1 | !> @file prognostic_equations.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: prognostic_equations.f90 3684 2019-01-20 20:20:58Z knoop $ |
---|
27 | ! OpenACC port for SPEC |
---|
28 | ! |
---|
29 | ! 3589 2018-11-30 15:09:51Z suehring |
---|
30 | ! Move the control parameter "salsa" from salsa_mod to control_parameters |
---|
31 | ! (M. Kurppa) |
---|
32 | ! |
---|
33 | ! 3582 2018-11-29 19:16:36Z suehring |
---|
34 | ! Implementation of a new aerosol module salsa. |
---|
35 | ! Remove cpu-logs from i,j loop in cache version. |
---|
36 | ! |
---|
37 | ! 3458 2018-10-30 14:51:23Z kanani |
---|
38 | ! remove duplicate USE chem_modules |
---|
39 | ! from chemistry branch r3443, banzhafs, basit: |
---|
40 | ! chem_depo call introduced |
---|
41 | ! code added for decycling chemistry |
---|
42 | ! |
---|
43 | ! 3386 2018-10-19 16:28:22Z gronemeier |
---|
44 | ! Renamed tcm_prognostic to tcm_prognostic_equations |
---|
45 | ! |
---|
46 | ! 3355 2018-10-16 14:03:34Z knoop |
---|
47 | ! (from branch resler) |
---|
48 | ! Fix for chemistry call |
---|
49 | ! |
---|
50 | ! 3302 2018-10-03 02:39:40Z raasch |
---|
51 | ! Stokes drift + wave breaking term added |
---|
52 | ! |
---|
53 | ! 3298 2018-10-02 12:21:11Z kanani |
---|
54 | ! Code added for decycling chemistry (basit) |
---|
55 | ! |
---|
56 | ! 3294 2018-10-01 02:37:10Z raasch |
---|
57 | ! changes concerning modularization of ocean option |
---|
58 | ! |
---|
59 | ! 3274 2018-09-24 15:42:55Z knoop |
---|
60 | ! Modularization of all bulk cloud physics code components |
---|
61 | ! |
---|
62 | ! 3241 2018-09-12 15:02:00Z raasch |
---|
63 | ! omp_get_thread_num now declared in omp directive |
---|
64 | ! |
---|
65 | ! 3183 2018-07-27 14:25:55Z suehring |
---|
66 | ! Remove unused variables from USE statements |
---|
67 | ! |
---|
68 | ! 3182 2018-07-27 13:36:03Z suehring |
---|
69 | ! Revise recent bugfix for nesting |
---|
70 | ! |
---|
71 | ! 3021 2018-05-16 08:14:20Z maronga |
---|
72 | ! Bugfix in IF clause for nesting |
---|
73 | ! |
---|
74 | ! 3014 2018-05-09 08:42:38Z maronga |
---|
75 | ! Fixed a bug in the IF condition to call pcm_tendency in case of |
---|
76 | ! potential temperature |
---|
77 | ! |
---|
78 | ! 2815 2018-02-19 11:29:57Z kanani |
---|
79 | ! Rename chem_tendency to chem_prognostic_equations, |
---|
80 | ! implement vector version for air chemistry |
---|
81 | ! |
---|
82 | ! 2766 2018-01-22 17:17:47Z kanani |
---|
83 | ! Removed preprocessor directive __chem |
---|
84 | ! |
---|
85 | ! 2746 2018-01-15 12:06:04Z suehring |
---|
86 | ! Move flag plant canopy to modules |
---|
87 | ! |
---|
88 | ! 2719 2018-01-02 09:02:06Z maronga |
---|
89 | ! Bugfix for last change. |
---|
90 | ! |
---|
91 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
92 | ! Corrected "Former revisions" section |
---|
93 | ! |
---|
94 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
95 | ! - Change in file header (GPL part) |
---|
96 | ! - Moved TKE equation to tcm_prognostic (TG) |
---|
97 | ! - Added switch for chemical reactions (RF, FK) |
---|
98 | ! - Implementation of chemistry module (RF, BK, FK) |
---|
99 | ! |
---|
100 | ! 2563 2017-10-19 15:36:10Z Giersch |
---|
101 | ! Variable wind_turbine moved to module control_parameters |
---|
102 | ! |
---|
103 | ! 2320 2017-07-21 12:47:43Z suehring |
---|
104 | ! Modularize large-scale forcing and nudging |
---|
105 | ! |
---|
106 | ! 2292 2017-06-20 09:51:42Z schwenkel |
---|
107 | ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' |
---|
108 | ! includes two more prognostic equations for cloud drop concentration (nc) |
---|
109 | ! and cloud water content (qc). |
---|
110 | ! |
---|
111 | ! 2261 2017-06-08 14:25:57Z raasch |
---|
112 | ! bugfix for r2232: openmp directives removed |
