | ! |
---|
1277 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1278 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1279 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1280 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1281 | tsa_m(k,j,i) = tend(k,j,i) |
---|
1282 | ENDDO |
---|
1283 | ELSEIF ( intermediate_timestep_count < & |
---|
1284 | intermediate_timestep_count_max ) THEN |
---|
1285 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1286 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1287 | 5.3125 * tsa_m(k,j,i) |
---|
1288 | ENDDO |
---|
1289 | ENDIF |
---|
1290 | ENDIF |
---|
1291 | |
---|
1292 | ! |
---|
1293 | !-- Calculate density by the equation of state for seawater |
---|
1294 | CALL eqn_state_seawater( i, j ) |
---|
1295 | |
---|
1296 | ENDIF |
---|
1297 | |
---|
1298 | ! |
---|
1299 | !-- If required, compute prognostic equation for total water content / |
---|
1300 | !-- scalar |
---|
1301 | IF ( humidity .OR. passive_scalar ) THEN |
---|
1302 | |
---|
1303 | ! |
---|
1304 | !-- Tendency-terms for total water content / scalar |
---|
1305 | tend(:,j,i) = 0.0 |
---|
1306 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
1307 | THEN |
---|
1308 | IF ( ws_scheme_sca ) THEN |
---|
1309 | ! CALL local_diss( i, j, q ) |
---|
1310 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
1311 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
1312 | ELSE |
---|
1313 | CALL advec_s_pw( i, j, q ) |
---|
1314 | ENDIF |
---|
1315 | ELSE |
---|
1316 | CALL advec_s_up( i, j, q ) |
---|
1317 | ENDIF |
---|
1318 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
1319 | THEN |
---|
1320 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
1321 | qswst_m, wall_qflux, tend ) |
---|
1322 | ELSE |
---|
1323 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
1324 | wall_qflux, tend ) |
---|
1325 | ENDIF |
---|
1326 | |
---|
1327 | ! |
---|
1328 | !-- If required compute decrease of total water content due to |
---|
1329 | !-- precipitation |
---|
1330 | IF ( precipitation ) THEN |
---|
1331 | CALL calc_precipitation( i, j ) |
---|
1332 | ENDIF |
---|
1333 | |
---|
1334 | ! |
---|
1335 | !-- Sink or source of scalar concentration due to canopy elements |
---|
1336 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
1337 | |
---|
1338 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1339 | IF ( large_scale_subsidence ) THEN |
---|
1340 | CALL subsidence ( i, j, tend, q, q_init ) |
---|
1341 | ENDIF |
---|
1342 | |
---|
1343 | CALL user_actions( i, j, 'q-tendency' ) |
---|
1344 | |
---|
1345 | ! |
---|
1346 | !-- Prognostic equation for total water content / scalar |
---|
1347 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1348 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
1349 | dt_3d * ( & |
---|
1350 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
1351 | ) - & |
---|
1352 | tsc(5) * rdf_sc(k) * ( q(k,j,i) - q_init(k) ) |
---|
1353 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
1354 | ENDDO |
---|
1355 | |
---|
1356 | ! |
---|
1357 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1358 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1359 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1360 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1361 | tq_m(k,j,i) = tend(k,j,i) |
---|
1362 | ENDDO |
---|
1363 | ELSEIF ( intermediate_timestep_count < & |
---|
1364 | intermediate_timestep_count_max ) THEN |
---|
1365 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1366 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1367 | 5.3125 * tq_m(k,j,i) |
---|
1368 | ENDDO |
---|
1369 | ENDIF |
---|
1370 | ENDIF |
---|
1371 | |
---|
1372 | ENDIF |
---|
1373 | |
---|
1374 | ! |
---|
1375 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1376 | !-- energy (TKE) |
---|
1377 | IF ( .NOT. constant_diffusion ) THEN |
---|
1378 | |
---|
1379 | ! |
---|
1380 | !-- Tendency-terms for TKE |
---|
1381 | tend(:,j,i) = 0.0 |
---|
1382 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
1383 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
1384 | IF ( ws_scheme_sca ) THEN |
---|
1385 | ! CALL local_diss( i, j, e ) |
---|
1386 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, & |
---|
1387 | diss_s_e, flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
1388 | ELSE |
