1 | !> @file prognostic_equations.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: prognostic_equations.f90 4182 2019-08-22 15:20:23Z gronemeier $ |
---|
27 | ! Corrected "Former revisions" section |
---|
28 | ! |
---|
29 | ! 4110 2019-07-22 17:05:21Z suehring |
---|
30 | ! pass integer flag array to WS scalar advection routine which is now necessary |
---|
31 | ! as the flags may differ for scalars, e.g. pt can be cyclic while chemical |
---|
32 | ! species may be non-cyclic. Further, pass boundary flags. |
---|
33 | ! |
---|
34 | ! 4109 2019-07-22 17:00:34Z suehring |
---|
35 | ! Application of monotonic flux limiter for the vertical scalar advection |
---|
36 | ! up to the topography top (only for the cache-optimized version at the |
---|
37 | ! moment). Please note, at the moment the limiter is only applied for passive |
---|
38 | ! scalars. |
---|
39 | ! |
---|
40 | ! 4048 2019-06-21 21:00:21Z knoop |
---|
41 | ! Moved tcm_prognostic_equations to module_interface |
---|
42 | ! |
---|
43 | ! 3987 2019-05-22 09:52:13Z kanani |
---|
44 | ! Introduce alternative switch for debug output during timestepping |
---|
45 | ! |
---|
46 | ! 3956 2019-05-07 12:32:52Z monakurppa |
---|
47 | ! Removed salsa calls. |
---|
48 | ! |
---|
49 | ! 3931 2019-04-24 16:34:28Z schwenkel |
---|
50 | ! Correct/complete module_interface introduction for chemistry model |
---|
51 | ! |
---|
52 | ! 3899 2019-04-16 14:05:27Z monakurppa |
---|
53 | ! Corrections in the OpenMP version of salsa |
---|
54 | ! |
---|
55 | ! 3887 2019 -04-12 08:47:41Z schwenkel |
---|
56 | ! Implicit Bugfix for chemistry model, loop for non_transport_physics over |
---|
57 | ! ghost points is avoided. Instead introducing module_interface_exchange_horiz. |
---|
58 | ! |
---|
59 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
60 | ! Changes related to global restructuring of location messages and introduction |
---|
61 | ! of additional debug messages |
---|
62 | ! |
---|
63 | ! 3881 2019-04-10 09:31:22Z suehring |
---|
64 | ! Bugfix in OpenMP directive |
---|
65 | ! |
---|
66 | ! 3880 2019-04-08 21:43:02Z knoop |
---|
67 | ! Moved wtm_tendencies to module_interface_actions |
---|
68 | ! |
---|
69 | ! 3874 2019-04-08 16:53:48Z knoop |
---|
70 | ! Added non_transport_physics module interfaces and moved bcm code into it |
---|
71 | ! |
---|
72 | ! 3872 2019-04-08 15:03:06Z knoop |
---|
73 | ! Moving prognostic equations of bcm into bulk_cloud_model_mod |
---|
74 | ! |
---|
75 | ! 3864 2019-04-05 09:01:56Z monakurppa |
---|
76 | ! Modifications made for salsa: |
---|
77 | ! - salsa_prognostic_equations moved to salsa_mod (and the call to |
---|
78 | ! module_interface_mod) |
---|
79 | ! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and |
---|
80 | ! ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig |
---|
81 | ! |
---|
82 | ! 3840 2019-03-29 10:35:52Z knoop |
---|
83 | ! added USE chem_gasphase_mod for nspec, nspec and spc_names |
---|
84 | ! |
---|
85 | ! 3820 2019-03-27 11:53:41Z forkel |
---|
86 | ! renamed do_depo to deposition_dry (ecc) |
---|
87 | ! |
---|
88 | ! 3797 2019-03-15 11:15:38Z forkel |
---|
89 | ! Call chem_integegrate in OpenMP loop (ketelsen) |
---|
90 | ! |
---|
91 | ! |
---|
92 | ! 3771 2019-02-28 12:19:33Z raasch |
---|
93 | ! preprocessor directivs fro rrtmg added |
---|
94 | ! |
---|
95 | ! 3761 2019-02-25 15:31:42Z raasch |
---|
96 | ! unused variable removed |
---|
97 | ! |
---|
98 | ! 3719 2019-02-06 13:10:18Z kanani |
---|
99 | ! Cleaned up chemistry cpu measurements |
---|
100 | ! |
---|
101 | ! 3684 2019-01-20 20:20:58Z knoop |
---|
102 | ! OpenACC port for SPEC |
---|
103 | ! |
---|
104 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
105 | ! Initial revision |
---|
106 | ! |
---|
107 | ! |
---|
108 | ! Description: |
---|
109 | ! ------------ |
---|
110 | !> Solving the prognostic equations. |
---|
111 | !------------------------------------------------------------------------------! |
---|
112 | MODULE prognostic_equations_mod |
---|
113 | |
---|
114 | USE advec_s_bc_mod, & |
---|
115 | ONLY: advec_s_bc |
---|
116 | |
---|
117 | USE advec_s_pw_mod, & |
---|
118 | ONLY: advec_s_pw |
---|
119 | |
---|
120 | USE advec_s_up_mod, & |
---|
121 | ONLY: advec_s_up |
---|
122 | |
---|
123 | USE advec_u_pw_mod, & |
---|
124 | ONLY: advec_u_pw |
---|
125 | |
---|
126 | USE advec_u_up_mod, & |
---|
127 | ONLY: advec_u_up |
---|
128 | |
---|
129 | USE advec_v_pw_mod, & |
---|
130 | ONLY: advec_v_pw |
---|
131 | |
---|
132 | USE advec_v_up_mod, & |
---|
133 | ONLY: advec_v_up |
---|
134 | |
---|
135 | USE advec_w_pw_mod, & |
---|
136 | ONLY: advec_w_pw |
---|
137 | |
---|
138 | USE advec_w_up_mod, & |
---|
139 | ONLY: advec_w_up |
---|
140 | |
---|
141 | USE advec_ws, & |
---|
142 | ONLY: advec_s_ws, advec_u_ws, advec_v_ws, advec_w_ws |
---|
143 | |
---|
144 | USE arrays_3d, & |
---|
145 | ONLY: diss_l_e, diss_l_pt, diss_l_q, & |
---|
146 | diss_l_s, diss_l_sa, diss_s_e, & |
---|
147 | diss_s_pt, diss_s_q, diss_s_s, diss_s_sa, & |
---|
148 | e, e_p, flux_s_e, flux_s_pt, flux_s_q, & |
---|
149 | flux_s_s, flux_s_sa, flux_l_e, & |
---|
150 | flux_l_pt, flux_l_q, flux_l_s, & |
---|
151 | flux_l_sa, pt, ptdf_x, ptdf_y, pt_init, & |
---|
152 | pt_p, prho, q, q_init, q_p, rdf, rdf_sc, & |
---|
153 | ref_state, rho_ocean, s, s_init, s_p, tend, te_m, & |
---|
154 | tpt_m, tq_m, ts_m, tu_m, tv_m, tw_m, u, & |
---|
155 | ug, u_init, u_p, v, vg, vpt, v_init, v_p, w, w_p |
---|
156 | |
---|
157 | USE buoyancy_mod, & |
---|
158 | ONLY: buoyancy |
---|
159 | |
---|
160 | USE control_parameters, & |
---|
161 | ONLY: bc_dirichlet_l, & |
---|
162 | bc_dirichlet_n, & |
---|
163 | bc_dirichlet_r, & |
---|
164 | bc_dirichlet_s, & |
---|
165 | bc_radiation_l, & |
---|
166 | bc_radiation_n, & |
---|
167 | bc_radiation_r, & |
---|
168 | bc_radiation_s, & |
---|
169 | constant_diffusion, & |
---|
170 | debug_output_timestep, & |
---|
171 | dp_external, dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, & |
---|
172 | humidity, intermediate_timestep_count, & |
---|
173 | intermediate_timestep_count_max, large_scale_forcing, & |
---|
174 | large_scale_subsidence, & |
---|
175 | monotonic_limiter_z, & |
---|
176 | neutral, nudging, & |
---|
177 | ocean_mode, passive_scalar, plant_canopy, pt_reference, & |
---|
178 | scalar_advec, scalar_advec, simulated_time, sloping_surface, & |
---|
179 | timestep_scheme, tsc, use_subsidence_tendencies, & |
---|
180 | use_upstream_for_tke, wind_turbine, ws_scheme_mom, & |
---|
181 | ws_scheme_sca, urban_surface, land_surface, & |
---|
182 | time_since_reference_point, salsa |
---|
183 | |
---|
184 | USE coriolis_mod, & |
---|
185 | ONLY: coriolis |
---|
186 | |
---|
187 | USE cpulog, & |
---|
188 | ONLY: cpu_log, log_point, log_point_s |
---|
189 | |
---|
190 | USE diffusion_s_mod, & |
---|
191 | ONLY: diffusion_s |
---|
192 | |
---|
193 | USE diffusion_u_mod, & |
---|
194 | ONLY: diffusion_u |
---|
195 | |
---|
196 | USE diffusion_v_mod, & |
---|
197 | ONLY: diffusion_v |
---|
198 | |
---|
199 | USE diffusion_w_mod, & |
---|
200 | ONLY: diffusion_w |