---|
113 | ! |
---|
114 | ! 2233 2017-05-30 18:08:54Z suehring |
---|
115 | ! |
---|
116 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
117 | ! Adjutst to new surface-type structure. Remove call for usm_wall_heat_flux, |
---|
118 | ! which is realized directly in diffusion_s now. |
---|
119 | ! |
---|
120 | ! 2192 2017-03-22 04:14:10Z raasch |
---|
121 | ! Bugfix for misplaced and missing openMP directives from r2155 |
---|
122 | ! |
---|
123 | ! 2155 2017-02-21 09:57:40Z hoffmann |
---|
124 | ! Bugfix in the calculation of microphysical quantities on ghost points. |
---|
125 | ! |
---|
126 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
127 | ! OpenACC version of subroutine removed |
---|
128 | ! |
---|
129 | ! 2031 2016-10-21 15:11:58Z knoop |
---|
130 | ! renamed variable rho to rho_ocean |
---|
131 | ! |
---|
132 | ! 2011 2016-09-19 17:29:57Z kanani |
---|
133 | ! Flag urban_surface is now defined in module control_parameters. |
---|
134 | ! |
---|
135 | ! 2007 2016-08-24 15:47:17Z kanani |
---|
136 | ! Added pt tendency calculation based on energy balance at urban surfaces |
---|
137 | ! (new urban surface model) |
---|
138 | ! |
---|
139 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
140 | ! Forced header and separation lines into 80 columns |
---|
141 | ! |
---|
142 | ! 1976 2016-07-27 13:28:04Z maronga |
---|
143 | ! Simplied calls to radiation model |
---|
144 | ! |
---|
145 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
146 | ! Separate humidity and passive scalar |
---|
147 | ! |
---|
148 | ! 1914 2016-05-26 14:44:07Z witha |
---|
149 | ! Added calls for wind turbine model |
---|
150 | ! |
---|
151 | ! 1873 2016-04-18 14:50:06Z maronga |
---|
152 | ! Module renamed (removed _mod) |
---|
153 | ! |
---|
154 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
155 | ! Module renamed |
---|
156 | ! |
---|
157 | ! 1826 2016-04-07 12:01:39Z maronga |
---|
158 | ! Renamed canopy model calls. |
---|
159 | ! |
---|
160 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
161 | ! Kessler microphysics scheme moved to microphysics. |
---|
162 | ! |
---|
163 | ! 1757 2016-02-22 15:49:32Z maronga |
---|
164 | ! |
---|
165 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
166 | ! Added optional model spin-up without radiation / land surface model calls. |
---|
167 | ! Formatting corrections. |
---|
168 | ! |
---|
169 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
170 | ! Code annotations made doxygen readable |
---|
171 | ! |
---|
172 | ! 1585 2015-04-30 07:05:52Z maronga |
---|
173 | ! Added call for temperature tendency calculation due to radiative flux divergence |
---|
174 | ! |
---|
175 | ! 1517 2015-01-07 19:12:25Z hoffmann |
---|
176 | ! advec_s_bc_mod addded, since advec_s_bc is now a module |
---|
177 | ! |
---|
178 | ! 1484 2014-10-21 10:53:05Z kanani |
---|
179 | ! Changes due to new module structure of the plant canopy model: |
---|
180 | ! parameters cthf and plant_canopy moved to module plant_canopy_model_mod. |
---|
181 | ! Removed double-listing of use_upstream_for_tke in ONLY-list of module |
---|
182 | ! control_parameters |
---|
183 | ! |
---|
184 | ! 1409 2014-05-23 12:11:32Z suehring |
---|
185 | ! Bugfix: i_omp_start changed for advec_u_ws at left inflow and outflow boundary. |
---|
186 | ! This ensures that left-hand side fluxes are also calculated for nxl in that |
---|
187 | ! case, even though the solution at nxl is overwritten in boundary_conds() |
---|
188 | ! |
---|
189 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
190 | ! Rayleigh-damping for horizontal velocity components changed: instead of damping |
---|
191 | ! against ug and vg, damping against u_init and v_init is used to allow for a |
---|
192 | ! homogenized treatment in case of nudging |