---|
1389 | CALL advec_s_pw( i, j, e ) |
---|
1390 | ENDIF |
---|
1391 | ELSE |
---|
1392 | CALL advec_s_up( i, j, e ) |
---|
1393 | ENDIF |
---|
1394 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
1395 | THEN |
---|
1396 | IF ( .NOT. humidity ) THEN |
---|
1397 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
1398 | km_m, l_grid, pt_m, pt_reference, & |
---|
1399 | rif_m, tend, zu, zw ) |
---|
1400 | ELSE |
---|
1401 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
1402 | km_m, l_grid, vpt_m, pt_reference, & |
---|
1403 | rif_m, tend, zu, zw ) |
---|
1404 | ENDIF |
---|
1405 | ELSE |
---|
1406 | IF ( .NOT. humidity ) THEN |
---|
1407 | IF ( ocean ) THEN |
---|
1408 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
1409 | km, l_grid, prho, prho_reference, & |
---|
1410 | rif, tend, zu, zw ) |
---|
1411 | ELSE |
---|
1412 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
1413 | km, l_grid, pt, pt_reference, rif, & |
---|
1414 | tend, zu, zw ) |
---|
1415 | ENDIF |
---|
1416 | ELSE |
---|
1417 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
1418 | l_grid, vpt, pt_reference, rif, tend, & |
---|
1419 | zu, zw ) |
---|
1420 | ENDIF |
---|
1421 | ENDIF |
---|
1422 | CALL production_e( i, j ) |
---|
1423 | |
---|
1424 | ! |
---|
1425 | !-- Additional sink term for flows through plant canopies |
---|
1426 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
1427 | |
---|
1428 | CALL user_actions( i, j, 'e-tendency' ) |
---|
1429 | |
---|
1430 | ! |
---|
1431 | !-- Prognostic equation for TKE. |
---|
1432 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
1433 | !-- reasons in the course of the integration. In such cases the old |
---|
1434 | !-- TKE value is reduced by 90%. |
---|
1435 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1436 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
1437 | dt_3d * ( & |
---|
1438 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
1439 | ) |
---|
1440 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
1441 | ENDDO |
---|
1442 | |
---|
1443 | ! |
---|
1444 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1445 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1446 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1447 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1448 | te_m(k,j,i) = tend(k,j,i) |
---|
1449 | ENDDO |
---|
1450 | ELSEIF ( intermediate_timestep_count < & |
---|
1451 | intermediate_timestep_count_max ) THEN |
---|
1452 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1453 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1454 | 5.3125 * te_m(k,j,i) |
---|
1455 | ENDDO |
---|
1456 | ENDIF |
---|
1457 | ENDIF |
---|
1458 | |
---|
1459 | ENDIF ! TKE equation |
---|
1460 | |
---|
1461 | ENDDO |
---|
1462 | ENDDO |
---|
1463 | !$OMP END PARALLEL |
---|
1464 | |
---|
1465 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
1466 | |
---|
1467 | |
---|
1468 | END SUBROUTINE prognostic_equations_cache |
---|
1469 | |
---|
1470 | |
---|
1471 | SUBROUTINE prognostic_equations_vector |
---|
1472 | |
---|
1473 | !------------------------------------------------------------------------------! |
---|
1474 | ! Version for vector machines |
---|
1475 | !------------------------------------------------------------------------------! |
---|
1476 | |
---|
1477 | IMPLICIT NONE |
---|
1478 | |
---|
1479 | CHARACTER (LEN=9) :: time_to_string |
---|
1480 | INTEGER :: i, j, k |
---|
1481 | REAL :: sat, sbt |
---|
1482 | |
---|
1483 | ! |
---|
1484 | !-- Calculate those variables needed in the tendency terms which need |
---|
1485 | !-- global communication |
---|
1486 | CALL calc_mean_profile( pt, 4 ) |
---|
1487 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
1488 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
1489 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
1490 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
1491 | |
---|
1492 | ! |
---|
1493 | !-- u-velocity component |
---|
1494 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
1495 | |
---|
1496 | ! |
---|
1497 | !-- u-tendency terms with communication |
---|
1498 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1499 | tend = 0.0 |
---|
1500 | CALL advec_u_ups |
---|
1501 | ENDIF |
---|
1502 | |
---|
1503 | ! |
---|
1504 | !-- u-tendency terms with no communication |