---|
201 | |
---|
202 | USE indices, & |
---|
203 | ONLY: advc_flags_s, & |
---|
204 | nbgp, nxl, nxlg, nxlu, nxr, nxrg, nyn, nyng, nys, nysg, nysv, & |
---|
205 | nzb, nzt, wall_flags_0 |
---|
206 | |
---|
207 | USE kinds |
---|
208 | |
---|
209 | USE lsf_nudging_mod, & |
---|
210 | ONLY: ls_advec, nudge |
---|
211 | |
---|
212 | USE module_interface, & |
---|
213 | ONLY: module_interface_actions, & |
---|
214 | module_interface_non_advective_processes, & |
---|
215 | module_interface_exchange_horiz, & |
---|
216 | module_interface_prognostic_equations |
---|
217 | |
---|
218 | USE ocean_mod, & |
---|
219 | ONLY: stokes_drift_terms, stokes_force, & |
---|
220 | wave_breaking, wave_breaking_term |
---|
221 | |
---|
222 | USE plant_canopy_model_mod, & |
---|
223 | ONLY: cthf, pcm_tendency |
---|
224 | |
---|
225 | #if defined( __rrtmg ) |
---|
226 | USE radiation_model_mod, & |
---|
227 | ONLY: radiation, radiation_tendency, & |
---|
228 | skip_time_do_radiation |
---|
229 | #endif |
---|
230 | |
---|
231 | USE statistics, & |
---|
232 | ONLY: hom |
---|
233 | |
---|
234 | USE subsidence_mod, & |
---|
235 | ONLY: subsidence |
---|
236 | |
---|
237 | USE surface_mod, & |
---|
238 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
239 | surf_usm_v |
---|
240 | |
---|
241 | IMPLICIT NONE |
---|
242 | |
---|
243 | PRIVATE |
---|
244 | PUBLIC prognostic_equations_cache, prognostic_equations_vector |
---|
245 | |
---|
246 | INTERFACE prognostic_equations_cache |
---|
247 | MODULE PROCEDURE prognostic_equations_cache |
---|
248 | END INTERFACE prognostic_equations_cache |
---|
249 | |
---|
250 | INTERFACE prognostic_equations_vector |
---|
251 | MODULE PROCEDURE prognostic_equations_vector |
---|
252 | END INTERFACE prognostic_equations_vector |
---|
253 | |
---|
254 | |
---|
255 | CONTAINS |
---|
256 | |
---|
257 | |
---|
258 | !------------------------------------------------------------------------------! |
---|
259 | ! Description: |
---|
260 | ! ------------ |
---|
261 | !> Version with one optimized loop over all equations. It is only allowed to |
---|
262 | !> be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
263 | !> |
---|
264 | !> Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
265 | !> so communication between CPUs is not allowed (does not make sense) within |
---|
266 | !> these loops. |
---|
267 | !> |
---|
268 | !> (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
269 | !------------------------------------------------------------------------------! |
---|
270 | |
---|
271 | SUBROUTINE prognostic_equations_cache |
---|
272 | |
---|
273 | |
---|
274 | INTEGER(iwp) :: i !< |
---|
275 | INTEGER(iwp) :: i_omp_start !< |
---|
276 | INTEGER(iwp) :: j !< |
---|
277 | INTEGER(iwp) :: k !< |
---|
278 | !$ INTEGER(iwp) :: omp_get_thread_num !< |
---|
279 | INTEGER(iwp) :: tn = 0 !< |
---|
280 | |
---|
281 | LOGICAL :: loop_start !< |
---|
282 | |
---|
283 | |
---|
284 | IF ( debug_output_timestep ) CALL debug_message( 'prognostic_equations_cache', 'start' ) |
---|
285 | ! |
---|
286 | !-- Time measurement can only be performed for the whole set of equations |
---|
287 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
288 | |
---|
289 | !$OMP PARALLEL PRIVATE (i,j) |
---|
290 | !$OMP DO |
---|
291 | DO i = nxl, nxr |
---|
292 | DO j = nys, nyn |
---|
293 | ! |
---|
294 | !-- Calculate non advective processes for all other modules |
---|
295 | CALL module_interface_non_advective_processes( i, j ) |
---|
296 | ENDDO |
---|
297 | ENDDO |
---|
298 | ! |
---|
299 | !-- Module Inferface for exchange horiz after non_advective_processes but before |
---|
300 | !-- advection. Therefore, non_advective_processes must not run for ghost points. |
---|
301 | !$OMP END PARALLEL |
---|
302 | CALL module_interface_exchange_horiz() |
---|
303 | ! |
---|
304 | !-- Loop over all prognostic equations |
---|
305 | !$OMP PARALLEL PRIVATE (i,i_omp_start,j,k,loop_start,tn) |
---|
306 | |
---|
307 | !$ tn = omp_get_thread_num() |
---|
308 | loop_start = .TRUE. |
---|
309 | |
---|
310 | !$OMP DO |
---|
311 | DO i = nxl, nxr |
---|
312 | |
---|
313 | ! |
---|
314 | !-- Store the first loop index. It differs for each thread and is required |
---|
315 | !-- later in advec_ws |
---|
316 | IF ( loop_start ) THEN |
---|
317 | loop_start = .FALSE. |
---|
318 | i_omp_start = i |
---|
319 | ENDIF |
---|
320 | |
---|
321 | DO j = nys, nyn |
---|
322 | ! |
---|
323 | !-- Tendency terms for u-velocity component. Please note, in case of |
---|
324 | !-- non-cyclic boundary conditions the grid point i=0 is excluded from |
---|
325 | !-- the prognostic equations for the u-component. |
---|
326 | IF ( i >= nxlu ) THEN |
---|
327 | |
---|
328 | tend(:,j,i) = 0.0_wp |
---|
329 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
330 | IF ( ws_scheme_mom ) THEN |
---|
331 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
332 | ELSE |
---|
333 | CALL advec_u_pw( i, j ) |
---|
334 | ENDIF |
---|
335 | ELSE |
---|
336 | CALL advec_u_up( i, j ) |
---|
337 | ENDIF |
---|
338 | CALL diffusion_u( i, j ) |
---|
339 | CALL coriolis( i, j, 1 ) |
---|
340 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
341 | CALL buoyancy( i, j, pt, 1 ) |
---|
342 | ENDIF |
---|
343 | |
---|
344 | ! |
---|
345 | !-- Drag by plant canopy |
---|
346 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 1 ) |
---|
347 | |
---|
348 | ! |
---|
349 | !-- External pressure gradient |
---|
350 | IF ( dp_external ) THEN |
---|
351 | DO k = dp_level_ind_b+1, nzt |
---|
352 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
353 | ENDDO |
---|
354 | ENDIF |
---|
355 | |
---|
356 | ! |
---|
357 | !-- Nudging |
---|
358 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
359 | |
---|
360 | ! |
---|
361 | !-- Effect of Stokes drift (in ocean mode only) |
---|
362 | IF ( stokes_force ) CALL stokes_drift_terms( i, j, 1 ) |
---|
363 | |
---|
364 | CALL module_interface_actions( i, j, 'u-tendency' ) |
---|
365 | ! |
---|
366 | !-- Prognostic equation for u-velocity component |
---|
367 | DO k = nzb+1, nzt |
---|
368 | |
---|
369 | u_p(k,j,i) = u(k,j,i) + ( dt_3d * & |
---|
370 | ( tsc(2) * tend(k,j,i) + & |
---|
371 | tsc(3) * tu_m(k,j,i) ) & |
---|
372 | - tsc(5) * rdf(k) & |
---|
373 | * ( u(k,j,i) - u_init(k) ) & |
---|
374 | ) * MERGE( 1.0_wp, 0.0_wp, & |
---|
375 | BTEST( wall_flags_0(k,j,i), 1 )& |
---|
376 | ) |
---|
377 | ENDDO |
---|
378 | |
---|
379 | ! |
---|
380 | !-- Add turbulence generated by wave breaking (in ocean mode only) |
---|
381 | IF ( wave_breaking .AND. & |
---|
382 | intermediate_timestep_count == intermediate_timestep_count_max )& |
---|
383 | THEN |
---|
384 | CALL wave_breaking_term( i, j, 1 ) |
---|
385 | ENDIF |
---|
386 | |
---|
387 | ! |
---|
388 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
389 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
390 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
391 | DO k = nzb+1, nzt |
---|
392 | tu_m(k,j,i) = tend(k,j,i) |
---|
393 | ENDDO |
---|
394 | ELSEIF ( intermediate_timestep_count < & |
---|