---|
193 | ! |
---|
194 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
195 | ! Change order of calls for scalar prognostic quantities: |
---|
196 | ! ls_advec -> nudging -> subsidence since initial profiles |
---|
197 | ! |
---|
198 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
199 | ! missing variables added to ONLY lists |
---|
200 | ! |
---|
201 | ! 1365 2014-04-22 15:03:56Z boeske |
---|
202 | ! Calls of ls_advec for large scale advection added, |
---|
203 | ! subroutine subsidence is only called if use_subsidence_tendencies = .F., |
---|
204 | ! new argument ls_index added to the calls of subsidence |
---|
205 | ! +ls_index |
---|
206 | ! |
---|
207 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
208 | ! Two-moment microphysics moved to the start of prognostic equations. This makes |
---|
209 | ! the 3d arrays for tend_q, tend_qr, tend_pt and tend_pt redundant. |
---|
210 | ! Additionally, it is allowed to call the microphysics just once during the time |
---|
211 | ! step (not at each sub-time step). |
---|
212 | ! |
---|
213 | ! Two-moment cloud physics added for vector and accelerator optimization. |
---|
214 | ! |
---|
215 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
216 | ! REAL constants provided with KIND-attribute |
---|
217 | ! |
---|
218 | ! 1337 2014-03-25 15:11:48Z heinze |
---|
219 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
220 | ! |
---|
221 | ! 1332 2014-03-25 11:59:43Z suehring |
---|
222 | ! Bugfix: call advec_ws or advec_pw for TKE only if NOT use_upstream_for_tke |
---|
223 | ! |
---|
224 | ! 1330 2014-03-24 17:29:32Z suehring |
---|
225 | ! In case of SGS-particle velocity advection of TKE is also allowed with |
---|
226 | ! dissipative 5th-order scheme. |
---|
227 | ! |
---|
228 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
229 | ! ONLY-attribute added to USE-statements, |
---|
230 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
231 | ! kinds are defined in new module kinds, |
---|
232 | ! old module precision_kind is removed, |
---|
233 | ! revision history before 2012 removed, |
---|
234 | ! comment fields (!:) to be used for variable explanations added to |
---|
235 | ! all variable declaration statements |
---|
236 | ! |
---|
237 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
238 | ! module interfaces removed |
---|
239 | ! |
---|
240 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
241 | ! openacc loop vector clauses removed, independent clauses added |
---|
242 | ! |
---|
243 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
244 | ! enable nudging also for accelerator version |
---|
245 | ! |
---|
246 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
247 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
248 | ! |
---|
249 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
250 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
251 | ! |
---|
252 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
253 | ! those parts requiring global communication moved to time_integration, |
---|
254 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
255 | ! j_north |
---|
256 | ! |
---|
257 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
258 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
259 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
260 | ! |
---|
261 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
262 | ! update directives for prognostic quantities removed |
---|
263 | ! |
---|
264 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
265 | ! small changes in code formatting |
---|
266 | ! |
---|
267 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
268 | ! unused variables removed |
---|
269 | ! |
---|
270 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