---|
1505 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1506 | tend = 0.0 |
---|
1507 | IF ( ws_scheme_mom ) THEN |
---|
1508 | CALL advec_u_ws |
---|
1509 | ELSE |
---|
1510 | CALL advec_u_pw |
---|
1511 | ENDIF |
---|
1512 | ELSE |
---|
1513 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1514 | tend = 0.0 |
---|
1515 | CALL advec_u_up |
---|
1516 | ENDIF |
---|
1517 | ENDIF |
---|
1518 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1519 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, & |
---|
1520 | uswst_m, v_m, w_m ) |
---|
1521 | ELSE |
---|
1522 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, uswst, v, w ) |
---|
1523 | ENDIF |
---|
1524 | CALL coriolis( 1 ) |
---|
1525 | IF ( sloping_surface ) CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
1526 | |
---|
1527 | ! |
---|
1528 | !-- Drag by plant canopy |
---|
1529 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
1530 | |
---|
1531 | ! |
---|
1532 | !-- External pressure gradient |
---|
1533 | IF ( dp_external ) THEN |
---|
1534 | DO i = nxlu, nxr |
---|
1535 | DO j = nys, nyn |
---|
1536 | DO k = dp_level_ind_b+1, nzt |
---|
1537 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
1538 | ENDDO |
---|
1539 | ENDDO |
---|
1540 | ENDDO |
---|
1541 | ENDIF |
---|
1542 | |
---|
1543 | CALL user_actions( 'u-tendency' ) |
---|
1544 | |
---|
1545 | ! |
---|
1546 | !-- Prognostic equation for u-velocity component |
---|
1547 | DO i = nxlu, nxr |
---|
1548 | DO j = nys, nyn |
---|
1549 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1550 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
1551 | dt_3d * ( & |
---|
1552 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
1553 | ) - & |
---|
1554 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
1555 | ENDDO |
---|
1556 | ENDDO |
---|
1557 | ENDDO |
---|
1558 | |
---|
1559 | ! |
---|
1560 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1561 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1562 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1563 | DO i = nxlu, nxr |
---|
1564 | DO j = nys, nyn |
---|
1565 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1566 | tu_m(k,j,i) = tend(k,j,i) |
---|
1567 | ENDDO |
---|
1568 | ENDDO |
---|
1569 | ENDDO |
---|
1570 | ELSEIF ( intermediate_timestep_count < & |
---|
1571 | intermediate_timestep_count_max ) THEN |
---|
1572 | DO i = nxlu, nxr |
---|
1573 | DO j = nys, nyn |
---|
1574 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1575 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
1576 | ENDDO |
---|
1577 | ENDDO |
---|
1578 | ENDDO |
---|
1579 | ENDIF |
---|
1580 | ENDIF |
---|
1581 | |
---|
1582 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
1583 | |
---|
1584 | ! |
---|
1585 | !-- v-velocity component |
---|
1586 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
1587 | |
---|
1588 | ! |
---|
1589 | !-- v-tendency terms with communication |
---|
1590 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1591 | tend = 0.0 |
---|
1592 | CALL advec_v_ups |
---|
1593 | ENDIF |
---|
1594 | |
---|
1595 | ! |
---|
1596 | !-- v-tendency terms with no communication |
---|
1597 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1598 | tend = 0.0 |
---|
1599 | IF ( ws_scheme_mom ) THEN |
---|
1600 | CALL advec_v_ws |
---|
1601 | ELSE |
---|
1602 | CALL advec_v_pw |
---|
1603 | END IF |
---|
1604 | ELSE |
---|
1605 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1606 | tend = 0.0 |
---|
1607 | CALL advec_v_up |
---|
1608 | ENDIF |
---|
1609 | ENDIF |
---|
1610 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1611 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
1612 | vswst_m, w_m ) |
---|
1613 | ELSE |
---|
1614 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, vswst, w ) |
---|
1615 | ENDIF |
---|
1616 | CALL coriolis( 2 ) |
---|
1617 | |
---|
1618 | ! |
---|
1619 | !-- Drag by plant canopy |
---|
1620 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
1621 | |
---|
1622 | ! |
---|
1623 | !-- External pressure gradient |
---|
1624 | IF ( dp_external ) THEN |
---|
1625 | DO i = nxl, nxr |
---|
1626 | DO j = nysv, nyn |
---|
1627 | DO k = dp_level_ind_b+1, nzt |
---|
1628 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
1629 | ENDDO |
---|
1630 | ENDDO |
---|
1631 | ENDDO |
---|
1632 | ENDIF |
