1 | MODULE prognostic_equations_mod |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Current revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: prognostic_equations.f90 710 2011-03-30 09:45:27Z gryschka $ |
---|
11 | ! |
---|
12 | ! 709 2011-03-30 09:31:40Z raasch |
---|
13 | ! formatting adjustments |
---|
14 | ! |
---|
15 | ! 673 2011-01-18 16:19:48Z suehring |
---|
16 | ! Consideration of the pressure gradient (steered by tsc(4)) during the time |
---|
17 | ! integration removed. |
---|
18 | ! |
---|
19 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
20 | ! Calls of the advection routines with WS5 added. |
---|
21 | ! Calls of ws_statistics added to set the statistical arrays to zero after each |
---|
22 | ! time step. |
---|
23 | ! |
---|
24 | ! 531 2010-04-21 06:47:21Z heinze |
---|
25 | ! add call of subsidence in the equation for humidity / passive scalar |
---|
26 | ! |
---|
27 | ! 411 2009-12-11 14:15:58Z heinze |
---|
28 | ! add call of subsidence in the equation for potential temperature |
---|
29 | ! |
---|
30 | ! 388 2009-09-23 09:40:33Z raasch |
---|
31 | ! prho is used instead of rho in diffusion_e, |
---|
32 | ! external pressure gradient |
---|
33 | ! |
---|
34 | ! 153 2008-03-19 09:41:30Z steinfeld |
---|
35 | ! add call of plant_canopy_model in the prognostic equation for |
---|
36 | ! the potential temperature and for the passive scalar |
---|
37 | ! |
---|
38 | ! 138 2007-11-28 10:03:58Z letzel |
---|
39 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
40 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
41 | ! |
---|
42 | ! 106 2007-08-16 14:30:26Z raasch |
---|
43 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
44 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
45 | ! for non-cyclic boundary conditions) |
---|
46 | ! |
---|
47 | ! 97 2007-06-21 08:23:15Z raasch |
---|
48 | ! prognostic equation for salinity, density is calculated from equation of |
---|
49 | ! state for seawater and is used for calculation of buoyancy, |
---|
50 | ! +eqn_state_seawater_mod |
---|
51 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
52 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
53 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
54 | ! calc_mean_profile |
---|
55 | ! |
---|
56 | ! 75 2007-03-22 09:54:05Z raasch |
---|
57 | ! checking for negative q and limiting for positive values, |
---|
58 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
59 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
60 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
61 | ! _vector-version |
---|
62 | ! |
---|
63 | ! 19 2007-02-23 04:53:48Z raasch |
---|
64 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
65 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
66 | ! |
---|
67 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
68 | ! |
---|
69 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
70 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
71 | ! regardless of the timestep scheme used for the other quantities, |
---|
72 | ! new argument diss in call of diffusion_e |
---|
73 | ! |
---|
74 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
75 | ! Initial revision |
---|
76 | ! |
---|
77 | ! |
---|
78 | ! Description: |
---|
79 | ! ------------ |
---|
80 | ! Solving the prognostic equations. |
---|
81 | !------------------------------------------------------------------------------! |
---|
82 | |
---|
83 | USE arrays_3d |
---|
84 | USE control_parameters |
---|
85 | USE cpulog |
---|
86 | USE eqn_state_seawater_mod |
---|
87 | USE grid_variables |
---|
88 | USE indices |
---|
89 | USE interfaces |
---|
90 | USE pegrid |
---|
91 | USE pointer_interfaces |
---|
92 | USE statistics |
---|
93 | USE advec_ws |
---|
94 | USE advec_s_pw_mod |
---|
95 | USE advec_s_up_mod |
---|
96 | USE advec_u_pw_mod |
---|
97 | USE advec_u_up_mod |
---|
98 | USE advec_v_pw_mod |
---|
99 | USE advec_v_up_mod |
---|
100 | USE advec_w_pw_mod |
---|
101 | USE advec_w_up_mod |
---|
102 | USE buoyancy_mod |
---|
103 | USE calc_precipitation_mod |
---|
104 | USE calc_radiation_mod |
---|
105 | USE coriolis_mod |
---|
106 | USE diffusion_e_mod |
---|
107 | USE diffusion_s_mod |
---|
108 | USE diffusion_u_mod |
---|
109 | USE diffusion_v_mod |
---|
110 | USE diffusion_w_mod |
---|
111 | USE impact_of_latent_heat_mod |
---|
112 | USE plant_canopy_model_mod |
---|
113 | USE production_e_mod |
---|
114 | USE subsidence_mod |
---|
115 | USE user_actions_mod |
---|
116 | |
---|
117 | |
---|
118 | PRIVATE |
---|
119 | PUBLIC prognostic_equations_noopt, prognostic_equations_cache, & |
---|
120 | prognostic_equations_vector |
---|
121 | |
---|
122 | INTERFACE prognostic_equations_noopt |
---|
123 | MODULE PROCEDURE prognostic_equations_noopt |
---|
124 | END INTERFACE prognostic_equations_noopt |
---|
125 | |
---|
126 | INTERFACE prognostic_equations_cache |
---|
127 | MODULE PROCEDURE prognostic_equations_cache |
---|
128 | END INTERFACE prognostic_equations_cache |
---|
129 | |
---|
130 | INTERFACE prognostic_equations_vector |
---|
131 | MODULE PROCEDURE prognostic_equations_vector |
---|
132 | END INTERFACE prognostic_equations_vector |
---|
133 | |
---|
134 | |
---|
135 | CONTAINS |
---|
136 | |
---|
137 | |
---|
138 | SUBROUTINE prognostic_equations_noopt |
---|
139 | |
---|
140 | !------------------------------------------------------------------------------! |
---|
141 | ! Version with single loop optimization |
---|
142 | ! |
---|
143 | ! (Optimized over each single prognostic equation.) |
---|
144 | !------------------------------------------------------------------------------! |
---|
145 | |
---|
146 | IMPLICIT NONE |
---|
147 | |
---|
148 | CHARACTER (LEN=9) :: time_to_string |
---|
149 | INTEGER :: i, j, k |
---|
150 | REAL :: sat, sbt |
---|
151 | |
---|
152 | ! |
---|
153 | !-- Calculate those variables needed in the tendency terms which need |
---|
154 | !-- global communication |
---|
155 | CALL calc_mean_profile( pt, 4 ) |
---|
156 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
157 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
158 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
159 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
160 | |
---|
161 | ! |
---|
162 | !-- u-velocity component |
---|
163 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
164 | |
---|
165 | ! |
---|
166 | !-- u-tendency terms with communication |
---|
167 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
168 | tend = 0.0 |
---|
169 | CALL advec_u_ups |
---|
170 | ENDIF |
---|
171 | |
---|
172 | ! |
---|
173 | !-- u-tendency terms with no communication |
---|
174 | DO i = nxlu, nxr |
---|
175 | DO j = nys, nyn |
---|
176 | ! |
---|
177 | !-- Tendency terms |
---|
178 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
179 | tend(:,j,i) = 0.0 |
---|
180 | IF ( ws_scheme_mom ) THEN |
---|
181 | CALL advec_u_ws( i, j ) |
---|
182 | ELSE |
---|
183 | CALL advec_u_pw( i, j ) |
---|
184 | ENDIF |
---|
185 | |
---|
186 | ELSE |
---|
187 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
188 | tend(:,j,i) = 0.0 |
---|
189 | CALL advec_u_up( i, j ) |
---|
190 | ENDIF |
---|
191 | ENDIF |
---|
192 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
193 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
194 | usws_m, uswst_m, v_m, w_m ) |
---|
195 | ELSE |
---|
196 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
197 | uswst, v, w ) |
---|
198 | ENDIF |
---|
199 | CALL coriolis( i, j, 1 ) |
---|
200 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, 4 ) |
---|
201 | |
---|
202 | ! |
---|
203 | !-- Drag by plant canopy |
---|
204 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
205 | |
---|
206 | ! |
---|
207 | !-- External pressure gradient |
---|
208 | IF ( dp_external ) THEN |
---|
209 | DO k = dp_level_ind_b+1, nzt |
---|
210 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
211 | ENDDO |
---|
212 | ENDIF |
---|
213 | |
---|
214 | CALL user_actions( i, j, 'u-tendency' ) |
---|
215 | |
---|
216 | ! |
---|
217 | !-- Prognostic equation for u-velocity component |
---|
218 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
219 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
220 | dt_3d * ( & |
---|
221 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
222 | ) - & |
---|
223 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
224 | ENDDO |
---|
225 | |
---|
226 | ! |
---|
227 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
228 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
229 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
230 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
231 | tu_m(k,j,i) = tend(k,j,i) |
---|
232 | ENDDO |
---|
233 | ELSEIF ( intermediate_timestep_count < & |
---|
234 | intermediate_timestep_count_max ) THEN |
---|
235 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
236 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
237 | ENDDO |
---|
238 | ENDIF |
---|
239 | ENDIF |
---|
240 | |
---|
241 | ENDDO |
---|
242 | ENDDO |
---|
243 | |
---|
244 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
245 | |
---|
246 | ! |
---|
247 | !-- v-velocity component |
---|
248 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
249 | |
---|
250 | ! |
---|
251 | !-- v-tendency terms with communication |
---|
252 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
253 | tend = 0.0 |
---|
254 | CALL advec_v_ups |
---|
255 | ENDIF |
---|
256 | |
---|
257 | ! |
---|
258 | !-- v-tendency terms with no communication |
---|
259 | DO i = nxl, nxr |
---|
260 | DO j = nysv, nyn |
---|
261 | ! |
---|
262 | !-- Tendency terms |
---|
263 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
264 | tend(:,j,i) = 0.0 |
---|
265 | IF ( ws_scheme_mom ) THEN |
---|
266 | CALL advec_v_ws( i, j ) |
---|
267 | ELSE |
---|
268 | CALL advec_v_pw( i, j ) |
---|
269 | ENDIF |
---|
270 | |