395 | intermediate_timestep_count_max ) THEN |
---|
396 | DO k = nzb+1, nzt |
---|
397 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
398 | + 5.3125_wp * tu_m(k,j,i) |
---|
399 | ENDDO |
---|
400 | ENDIF |
---|
401 | ENDIF |
---|
402 | |
---|
403 | ENDIF |
---|
404 | ! |
---|
405 | !-- Tendency terms for v-velocity component. Please note, in case of |
---|
406 | !-- non-cyclic boundary conditions the grid point j=0 is excluded from |
---|
407 | !-- the prognostic equations for the v-component. !-- |
---|
408 | IF ( j >= nysv ) THEN |
---|
409 | |
---|
410 | tend(:,j,i) = 0.0_wp |
---|
411 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
412 | IF ( ws_scheme_mom ) THEN |
---|
413 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
414 | ELSE |
---|
415 | CALL advec_v_pw( i, j ) |
---|
416 | ENDIF |
---|
417 | ELSE |
---|
418 | CALL advec_v_up( i, j ) |
---|
419 | ENDIF |
---|
420 | CALL diffusion_v( i, j ) |
---|
421 | CALL coriolis( i, j, 2 ) |
---|
422 | |
---|
423 | ! |
---|
424 | !-- Drag by plant canopy |
---|
425 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 2 ) |
---|
426 | |
---|
427 | ! |
---|
428 | !-- External pressure gradient |
---|
429 | IF ( dp_external ) THEN |
---|
430 | DO k = dp_level_ind_b+1, nzt |
---|
431 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
432 | ENDDO |
---|
433 | ENDIF |
---|
434 | |
---|
435 | ! |
---|
436 | !-- Nudging |
---|
437 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
438 | |
---|
439 | ! |
---|
440 | !-- Effect of Stokes drift (in ocean mode only) |
---|
441 | IF ( stokes_force ) CALL stokes_drift_terms( i, j, 2 ) |
---|
442 | |
---|
443 | CALL module_interface_actions( i, j, 'v-tendency' ) |
---|
444 | ! |
---|
445 | !-- Prognostic equation for v-velocity component |
---|
446 | DO k = nzb+1, nzt |
---|
447 | v_p(k,j,i) = v(k,j,i) + ( dt_3d * & |
---|
448 | ( tsc(2) * tend(k,j,i) + & |
---|
449 | tsc(3) * tv_m(k,j,i) ) & |
---|
450 | - tsc(5) * rdf(k) & |
---|
451 | * ( v(k,j,i) - v_init(k) )& |
---|
452 | ) * MERGE( 1.0_wp, 0.0_wp, & |
---|
453 | BTEST( wall_flags_0(k,j,i), 2 )& |
---|
454 | ) |
---|
455 | ENDDO |
---|
456 | |
---|
457 | ! |
---|
458 | !-- Add turbulence generated by wave breaking (in ocean mode only) |
---|
459 | IF ( wave_breaking .AND. & |
---|
460 | intermediate_timestep_count == intermediate_timestep_count_max )& |
---|
461 | THEN |
---|
462 | CALL wave_breaking_term( i, j, 2 ) |
---|
463 | ENDIF |
---|
464 | |
---|
465 | ! |
---|
466 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
467 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
468 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
469 | DO k = nzb+1, nzt |
---|
470 | tv_m(k,j,i) = tend(k,j,i) |
---|
471 | ENDDO |
---|
472 | ELSEIF ( intermediate_timestep_count < & |
---|
473 | intermediate_timestep_count_max ) THEN |
---|
474 | DO k = nzb+1, nzt |
---|
475 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
476 | + 5.3125_wp * tv_m(k,j,i) |
---|
477 | ENDDO |
---|
478 | ENDIF |
---|
479 | ENDIF |
---|
480 | |
---|
481 | ENDIF |
---|
482 | |
---|
483 | ! |
---|
484 | !-- Tendency terms for w-velocity component |
---|
485 | tend(:,j,i) = 0.0_wp |
---|
486 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
487 | IF ( ws_scheme_mom ) THEN |
---|
488 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
489 | ELSE |
---|
490 | CALL advec_w_pw( i, j ) |
---|
491 | END IF |
---|
492 | ELSE |
---|
493 | CALL advec_w_up( i, j ) |
---|
494 | ENDIF |
---|
495 | CALL diffusion_w( i, j ) |
---|
496 | CALL coriolis( i, j, 3 ) |
---|
497 | |
---|
498 | IF ( .NOT. neutral ) THEN |
---|
499 | IF ( ocean_mode ) THEN |
---|
500 | CALL buoyancy( i, j, rho_ocean, 3 ) |
---|
501 | ELSE |
---|
502 | IF ( .NOT. humidity ) THEN |
---|
503 | CALL buoyancy( i, j, pt, 3 ) |
---|
504 | ELSE |
---|
505 | CALL buoyancy( i, j, vpt, 3 ) |
---|
506 | ENDIF |
---|
507 | ENDIF |
---|
508 | ENDIF |
---|
509 | |
---|
510 | ! |
---|
511 | !-- Drag by plant canopy |
---|
512 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 3 ) |
---|
513 | |
---|
514 | ! |
---|
515 | !-- Effect of Stokes drift (in ocean mode only) |
---|
516 | IF ( stokes_force ) CALL stokes_drift_terms( i, j, 3 ) |
---|
517 | |
---|
518 | CALL module_interface_actions( i, j, 'w-tendency' ) |
---|
519 | ! |
---|
520 | !-- Prognostic equation for w-velocity component |
---|
521 | DO k = nzb+1, nzt-1 |
---|
522 | w_p(k,j,i) = w(k,j,i) + ( dt_3d * & |
---|
523 | ( tsc(2) * tend(k,j,i) + & |
---|
524 | tsc(3) * tw_m(k,j,i) ) & |
---|
525 | - tsc(5) * rdf(k) * w(k,j,i) & |
---|
526 | ) * MERGE( 1.0_wp, 0.0_wp, & |
---|
527 | BTEST( wall_flags_0(k,j,i), 3 )& |
---|
528 | ) |
---|
529 | ENDDO |
---|
530 | |
---|
531 | ! |
---|
532 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
533 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
534 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
535 | DO k = nzb+1, nzt-1 |
---|
536 | tw_m(k,j,i) = tend(k,j,i) |
---|
537 | ENDDO |
---|
538 | ELSEIF ( intermediate_timestep_count < & |
---|
539 | intermediate_timestep_count_max ) THEN |
---|
540 | DO k = nzb+1, nzt-1 |
---|
541 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
542 | + 5.3125_wp * tw_m(k,j,i) |
---|
543 | ENDDO |
---|
544 | ENDIF |
---|
545 | ENDIF |
---|
546 | |
---|
547 | ! |
---|
548 | !-- If required, compute prognostic equation for potential temperature |
---|
549 | IF ( .NOT. neutral ) THEN |
---|
550 | ! |
---|
551 | !-- Tendency terms for potential temperature |
---|
552 | tend(:,j,i) = 0.0_wp |
---|
553 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
554 | IF ( ws_scheme_sca ) THEN |
---|
555 | CALL advec_s_ws( advc_flags_s, & |
---|
556 | i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
557 | flux_l_pt, diss_l_pt, i_omp_start, tn, & |
---|
558 | bc_dirichlet_l .OR. bc_radiation_l, & |
---|
559 | bc_dirichlet_n .OR. bc_radiation_n, & |
---|
560 | bc_dirichlet_r .OR. bc_radiation_r, & |
---|
561 | bc_dirichlet_s .OR. bc_radiation_s ) |
---|
562 | ELSE |
---|
563 | CALL advec_s_pw( i, j, pt ) |
---|
564 | ENDIF |
---|
565 | ELSE |
---|
566 | CALL advec_s_up( i, j, pt ) |
---|
567 | ENDIF |
---|
568 | CALL diffusion_s( i, j, pt, & |
---|
569 | surf_def_h(0)%shf, surf_def_h(1)%shf, & |
---|
570 | surf_def_h(2)%shf, & |
---|
571 | surf_lsm_h%shf, surf_usm_h%shf, & |
---|
572 | surf_def_v(0)%shf, surf_def_v(1)%shf, & |
---|
573 | surf_def_v(2)%shf, surf_def_v(3)%shf, & |
---|
574 | surf_lsm_v(0)%shf, surf_lsm_v(1)%shf, & |
---|
575 | surf_lsm_v(2)%shf, surf_lsm_v(3)%shf, & |
---|
576 | surf_usm_v(0)%shf, surf_usm_v(1)%shf, & |
---|
577 | surf_usm_v(2)%shf, surf_usm_v(3)%shf ) |
---|
578 | |
---|
579 | ! |
---|
580 | !-- Consideration of heat sources within the plant canopy |
---|
581 | IF ( plant_canopy .AND. & |
---|
582 | (cthf /= 0.0_wp .OR. urban_surface .OR. land_surface) ) THEN |
---|
583 | CALL pcm_tendency( i, j, 4 ) |
---|
584 | ENDIF |
---|
585 | |
---|
586 | ! |
---|
587 | !-- Large scale advection |
---|
588 | IF ( large_scale_forcing ) THEN |
---|
589 | CALL ls_advec( i, j, simulated_time, 'pt' ) |
---|