---|
1633 | |
---|
1634 | CALL user_actions( 'v-tendency' ) |
---|
1635 | |
---|
1636 | ! |
---|
1637 | !-- Prognostic equation for v-velocity component |
---|
1638 | DO i = nxl, nxr |
---|
1639 | DO j = nysv, nyn |
---|
1640 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1641 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
1642 | dt_3d * ( & |
---|
1643 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
1644 | ) - & |
---|
1645 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
1646 | ENDDO |
---|
1647 | ENDDO |
---|
1648 | ENDDO |
---|
1649 | |
---|
1650 | ! |
---|
1651 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1652 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1653 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1654 | DO i = nxl, nxr |
---|
1655 | DO j = nysv, nyn |
---|
1656 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1657 | tv_m(k,j,i) = tend(k,j,i) |
---|
1658 | ENDDO |
---|
1659 | ENDDO |
---|
1660 | ENDDO |
---|
1661 | ELSEIF ( intermediate_timestep_count < & |
---|
1662 | intermediate_timestep_count_max ) THEN |
---|
1663 | DO i = nxl, nxr |
---|
1664 | DO j = nysv, nyn |
---|
1665 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1666 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
1667 | ENDDO |
---|
1668 | ENDDO |
---|
1669 | ENDDO |
---|
1670 | ENDIF |
---|
1671 | ENDIF |
---|
1672 | |
---|
1673 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
1674 | |
---|
1675 | ! |
---|
1676 | !-- w-velocity component |
---|
1677 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
1678 | |
---|
1679 | ! |
---|
1680 | !-- w-tendency terms with communication |
---|
1681 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1682 | tend = 0.0 |
---|
1683 | CALL advec_w_ups |
---|
1684 | ENDIF |
---|
1685 | |
---|
1686 | ! |
---|
1687 | !-- w-tendency terms with no communication |
---|
1688 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1689 | tend = 0.0 |
---|
1690 | IF ( ws_scheme_mom ) THEN |
---|
1691 | CALL advec_w_ws |
---|
1692 | ELSE |
---|
1693 | CALL advec_w_pw |
---|
1694 | ENDIF |
---|
1695 | ELSE |
---|
1696 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1697 | tend = 0.0 |
---|
1698 | CALL advec_w_up |
---|
1699 | ENDIF |
---|
1700 | ENDIF |
---|
1701 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1702 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
1703 | v_m, w_m ) |
---|
1704 | ELSE |
---|
1705 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w ) |
---|
1706 | ENDIF |
---|
1707 | CALL coriolis( 3 ) |
---|
1708 | IF ( ocean ) THEN |
---|
1709 | CALL buoyancy( rho, rho_reference, 3, 64 ) |
---|
1710 | ELSE |
---|
1711 | IF ( .NOT. humidity ) THEN |
---|
1712 | CALL buoyancy( pt, pt_reference, 3, 4 ) |
---|
1713 | ELSE |
---|
1714 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
1715 | ENDIF |
---|
1716 | ENDIF |
---|
1717 | |
---|
1718 | ! |
---|
1719 | !-- Drag by plant canopy |
---|
1720 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
1721 | |
---|
1722 | CALL user_actions( 'w-tendency' ) |
---|
1723 | |
---|
1724 | ! |
---|
1725 | !-- Prognostic equation for w-velocity component |
---|
1726 | DO i = nxl, nxr |
---|
1727 | DO j = nys, nyn |
---|
1728 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1729 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
1730 | dt_3d * ( & |
---|
1731 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
1732 | ) - & |
---|
1733 | tsc(5) * rdf(k) * w(k,j,i) |
---|
1734 | ENDDO |
---|
1735 | ENDDO |
---|
1736 | ENDDO |
---|
1737 | |
---|
1738 | ! |
---|
1739 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1740 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1741 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1742 | DO i = nxl, nxr |
---|
1743 | DO j = nys, nyn |
---|
1744 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1745 | tw_m(k,j,i) = tend(k,j,i) |
---|
1746 | ENDDO |
---|
1747 | ENDDO |
---|
1748 | ENDDO |
---|
1749 | ELSEIF ( intermediate_timestep_count < & |
---|
1750 | intermediate_timestep_count_max ) THEN |
---|
1751 | DO i = nxl, nxr |
---|
1752 | DO j = nys, nyn |
---|
1753 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1754 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1755 | ENDDO |
---|
1756 | ENDDO |
---|
1757 | ENDDO |
---|
1758 | ENDIF |