---|
271 | ELSE |
---|
272 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
273 | tend(:,j,i) = 0.0 |
---|
274 | CALL advec_v_up( i, j ) |
---|
275 | ENDIF |
---|
276 | ENDIF |
---|
277 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
278 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
279 | v_m, vsws_m, vswst_m, w_m ) |
---|
280 | ELSE |
---|
281 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
282 | vsws, vswst, w ) |
---|
283 | ENDIF |
---|
284 | CALL coriolis( i, j, 2 ) |
---|
285 | |
---|
286 | ! |
---|
287 | !-- Drag by plant canopy |
---|
288 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
289 | |
---|
290 | ! |
---|
291 | !-- External pressure gradient |
---|
292 | IF ( dp_external ) THEN |
---|
293 | DO k = dp_level_ind_b+1, nzt |
---|
294 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
295 | ENDDO |
---|
296 | ENDIF |
---|
297 | |
---|
298 | CALL user_actions( i, j, 'v-tendency' ) |
---|
299 | |
---|
300 | ! |
---|
301 | !-- Prognostic equation for v-velocity component |
---|
302 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
303 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
304 | dt_3d * ( & |
---|
305 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
306 | ) - & |
---|
307 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
308 | ENDDO |
---|
309 | |
---|
310 | ! |
---|
311 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
312 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
313 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
314 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
315 | tv_m(k,j,i) = tend(k,j,i) |
---|
316 | ENDDO |
---|
317 | ELSEIF ( intermediate_timestep_count < & |
---|
318 | intermediate_timestep_count_max ) THEN |
---|
319 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
320 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
321 | ENDDO |
---|
322 | ENDIF |
---|
323 | ENDIF |
---|
324 | |
---|
325 | ENDDO |
---|
326 | ENDDO |
---|
327 | |
---|
328 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
329 | |
---|
330 | ! |
---|
331 | !-- w-velocity component |
---|
332 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
333 | |
---|
334 | ! |
---|
335 | !-- w-tendency terms with communication |
---|
336 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
337 | tend = 0.0 |
---|
338 | CALL advec_w_ups |
---|
339 | ENDIF |
---|
340 | |
---|
341 | ! |
---|
342 | !-- w-tendency terms with no communication |
---|
343 | DO i = nxl, nxr |
---|
344 | DO j = nys, nyn |
---|
345 | ! |
---|
346 | !-- Tendency terms |
---|
347 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
348 | tend(:,j,i) = 0.0 |
---|
349 | IF ( ws_scheme_mom ) THEN |
---|
350 | CALL advec_w_ws( i, j ) |
---|
351 | ELSE |
---|
352 | CALL advec_w_pw( i, j ) |
---|
353 | ENDIF |
---|
354 | |
---|
355 | ELSE |
---|
356 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
357 | tend(:,j,i) = 0.0 |
---|
358 | CALL advec_w_up( i, j ) |
---|
359 | ENDIF |
---|
360 | ENDIF |
---|
361 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
362 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
363 | tend, u_m, v_m, w_m ) |
---|
364 | ELSE |
---|
365 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
366 | tend, u, v, w ) |
---|
367 | ENDIF |
---|
368 | CALL coriolis( i, j, 3 ) |
---|
369 | IF ( ocean ) THEN |
---|
370 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
371 | ELSE |
---|
372 | IF ( .NOT. humidity ) THEN |
---|
373 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
374 | ELSE |
---|
375 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
376 | ENDIF |
---|
377 | ENDIF |
---|
378 | |
---|
379 | ! |
---|
380 | !-- Drag by plant canopy |
---|
381 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
382 | |
---|
383 | CALL user_actions( i, j, 'w-tendency' ) |
---|
384 | |
---|
385 | ! |
---|
386 | !-- Prognostic equation for w-velocity component |
---|
387 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
388 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
389 | dt_3d * ( & |
---|
390 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
391 | ) - & |
---|
392 | tsc(5) * rdf(k) * w(k,j,i) |
---|
393 | ENDDO |
---|
394 | |
---|
395 | ! |
---|
396 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
397 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
398 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
399 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
400 | tw_m(k,j,i) = tend(k,j,i) |
---|
401 | ENDDO |
---|
402 | ELSEIF ( intermediate_timestep_count < & |
---|
403 | intermediate_timestep_count_max ) THEN |
---|
404 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
405 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
406 | ENDDO |
---|
407 | ENDIF |
---|
408 | ENDIF |
---|
409 | |
---|
410 | ENDDO |
---|
411 | ENDDO |
---|
412 | |
---|
413 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
414 | |
---|
415 | ! |
---|
416 | !-- potential temperature |
---|
417 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
418 | |
---|
419 | ! |
---|
420 | !-- pt-tendency terms with communication |
---|
421 | sat = tsc(1) |
---|
422 | sbt = tsc(2) |
---|
423 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
424 | |
---|
425 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
426 | ! |
---|
427 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
428 | !-- switched on. Thus: |
---|
429 | sat = 1.0 |
---|
430 | sbt = 1.0 |
---|
431 | ENDIF |
---|
432 | tend = 0.0 |
---|
433 | CALL advec_s_bc( pt, 'pt' ) |
---|
434 | ELSE |
---|
435 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
436 | tend = 0.0 |
---|
437 | CALL advec_s_ups( pt, 'pt' ) |
---|
438 | ENDIF |
---|
439 | ENDIF |
---|
440 | |
---|
441 | ! |
---|
442 | !-- pt-tendency terms with no communication |
---|
443 | DO i = nxl, nxr |
---|
444 | DO j = nys, nyn |
---|
445 | ! |
---|
446 | !-- Tendency terms |
---|
447 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
448 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
449 | wall_heatflux, tend ) |
---|
450 | ELSE |
---|
451 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
452 | tend(:,j,i) = 0.0 |
---|
453 | IF ( ws_scheme_sca ) THEN |
---|
454 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, & |
---|
455 | diss_s_pt, flux_l_pt, diss_l_pt ) |
---|
456 | ELSE |
---|
457 | CALL advec_s_pw( i, j, pt ) |
---|
458 | ENDIF |
---|
459 | ELSE |
---|
460 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
461 | tend(:,j,i) = 0.0 |
---|
462 | CALL advec_s_up( i, j, pt ) |
---|
463 | ENDIF |
---|
464 | ENDIF |
---|
465 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
466 | THEN |
---|
467 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
468 | tswst_m, wall_heatflux, tend ) |
---|
469 | ELSE |
---|
470 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
471 | wall_heatflux, tend ) |
---|
472 | ENDIF |
---|
473 | ENDIF |
---|
474 | |
---|
475 | ! |
---|
476 | !-- If required compute heating/cooling due to long wave radiation |
---|
477 | !-- processes |
---|
478 | IF ( radiation ) THEN |
---|
479 | CALL calc_radiation( i, j ) |
---|
480 | ENDIF |
---|
481 | |
---|
482 | ! |
---|
483 | !-- If required compute impact of latent heat due to precipitation |
---|
484 | IF ( precipitation ) THEN |
---|
485 | CALL impact_of_latent_heat( i, j ) |
---|
486 | ENDIF |
---|
487 | |
---|
488 | ! |
---|
489 | !-- Consideration of heat sources within the plant canopy |
---|
490 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
491 | CALL plant_canopy_model( i, j, 4 ) |
---|
492 | ENDIF |
---|
493 | |
---|
494 | ! |
---|
495 | !-- If required compute influence of large-scale subsidence/ascent |
---|
496 | IF ( large_scale_subsidence ) THEN |
---|
497 | CALL subsidence ( i, j, tend, pt, pt_init ) |
---|
498 | ENDIF |
---|
499 | |
---|
500 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
501 | |
---|
502 | ! |
---|
503 | !-- Prognostic equation for potential temperature |
---|
504 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
505 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
506 | dt_3d * ( & |
---|
507 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
508 | ) - & |
---|
509 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
510 | ENDDO |
---|
511 | |
---|
512 | ! |
---|
513 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
514 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
515 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
516 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
517 | tpt_m(k,j,i) = tend(k,j,i) |
---|
518 | ENDDO |
---|
519 | ELSEIF ( intermediate_timestep_count < & |
---|
520 | intermediate_timestep_count_max ) THEN |
---|
521 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
522 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
523 | ENDDO |
---|
524 | ENDIF |
---|
525 | ENDIF |
---|
526 | |
---|
527 | ENDDO |
---|
528 | ENDDO |
---|
529 | |
---|
530 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
531 | |
---|
532 | ! |
---|
533 | !-- If required, compute prognostic equation for salinity |
---|
534 | IF ( ocean ) THEN |
---|
535 | |
---|
536 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
537 | |
---|
538 | ! |
---|
539 | !-- sa-tendency terms with communication |
---|
540 | sat = tsc(1) |
---|
541 | sbt = tsc(2) |
---|
542 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
543 | |
---|
544 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
545 | ! |
---|
546 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
547 | !-- switched on. Thus: |
---|
548 | sat = 1.0 |
---|
549 | sbt = 1.0 |
---|
550 | ENDIF |
---|
551 | tend = 0.0 |
---|
552 | CALL advec_s_bc( sa, 'sa' ) |
---|
553 | ELSE |
---|
554 | IF ( tsc(2) /= 2.0 ) THEN |
---|
555 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
556 | tend = 0.0 |
---|
557 | CALL advec_s_ups( sa, 'sa' ) |
---|
558 | ENDIF |