590 | ENDIF |
---|
591 | |
---|
592 | ! |
---|
593 | !-- Nudging |
---|
594 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
595 | |
---|
596 | ! |
---|
597 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
598 | IF ( large_scale_subsidence .AND. & |
---|
599 | .NOT. use_subsidence_tendencies ) THEN |
---|
600 | CALL subsidence( i, j, tend, pt, pt_init, 2 ) |
---|
601 | ENDIF |
---|
602 | |
---|
603 | #if defined( __rrtmg ) |
---|
604 | ! |
---|
605 | !-- If required, add tendency due to radiative heating/cooling |
---|
606 | IF ( radiation .AND. & |
---|
607 | simulated_time > skip_time_do_radiation ) THEN |
---|
608 | CALL radiation_tendency ( i, j, tend ) |
---|
609 | ENDIF |
---|
610 | #endif |
---|
611 | |
---|
612 | CALL module_interface_actions( i, j, 'pt-tendency' ) |
---|
613 | ! |
---|
614 | !-- Prognostic equation for potential temperature |
---|
615 | DO k = nzb+1, nzt |
---|
616 | pt_p(k,j,i) = pt(k,j,i) + ( dt_3d * & |
---|
617 | ( tsc(2) * tend(k,j,i) + & |
---|
618 | tsc(3) * tpt_m(k,j,i) ) & |
---|
619 | - tsc(5) & |
---|
620 | * ( pt(k,j,i) - pt_init(k) ) & |
---|
621 | * ( rdf_sc(k) + ptdf_x(i) & |
---|
622 | + ptdf_y(j) ) & |
---|
623 | ) & |
---|
624 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
625 | BTEST( wall_flags_0(k,j,i), 0 )& |
---|
626 | ) |
---|
627 | ENDDO |
---|
628 | |
---|
629 | ! |
---|
630 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
631 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
632 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
633 | DO k = nzb+1, nzt |
---|
634 | tpt_m(k,j,i) = tend(k,j,i) |
---|
635 | ENDDO |
---|
636 | ELSEIF ( intermediate_timestep_count < & |
---|
637 | intermediate_timestep_count_max ) THEN |
---|
638 | DO k = nzb+1, nzt |
---|
639 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
640 | 5.3125_wp * tpt_m(k,j,i) |
---|
641 | ENDDO |
---|
642 | ENDIF |
---|
643 | ENDIF |
---|
644 | |
---|
645 | ENDIF |
---|
646 | |
---|
647 | ! |
---|
648 | !-- If required, compute prognostic equation for total water content |
---|
649 | IF ( humidity ) THEN |
---|
650 | |
---|
651 | ! |
---|
652 | !-- Tendency-terms for total water content / scalar |
---|
653 | tend(:,j,i) = 0.0_wp |
---|
654 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
655 | THEN |
---|
656 | IF ( ws_scheme_sca ) THEN |
---|
657 | CALL advec_s_ws( advc_flags_s, & |
---|
658 | i, j, q, 'q', flux_s_q, & |
---|
659 | diss_s_q, flux_l_q, diss_l_q, & |
---|
660 | i_omp_start, tn, & |
---|
661 | bc_dirichlet_l .OR. bc_radiation_l, & |
---|
662 | bc_dirichlet_n .OR. bc_radiation_n, & |
---|
663 | bc_dirichlet_r .OR. bc_radiation_r, & |
---|
664 | bc_dirichlet_s .OR. bc_radiation_s ) |
---|
665 | ELSE |
---|
666 | CALL advec_s_pw( i, j, q ) |
---|
667 | ENDIF |
---|
668 | ELSE |
---|
669 | CALL advec_s_up( i, j, q ) |
---|
670 | ENDIF |
---|
671 | CALL diffusion_s( i, j, q, & |
---|
672 | surf_def_h(0)%qsws, surf_def_h(1)%qsws, & |
---|
673 | surf_def_h(2)%qsws, & |
---|
674 | surf_lsm_h%qsws, surf_usm_h%qsws, & |
---|
675 | surf_def_v(0)%qsws, surf_def_v(1)%qsws, & |
---|
676 | surf_def_v(2)%qsws, surf_def_v(3)%qsws, & |
---|
677 | surf_lsm_v(0)%qsws, surf_lsm_v(1)%qsws, & |
---|
678 | surf_lsm_v(2)%qsws, surf_lsm_v(3)%qsws, & |
---|
679 | surf_usm_v(0)%qsws, surf_usm_v(1)%qsws, & |
---|
680 | surf_usm_v(2)%qsws, surf_usm_v(3)%qsws ) |
---|
681 | |
---|
682 | ! |
---|
683 | !-- Sink or source of humidity due to canopy elements |
---|
684 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 5 ) |
---|
685 | |
---|
686 | ! |
---|
687 | !-- Large scale advection |
---|
688 | IF ( large_scale_forcing ) THEN |
---|
689 | CALL ls_advec( i, j, simulated_time, 'q' ) |
---|
690 | ENDIF |
---|
691 | |
---|
692 | ! |
---|
693 | !-- Nudging |
---|
694 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
695 | |
---|
696 | ! |
---|
697 | !-- If required compute influence of large-scale subsidence/ascent |
---|
698 | IF ( large_scale_subsidence .AND. & |
---|
699 | .NOT. use_subsidence_tendencies ) THEN |
---|
700 | CALL subsidence( i, j, tend, q, q_init, 3 ) |
---|
701 | ENDIF |
---|
702 | |
---|
703 | CALL module_interface_actions( i, j, 'q-tendency' ) |
---|
704 | |
---|
705 | ! |
---|
706 | !-- Prognostic equation for total water content / scalar |
---|
707 | DO k = nzb+1, nzt |
---|
708 | q_p(k,j,i) = q(k,j,i) + ( dt_3d * & |
---|
709 | ( tsc(2) * tend(k,j,i) + & |
---|
710 | tsc(3) * tq_m(k,j,i) ) & |
---|
711 | - tsc(5) * rdf_sc(k) * & |
---|
712 | ( q(k,j,i) - q_init(k) ) & |
---|
713 | ) & |
---|
714 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
715 | BTEST( wall_flags_0(k,j,i), 0 )& |
---|
716 | ) |
---|
717 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
718 | ENDDO |
---|
719 | |
---|
720 | ! |
---|
721 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
722 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
723 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
724 | DO k = nzb+1, nzt |
---|
725 | tq_m(k,j,i) = tend(k,j,i) |
---|
726 | ENDDO |
---|
727 | ELSEIF ( intermediate_timestep_count < & |
---|
728 | intermediate_timestep_count_max ) THEN |
---|
729 | DO k = nzb+1, nzt |
---|
730 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
731 | 5.3125_wp * tq_m(k,j,i) |
---|
732 | ENDDO |
---|
733 | ENDIF |
---|
734 | ENDIF |
---|
735 | |
---|
736 | ENDIF |
---|
737 | |
---|
738 | ! |
---|
739 | !-- If required, compute prognostic equation for scalar |
---|
740 | IF ( passive_scalar ) THEN |
---|
741 | ! |
---|
742 | !-- Tendency-terms for total water content / scalar |
---|
743 | tend(:,j,i) = 0.0_wp |
---|
744 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
745 | THEN |
---|
746 | IF ( ws_scheme_sca ) THEN |
---|
747 | ! |
---|
748 | !-- For scalar advection apply monotonic flux limiter near |
---|
749 | !-- topography. |
---|
750 | CALL advec_s_ws( advc_flags_s, & |
---|
751 | i, j, s, 's', flux_s_s, & |
---|
752 | diss_s_s, flux_l_s, diss_l_s, i_omp_start, & |
---|
753 | tn, & |
---|
754 | bc_dirichlet_l .OR. bc_radiation_l, & |
---|
755 | bc_dirichlet_n .OR. bc_radiation_n, & |
---|
756 | bc_dirichlet_r .OR. bc_radiation_r, & |
---|
757 | bc_dirichlet_s .OR. bc_radiation_s, & |
---|
758 | monotonic_limiter_z ) |
---|
759 | ELSE |
---|
760 | CALL advec_s_pw( i, j, s ) |
---|
761 | ENDIF |
---|
762 | ELSE |
---|
763 | CALL advec_s_up( i, j, s ) |
---|
764 | ENDIF |
---|
765 | CALL diffusion_s( i, j, s, & |
---|
766 | surf_def_h(0)%ssws, surf_def_h(1)%ssws, & |
---|
767 | surf_def_h(2)%ssws, & |
---|
768 | surf_lsm_h%ssws, surf_usm_h%ssws, & |
---|
769 | surf_def_v(0)%ssws, surf_def_v(1)%ssws, & |
---|
770 | surf_def_v(2)%ssws, surf_def_v(3)%ssws, & |
---|
771 | surf_lsm_v(0)%ssws, surf_lsm_v(1)%ssws, & |
---|
772 | surf_lsm_v(2)%ssws, surf_lsm_v(3)%ssws, & |
---|
773 | surf_usm_v(0)%ssws, surf_usm_v(1)%ssws, & |
---|
774 | surf_usm_v(2)%ssws, surf_usm_v(3)%ssws ) |
---|
775 | |
---|
776 | ! |
---|
777 | !-- Sink or source of scalar concentration due to canopy elements |
---|
778 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 7 ) |
---|
779 | |
---|
780 | ! |