---|
1759 | ENDIF |
---|
1760 | |
---|
1761 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
1762 | |
---|
1763 | ! |
---|
1764 | !-- potential temperature |
---|
1765 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
1766 | |
---|
1767 | ! |
---|
1768 | !-- pt-tendency terms with communication |
---|
1769 | sat = tsc(1) |
---|
1770 | sbt = tsc(2) |
---|
1771 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1772 | |
---|
1773 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1774 | ! |
---|
1775 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1776 | !-- switched on. Thus: |
---|
1777 | sat = 1.0 |
---|
1778 | sbt = 1.0 |
---|
1779 | ENDIF |
---|
1780 | tend = 0.0 |
---|
1781 | CALL advec_s_bc( pt, 'pt' ) |
---|
1782 | ELSE |
---|
1783 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
1784 | tend = 0.0 |
---|
1785 | CALL advec_s_ups( pt, 'pt' ) |
---|
1786 | ENDIF |
---|
1787 | ENDIF |
---|
1788 | |
---|
1789 | ! |
---|
1790 | !-- pt-tendency terms with no communication |
---|
1791 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1792 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
1793 | tend ) |
---|
1794 | ELSE |
---|
1795 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1796 | tend = 0.0 |
---|
1797 | IF ( ws_scheme_sca ) THEN |
---|
1798 | CALL advec_s_ws( pt, 'pt' ) |
---|
1799 | ELSE |
---|
1800 | CALL advec_s_pw( pt ) |
---|
1801 | ENDIF |
---|
1802 | ELSE |
---|
1803 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1804 | tend = 0.0 |
---|
1805 | CALL advec_s_up( pt ) |
---|
1806 | ENDIF |
---|
1807 | ENDIF |
---|
1808 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1809 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tswst_m, & |
---|
1810 | wall_heatflux, tend ) |
---|
1811 | ELSE |
---|
1812 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
1813 | tend ) |
---|
1814 | ENDIF |
---|
1815 | ENDIF |
---|
1816 | |
---|
1817 | ! |
---|
1818 | !-- If required compute heating/cooling due to long wave radiation |
---|
1819 | !-- processes |
---|
1820 | IF ( radiation ) THEN |
---|
1821 | CALL calc_radiation |
---|
1822 | ENDIF |
---|
1823 | |
---|
1824 | ! |
---|
1825 | !-- If required compute impact of latent heat due to precipitation |
---|
1826 | IF ( precipitation ) THEN |
---|
1827 | CALL impact_of_latent_heat |
---|
1828 | ENDIF |
---|
1829 | |
---|
1830 | ! |
---|
1831 | !-- Consideration of heat sources within the plant canopy |
---|
1832 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
1833 | CALL plant_canopy_model( 4 ) |
---|
1834 | ENDIF |
---|
1835 | |
---|
1836 | !--If required compute influence of large-scale subsidence/ascent |
---|
1837 | IF ( large_scale_subsidence ) THEN |
---|
1838 | CALL subsidence ( tend, pt, pt_init ) |
---|
1839 | ENDIF |
---|
1840 | |
---|
1841 | CALL user_actions( 'pt-tendency' ) |
---|
1842 | |
---|
1843 | ! |
---|
1844 | !-- Prognostic equation for potential temperature |
---|
1845 | DO i = nxl, nxr |
---|
1846 | DO j = nys, nyn |
---|
1847 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1848 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
1849 | dt_3d * ( & |
---|
1850 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
1851 | ) - & |
---|
1852 | tsc(5) * rdf_sc(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
1853 | ENDDO |
---|
1854 | ENDDO |
---|
1855 | ENDDO |
---|
1856 | |
---|
1857 | ! |
---|
1858 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1859 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1860 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1861 | DO i = nxl, nxr |
---|
1862 | DO j = nys, nyn |
---|
1863 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1864 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1865 | ENDDO |
---|
1866 | ENDDO |
---|
1867 | ENDDO |
---|
1868 | ELSEIF ( intermediate_timestep_count < & |
---|
1869 | intermediate_timestep_count_max ) THEN |
---|
1870 | DO i = nxl, nxr |
---|
1871 | DO j = nys, nyn |
---|
1872 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1873 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
1874 | ENDDO |
---|
1875 | ENDDO |
---|
1876 | ENDDO |
---|
1877 | ENDIF |
---|
1878 | ENDIF |
---|
1879 | |
---|
1880 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
1881 | |
---|
1882 | ! |
---|
1883 | !-- If required, compute prognostic equation for salinity |