---|
559 | ENDIF |
---|
560 | ENDIF |
---|
561 | |
---|
562 | ! |
---|
563 | !-- sa terms with no communication |
---|
564 | DO i = nxl, nxr |
---|
565 | DO j = nys, nyn |
---|
566 | ! |
---|
567 | !-- Tendency-terms |
---|
568 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
569 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
570 | wall_salinityflux, tend ) |
---|
571 | ELSE |
---|
572 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
573 | tend(:,j,i) = 0.0 |
---|
574 | IF ( ws_scheme_sca ) THEN |
---|
575 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
576 | diss_s_sa, flux_l_sa, diss_l_sa ) |
---|
577 | ELSE |
---|
578 | CALL advec_s_pw( i, j, sa ) |
---|
579 | ENDIF |
---|
580 | |
---|
581 | ELSE |
---|
582 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
583 | tend(:,j,i) = 0.0 |
---|
584 | CALL advec_s_up( i, j, sa ) |
---|
585 | ENDIF |
---|
586 | ENDIF |
---|
587 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
588 | wall_salinityflux, tend ) |
---|
589 | ENDIF |
---|
590 | |
---|
591 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
592 | |
---|
593 | ! |
---|
594 | !-- Prognostic equation for salinity |
---|
595 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
596 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
597 | dt_3d * ( & |
---|
598 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
599 | ) - & |
---|
600 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
601 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
602 | ENDDO |
---|
603 | |
---|
604 | ! |
---|
605 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
606 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
607 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
608 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
609 | tsa_m(k,j,i) = tend(k,j,i) |
---|
610 | ENDDO |
---|
611 | ELSEIF ( intermediate_timestep_count < & |
---|
612 | intermediate_timestep_count_max ) THEN |
---|
613 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
614 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
615 | 5.3125 * tsa_m(k,j,i) |
---|
616 | ENDDO |
---|
617 | ENDIF |
---|
618 | ENDIF |
---|
619 | |
---|
620 | ! |
---|
621 | !-- Calculate density by the equation of state for seawater |
---|
622 | CALL eqn_state_seawater( i, j ) |
---|
623 | |
---|
624 | ENDDO |
---|
625 | ENDDO |
---|
626 | |
---|
627 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
628 | |
---|
629 | ENDIF |
---|
630 | |
---|
631 | ! |
---|
632 | !-- If required, compute prognostic equation for total water content / scalar |
---|
633 | IF ( humidity .OR. passive_scalar ) THEN |
---|
634 | |
---|
635 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
636 | |
---|
637 | ! |
---|
638 | !-- Scalar/q-tendency terms with communication |
---|
639 | sat = tsc(1) |
---|
640 | sbt = tsc(2) |
---|
641 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
642 | |
---|
643 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
644 | ! |
---|
645 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
646 | !-- switched on. Thus: |
---|
647 | sat = 1.0 |
---|
648 | sbt = 1.0 |
---|
649 | ENDIF |
---|
650 | tend = 0.0 |
---|
651 | CALL advec_s_bc( q, 'q' ) |
---|
652 | ELSE |
---|
653 | IF ( tsc(2) /= 2.0 ) THEN |
---|
654 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
655 | tend = 0.0 |
---|
656 | CALL advec_s_ups( q, 'q' ) |
---|
657 | ENDIF |
---|
658 | ENDIF |
---|
659 | ENDIF |
---|
660 | |
---|
661 | ! |
---|
662 | !-- Scalar/q-tendency terms with no communication |
---|
663 | DO i = nxl, nxr |
---|
664 | DO j = nys, nyn |
---|
665 | ! |
---|
666 | !-- Tendency-terms |
---|
667 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
668 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
669 | wall_qflux, tend ) |
---|
670 | ELSE |
---|
671 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
672 | tend(:,j,i) = 0.0 |
---|
673 | IF ( ws_scheme_sca ) THEN |
---|
674 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
675 | diss_s_q, flux_l_q, diss_l_q ) |
---|
676 | ELSE |
---|
677 | CALL advec_s_pw( i, j, q ) |
---|
678 | ENDIF |
---|
679 | ELSE |
---|
680 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
681 | tend(:,j,i) = 0.0 |
---|
682 | CALL advec_s_up( i, j, q ) |
---|
683 | ENDIF |
---|
684 | ENDIF |
---|
685 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
686 | THEN |
---|
687 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
688 | qswst_m, wall_qflux, tend ) |
---|
689 | ELSE |
---|
690 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
691 | wall_qflux, tend ) |
---|
692 | ENDIF |
---|
693 | ENDIF |
---|
694 | |
---|
695 | ! |
---|
696 | !-- If required compute decrease of total water content due to |
---|
697 | !-- precipitation |
---|
698 | IF ( precipitation ) THEN |
---|
699 | CALL calc_precipitation( i, j ) |
---|
700 | ENDIF |
---|
701 | |
---|
702 | ! |
---|
703 | !-- Sink or source of scalar concentration due to canopy elements |
---|
704 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
705 | |
---|
706 | ! |
---|
707 | !-- If required compute influence of large-scale subsidence/ascent |
---|
708 | IF ( large_scale_subsidence ) THEN |
---|
709 | CALL subsidence ( i, j, tend, q, q_init ) |
---|
710 | ENDIF |
---|
711 | |
---|
712 | CALL user_actions( i, j, 'q-tendency' ) |
---|
713 | |
---|
714 | ! |
---|
715 | !-- Prognostic equation for total water content / scalar |
---|
716 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
717 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
718 | dt_3d * ( & |
---|
719 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
720 | ) - & |
---|
721 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
722 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
723 | ENDDO |
---|
724 | |
---|
725 | ! |
---|
726 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
727 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
728 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
729 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
730 | tq_m(k,j,i) = tend(k,j,i) |
---|
731 | ENDDO |
---|
732 | ELSEIF ( intermediate_timestep_count < & |
---|
733 | intermediate_timestep_count_max ) THEN |
---|
734 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
735 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
736 | ENDDO |
---|
737 | ENDIF |
---|
738 | ENDIF |
---|
739 | |
---|
740 | ENDDO |
---|
741 | ENDDO |
---|
742 | |
---|
743 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
744 | |
---|
745 | ENDIF |
---|
746 | |
---|
747 | ! |
---|
748 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
749 | !-- energy (TKE) |
---|
750 | IF ( .NOT. constant_diffusion ) THEN |
---|
751 | |
---|
752 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
753 | |
---|
754 | ! |
---|
755 | !-- TKE-tendency terms with communication |
---|
756 | CALL production_e_init |
---|
757 | |
---|
758 | sat = tsc(1) |
---|
759 | sbt = tsc(2) |
---|
760 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
761 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
762 | |
---|
763 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
764 | ! |
---|
765 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
766 | !-- switched on. Thus: |
---|
767 | sat = 1.0 |
---|
768 | sbt = 1.0 |
---|
769 | ENDIF |
---|
770 | tend = 0.0 |
---|
771 | CALL advec_s_bc( e, 'e' ) |
---|
772 | ELSE |
---|
773 | IF ( tsc(2) /= 2.0 ) THEN |
---|
774 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
775 | tend = 0.0 |
---|
776 | CALL advec_s_ups( e, 'e' ) |
---|
777 | ENDIF |
---|
778 | ENDIF |
---|
779 | ENDIF |
---|
780 | ENDIF |
---|
781 | |
---|
782 | ! |
---|
783 | !-- TKE-tendency terms with no communication |
---|
784 | DO i = nxl, nxr |
---|
785 | DO j = nys, nyn |
---|
786 | ! |
---|
787 | !-- Tendency-terms |
---|
788 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
789 | .NOT. use_upstream_for_tke ) THEN |
---|
790 | IF ( .NOT. humidity ) THEN |
---|
791 | IF ( ocean ) THEN |
---|
792 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
793 | l_grid, prho, prho_reference, rif, & |
---|
794 | tend, zu, zw ) |
---|
795 | ELSE |
---|
796 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
797 | l_grid, pt, pt_reference, rif, tend, & |
---|
798 | zu, zw ) |
---|
799 | ENDIF |
---|
800 | ELSE |
---|
801 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
802 | l_grid, vpt, pt_reference, rif, tend, zu, & |
---|
803 | zw ) |
---|
804 | ENDIF |
---|
805 | ELSE |
---|
806 | IF ( use_upstream_for_tke ) THEN |
---|
807 | tend(:,j,i) = 0.0 |
---|
808 | CALL advec_s_up( i, j, e ) |
---|
809 | ELSE |
---|
810 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
811 | THEN |
---|
812 | tend(:,j,i) = 0.0 |
---|
813 | IF ( ws_scheme_sca ) THEN |
---|
814 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, & |
---|
815 | diss_s_e, flux_l_e, diss_l_e ) |
---|
816 | ELSE |
---|
817 | CALL advec_s_pw( i, j, e ) |
---|
818 | ENDIF |
---|
819 | ELSE |
---|
820 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
821 | tend(:,j,i) = 0.0 |
---|
822 | CALL advec_s_up( i, j, e ) |
---|
823 | ENDIF |
---|
824 | ENDIF |
---|
825 | ENDIF |
---|
826 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
827 | THEN |
---|
828 | IF ( .NOT. humidity ) THEN |
---|
829 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
830 | km_m, l_grid, pt_m, pt_reference, & |
---|
831 | rif_m, tend, zu, zw ) |
---|
832 | ELSE |
---|
833 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
834 | km_m, l_grid, vpt_m, pt_reference, & |
---|
835 | rif_m, tend, zu, zw ) |
---|
836 | ENDIF |
---|
837 | ELSE |
---|
838 | IF ( .NOT. humidity ) THEN |
---|
839 | IF ( ocean ) THEN |
---|
840 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
841 | km, l_grid, prho, prho_reference, & |
---|
842 | rif, tend, zu, zw ) |
---|
843 | ELSE |
---|
844 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