---|
781 | !-- Large scale advection, still need to be extended for scalars |
---|
782 | ! IF ( large_scale_forcing ) THEN |
---|
783 | ! CALL ls_advec( i, j, simulated_time, 's' ) |
---|
784 | ! ENDIF |
---|
785 | |
---|
786 | ! |
---|
787 | !-- Nudging, still need to be extended for scalars |
---|
788 | ! IF ( nudging ) CALL nudge( i, j, simulated_time, 's' ) |
---|
789 | |
---|
790 | ! |
---|
791 | !-- If required compute influence of large-scale subsidence/ascent. |
---|
792 | !-- Note, the last argument is of no meaning in this case, as it is |
---|
793 | !-- only used in conjunction with large_scale_forcing, which is to |
---|
794 | !-- date not implemented for scalars. |
---|
795 | IF ( large_scale_subsidence .AND. & |
---|
796 | .NOT. use_subsidence_tendencies .AND. & |
---|
797 | .NOT. large_scale_forcing ) THEN |
---|
798 | CALL subsidence( i, j, tend, s, s_init, 3 ) |
---|
799 | ENDIF |
---|
800 | |
---|
801 | CALL module_interface_actions( i, j, 's-tendency' ) |
---|
802 | |
---|
803 | ! |
---|
804 | !-- Prognostic equation for scalar |
---|
805 | DO k = nzb+1, nzt |
---|
806 | s_p(k,j,i) = s(k,j,i) + ( dt_3d * & |
---|
807 | ( tsc(2) * tend(k,j,i) + & |
---|
808 | tsc(3) * ts_m(k,j,i) ) & |
---|
809 | - tsc(5) * rdf_sc(k) & |
---|
810 | * ( s(k,j,i) - s_init(k) )& |
---|
811 | ) & |
---|
812 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
813 | BTEST( wall_flags_0(k,j,i), 0 )& |
---|
814 | ) |
---|
815 | IF ( s_p(k,j,i) < 0.0_wp ) s_p(k,j,i) = 0.1_wp * s(k,j,i) |
---|
816 | ENDDO |
---|
817 | |
---|
818 | ! |
---|
819 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
820 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
821 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
822 | DO k = nzb+1, nzt |
---|
823 | ts_m(k,j,i) = tend(k,j,i) |
---|
824 | ENDDO |
---|
825 | ELSEIF ( intermediate_timestep_count < & |
---|
826 | intermediate_timestep_count_max ) THEN |
---|
827 | DO k = nzb+1, nzt |
---|
828 | ts_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
829 | 5.3125_wp * ts_m(k,j,i) |
---|
830 | ENDDO |
---|
831 | ENDIF |
---|
832 | ENDIF |
---|
833 | |
---|
834 | ENDIF |
---|
835 | ! |
---|
836 | !-- Calculate prognostic equations for all other modules |
---|
837 | CALL module_interface_prognostic_equations( i, j, i_omp_start, tn ) |
---|
838 | |
---|
839 | ENDDO ! loop over j |
---|
840 | ENDDO ! loop over i |
---|
841 | !$OMP END PARALLEL |
---|
842 | |
---|
843 | |
---|
844 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
845 | |
---|
846 | IF ( debug_output_timestep ) CALL debug_message( 'prognostic_equations_cache', 'end' ) |
---|
847 | |
---|
848 | END SUBROUTINE prognostic_equations_cache |
---|
849 | |
---|
850 | |
---|
851 | !------------------------------------------------------------------------------! |
---|
852 | ! Description: |
---|
853 | ! ------------ |
---|
854 | !> Version for vector machines |
---|
855 | !------------------------------------------------------------------------------! |
---|
856 | |
---|
857 | SUBROUTINE prognostic_equations_vector |
---|
858 | |
---|
859 | |
---|
860 | INTEGER(iwp) :: i !< |
---|
861 | INTEGER(iwp) :: j !< |
---|
862 | INTEGER(iwp) :: k !< |
---|
863 | |
---|
864 | REAL(wp) :: sbt !< |
---|
865 | |
---|
866 | |
---|
867 | IF ( debug_output_timestep ) CALL debug_message( 'prognostic_equations_vector', 'start' ) |
---|
868 | ! |
---|
869 | !-- Calculate non advective processes for all other modules |
---|
870 | CALL module_interface_non_advective_processes |
---|
871 | ! |
---|
872 | !-- Module Inferface for exchange horiz after non_advective_processes but before |
---|
873 | !-- advection. Therefore, non_advective_processes must not run for ghost points. |
---|
874 | CALL module_interface_exchange_horiz() |
---|
875 | ! |
---|
876 | !-- u-velocity component |
---|
877 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
878 | |
---|
879 | !$ACC KERNELS PRESENT(tend) |
---|
880 | tend = 0.0_wp |
---|
881 | !$ACC END KERNELS |
---|
882 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
883 | IF ( ws_scheme_mom ) THEN |
---|
884 | CALL advec_u_ws |
---|
885 | ELSE |
---|
886 | CALL advec_u_pw |
---|
887 | ENDIF |
---|
888 | ELSE |
---|
889 | CALL advec_u_up |
---|
890 | ENDIF |
---|
891 | CALL diffusion_u |
---|
892 | CALL coriolis( 1 ) |
---|
893 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
894 | CALL buoyancy( pt, 1 ) |
---|
895 | ENDIF |
---|
896 | |
---|
897 | ! |
---|
898 | !-- Drag by plant canopy |
---|
899 | IF ( plant_canopy ) CALL pcm_tendency( 1 ) |
---|
900 | |
---|
901 | ! |
---|
902 | !-- External pressure gradient |
---|
903 | IF ( dp_external ) THEN |
---|
904 | DO i = nxlu, nxr |
---|
905 | DO j = nys, nyn |
---|
906 | DO k = dp_level_ind_b+1, nzt |
---|
907 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
908 | ENDDO |
---|
909 | ENDDO |
---|
910 | ENDDO |
---|
911 | ENDIF |
---|
912 | |
---|
913 | ! |
---|
914 | !-- Nudging |
---|
915 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
916 | |
---|
917 | ! |
---|
918 | !-- Effect of Stokes drift (in ocean mode only) |
---|
919 | IF ( stokes_force ) CALL stokes_drift_terms( 1 ) |
---|
920 | |
---|
921 | CALL module_interface_actions( 'u-tendency' ) |
---|
922 | |
---|
923 | ! |
---|
924 | !-- Prognostic equation for u-velocity component |
---|
925 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
926 | !$ACC PRESENT(u, tend, tu_m, u_init, rdf, wall_flags_0) & |
---|
927 | !$ACC PRESENT(tsc(2:5)) & |
---|
928 | !$ACC PRESENT(u_p) |
---|
929 | DO i = nxlu, nxr |
---|
930 | DO j = nys, nyn |
---|
931 | DO k = nzb+1, nzt |
---|
932 | u_p(k,j,i) = u(k,j,i) + ( dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
933 | tsc(3) * tu_m(k,j,i) ) & |
---|
934 | - tsc(5) * rdf(k) * & |
---|
935 | ( u(k,j,i) - u_init(k) ) & |
---|
936 | ) * MERGE( 1.0_wp, 0.0_wp, & |
---|
937 | BTEST( wall_flags_0(k,j,i), 1 ) & |
---|
938 | ) |
---|
939 | ENDDO |
---|
940 | ENDDO |
---|
941 | ENDDO |
---|
942 | |
---|
943 | ! |
---|
944 | !-- Add turbulence generated by wave breaking (in ocean mode only) |
---|
945 | IF ( wave_breaking .AND. & |
---|
946 | intermediate_timestep_count == intermediate_timestep_count_max ) & |
---|
947 | THEN |
---|
948 | CALL wave_breaking_term( 1 ) |
---|
949 | ENDIF |
---|
950 | |
---|
951 | ! |
---|
952 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
953 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
954 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
955 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
956 | !$ACC PRESENT(tend, tu_m) |
---|
957 | DO i = nxlu, nxr |
---|
958 | DO j = nys, nyn |
---|
959 | DO k = nzb+1, nzt |
---|
960 | tu_m(k,j,i) = tend(k,j,i) |
---|
961 | ENDDO |
---|
962 | ENDDO |
---|
963 | ENDDO |
---|
964 | ELSEIF ( intermediate_timestep_count < & |
---|
965 | intermediate_timestep_count_max ) THEN |
---|
966 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
967 | !$ACC PRESENT(tend, tu_m) |
---|
968 | DO i = nxlu, nxr |
---|
969 | DO j = nys, nyn |
---|
970 | DO k = nzb+1, nzt |
---|