---|
1884 | IF ( ocean ) THEN |
---|
1885 | |
---|
1886 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
1887 | |
---|
1888 | ! |
---|
1889 | !-- sa-tendency terms with communication |
---|
1890 | sat = tsc(1) |
---|
1891 | sbt = tsc(2) |
---|
1892 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1893 | |
---|
1894 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1895 | ! |
---|
1896 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1897 | !-- switched on. Thus: |
---|
1898 | sat = 1.0 |
---|
1899 | sbt = 1.0 |
---|
1900 | ENDIF |
---|
1901 | tend = 0.0 |
---|
1902 | CALL advec_s_bc( sa, 'sa' ) |
---|
1903 | ELSE |
---|
1904 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1905 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1906 | tend = 0.0 |
---|
1907 | CALL advec_s_ups( sa, 'sa' ) |
---|
1908 | ENDIF |
---|
1909 | ENDIF |
---|
1910 | ENDIF |
---|
1911 | |
---|
1912 | ! |
---|
1913 | !-- sa-tendency terms with no communication |
---|
1914 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1915 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
1916 | wall_salinityflux, tend ) |
---|
1917 | ELSE |
---|
1918 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1919 | tend = 0.0 |
---|
1920 | IF ( ws_scheme_sca ) THEN |
---|
1921 | CALL advec_s_ws( sa, 'sa' ) |
---|
1922 | ELSE |
---|
1923 | CALL advec_s_pw( sa ) |
---|
1924 | ENDIF |
---|
1925 | ELSE |
---|
1926 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1927 | tend = 0.0 |
---|
1928 | CALL advec_s_up( sa ) |
---|
1929 | ENDIF |
---|
1930 | ENDIF |
---|
1931 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
1932 | wall_salinityflux, tend ) |
---|
1933 | ENDIF |
---|
1934 | |
---|
1935 | CALL user_actions( 'sa-tendency' ) |
---|
1936 | |
---|
1937 | ! |
---|
1938 | !-- Prognostic equation for salinity |
---|
1939 | DO i = nxl, nxr |
---|
1940 | DO j = nys, nyn |
---|
1941 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1942 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
1943 | dt_3d * ( & |
---|
1944 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
1945 | ) - & |
---|
1946 | tsc(5) * rdf_sc(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
1947 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
1948 | ENDDO |
---|
1949 | ENDDO |
---|
1950 | ENDDO |
---|
1951 | |
---|
1952 | ! |
---|
1953 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1954 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1955 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1956 | DO i = nxl, nxr |
---|
1957 | DO j = nys, nyn |
---|
1958 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1959 | tsa_m(k,j,i) = tend(k,j,i) |
---|
1960 | ENDDO |
---|
1961 | ENDDO |
---|
1962 | ENDDO |
---|
1963 | ELSEIF ( intermediate_timestep_count < & |
---|
1964 | intermediate_timestep_count_max ) THEN |
---|
1965 | DO i = nxl, nxr |
---|
1966 | DO j = nys, nyn |
---|
1967 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1968 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1969 | 5.3125 * tsa_m(k,j,i) |
---|
1970 | ENDDO |
---|
1971 | ENDDO |
---|
1972 | ENDDO |
---|
1973 | ENDIF |
---|
1974 | ENDIF |
---|
1975 | |
---|
1976 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
1977 | |
---|
1978 | ! |
---|
1979 | !-- Calculate density by the equation of state for seawater |
---|
1980 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
1981 | CALL eqn_state_seawater |
---|
1982 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
1983 | |
---|
1984 | ENDIF |
---|
1985 | |
---|
1986 | ! |
---|
1987 | !-- If required, compute prognostic equation for total water content / scalar |
---|
1988 | IF ( humidity .OR. passive_scalar ) THEN |
---|
1989 | |
---|
1990 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
1991 | |
---|
1992 | ! |
---|
1993 | !-- Scalar/q-tendency terms with communication |
---|
1994 | sat = tsc(1) |
---|
1995 | sbt = tsc(2) |
---|
1996 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1997 | |
---|
1998 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1999 | ! |
---|
2000 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
2001 | !-- switched on. Thus: |
---|
2002 | sat = 1.0 |
---|
2003 | sbt = 1.0 |
---|
2004 | ENDIF |
---|
2005 | tend = 0.0 |
---|
2006 | CALL advec_s_bc( q, 'q' ) |
---|
2007 | ELSE |