845 | km, l_grid, pt, pt_reference, rif, & |
---|
846 | tend, zu, zw ) |
---|
847 | ENDIF |
---|
848 | ELSE |
---|
849 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
850 | l_grid, vpt, pt_reference, rif, tend, & |
---|
851 | zu, zw ) |
---|
852 | ENDIF |
---|
853 | ENDIF |
---|
854 | ENDIF |
---|
855 | CALL production_e( i, j ) |
---|
856 | |
---|
857 | ! |
---|
858 | !-- Additional sink term for flows through plant canopies |
---|
859 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
860 | |
---|
861 | CALL user_actions( i, j, 'e-tendency' ) |
---|
862 | |
---|
863 | ! |
---|
864 | !-- Prognostic equation for TKE. |
---|
865 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
866 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
867 | !-- value is reduced by 90%. |
---|
868 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
869 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
870 | dt_3d * ( & |
---|
871 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
872 | ) |
---|
873 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
874 | ENDDO |
---|
875 | |
---|
876 | ! |
---|
877 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
878 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
879 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
880 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
881 | te_m(k,j,i) = tend(k,j,i) |
---|
882 | ENDDO |
---|
883 | ELSEIF ( intermediate_timestep_count < & |
---|
884 | intermediate_timestep_count_max ) THEN |
---|
885 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
886 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
887 | ENDDO |
---|
888 | ENDIF |
---|
889 | ENDIF |
---|
890 | |
---|
891 | ENDDO |
---|
892 | ENDDO |
---|
893 | |
---|
894 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
895 | |
---|
896 | ENDIF |
---|
897 | |
---|
898 | |
---|
899 | END SUBROUTINE prognostic_equations_noopt |
---|
900 | |
---|
901 | |
---|
902 | SUBROUTINE prognostic_equations_cache |
---|
903 | |
---|
904 | !------------------------------------------------------------------------------! |
---|
905 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
906 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
907 | ! |
---|
908 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
909 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
910 | ! these loops. |
---|
911 | ! |
---|
912 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
913 | !------------------------------------------------------------------------------! |
---|
914 | |
---|
915 | IMPLICIT NONE |
---|
916 | |
---|
917 | CHARACTER (LEN=9) :: time_to_string |
---|
918 | INTEGER :: i, j, k |
---|
919 | |
---|
920 | |
---|
921 | ! |
---|
922 | !-- Time measurement can only be performed for the whole set of equations |
---|
923 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
924 | |
---|
925 | |
---|
926 | ! |
---|
927 | !-- Calculate those variables needed in the tendency terms which need |
---|
928 | !-- global communication |
---|
929 | CALL calc_mean_profile( pt, 4 ) |
---|
930 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
931 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
932 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
933 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
934 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
935 | |
---|
936 | |
---|
937 | ! |
---|
938 | !-- Loop over all prognostic equations |
---|
939 | !$OMP PARALLEL private (i,j,k) |
---|
940 | !$OMP DO |
---|
941 | DO i = nxl, nxr |
---|
942 | DO j = nys, nyn |
---|
943 | ! |
---|
944 | !-- Tendency terms for u-velocity component |
---|
945 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
946 | |
---|
947 | tend(:,j,i) = 0.0 |
---|
948 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
949 | IF ( ws_scheme_mom ) THEN |
---|
950 | ! CALL local_diss( i, j, u) ! dissipation control |
---|
951 | CALL advec_u_ws( i, j ) |
---|
952 | ELSE |
---|
953 | CALL advec_u_pw( i, j ) |
---|
954 | ENDIF |
---|
955 | ELSE |
---|
956 | CALL advec_u_up( i, j ) |
---|
957 | ENDIF |
---|
958 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
959 | THEN |
---|
960 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
961 | u_m, usws_m, uswst_m, v_m, w_m ) |
---|
962 | ELSE |
---|
963 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
964 | usws, uswst, v, w ) |
---|
965 | ENDIF |
---|
966 | CALL coriolis( i, j, 1 ) |
---|
967 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, & |
---|
968 | 4 ) |
---|
969 | |
---|
970 | ! |
---|
971 | !-- Drag by plant canopy |
---|
972 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
973 | |
---|
974 | ! |
---|
975 | !-- External pressure gradient |
---|
976 | IF ( dp_external ) THEN |
---|
977 | DO k = dp_level_ind_b+1, nzt |
---|
978 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
979 | ENDDO |
---|
980 | ENDIF |
---|
981 | |
---|
982 | CALL user_actions( i, j, 'u-tendency' ) |
---|
983 | |
---|
984 | ! |
---|
985 | !-- Prognostic equation for u-velocity component |
---|
986 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
987 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
988 | dt_3d * ( & |
---|
989 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
990 | ) - & |
---|
991 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
992 | ENDDO |
---|
993 | |
---|
994 | ! |
---|
995 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
996 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
997 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
998 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
999 | tu_m(k,j,i) = tend(k,j,i) |
---|
1000 | ENDDO |
---|
1001 | ELSEIF ( intermediate_timestep_count < & |
---|
1002 | intermediate_timestep_count_max ) THEN |
---|
1003 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1004 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
1005 | ENDDO |
---|
1006 | ENDIF |
---|
1007 | ENDIF |
---|
1008 | |
---|
1009 | ENDIF |
---|
1010 | |
---|
1011 | ! |
---|
1012 | !-- Tendency terms for v-velocity component |
---|
1013 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
1014 | |
---|
1015 | tend(:,j,i) = 0.0 |
---|
1016 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1017 | IF ( ws_scheme_mom ) THEN |
---|
1018 | ! CALL local_diss( i, j, v) |
---|
1019 | CALL advec_v_ws( i, j ) |
---|
1020 | ELSE |
---|
1021 | CALL advec_v_pw( i, j ) |
---|
1022 | ENDIF |
---|
1023 | ELSE |
---|
1024 | CALL advec_v_up( i, j ) |
---|
1025 | ENDIF |
---|
1026 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
1027 | THEN |
---|
1028 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
1029 | u_m, v_m, vsws_m, vswst_m, w_m ) |
---|
1030 | ELSE |
---|
1031 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
1032 | vsws, vswst, w ) |
---|
1033 | ENDIF |
---|
1034 | CALL coriolis( i, j, 2 ) |
---|
1035 | |
---|
1036 | ! |
---|
1037 | !-- Drag by plant canopy |
---|
1038 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
1039 | |
---|
1040 | ! |
---|
1041 | !-- External pressure gradient |
---|
1042 | IF ( dp_external ) THEN |
---|
1043 | DO k = dp_level_ind_b+1, nzt |
---|
1044 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
1045 | ENDDO |
---|
1046 | ENDIF |
---|
1047 | |
---|
1048 | CALL user_actions( i, j, 'v-tendency' ) |
---|
1049 | |
---|
1050 | ! |
---|
1051 | !-- Prognostic equation for v-velocity component |
---|
1052 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1053 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
1054 | dt_3d * ( & |
---|
1055 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
1056 | ) - & |
---|
1057 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
1058 | ENDDO |
---|
1059 | |
---|
1060 | ! |
---|
1061 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1062 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1063 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1064 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1065 | tv_m(k,j,i) = tend(k,j,i) |
---|
1066 | ENDDO |
---|
1067 | ELSEIF ( intermediate_timestep_count < & |
---|
1068 | intermediate_timestep_count_max ) THEN |
---|
1069 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1070 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
1071 | ENDDO |
---|
1072 | ENDIF |
---|
1073 | ENDIF |
---|
1074 | |
---|
1075 | ENDIF |
---|
1076 | |
---|
1077 | ! |
---|
1078 | !-- Tendency terms for w-velocity component |
---|
1079 | tend(:,j,i) = 0.0 |
---|
1080 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1081 | IF ( ws_scheme_mom ) THEN |
---|
1082 | ! CALL local_diss( i, j, w) |
---|
1083 | CALL advec_w_ws( i, j ) |
---|
1084 | ELSE |
---|
1085 | CALL advec_w_pw( i, j ) |
---|
1086 | END IF |
---|
1087 | ELSE |
---|
1088 | CALL advec_w_up( i, j ) |
---|
1089 | ENDIF |
---|
1090 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
1091 | THEN |
---|
1092 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
1093 | km_damp_y, tend, u_m, v_m, w_m ) |
---|
1094 | ELSE |
---|
1095 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
1096 | tend, u, v, w ) |
---|
1097 | ENDIF |
---|
1098 | CALL coriolis( i, j, 3 ) |
---|
1099 | IF ( ocean ) THEN |
---|
1100 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
1101 | ELSE |
---|
1102 | IF ( .NOT. humidity ) THEN |
---|
1103 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
1104 | ELSE |
---|
1105 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
1106 | ENDIF |
---|
1107 | ENDIF |
---|
1108 | |
---|
1109 | ! |
---|
1110 | !-- Drag by plant canopy |
---|
1111 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
1112 | |
---|
1113 | CALL user_actions( i, j, 'w-tendency' ) |
---|
1114 | |
---|
1115 | ! |
---|
1116 | !-- Prognostic equation for w-velocity component |
---|
1117 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1118 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