971 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
972 | + 5.3125_wp * tu_m(k,j,i) |
---|
973 | ENDDO |
---|
974 | ENDDO |
---|
975 | ENDDO |
---|
976 | ENDIF |
---|
977 | ENDIF |
---|
978 | |
---|
979 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
980 | |
---|
981 | ! |
---|
982 | !-- v-velocity component |
---|
983 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
984 | |
---|
985 | !$ACC KERNELS PRESENT(tend) |
---|
986 | tend = 0.0_wp |
---|
987 | !$ACC END KERNELS |
---|
988 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
989 | IF ( ws_scheme_mom ) THEN |
---|
990 | CALL advec_v_ws |
---|
991 | ELSE |
---|
992 | CALL advec_v_pw |
---|
993 | END IF |
---|
994 | ELSE |
---|
995 | CALL advec_v_up |
---|
996 | ENDIF |
---|
997 | CALL diffusion_v |
---|
998 | CALL coriolis( 2 ) |
---|
999 | |
---|
1000 | ! |
---|
1001 | !-- Drag by plant canopy |
---|
1002 | IF ( plant_canopy ) CALL pcm_tendency( 2 ) |
---|
1003 | |
---|
1004 | ! |
---|
1005 | !-- External pressure gradient |
---|
1006 | IF ( dp_external ) THEN |
---|
1007 | DO i = nxl, nxr |
---|
1008 | DO j = nysv, nyn |
---|
1009 | DO k = dp_level_ind_b+1, nzt |
---|
1010 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
1011 | ENDDO |
---|
1012 | ENDDO |
---|
1013 | ENDDO |
---|
1014 | ENDIF |
---|
1015 | |
---|
1016 | ! |
---|
1017 | !-- Nudging |
---|
1018 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
1019 | |
---|
1020 | ! |
---|
1021 | !-- Effect of Stokes drift (in ocean mode only) |
---|
1022 | IF ( stokes_force ) CALL stokes_drift_terms( 2 ) |
---|
1023 | |
---|
1024 | CALL module_interface_actions( 'v-tendency' ) |
---|
1025 | |
---|
1026 | ! |
---|
1027 | !-- Prognostic equation for v-velocity component |
---|
1028 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1029 | !$ACC PRESENT(v, tend, tv_m, v_init, rdf, wall_flags_0) & |
---|
1030 | !$ACC PRESENT(tsc(2:5)) & |
---|
1031 | !$ACC PRESENT(v_p) |
---|
1032 | DO i = nxl, nxr |
---|
1033 | DO j = nysv, nyn |
---|
1034 | DO k = nzb+1, nzt |
---|
1035 | v_p(k,j,i) = v(k,j,i) + ( dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1036 | tsc(3) * tv_m(k,j,i) ) & |
---|
1037 | - tsc(5) * rdf(k) * & |
---|
1038 | ( v(k,j,i) - v_init(k) ) & |
---|
1039 | ) * MERGE( 1.0_wp, 0.0_wp, & |
---|
1040 | BTEST( wall_flags_0(k,j,i), 2 )& |
---|
1041 | ) |
---|
1042 | ENDDO |
---|
1043 | ENDDO |
---|
1044 | ENDDO |
---|
1045 | |
---|
1046 | ! |
---|
1047 | !-- Add turbulence generated by wave breaking (in ocean mode only) |
---|
1048 | IF ( wave_breaking .AND. & |
---|
1049 | intermediate_timestep_count == intermediate_timestep_count_max ) & |
---|
1050 | THEN |
---|
1051 | CALL wave_breaking_term( 2 ) |
---|
1052 | ENDIF |
---|
1053 | |
---|
1054 | ! |
---|
1055 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1056 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1057 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1058 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1059 | !$ACC PRESENT(tend, tv_m) |
---|
1060 | DO i = nxl, nxr |
---|
1061 | DO j = nysv, nyn |
---|
1062 | DO k = nzb+1, nzt |
---|
1063 | tv_m(k,j,i) = tend(k,j,i) |
---|
1064 | ENDDO |
---|
1065 | ENDDO |
---|
1066 | ENDDO |
---|
1067 | ELSEIF ( intermediate_timestep_count < & |
---|
1068 | intermediate_timestep_count_max ) THEN |
---|
1069 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1070 | !$ACC PRESENT(tend, tv_m) |
---|
1071 | DO i = nxl, nxr |
---|
1072 | DO j = nysv, nyn |
---|
1073 | DO k = nzb+1, nzt |
---|
1074 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
1075 | + 5.3125_wp * tv_m(k,j,i) |
---|
1076 | ENDDO |
---|
1077 | ENDDO |
---|
1078 | ENDDO |
---|
1079 | ENDIF |
---|
1080 | ENDIF |
---|
1081 | |
---|
1082 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
1083 | |
---|
1084 | ! |
---|
1085 | !-- w-velocity component |
---|
1086 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
1087 | |
---|
1088 | !$ACC KERNELS PRESENT(tend) |
---|
1089 | tend = 0.0_wp |
---|
1090 | !$ACC END KERNELS |
---|
1091 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1092 | IF ( ws_scheme_mom ) THEN |
---|
1093 | CALL advec_w_ws |
---|
1094 | ELSE |
---|
1095 | CALL advec_w_pw |
---|
1096 | ENDIF |
---|
1097 | ELSE |
---|
1098 | CALL advec_w_up |
---|
1099 | ENDIF |
---|
1100 | CALL diffusion_w |
---|
1101 | CALL coriolis( 3 ) |
---|
1102 | |
---|
1103 | IF ( .NOT. neutral ) THEN |
---|
1104 | IF ( ocean_mode ) THEN |
---|
1105 | CALL buoyancy( rho_ocean, 3 ) |
---|
1106 | ELSE |
---|
1107 | IF ( .NOT. humidity ) THEN |
---|
1108 | CALL buoyancy( pt, 3 ) |
---|
1109 | ELSE |
---|
1110 | CALL buoyancy( vpt, 3 ) |
---|
1111 | ENDIF |
---|
1112 | ENDIF |
---|
1113 | ENDIF |
---|
1114 | |
---|
1115 | ! |
---|
1116 | !-- Drag by plant canopy |
---|
1117 | IF ( plant_canopy ) CALL pcm_tendency( 3 ) |
---|
1118 | |
---|
1119 | ! |
---|
1120 | !-- Effect of Stokes drift (in ocean mode only) |
---|
1121 | IF ( stokes_force ) CALL stokes_drift_terms( 3 ) |
---|
1122 | |
---|
1123 | CALL module_interface_actions( 'w-tendency' ) |
---|
1124 | |
---|
1125 | ! |
---|
1126 | !-- Prognostic equation for w-velocity component |
---|
1127 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1128 | !$ACC PRESENT(w, tend, tw_m, v_init, rdf, wall_flags_0) & |
---|
1129 | !$ACC PRESENT(tsc(2:5)) & |
---|
1130 | !$ACC PRESENT(w_p) |
---|
1131 | DO i = nxl, nxr |
---|
1132 | DO j = nys, nyn |
---|
1133 | DO k = nzb+1, nzt-1 |
---|
1134 | w_p(k,j,i) = w(k,j,i) + ( dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1135 | tsc(3) * tw_m(k,j,i) ) & |
---|
1136 | - tsc(5) * rdf(k) * w(k,j,i) & |
---|
1137 | ) * MERGE( 1.0_wp, 0.0_wp, & |
---|
1138 | BTEST( wall_flags_0(k,j,i), 3 )& |
---|
1139 | ) |
---|
1140 | ENDDO |
---|
1141 | ENDDO |
---|
1142 | ENDDO |
---|
1143 | |
---|
1144 | ! |
---|
1145 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1146 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1147 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1148 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1149 | !$ACC PRESENT(tend, tw_m) |
---|
1150 | DO i = nxl, nxr |
---|
1151 | DO j = nys, nyn |
---|
1152 | DO k = nzb+1, nzt-1 |
---|
1153 | tw_m(k,j,i) = tend(k,j,i) |
---|
1154 | ENDDO |
---|
1155 | ENDDO |
---|
1156 | ENDDO |
---|
1157 | ELSEIF ( intermediate_timestep_count < & |
---|
1158 | intermediate_timestep_count_max ) THEN |
---|
1159 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1160 | !$ACC PRESENT(tend, tw_m) |
---|
1161 | DO i = nxl, nxr |
---|
1162 | DO j = nys, nyn |
---|
1163 | DO k = nzb+1, nzt-1 |
---|
1164 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
1165 | + 5.3125_wp * tw_m(k,j,i) |
---|
1166 | ENDDO |
---|
1167 | ENDDO |
---|
1168 | ENDDO |
---|
1169 | ENDIF |
---|
1170 | ENDIF |
---|
1171 | |
---|
1172 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
1173 | |
---|
1174 | |
---|
1175 | ! |
---|
1176 | !-- If required, compute prognostic equation for potential temperature |
---|
1177 | IF ( .NOT. neutral ) THEN |
---|
1178 | |
---|
1179 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
1180 | |