---|
2008 | IF ( tsc(2) /= 2.0 ) THEN |
---|
2009 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
2010 | tend = 0.0 |
---|
2011 | CALL advec_s_ups( q, 'q' ) |
---|
2012 | ENDIF |
---|
2013 | ENDIF |
---|
2014 | ENDIF |
---|
2015 | |
---|
2016 | ! |
---|
2017 | !-- Scalar/q-tendency terms with no communication |
---|
2018 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
2019 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, wall_qflux, tend ) |
---|
2020 | ELSE |
---|
2021 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
2022 | tend = 0.0 |
---|
2023 | IF ( ws_scheme_sca ) THEN |
---|
2024 | CALL advec_s_ws( q, 'q' ) |
---|
2025 | ELSE |
---|
2026 | CALL advec_s_pw( q ) |
---|
2027 | ENDIF |
---|
2028 | ELSE |
---|
2029 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
2030 | tend = 0.0 |
---|
2031 | CALL advec_s_up( q ) |
---|
2032 | ENDIF |
---|
2033 | ENDIF |
---|
2034 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
2035 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, qswst_m, & |
---|
2036 | wall_qflux, tend ) |
---|
2037 | ELSE |
---|
2038 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, & |
---|
2039 | wall_qflux, tend ) |
---|
2040 | ENDIF |
---|
2041 | ENDIF |
---|
2042 | |
---|
2043 | ! |
---|
2044 | !-- If required compute decrease of total water content due to |
---|
2045 | !-- precipitation |
---|
2046 | IF ( precipitation ) THEN |
---|
2047 | CALL calc_precipitation |
---|
2048 | ENDIF |
---|
2049 | |
---|
2050 | ! |
---|
2051 | !-- Sink or source of scalar concentration due to canopy elements |
---|
2052 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
2053 | |
---|
2054 | ! |
---|
2055 | !-- If required compute influence of large-scale subsidence/ascent |
---|
2056 | IF ( large_scale_subsidence ) THEN |
---|
2057 | CALL subsidence ( tend, q, q_init ) |
---|
2058 | ENDIF |
---|
2059 | |
---|
2060 | CALL user_actions( 'q-tendency' ) |
---|
2061 | |
---|
2062 | ! |
---|
2063 | !-- Prognostic equation for total water content / scalar |
---|
2064 | DO i = nxl, nxr |
---|
2065 | DO j = nys, nyn |
---|
2066 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2067 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
2068 | dt_3d * ( & |
---|
2069 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
2070 | ) - & |
---|
2071 | tsc(5) * rdf_sc(k) * ( q(k,j,i) - q_init(k) ) |
---|
2072 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
2073 | ENDDO |
---|
2074 | ENDDO |
---|
2075 | ENDDO |
---|
2076 | |
---|
2077 | ! |
---|
2078 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2079 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2080 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2081 | DO i = nxl, nxr |
---|
2082 | DO j = nys, nyn |
---|
2083 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2084 | tq_m(k,j,i) = tend(k,j,i) |
---|
2085 | ENDDO |
---|
2086 | ENDDO |
---|
2087 | ENDDO |
---|
2088 | ELSEIF ( intermediate_timestep_count < & |
---|
2089 | intermediate_timestep_count_max ) THEN |
---|
2090 | DO i = nxl, nxr |
---|
2091 | DO j = nys, nyn |
---|
2092 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2093 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
2094 | ENDDO |
---|
2095 | ENDDO |
---|
2096 | ENDDO |
---|
2097 | ENDIF |
---|
2098 | ENDIF |
---|
2099 | |
---|
2100 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
2101 | |
---|
2102 | ENDIF |
---|
2103 | |
---|
2104 | ! |
---|
2105 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
2106 | !-- energy (TKE) |
---|
2107 | IF ( .NOT. constant_diffusion ) THEN |
---|
2108 | |
---|
2109 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
2110 | |
---|
2111 | ! |
---|
2112 | !-- TKE-tendency terms with communication |
---|
2113 | CALL production_e_init |
---|
2114 | |
---|
2115 | sat = tsc(1) |
---|
2116 | sbt = tsc(2) |
---|
2117 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
2118 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
2119 | |
---|
2120 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
2121 | ! |
---|
2122 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
2123 | !-- switched on. Thus: |
---|
2124 | sat = 1.0 |
---|
2125 | sbt = 1.0 |
---|
2126 | ENDIF |
---|
2127 | tend = 0.0 |
---|
2128 | CALL advec_s_bc( e, 'e' ) |
---|
2129 | ELSE |
---|
2130 | IF ( tsc(2) /= 2.0 ) THEN |