1119 | dt_3d * ( & |
---|
1120 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
1121 | ) - & |
---|
1122 | tsc(5) * rdf(k) * w(k,j,i) |
---|
1123 | ENDDO |
---|
1124 | |
---|
1125 | ! |
---|
1126 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1127 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1128 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1129 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1130 | tw_m(k,j,i) = tend(k,j,i) |
---|
1131 | ENDDO |
---|
1132 | ELSEIF ( intermediate_timestep_count < & |
---|
1133 | intermediate_timestep_count_max ) THEN |
---|
1134 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1135 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1136 | ENDDO |
---|
1137 | ENDIF |
---|
1138 | ENDIF |
---|
1139 | |
---|
1140 | ! |
---|
1141 | !-- Tendency terms for potential temperature |
---|
1142 | tend(:,j,i) = 0.0 |
---|
1143 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1144 | IF ( ws_scheme_sca ) THEN |
---|
1145 | ! CALL local_diss( i, j, pt ) |
---|
1146 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, & |
---|
1147 | diss_s_pt, flux_l_pt, diss_l_pt ) |
---|
1148 | ELSE |
---|
1149 | CALL advec_s_pw( i, j, pt ) |
---|
1150 | ENDIF |
---|
1151 | ELSE |
---|
1152 | CALL advec_s_up( i, j, pt ) |
---|
1153 | ENDIF |
---|
1154 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
1155 | THEN |
---|
1156 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
1157 | tswst_m, wall_heatflux, tend ) |
---|
1158 | ELSE |
---|
1159 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
1160 | wall_heatflux, tend ) |
---|
1161 | ENDIF |
---|
1162 | |
---|
1163 | ! |
---|
1164 | !-- If required compute heating/cooling due to long wave radiation |
---|
1165 | !-- processes |
---|
1166 | IF ( radiation ) THEN |
---|
1167 | CALL calc_radiation( i, j ) |
---|
1168 | ENDIF |
---|
1169 | |
---|
1170 | ! |
---|
1171 | !-- If required compute impact of latent heat due to precipitation |
---|
1172 | IF ( precipitation ) THEN |
---|
1173 | CALL impact_of_latent_heat( i, j ) |
---|
1174 | ENDIF |
---|
1175 | |
---|
1176 | ! |
---|
1177 | !-- Consideration of heat sources within the plant canopy |
---|
1178 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
1179 | CALL plant_canopy_model( i, j, 4 ) |
---|
1180 | ENDIF |
---|
1181 | |
---|
1182 | |
---|
1183 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1184 | IF ( large_scale_subsidence ) THEN |
---|
1185 | CALL subsidence ( i, j, tend, pt, pt_init ) |
---|
1186 | ENDIF |
---|
1187 | |
---|
1188 | |
---|
1189 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
1190 | |
---|
1191 | ! |
---|
1192 | !-- Prognostic equation for potential temperature |
---|
1193 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1194 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
1195 | dt_3d * ( & |
---|
1196 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
1197 | ) - & |
---|
1198 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
1199 | ENDDO |
---|
1200 | |
---|
1201 | ! |
---|
1202 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1203 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1204 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1205 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1206 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1207 | ENDDO |
---|
1208 | ELSEIF ( intermediate_timestep_count < & |
---|
1209 | intermediate_timestep_count_max ) THEN |
---|
1210 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1211 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1212 | 5.3125 * tpt_m(k,j,i) |
---|
1213 | ENDDO |
---|
1214 | ENDIF |
---|
1215 | ENDIF |
---|
1216 | |
---|
1217 | ! |
---|
1218 | !-- If required, compute prognostic equation for salinity |
---|
1219 | IF ( ocean ) THEN |
---|
1220 | |
---|
1221 | ! |
---|
1222 | !-- Tendency-terms for salinity |
---|
1223 | tend(:,j,i) = 0.0 |
---|
1224 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
1225 | THEN |
---|
1226 | IF ( ws_scheme_sca ) THEN |
---|
1227 | ! CALL local_diss( i, j, sa ) |
---|
1228 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
1229 | diss_s_sa, flux_l_sa, diss_l_sa ) |
---|
1230 | ELSE |
---|
1231 | CALL advec_s_pw( i, j, sa ) |
---|
1232 | ENDIF |
---|
1233 | ELSE |
---|
1234 | CALL advec_s_up( i, j, sa ) |
---|
1235 | ENDIF |
---|
1236 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
1237 | wall_salinityflux, tend ) |
---|
1238 | |
---|
1239 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
1240 | |
---|
1241 | ! |
---|
1242 | !-- Prognostic equation for salinity |
---|
1243 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1244 | sa_p(k,j,i) = tsc(1) * sa(k,j,i) + & |
---|
1245 | dt_3d * ( & |
---|
1246 | tsc(2) * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
1247 | ) - & |
---|
1248 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
1249 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
1250 | ENDDO |
---|
1251 | |
---|
1252 | ! |
---|
1253 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1254 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1255 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1256 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1257 | tsa_m(k,j,i) = tend(k,j,i) |
---|
1258 | ENDDO |
---|
1259 | ELSEIF ( intermediate_timestep_count < & |
---|
1260 | intermediate_timestep_count_max ) THEN |
---|
1261 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1262 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1263 | 5.3125 * tsa_m(k,j,i) |
---|
1264 | ENDDO |
---|
1265 | ENDIF |
---|
1266 | ENDIF |
---|
1267 | |
---|
1268 | ! |
---|
1269 | !-- Calculate density by the equation of state for seawater |
---|
1270 | CALL eqn_state_seawater( i, j ) |
---|
1271 | |
---|
1272 | ENDIF |
---|
1273 | |
---|
1274 | ! |
---|
1275 | !-- If required, compute prognostic equation for total water content / |
---|
1276 | !-- scalar |
---|
1277 | IF ( humidity .OR. passive_scalar ) THEN |
---|
1278 | |
---|
1279 | ! |
---|
1280 | !-- Tendency-terms for total water content / scalar |
---|
1281 | tend(:,j,i) = 0.0 |
---|
1282 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
1283 | THEN |
---|
1284 | IF ( ws_scheme_sca ) THEN |
---|
1285 | ! CALL local_diss( i, j, q ) |
---|
1286 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
1287 | diss_s_q, flux_l_q, diss_l_q ) |
---|
1288 | ELSE |
---|
1289 | CALL advec_s_pw( i, j, q ) |
---|
1290 | ENDIF |
---|
1291 | ELSE |
---|
1292 | CALL advec_s_up( i, j, q ) |
---|
1293 | ENDIF |
---|
1294 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
1295 | THEN |
---|
1296 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
1297 | qswst_m, wall_qflux, tend ) |
---|
1298 | ELSE |
---|
1299 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
1300 | wall_qflux, tend ) |
---|
1301 | ENDIF |
---|
1302 | |
---|
1303 | ! |
---|
1304 | !-- If required compute decrease of total water content due to |
---|
1305 | !-- precipitation |
---|
1306 | IF ( precipitation ) THEN |
---|
1307 | CALL calc_precipitation( i, j ) |
---|
1308 | ENDIF |
---|
1309 | |
---|
1310 | ! |
---|
1311 | !-- Sink or source of scalar concentration due to canopy elements |
---|
1312 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
1313 | |
---|
1314 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1315 | IF ( large_scale_subsidence ) THEN |
---|
1316 | CALL subsidence ( i, j, tend, q, q_init ) |
---|
1317 | ENDIF |
---|
1318 | |
---|
1319 | CALL user_actions( i, j, 'q-tendency' ) |
---|
1320 | |
---|
1321 | ! |
---|
1322 | !-- Prognostic equation for total water content / scalar |
---|
1323 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1324 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
1325 | dt_3d * ( & |
---|
1326 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
1327 | ) - & |
---|
1328 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
1329 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
1330 | ENDDO |
---|
1331 | |
---|
1332 | ! |
---|
1333 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1334 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1335 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1336 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1337 | tq_m(k,j,i) = tend(k,j,i) |
---|
1338 | ENDDO |
---|
1339 | ELSEIF ( intermediate_timestep_count < & |
---|
1340 | intermediate_timestep_count_max ) THEN |
---|
1341 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1342 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1343 | 5.3125 * tq_m(k,j,i) |
---|
1344 | ENDDO |
---|
1345 | ENDIF |
---|
1346 | ENDIF |
---|
1347 | |
---|
1348 | ENDIF |
---|
1349 | |
---|
1350 | ! |
---|
1351 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1352 | !-- energy (TKE) |
---|
1353 | IF ( .NOT. constant_diffusion ) THEN |
---|
1354 | |
---|
1355 | ! |
---|
1356 | !-- Tendency-terms for TKE |
---|
1357 | tend(:,j,i) = 0.0 |
---|
1358 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
1359 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
1360 | IF ( ws_scheme_sca ) THEN |
---|
1361 | ! CALL local_diss( i, j, e ) |
---|
1362 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, & |
---|
1363 | diss_s_e, flux_l_e, diss_l_e ) |
---|
1364 | ELSE |
---|
1365 | CALL advec_s_pw( i, j, e ) |
---|
1366 | ENDIF |
---|
1367 | ELSE |
---|
1368 | CALL advec_s_up( i, j, e ) |
---|
1369 | ENDIF |
---|
1370 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
1371 | THEN |
---|
1372 | IF ( .NOT. humidity ) THEN |
---|
1373 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
1374 | km_m, l_grid, pt_m, pt_reference, & |
---|
1375 | rif_m, tend, zu, zw ) |
---|
1376 | ELSE |
---|
1377 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
1378 | km_m, l_grid, vpt_m, pt_reference, & |
---|
1379 | rif_m, tend, zu, zw ) |
---|
1380 | ENDIF |
---|