---|
1181 | ! |
---|
1182 | !-- pt-tendency terms with communication |
---|
1183 | sbt = tsc(2) |
---|
1184 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1185 | |
---|
1186 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1187 | ! |
---|
1188 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1189 | sbt = 1.0_wp |
---|
1190 | ENDIF |
---|
1191 | tend = 0.0_wp |
---|
1192 | CALL advec_s_bc( pt, 'pt' ) |
---|
1193 | |
---|
1194 | ENDIF |
---|
1195 | |
---|
1196 | ! |
---|
1197 | !-- pt-tendency terms with no communication |
---|
1198 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1199 | !$ACC KERNELS PRESENT(tend) |
---|
1200 | tend = 0.0_wp |
---|
1201 | !$ACC END KERNELS |
---|
1202 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1203 | IF ( ws_scheme_sca ) THEN |
---|
1204 | CALL advec_s_ws( advc_flags_s, pt, 'pt', & |
---|
1205 | bc_dirichlet_l .OR. bc_radiation_l, & |
---|
1206 | bc_dirichlet_n .OR. bc_radiation_n, & |
---|
1207 | bc_dirichlet_r .OR. bc_radiation_r, & |
---|
1208 | bc_dirichlet_s .OR. bc_radiation_s ) |
---|
1209 | ELSE |
---|
1210 | CALL advec_s_pw( pt ) |
---|
1211 | ENDIF |
---|
1212 | ELSE |
---|
1213 | CALL advec_s_up( pt ) |
---|
1214 | ENDIF |
---|
1215 | ENDIF |
---|
1216 | |
---|
1217 | CALL diffusion_s( pt, & |
---|
1218 | surf_def_h(0)%shf, surf_def_h(1)%shf, & |
---|
1219 | surf_def_h(2)%shf, & |
---|
1220 | surf_lsm_h%shf, surf_usm_h%shf, & |
---|
1221 | surf_def_v(0)%shf, surf_def_v(1)%shf, & |
---|
1222 | surf_def_v(2)%shf, surf_def_v(3)%shf, & |
---|
1223 | surf_lsm_v(0)%shf, surf_lsm_v(1)%shf, & |
---|
1224 | surf_lsm_v(2)%shf, surf_lsm_v(3)%shf, & |
---|
1225 | surf_usm_v(0)%shf, surf_usm_v(1)%shf, & |
---|
1226 | surf_usm_v(2)%shf, surf_usm_v(3)%shf ) |
---|
1227 | |
---|
1228 | ! |
---|
1229 | !-- Consideration of heat sources within the plant canopy |
---|
1230 | IF ( plant_canopy .AND. & |
---|
1231 | (cthf /= 0.0_wp .OR. urban_surface .OR. land_surface) ) THEN |
---|
1232 | CALL pcm_tendency( 4 ) |
---|
1233 | ENDIF |
---|
1234 | |
---|
1235 | ! |
---|
1236 | !-- Large scale advection |
---|
1237 | IF ( large_scale_forcing ) THEN |
---|
1238 | CALL ls_advec( simulated_time, 'pt' ) |
---|
1239 | ENDIF |
---|
1240 | |
---|
1241 | ! |
---|
1242 | !-- Nudging |
---|
1243 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
1244 | |
---|
1245 | ! |
---|
1246 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1247 | IF ( large_scale_subsidence .AND. & |
---|
1248 | .NOT. use_subsidence_tendencies ) THEN |
---|
1249 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
1250 | ENDIF |
---|
1251 | |
---|
1252 | #if defined( __rrtmg ) |
---|
1253 | ! |
---|
1254 | !-- If required, add tendency due to radiative heating/cooling |
---|
1255 | IF ( radiation .AND. & |
---|
1256 | simulated_time > skip_time_do_radiation ) THEN |
---|
1257 | CALL radiation_tendency ( tend ) |
---|
1258 | ENDIF |
---|
1259 | #endif |
---|
1260 | |
---|
1261 | CALL module_interface_actions( 'pt-tendency' ) |
---|
1262 | |
---|
1263 | ! |
---|
1264 | !-- Prognostic equation for potential temperature |
---|
1265 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1266 | !$ACC PRESENT(pt, tend, tpt_m, wall_flags_0) & |
---|
1267 | !$ACC PRESENT(pt_init, rdf_sc, ptdf_x, ptdf_y) & |
---|
1268 | !$ACC PRESENT(tsc(3:5)) & |
---|
1269 | !$ACC PRESENT(pt_p) |
---|
1270 | DO i = nxl, nxr |
---|
1271 | DO j = nys, nyn |
---|
1272 | DO k = nzb+1, nzt |
---|
1273 | pt_p(k,j,i) = pt(k,j,i) + ( dt_3d * ( sbt * tend(k,j,i) + & |
---|
1274 | tsc(3) * tpt_m(k,j,i) ) & |
---|
1275 | - tsc(5) * & |
---|
1276 | ( pt(k,j,i) - pt_init(k) ) *& |
---|
1277 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) )& |
---|
1278 | ) & |
---|
1279 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1280 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
1281 | ) |
---|
1282 | ENDDO |
---|
1283 | ENDDO |
---|
1284 | ENDDO |
---|
1285 | ! |
---|
1286 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1287 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1288 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1289 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1290 | !$ACC PRESENT(tend, tpt_m) |
---|
1291 | DO i = nxl, nxr |
---|
1292 | DO j = nys, nyn |
---|
1293 | DO k = nzb+1, nzt |
---|
1294 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1295 | ENDDO |
---|
1296 | ENDDO |
---|
1297 | ENDDO |
---|
1298 | ELSEIF ( intermediate_timestep_count < & |
---|
1299 | intermediate_timestep_count_max ) THEN |
---|
1300 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1301 | !$ACC PRESENT(tend, tpt_m) |
---|
1302 | DO i = nxl, nxr |
---|
1303 | DO j = nys, nyn |
---|
1304 | DO k = nzb+1, nzt |
---|
1305 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
1306 | 5.3125_wp * tpt_m(k,j,i) |
---|
1307 | ENDDO |
---|
1308 | ENDDO |
---|
1309 | ENDDO |
---|
1310 | ENDIF |
---|
1311 | ENDIF |
---|
1312 | |
---|
1313 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
1314 | |
---|
1315 | ENDIF |
---|
1316 | |
---|
1317 | ! |
---|
1318 | !-- If required, compute prognostic equation for total water content |
---|
1319 | IF ( humidity ) THEN |
---|
1320 | |
---|
1321 | CALL cpu_log( log_point(29), 'q-equation', 'start' ) |
---|
1322 | |
---|
1323 | ! |
---|
1324 | !-- Scalar/q-tendency terms with communication |
---|
1325 | sbt = tsc(2) |
---|
1326 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1327 | |
---|
1328 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1329 | ! |
---|
1330 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1331 | sbt = 1.0_wp |
---|
1332 | ENDIF |
---|
1333 | tend = 0.0_wp |
---|
1334 | CALL advec_s_bc( q, 'q' ) |
---|
1335 | |
---|
1336 | ENDIF |
---|
1337 | |
---|
1338 | ! |
---|
1339 | !-- Scalar/q-tendency terms with no communication |
---|
1340 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1341 | tend = 0.0_wp |
---|
1342 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1343 | IF ( ws_scheme_sca ) THEN |
---|
1344 | CALL advec_s_ws( advc_flags_s, q, 'q', & |
---|
1345 | bc_dirichlet_l .OR. bc_radiation_l, & |
---|
1346 | bc_dirichlet_n .OR. bc_radiation_n, & |
---|
1347 | bc_dirichlet_r .OR. bc_radiation_r, & |
---|
1348 | bc_dirichlet_s .OR. bc_radiation_s ) |
---|
1349 | ELSE |
---|
1350 | CALL advec_s_pw( q ) |
---|
1351 | ENDIF |
---|
1352 | ELSE |
---|
1353 | CALL advec_s_up( q ) |
---|
1354 | ENDIF |
---|
1355 | ENDIF |
---|
1356 | |
---|
1357 | CALL diffusion_s( q, & |
---|
1358 | surf_def_h(0)%qsws, surf_def_h(1)%qsws, & |
---|
1359 | surf_def_h(2)%qsws, & |
---|
1360 | surf_lsm_h%qsws, surf_usm_h%qsws, & |
---|
1361 | surf_def_v(0)%qsws, surf_def_v(1)%qsws, & |
---|
1362 | surf_def_v(2)%qsws, surf_def_v(3)%qsws, & |
---|
1363 | surf_lsm_v(0)%qsws, surf_lsm_v(1)%qsws, & |
---|
1364 | surf_lsm_v(2)%qsws, surf_lsm_v(3)%qsws, & |
---|
1365 | surf_usm_v(0)%qsws, surf_usm_v(1)%qsws, & |
---|
1366 | surf_usm_v(2)%qsws, surf_usm_v(3)%qsws ) |
---|
1367 | |
---|
1368 | ! |
---|
1369 | !-- Sink or source of humidity due to canopy elements |
---|
1370 | IF ( plant_canopy ) CALL pcm_tendency( 5 ) |