---|
2131 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
2132 | tend = 0.0 |
---|
2133 | CALL advec_s_ups( e, 'e' ) |
---|
2134 | ENDIF |
---|
2135 | ENDIF |
---|
2136 | ENDIF |
---|
2137 | ENDIF |
---|
2138 | |
---|
2139 | ! |
---|
2140 | !-- TKE-tendency terms with no communication |
---|
2141 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
2142 | THEN |
---|
2143 | IF ( .NOT. humidity ) THEN |
---|
2144 | IF ( ocean ) THEN |
---|
2145 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
2146 | prho, prho_reference, rif, tend, zu, zw ) |
---|
2147 | ELSE |
---|
2148 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
2149 | pt_reference, rif, tend, zu, zw ) |
---|
2150 | ENDIF |
---|
2151 | ELSE |
---|
2152 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
2153 | pt_reference, rif, tend, zu, zw ) |
---|
2154 | ENDIF |
---|
2155 | ELSE |
---|
2156 | IF ( use_upstream_for_tke ) THEN |
---|
2157 | tend = 0.0 |
---|
2158 | CALL advec_s_up( e ) |
---|
2159 | ELSE |
---|
2160 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
2161 | tend = 0.0 |
---|
2162 | IF ( ws_scheme_sca ) THEN |
---|
2163 | CALL advec_s_ws( e, 'e' ) |
---|
2164 | ELSE |
---|
2165 | CALL advec_s_pw( e ) |
---|
2166 | ENDIF |
---|
2167 | ELSE |
---|
2168 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
2169 | tend = 0.0 |
---|
2170 | CALL advec_s_up( e ) |
---|
2171 | ENDIF |
---|
2172 | ENDIF |
---|
2173 | ENDIF |
---|
2174 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
2175 | IF ( .NOT. humidity ) THEN |
---|
2176 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
2177 | pt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
2178 | ELSE |
---|
2179 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
2180 | vpt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
2181 | ENDIF |
---|
2182 | ELSE |
---|
2183 | IF ( .NOT. humidity ) THEN |
---|
2184 | IF ( ocean ) THEN |
---|
2185 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
2186 | prho, prho_reference, rif, tend, zu, zw ) |
---|
2187 | ELSE |
---|
2188 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
2189 | pt, pt_reference, rif, tend, zu, zw ) |
---|
2190 | ENDIF |
---|
2191 | ELSE |
---|
2192 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
2193 | pt_reference, rif, tend, zu, zw ) |
---|
2194 | ENDIF |
---|
2195 | ENDIF |
---|
2196 | ENDIF |
---|
2197 | CALL production_e |
---|
2198 | |
---|
2199 | ! |
---|
2200 | !-- Additional sink term for flows through plant canopies |
---|
2201 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
2202 | CALL user_actions( 'e-tendency' ) |
---|
2203 | |
---|
2204 | ! |
---|
2205 | !-- Prognostic equation for TKE. |
---|
2206 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
2207 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
2208 | !-- value is reduced by 90%. |
---|
2209 | DO i = nxl, nxr |
---|
2210 | DO j = nys, nyn |
---|
2211 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2212 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
2213 | dt_3d * ( & |
---|
2214 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
2215 | ) |
---|
2216 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
2217 | ENDDO |
---|
2218 | ENDDO |
---|
2219 | ENDDO |
---|
2220 | |
---|
2221 | ! |
---|
2222 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2223 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2224 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2225 | DO i = nxl, nxr |
---|
2226 | DO j = nys, nyn |
---|
2227 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2228 | te_m(k,j,i) = tend(k,j,i) |
---|
2229 | ENDDO |
---|
2230 | ENDDO |
---|
2231 | ENDDO |
---|
2232 | ELSEIF ( intermediate_timestep_count < & |
---|
2233 | intermediate_timestep_count_max ) THEN |
---|
2234 | DO i = nxl, nxr |
---|
2235 | DO j = nys, nyn |
---|
2236 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2237 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
2238 | ENDDO |
---|
2239 | ENDDO |
---|
2240 | ENDDO |
---|
2241 | ENDIF |
---|
2242 | ENDIF |
---|
2243 | |
---|
2244 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
2245 | |
---|
2246 | ENDIF |
---|
2247 | |
---|
2248 | |
---|
2249 | END SUBROUTINE prognostic_equations_vector |
---|
2250 | |
---|
2251 | |
---|
2252 | END MODULE prognostic_equations_mod |
---|