1381 | ELSE |
---|
1382 | IF ( .NOT. humidity ) THEN |
---|
1383 | IF ( ocean ) THEN |
---|
1384 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
1385 | km, l_grid, prho, prho_reference, & |
---|
1386 | rif, tend, zu, zw ) |
---|
1387 | ELSE |
---|
1388 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
1389 | km, l_grid, pt, pt_reference, rif, & |
---|
1390 | tend, zu, zw ) |
---|
1391 | ENDIF |
---|
1392 | ELSE |
---|
1393 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
1394 | l_grid, vpt, pt_reference, rif, tend, & |
---|
1395 | zu, zw ) |
---|
1396 | ENDIF |
---|
1397 | ENDIF |
---|
1398 | CALL production_e( i, j ) |
---|
1399 | |
---|
1400 | ! |
---|
1401 | !-- Additional sink term for flows through plant canopies |
---|
1402 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
1403 | |
---|
1404 | CALL user_actions( i, j, 'e-tendency' ) |
---|
1405 | |
---|
1406 | ! |
---|
1407 | !-- Prognostic equation for TKE. |
---|
1408 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
1409 | !-- reasons in the course of the integration. In such cases the old |
---|
1410 | !-- TKE value is reduced by 90%. |
---|
1411 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1412 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
1413 | dt_3d * ( & |
---|
1414 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
1415 | ) |
---|
1416 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
1417 | ENDDO |
---|
1418 | |
---|
1419 | ! |
---|
1420 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1421 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1422 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1423 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1424 | te_m(k,j,i) = tend(k,j,i) |
---|
1425 | ENDDO |
---|
1426 | ELSEIF ( intermediate_timestep_count < & |
---|
1427 | intermediate_timestep_count_max ) THEN |
---|
1428 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1429 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1430 | 5.3125 * te_m(k,j,i) |
---|
1431 | ENDDO |
---|
1432 | ENDIF |
---|
1433 | ENDIF |
---|
1434 | |
---|
1435 | ENDIF ! TKE equation |
---|
1436 | |
---|
1437 | ENDDO |
---|
1438 | ENDDO |
---|
1439 | !$OMP END PARALLEL |
---|
1440 | |
---|
1441 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
1442 | |
---|
1443 | |
---|
1444 | END SUBROUTINE prognostic_equations_cache |
---|
1445 | |
---|
1446 | |
---|
1447 | SUBROUTINE prognostic_equations_vector |
---|
1448 | |
---|
1449 | !------------------------------------------------------------------------------! |
---|
1450 | ! Version for vector machines |
---|
1451 | !------------------------------------------------------------------------------! |
---|
1452 | |
---|
1453 | IMPLICIT NONE |
---|
1454 | |
---|
1455 | CHARACTER (LEN=9) :: time_to_string |
---|
1456 | INTEGER :: i, j, k |
---|
1457 | REAL :: sat, sbt |
---|
1458 | |
---|
1459 | ! |
---|
1460 | !-- Calculate those variables needed in the tendency terms which need |
---|
1461 | !-- global communication |
---|
1462 | CALL calc_mean_profile( pt, 4 ) |
---|
1463 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
1464 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
1465 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
1466 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
1467 | |
---|
1468 | ! |
---|
1469 | !-- u-velocity component |
---|
1470 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
1471 | |
---|
1472 | ! |
---|
1473 | !-- u-tendency terms with communication |
---|
1474 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1475 | tend = 0.0 |
---|
1476 | CALL advec_u_ups |
---|
1477 | ENDIF |
---|
1478 | |
---|
1479 | ! |
---|
1480 | !-- u-tendency terms with no communication |
---|
1481 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1482 | tend = 0.0 |
---|
1483 | IF ( ws_scheme_mom ) THEN |
---|
1484 | CALL advec_u_ws |
---|
1485 | ELSE |
---|
1486 | CALL advec_u_pw |
---|
1487 | ENDIF |
---|
1488 | ELSE |
---|
1489 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1490 | tend = 0.0 |
---|
1491 | CALL advec_u_up |
---|
1492 | ENDIF |
---|
1493 | ENDIF |
---|
1494 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1495 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, & |
---|
1496 | uswst_m, v_m, w_m ) |
---|
1497 | ELSE |
---|
1498 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, uswst, v, w ) |
---|
1499 | ENDIF |
---|
1500 | CALL coriolis( 1 ) |
---|
1501 | IF ( sloping_surface ) CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
1502 | |
---|
1503 | ! |
---|
1504 | !-- Drag by plant canopy |
---|
1505 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
1506 | |
---|
1507 | ! |
---|
1508 | !-- External pressure gradient |
---|
1509 | IF ( dp_external ) THEN |
---|
1510 | DO i = nxlu, nxr |
---|
1511 | DO j = nys, nyn |
---|
1512 | DO k = dp_level_ind_b+1, nzt |
---|
1513 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
1514 | ENDDO |
---|
1515 | ENDDO |
---|
1516 | ENDDO |
---|
1517 | ENDIF |
---|
1518 | |
---|
1519 | CALL user_actions( 'u-tendency' ) |
---|
1520 | |
---|
1521 | ! |
---|
1522 | !-- Prognostic equation for u-velocity component |
---|
1523 | DO i = nxlu, nxr |
---|
1524 | DO j = nys, nyn |
---|
1525 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1526 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
1527 | dt_3d * ( & |
---|
1528 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
1529 | ) - & |
---|
1530 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
1531 | ENDDO |
---|
1532 | ENDDO |
---|
1533 | ENDDO |
---|
1534 | |
---|
1535 | ! |
---|
1536 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1537 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1538 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1539 | DO i = nxlu, nxr |
---|
1540 | DO j = nys, nyn |
---|
1541 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1542 | tu_m(k,j,i) = tend(k,j,i) |
---|
1543 | ENDDO |
---|
1544 | ENDDO |
---|
1545 | ENDDO |
---|
1546 | ELSEIF ( intermediate_timestep_count < & |
---|
1547 | intermediate_timestep_count_max ) THEN |
---|
1548 | DO i = nxlu, nxr |
---|
1549 | DO j = nys, nyn |
---|
1550 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1551 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
1552 | ENDDO |
---|
1553 | ENDDO |
---|
1554 | ENDDO |
---|
1555 | ENDIF |
---|
1556 | ENDIF |
---|
1557 | |
---|
1558 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
1559 | |
---|
1560 | ! |
---|
1561 | !-- v-velocity component |
---|
1562 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
1563 | |
---|
1564 | ! |
---|
1565 | !-- v-tendency terms with communication |
---|
1566 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1567 | tend = 0.0 |
---|
1568 | CALL advec_v_ups |
---|
1569 | ENDIF |
---|
1570 | |
---|
1571 | ! |
---|
1572 | !-- v-tendency terms with no communication |
---|
1573 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1574 | tend = 0.0 |
---|
1575 | IF ( ws_scheme_mom ) THEN |
---|
1576 | CALL advec_v_ws |
---|
1577 | ELSE |
---|
1578 | CALL advec_v_pw |
---|
1579 | END IF |
---|
1580 | ELSE |
---|
1581 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1582 | tend = 0.0 |
---|
1583 | CALL advec_v_up |
---|
1584 | ENDIF |
---|
1585 | ENDIF |
---|
1586 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1587 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
1588 | vswst_m, w_m ) |
---|
1589 | ELSE |
---|
1590 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, vswst, w ) |
---|
1591 | ENDIF |
---|
1592 | CALL coriolis( 2 ) |
---|
1593 | |
---|
1594 | ! |
---|
1595 | !-- Drag by plant canopy |
---|
1596 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
1597 | |
---|
1598 | ! |
---|
1599 | !-- External pressure gradient |
---|
1600 | IF ( dp_external ) THEN |
---|
1601 | DO i = nxl, nxr |
---|
1602 | DO j = nysv, nyn |
---|
1603 | DO k = dp_level_ind_b+1, nzt |
---|
1604 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
1605 | ENDDO |
---|
1606 | ENDDO |
---|
1607 | ENDDO |
---|
1608 | ENDIF |
---|
1609 | |
---|
1610 | CALL user_actions( 'v-tendency' ) |
---|
1611 | |
---|
1612 | ! |
---|
1613 | !-- Prognostic equation for v-velocity component |
---|
1614 | DO i = nxl, nxr |
---|
1615 | DO j = nysv, nyn |
---|
1616 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1617 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
1618 | dt_3d * ( & |
---|
1619 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
1620 | ) - & |
---|
1621 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
1622 | ENDDO |
---|
1623 | ENDDO |
---|
1624 | ENDDO |
---|
1625 | |
---|
1626 | ! |
---|
1627 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1628 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1629 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1630 | DO i = nxl, nxr |
---|
1631 | DO j = nysv, nyn |
---|
1632 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1633 | tv_m(k,j,i) = tend(k,j,i) |
---|
1634 | ENDDO |
---|
1635 | ENDDO |
---|
1636 | ENDDO |
---|
1637 | ELSEIF ( intermediate_timestep_count < & |
---|
1638 | intermediate_timestep_count_max ) THEN |
---|
1639 | DO i = nxl, nxr |
---|
1640 | DO j = nysv, nyn |
---|
1641 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1642 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
1643 | ENDDO |
---|
1644 | ENDDO |
---|
1645 | ENDDO |
---|
1646 | ENDIF |
---|
1647 | ENDIF |
---|
1648 | |
---|
1649 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
1650 | |
---|
1651 | ! |
---|
1652 | !-- w-velocity component |
---|
1653 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
1654 | |
---|
1655 | ! |
---|
1656 | !-- w-tendency terms with communication |
---|
1657 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1658 | tend = 0.0 |
---|
1659 | CALL advec_w_ups |
---|
1660 | ENDIF |
---|
1661 | |
---|
1662 | ! |
---|