---|
1371 | |
---|
1372 | ! |
---|
1373 | !-- Large scale advection |
---|
1374 | IF ( large_scale_forcing ) THEN |
---|
1375 | CALL ls_advec( simulated_time, 'q' ) |
---|
1376 | ENDIF |
---|
1377 | |
---|
1378 | ! |
---|
1379 | !-- Nudging |
---|
1380 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
1381 | |
---|
1382 | ! |
---|
1383 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1384 | IF ( large_scale_subsidence .AND. & |
---|
1385 | .NOT. use_subsidence_tendencies ) THEN |
---|
1386 | CALL subsidence( tend, q, q_init, 3 ) |
---|
1387 | ENDIF |
---|
1388 | |
---|
1389 | CALL module_interface_actions( 'q-tendency' ) |
---|
1390 | |
---|
1391 | ! |
---|
1392 | !-- Prognostic equation for total water content |
---|
1393 | DO i = nxl, nxr |
---|
1394 | DO j = nys, nyn |
---|
1395 | DO k = nzb+1, nzt |
---|
1396 | q_p(k,j,i) = q(k,j,i) + ( dt_3d * ( sbt * tend(k,j,i) + & |
---|
1397 | tsc(3) * tq_m(k,j,i) ) & |
---|
1398 | - tsc(5) * rdf_sc(k) * & |
---|
1399 | ( q(k,j,i) - q_init(k) ) & |
---|
1400 | ) * MERGE( 1.0_wp, 0.0_wp, & |
---|
1401 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
1402 | ) |
---|
1403 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
1404 | ENDDO |
---|
1405 | ENDDO |
---|
1406 | ENDDO |
---|
1407 | |
---|
1408 | ! |
---|
1409 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1410 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1411 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1412 | DO i = nxl, nxr |
---|
1413 | DO j = nys, nyn |
---|
1414 | DO k = nzb+1, nzt |
---|
1415 | tq_m(k,j,i) = tend(k,j,i) |
---|
1416 | ENDDO |
---|
1417 | ENDDO |
---|
1418 | ENDDO |
---|
1419 | ELSEIF ( intermediate_timestep_count < & |
---|
1420 | intermediate_timestep_count_max ) THEN |
---|
1421 | DO i = nxl, nxr |
---|
1422 | DO j = nys, nyn |
---|
1423 | DO k = nzb+1, nzt |
---|
1424 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
1425 | + 5.3125_wp * tq_m(k,j,i) |
---|
1426 | ENDDO |
---|
1427 | ENDDO |
---|
1428 | ENDDO |
---|
1429 | ENDIF |
---|
1430 | ENDIF |
---|
1431 | |
---|
1432 | CALL cpu_log( log_point(29), 'q-equation', 'stop' ) |
---|
1433 | |
---|
1434 | ENDIF |
---|
1435 | ! |
---|
1436 | !-- If required, compute prognostic equation for scalar |
---|
1437 | IF ( passive_scalar ) THEN |
---|
1438 | |
---|
1439 | CALL cpu_log( log_point(66), 's-equation', 'start' ) |
---|
1440 | |
---|
1441 | ! |
---|
1442 | !-- Scalar/q-tendency terms with communication |
---|
1443 | sbt = tsc(2) |
---|
1444 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1445 | |
---|
1446 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1447 | ! |
---|
1448 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1449 | sbt = 1.0_wp |
---|
1450 | ENDIF |
---|
1451 | tend = 0.0_wp |
---|
1452 | CALL advec_s_bc( s, 's' ) |
---|
1453 | |
---|
1454 | ENDIF |
---|
1455 | |
---|
1456 | ! |
---|
1457 | !-- Scalar/q-tendency terms with no communication |
---|
1458 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1459 | tend = 0.0_wp |
---|
1460 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1461 | IF ( ws_scheme_sca ) THEN |
---|
1462 | CALL advec_s_ws( advc_flags_s, s, 's', & |
---|
1463 | bc_dirichlet_l .OR. bc_radiation_l, & |
---|
1464 | bc_dirichlet_n .OR. bc_radiation_n, & |
---|
1465 | bc_dirichlet_r .OR. bc_radiation_r, & |
---|
1466 | bc_dirichlet_s .OR. bc_radiation_s ) |
---|
1467 | ELSE |
---|
1468 | CALL advec_s_pw( s ) |
---|
1469 | ENDIF |
---|
1470 | ELSE |
---|
1471 | CALL advec_s_up( s ) |
---|
1472 | ENDIF |
---|
1473 | ENDIF |
---|
1474 | |
---|
1475 | CALL diffusion_s( s, & |
---|
1476 | surf_def_h(0)%ssws, surf_def_h(1)%ssws, & |
---|
1477 | surf_def_h(2)%ssws, & |
---|
1478 | surf_lsm_h%ssws, surf_usm_h%ssws, & |
---|
1479 | surf_def_v(0)%ssws, surf_def_v(1)%ssws, & |
---|
1480 | surf_def_v(2)%ssws, surf_def_v(3)%ssws, & |
---|
1481 | surf_lsm_v(0)%ssws, surf_lsm_v(1)%ssws, & |
---|
1482 | surf_lsm_v(2)%ssws, surf_lsm_v(3)%ssws, & |
---|
1483 | surf_usm_v(0)%ssws, surf_usm_v(1)%ssws, & |
---|
1484 | surf_usm_v(2)%ssws, surf_usm_v(3)%ssws ) |
---|
1485 | |
---|
1486 | ! |
---|
1487 | !-- Sink or source of humidity due to canopy elements |
---|
1488 | IF ( plant_canopy ) CALL pcm_tendency( 7 ) |
---|
1489 | |
---|
1490 | ! |
---|
1491 | !-- Large scale advection. Not implemented for scalars so far. |
---|
1492 | ! IF ( large_scale_forcing ) THEN |
---|
1493 | ! CALL ls_advec( simulated_time, 'q' ) |
---|
1494 | ! ENDIF |
---|
1495 | |
---|
1496 | ! |
---|
1497 | !-- Nudging. Not implemented for scalars so far. |
---|
1498 | ! IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
1499 | |
---|
1500 | ! |
---|
1501 | !-- If required compute influence of large-scale subsidence/ascent. |
---|
1502 | !-- Not implemented for scalars so far. |
---|
1503 | IF ( large_scale_subsidence .AND. & |
---|
1504 | .NOT. use_subsidence_tendencies .AND. & |
---|
1505 | .NOT. large_scale_forcing ) THEN |
---|
1506 | CALL subsidence( tend, s, s_init, 3 ) |
---|
1507 | ENDIF |
---|
1508 | |
---|
1509 | CALL module_interface_actions( 's-tendency' ) |
---|
1510 | |
---|
1511 | ! |
---|
1512 | !-- Prognostic equation for total water content |
---|
1513 | DO i = nxl, nxr |
---|
1514 | DO j = nys, nyn |
---|
1515 | DO k = nzb+1, nzt |
---|
1516 | s_p(k,j,i) = s(k,j,i) + ( dt_3d * ( sbt * tend(k,j,i) + & |
---|
1517 | tsc(3) * ts_m(k,j,i) ) & |
---|
1518 | - tsc(5) * rdf_sc(k) * & |
---|
1519 | ( s(k,j,i) - s_init(k) ) & |
---|
1520 | ) & |
---|
1521 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1522 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
1523 | ) |
---|
1524 | IF ( s_p(k,j,i) < 0.0_wp ) s_p(k,j,i) = 0.1_wp * s(k,j,i) |
---|
1525 | ENDDO |
---|
1526 | ENDDO |
---|
1527 | ENDDO |
---|
1528 | |
---|
1529 | ! |
---|
1530 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1531 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1532 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1533 | DO i = nxl, nxr |
---|
1534 | DO j = nys, nyn |
---|
1535 | DO k = nzb+1, nzt |
---|
1536 | ts_m(k,j,i) = tend(k,j,i) |
---|
1537 | ENDDO |
---|
1538 | ENDDO |
---|
1539 | ENDDO |
---|
1540 | ELSEIF ( intermediate_timestep_count < & |
---|
1541 | intermediate_timestep_count_max ) THEN |
---|
1542 | DO i = nxl, nxr |
---|
1543 | DO j = nys, nyn |
---|
1544 | DO k = nzb+1, nzt |
---|
1545 | ts_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
1546 | + 5.3125_wp * ts_m(k,j,i) |
---|
1547 | ENDDO |
---|
1548 | ENDDO |
---|
1549 | ENDDO |
---|
1550 | ENDIF |
---|
1551 | ENDIF |
---|
1552 | |
---|
1553 | CALL cpu_log( log_point(66), 's-equation', 'stop' ) |
---|
1554 | |
---|
1555 | ENDIF |
---|
1556 | ! |
---|
1557 | !-- Calculate prognostic equations for all other modules |
---|
1558 | CALL module_interface_prognostic_equations() |
---|
1559 | |
---|
1560 | IF ( debug_output_timestep ) CALL debug_message( 'prognostic_equations_vector', 'end' ) |
---|
1561 | |
---|
1562 | END SUBROUTINE prognostic_equations_vector |
---|
1563 | |
---|
1564 | |
---|
1565 | END MODULE prognostic_equations_mod |
---|