1663 | !-- w-tendency terms with no communication |
---|
1664 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1665 | tend = 0.0 |
---|
1666 | IF ( ws_scheme_mom ) THEN |
---|
1667 | CALL advec_w_ws |
---|
1668 | ELSE |
---|
1669 | CALL advec_w_pw |
---|
1670 | ENDIF |
---|
1671 | ELSE |
---|
1672 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1673 | tend = 0.0 |
---|
1674 | CALL advec_w_up |
---|
1675 | ENDIF |
---|
1676 | ENDIF |
---|
1677 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1678 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
1679 | v_m, w_m ) |
---|
1680 | ELSE |
---|
1681 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w ) |
---|
1682 | ENDIF |
---|
1683 | CALL coriolis( 3 ) |
---|
1684 | IF ( ocean ) THEN |
---|
1685 | CALL buoyancy( rho, rho_reference, 3, 64 ) |
---|
1686 | ELSE |
---|
1687 | IF ( .NOT. humidity ) THEN |
---|
1688 | CALL buoyancy( pt, pt_reference, 3, 4 ) |
---|
1689 | ELSE |
---|
1690 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
1691 | ENDIF |
---|
1692 | ENDIF |
---|
1693 | |
---|
1694 | ! |
---|
1695 | !-- Drag by plant canopy |
---|
1696 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
1697 | |
---|
1698 | CALL user_actions( 'w-tendency' ) |
---|
1699 | |
---|
1700 | ! |
---|
1701 | !-- Prognostic equation for w-velocity component |
---|
1702 | DO i = nxl, nxr |
---|
1703 | DO j = nys, nyn |
---|
1704 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1705 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
1706 | dt_3d * ( & |
---|
1707 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
1708 | ) - & |
---|
1709 | tsc(5) * rdf(k) * w(k,j,i) |
---|
1710 | ENDDO |
---|
1711 | ENDDO |
---|
1712 | ENDDO |
---|
1713 | |
---|
1714 | ! |
---|
1715 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1716 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1717 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1718 | DO i = nxl, nxr |
---|
1719 | DO j = nys, nyn |
---|
1720 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1721 | tw_m(k,j,i) = tend(k,j,i) |
---|
1722 | ENDDO |
---|
1723 | ENDDO |
---|
1724 | ENDDO |
---|
1725 | ELSEIF ( intermediate_timestep_count < & |
---|
1726 | intermediate_timestep_count_max ) THEN |
---|
1727 | DO i = nxl, nxr |
---|
1728 | DO j = nys, nyn |
---|
1729 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1730 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1731 | ENDDO |
---|
1732 | ENDDO |
---|
1733 | ENDDO |
---|
1734 | ENDIF |
---|
1735 | ENDIF |
---|
1736 | |
---|
1737 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
1738 | |
---|
1739 | ! |
---|
1740 | !-- potential temperature |
---|
1741 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
1742 | |
---|
1743 | ! |
---|
1744 | !-- pt-tendency terms with communication |
---|
1745 | sat = tsc(1) |
---|
1746 | sbt = tsc(2) |
---|
1747 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1748 | |
---|
1749 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1750 | ! |
---|
1751 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1752 | !-- switched on. Thus: |
---|
1753 | sat = 1.0 |
---|
1754 | sbt = 1.0 |
---|
1755 | ENDIF |
---|
1756 | tend = 0.0 |
---|
1757 | CALL advec_s_bc( pt, 'pt' ) |
---|
1758 | ELSE |
---|
1759 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
1760 | tend = 0.0 |
---|
1761 | CALL advec_s_ups( pt, 'pt' ) |
---|
1762 | ENDIF |
---|
1763 | ENDIF |
---|
1764 | |
---|
1765 | ! |
---|
1766 | !-- pt-tendency terms with no communication |
---|
1767 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1768 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
1769 | tend ) |
---|
1770 | ELSE |
---|
1771 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1772 | tend = 0.0 |
---|
1773 | IF ( ws_scheme_sca ) THEN |
---|
1774 | CALL advec_s_ws( pt, 'pt' ) |
---|
1775 | ELSE |
---|
1776 | CALL advec_s_pw( pt ) |
---|
1777 | ENDIF |
---|
1778 | ELSE |
---|
1779 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1780 | tend = 0.0 |
---|
1781 | CALL advec_s_up( pt ) |
---|
1782 | ENDIF |
---|
1783 | ENDIF |
---|
1784 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1785 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tswst_m, & |
---|
1786 | wall_heatflux, tend ) |
---|
1787 | ELSE |
---|
1788 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
1789 | tend ) |
---|
1790 | ENDIF |
---|
1791 | ENDIF |
---|
1792 | |
---|
1793 | ! |
---|
1794 | !-- If required compute heating/cooling due to long wave radiation |
---|
1795 | !-- processes |
---|
1796 | IF ( radiation ) THEN |
---|
1797 | CALL calc_radiation |
---|
1798 | ENDIF |
---|
1799 | |
---|
1800 | ! |
---|
1801 | !-- If required compute impact of latent heat due to precipitation |
---|
1802 | IF ( precipitation ) THEN |
---|
1803 | CALL impact_of_latent_heat |
---|
1804 | ENDIF |
---|
1805 | |
---|
1806 | ! |
---|
1807 | !-- Consideration of heat sources within the plant canopy |
---|
1808 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
1809 | CALL plant_canopy_model( 4 ) |
---|
1810 | ENDIF |
---|
1811 | |
---|
1812 | !--If required compute influence of large-scale subsidence/ascent |
---|
1813 | IF ( large_scale_subsidence ) THEN |
---|
1814 | CALL subsidence ( tend, pt, pt_init ) |
---|
1815 | ENDIF |
---|
1816 | |
---|
1817 | CALL user_actions( 'pt-tendency' ) |
---|
1818 | |
---|
1819 | ! |
---|
1820 | !-- Prognostic equation for potential temperature |
---|
1821 | DO i = nxl, nxr |
---|
1822 | DO j = nys, nyn |
---|
1823 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1824 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
1825 | dt_3d * ( & |
---|
1826 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
1827 | ) - & |
---|
1828 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
1829 | ENDDO |
---|
1830 | ENDDO |
---|
1831 | ENDDO |
---|
1832 | |
---|
1833 | ! |
---|
1834 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1835 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1836 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1837 | DO i = nxl, nxr |
---|
1838 | DO j = nys, nyn |
---|
1839 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1840 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1841 | ENDDO |
---|
1842 | ENDDO |
---|
1843 | ENDDO |
---|
1844 | ELSEIF ( intermediate_timestep_count < & |
---|
1845 | intermediate_timestep_count_max ) THEN |
---|
1846 | DO i = nxl, nxr |
---|
1847 | DO j = nys, nyn |
---|
1848 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1849 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
1850 | ENDDO |
---|
1851 | ENDDO |
---|
1852 | ENDDO |
---|
1853 | ENDIF |
---|
1854 | ENDIF |
---|
1855 | |
---|
1856 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
1857 | |
---|
1858 | ! |
---|
1859 | !-- If required, compute prognostic equation for salinity |
---|
1860 | IF ( ocean ) THEN |
---|
1861 | |
---|
1862 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
1863 | |
---|
1864 | ! |
---|
1865 | !-- sa-tendency terms with communication |
---|
1866 | sat = tsc(1) |
---|
1867 | sbt = tsc(2) |
---|
1868 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1869 | |
---|
1870 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1871 | ! |
---|
1872 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1873 | !-- switched on. Thus: |
---|
1874 | sat = 1.0 |
---|
1875 | sbt = 1.0 |
---|
1876 | ENDIF |
---|
1877 | tend = 0.0 |
---|
1878 | CALL advec_s_bc( sa, 'sa' ) |
---|
1879 | ELSE |
---|
1880 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1881 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1882 | tend = 0.0 |
---|
1883 | CALL advec_s_ups( sa, 'sa' ) |
---|
1884 | ENDIF |
---|
1885 | ENDIF |
---|
1886 | ENDIF |
---|
1887 | |
---|
1888 | ! |
---|
1889 | !-- sa-tendency terms with no communication |
---|
1890 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1891 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
1892 | wall_salinityflux, tend ) |
---|
1893 | ELSE |
---|
1894 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1895 | tend = 0.0 |
---|
1896 | IF ( ws_scheme_sca ) THEN |
---|
1897 | CALL advec_s_ws( sa, 'sa' ) |
---|
1898 | ELSE |
---|
1899 | CALL advec_s_pw( sa ) |
---|
1900 | ENDIF |
---|
1901 | ELSE |
---|
1902 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1903 | tend = 0.0 |
---|
1904 | CALL advec_s_up( sa ) |
---|
1905 | ENDIF |
---|
1906 | ENDIF |
---|
1907 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
1908 | wall_salinityflux, tend ) |
---|
1909 | ENDIF |
---|
1910 | |
---|
1911 | CALL user_actions( 'sa-tendency' ) |
---|
1912 | |
---|
1913 | ! |
---|
1914 | !-- Prognostic equation for salinity |
---|
1915 | DO i = nxl, nxr |
---|
1916 | DO j = nys, nyn |
---|
1917 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1918 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
1919 | dt_3d * ( & |
---|
1920 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
1921 | ) - & |
---|
1922 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
1923 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
1924 | ENDDO |
---|
1925 | ENDDO |
---|
1926 | ENDDO |
---|
1927 | |
---|
1928 | ! |
---|
1929 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1930 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1931 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1932 | DO i = nxl, nxr |
---|
1933 | DO j = nys, nyn |
---|
1934 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1935 | tsa_m(k,j,i) = tend(k,j,i) |
---|
1936 | ENDDO |
---|
1937 | ENDDO |
---|
1938 | ENDDO |
---|
1939 | ELSEIF ( intermediate_timestep_count < & |
---|
1940 | intermediate_timestep_count_max ) THEN |
---|
1941 | DO i = nxl, nxr |
---|
1942 | DO j = nys, nyn |
---|
1943 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1944 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1945 | 5.3125 * tsa_m(k,j,i) |
---|
1946 | ENDDO |
---|
1947 | ENDDO |
---|
1948 | ENDDO |
---|
1949 | ENDIF |
---|
1950 | ENDIF |
---|
1951 | |
---|
1952 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
1953 | |
---|
1954 | ! |
---|
1955 | !-- Calculate density by the equation of state for seawater |
---|
1956 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
1957 | CALL eqn_state_seawater |
---|
1958 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
1959 | |
---|
1960 | ENDIF |
---|
1961 | |
---|
1962 | ! |
---|
1963 | !-- If required, compute prognostic equation for total water content / scalar |
---|
1964 | IF ( humidity .OR. passive_scalar ) THEN |
---|
1965 | |
---|
1966 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
1967 | |
---|
1968 | ! |
---|
1969 | !-- Scalar/q-tendency terms with communication |
---|
1970 | sat = tsc(1) |
---|
1971 | sbt = tsc(2) |
---|
1972 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1973 | |
---|
1974 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1975 | ! |
---|
1976 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1977 | !-- switched on. Thus: |
---|
1978 | sat = 1.0 |
---|
1979 | sbt = 1.0 |
---|
1980 | ENDIF |
---|
1981 | tend = 0.0 |
---|
1982 | CALL advec_s_bc( q, 'q' ) |
---|
1983 | ELSE |
---|
1984 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1985 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1986 | tend = 0.0 |
---|
1987 | CALL advec_s_ups( q, 'q' ) |
---|
1988 | ENDIF |
---|
1989 | ENDIF |
---|
1990 | ENDIF |
---|
1991 | |
---|
1992 | ! |
---|
1993 | !-- Scalar/q-tendency terms with no communication |
---|
1994 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1995 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, wall_qflux, tend ) |
---|
1996 | ELSE |
---|
1997 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1998 | tend = 0.0 |
---|
1999 | IF ( ws_scheme_sca ) THEN |
---|
2000 | CALL advec_s_ws( q, 'q' ) |
---|
2001 | ELSE |
---|
2002 | CALL advec_s_pw( q ) |
---|
2003 | ENDIF |
---|
2004 | ELSE |
---|
2005 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
2006 | tend = 0.0 |
---|
2007 | CALL advec_s_up( q ) |
---|
2008 | ENDIF |
---|
2009 | ENDIF |
---|
2010 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
2011 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, qswst_m, & |
---|
2012 | wall_qflux, tend ) |
---|
2013 | ELSE |
---|
2014 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, & |
---|
2015 | wall_qflux, tend ) |
---|
2016 | ENDIF |
---|
2017 | ENDIF |
---|
2018 | |
---|
2019 | ! |
---|
2020 | !-- If required compute decrease of total water content due to |
---|
2021 | !-- precipitation |
---|
2022 | IF ( precipitation ) THEN |
---|
2023 | CALL calc_precipitation |
---|
2024 | ENDIF |
---|
2025 | |
---|
2026 | ! |
---|
2027 | !-- Sink or source of scalar concentration due to canopy elements |
---|
2028 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
2029 | |
---|
2030 | ! |
---|
2031 | !-- If required compute influence of large-scale subsidence/ascent |
---|
2032 | IF ( large_scale_subsidence ) THEN |
---|
2033 | CALL subsidence ( tend, q, q_init ) |
---|
2034 | ENDIF |
---|
2035 | |
---|
2036 | CALL user_actions( 'q-tendency' ) |
---|
2037 | |
---|
2038 | ! |
---|
2039 | !-- Prognostic equation for total water content / scalar |
---|
2040 | DO i = nxl, nxr |
---|
2041 | DO j = nys, nyn |
---|
2042 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2043 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
2044 | dt_3d * ( & |
---|
2045 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
2046 | ) - & |
---|
2047 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
2048 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
2049 | ENDDO |
---|
2050 | ENDDO |
---|
2051 | ENDDO |
---|
2052 | |
---|
2053 | ! |
---|
2054 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2055 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2056 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2057 | DO i = nxl, nxr |
---|
2058 | DO j = nys, nyn |
---|
2059 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2060 | tq_m(k,j,i) = tend(k,j,i) |
---|
2061 | ENDDO |
---|
2062 | ENDDO |
---|
2063 | ENDDO |
---|
2064 | ELSEIF ( intermediate_timestep_count < & |
---|
2065 | intermediate_timestep_count_max ) THEN |
---|
2066 | DO i = nxl, nxr |
---|
2067 | DO j = nys, nyn |
---|
2068 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2069 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
2070 | ENDDO |
---|
2071 | ENDDO |
---|
2072 | ENDDO |
---|
2073 | ENDIF |
---|
2074 | ENDIF |
---|
2075 | |
---|
2076 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
2077 | |
---|
2078 | ENDIF |
---|
2079 | |
---|
2080 | ! |
---|
2081 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
2082 | !-- energy (TKE) |
---|
2083 | IF ( .NOT. constant_diffusion ) THEN |
---|
2084 | |
---|
2085 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
2086 | |
---|
2087 | ! |
---|
2088 | !-- TKE-tendency terms with communication |
---|
2089 | CALL production_e_init |
---|
2090 | |
---|
2091 | sat = tsc(1) |
---|
2092 | sbt = tsc(2) |
---|
2093 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
2094 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
2095 | |
---|
2096 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
2097 | ! |
---|
2098 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
2099 | !-- switched on. Thus: |
---|
2100 | sat = 1.0 |
---|
2101 | sbt = 1.0 |
---|
2102 | ENDIF |
---|
2103 | tend = 0.0 |
---|
2104 | CALL advec_s_bc( e, 'e' ) |
---|
2105 | ELSE |
---|
2106 | IF ( tsc(2) /= 2.0 ) THEN |
---|
2107 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
2108 | tend = 0.0 |
---|
2109 | CALL advec_s_ups( e, 'e' ) |
---|
2110 | ENDIF |
---|
2111 | ENDIF |
---|
2112 | ENDIF |
---|
2113 | ENDIF |
---|
2114 | |
---|
2115 | ! |
---|
2116 | !-- TKE-tendency terms with no communication |
---|
2117 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
2118 | THEN |
---|
2119 | IF ( .NOT. humidity ) THEN |
---|
2120 | IF ( ocean ) THEN |
---|
2121 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
2122 | prho, prho_reference, rif, tend, zu, zw ) |
---|
2123 | ELSE |
---|
2124 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
2125 | pt_reference, rif, tend, zu, zw ) |
---|
2126 | ENDIF |
---|
2127 | ELSE |
---|
2128 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
2129 | pt_reference, rif, tend, zu, zw ) |
---|
2130 | ENDIF |
---|
2131 | ELSE |
---|
2132 | IF ( use_upstream_for_tke ) THEN |
---|
2133 | tend = 0.0 |
---|
2134 | CALL advec_s_up( e ) |
---|
2135 | ELSE |
---|
2136 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
2137 | tend = 0.0 |
---|
2138 | IF ( ws_scheme_sca ) THEN |
---|
2139 | CALL advec_s_ws( e, 'e' ) |
---|
2140 | ELSE |
---|
2141 | CALL advec_s_pw( e ) |
---|
2142 | ENDIF |
---|
2143 | ELSE |
---|
2144 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
2145 | tend = 0.0 |
---|
2146 | CALL advec_s_up( e ) |
---|
2147 | ENDIF |
---|
2148 | ENDIF |
---|
2149 | ENDIF |
---|
2150 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
2151 | IF ( .NOT. humidity ) THEN |
---|
2152 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
2153 | pt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
2154 | ELSE |
---|
2155 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
2156 | vpt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
2157 | ENDIF |
---|
2158 | ELSE |
---|
2159 | IF ( .NOT. humidity ) THEN |
---|
2160 | IF ( ocean ) THEN |
---|
2161 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
2162 | prho, prho_reference, rif, tend, zu, zw ) |
---|
2163 | ELSE |
---|
2164 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
2165 | pt, pt_reference, rif, tend, zu, zw ) |
---|
2166 | ENDIF |
---|
2167 | ELSE |
---|
2168 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
2169 | pt_reference, rif, tend, zu, zw ) |
---|
2170 | ENDIF |
---|
2171 | ENDIF |
---|
2172 | ENDIF |
---|
2173 | CALL production_e |
---|
2174 | |
---|
2175 | ! |
---|
2176 | !-- Additional sink term for flows through plant canopies |
---|
2177 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
2178 | CALL user_actions( 'e-tendency' ) |
---|
2179 | |
---|
2180 | ! |
---|
2181 | !-- Prognostic equation for TKE. |
---|
2182 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
2183 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
2184 | !-- value is reduced by 90%. |
---|
2185 | DO i = nxl, nxr |
---|
2186 | DO j = nys, nyn |
---|
2187 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2188 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
2189 | dt_3d * ( & |
---|
2190 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
2191 | ) |
---|
2192 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
2193 | ENDDO |
---|
2194 | ENDDO |
---|
2195 | ENDDO |
---|
2196 | |
---|
2197 | ! |
---|
2198 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2199 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2200 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2201 | DO i = nxl, nxr |
---|
2202 | DO j = nys, nyn |
---|
2203 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2204 | te_m(k,j,i) = tend(k,j,i) |
---|
2205 | ENDDO |
---|
2206 | ENDDO |
---|
2207 | ENDDO |
---|
2208 | ELSEIF ( intermediate_timestep_count < & |
---|
2209 | intermediate_timestep_count_max ) THEN |
---|
2210 | DO i = nxl, nxr |
---|
2211 | DO j = nys, nyn |
---|
2212 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2213 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
2214 | ENDDO |
---|
2215 | ENDDO |
---|
2216 | ENDDO |
---|
2217 | ENDIF |
---|
2218 | ENDIF |
---|
2219 | |
---|
2220 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
2221 | |
---|
2222 | ENDIF |
---|
2223 | |
---|
2224 | |
---|
2225 | END SUBROUTINE prognostic_equations_vector |
---|
2226 | |
---|
2227 | |
---|
2228 | END MODULE prognostic_equations_mod |
---|