271 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
272 | ! and rain water content (qr) |
---|
273 | ! |
---|
274 | ! currently, only available for cache loop optimization |
---|
275 | ! |
---|
276 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
277 | ! code put under GPL (PALM 3.9) |
---|
278 | ! |
---|
279 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
280 | ! non-optimized version of prognostic_equations removed |
---|
281 | ! |
---|
282 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
283 | ! new branch prognostic_equations_acc |
---|
284 | ! OpenACC statements added + code changes required for GPU optimization |
---|
285 | ! |
---|
286 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
287 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
288 | ! |
---|
289 | ! 978 2012-08-09 08:28:32Z fricke |
---|
290 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
291 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
292 | ! boundary in case of non-cyclic lateral boundaries |
---|
293 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
294 | ! |
---|
295 | ! 940 2012-07-09 14:31:00Z raasch |
---|
296 | ! temperature equation can be switched off |
---|
297 | ! |
---|
298 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
299 | ! Initial revision |
---|
300 | ! |
---|
301 | ! |
---|
302 | ! Description: |
---|
303 | ! ------------ |
---|
304 | !> Solving the prognostic equations. |
---|
305 | !------------------------------------------------------------------------------! |
---|
306 | MODULE prognostic_equations_mod |
---|
307 | |
---|
308 | |
---|
309 | USE advec_s_bc_mod, & |
---|
310 | ONLY: advec_s_bc |
---|
311 | |
---|
312 | USE advec_s_pw_mod, & |
---|
313 | ONLY: advec_s_pw |
---|
314 | |
---|
315 | USE advec_s_up_mod, & |
---|
316 | ONLY: advec_s_up |
---|
317 | |
---|
318 | USE advec_u_pw_mod, & |
---|
319 | ONLY: advec_u_pw |
---|
320 | |
---|
321 | USE advec_u_up_mod, & |
---|
322 | ONLY: advec_u_up |
---|
323 | |
---|
324 | USE advec_v_pw_mod, & |
---|
325 | ONLY: advec_v_pw |
---|
326 | |
---|
327 | USE advec_v_up_mod, & |
---|
328 | ONLY: advec_v_up |
---|
329 | |
---|
330 | USE advec_w_pw_mod, & |
---|
331 | ONLY: advec_w_pw |
---|
332 | |
---|
333 | USE advec_w_up_mod, & |
---|
334 | ONLY: advec_w_up |
---|
335 | |
---|
336 | USE advec_ws, & |
---|
337 | ONLY: advec_s_ws, advec_u_ws, advec_v_ws, advec_w_ws |
---|
338 | |
---|
339 | USE arrays_3d, & |
---|
340 | ONLY: diss_l_e, diss_l_nc, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qc, & |
---|
341 | diss_l_qr, diss_l_s, diss_l_sa, diss_s_e, diss_s_nc, diss_s_nr, & |
---|
342 | diss_s_pt, diss_s_q, diss_s_qc, diss_s_qr, diss_s_s, diss_s_sa, & |
---|
343 | e, e_p, flux_s_e, flux_s_nc, flux_s_nr, flux_s_pt, flux_s_q, & |
---|
344 | flux_s_qc, flux_s_qr, flux_s_s, flux_s_sa, flux_l_e, flux_l_nc, & |
---|
345 | flux_l_nr, flux_l_pt, flux_l_q, flux_l_qc, flux_l_qr, flux_l_s, & |
---|
346 | flux_l_sa, nc, nc_p, nr, nr_p, pt, ptdf_x, ptdf_y, pt_init, & |
---|
347 | pt_p, prho, q, q_init, q_p, qc, qc_p, qr, qr_p, rdf, rdf_sc, & |
---|
348 | ref_state, rho_ocean, s, s_init, s_p, tend, te_m, tnc_m, & |
---|
349 | tnr_m, tpt_m, tq_m, tqc_m, tqr_m, ts_m, tu_m, tv_m, tw_m, u, & |
---|
350 | ug, u_init, u_p, v, vg, vpt, v_init, v_p, w, w_p |
---|
351 | |
---|
352 | USE bulk_cloud_model_mod, & |
---|
353 | ONLY: call_microphysics_at_all_substeps, bulk_cloud_model, & |
---|
354 | bcm_actions, microphysics_sat_adjust, & |
---|
355 | microphysics_morrison, microphysics_seifert |
---|
356 | |
---|
357 | USE buoyancy_mod, & |
---|
358 | ONLY: buoyancy |
---|
359 | |
---|
360 | USE chem_modules, & |
---|
361 | ONLY: call_chem_at_all_substeps, chem_gasphase_on, cs_name, do_depo |
---|
362 | |
---|
363 | USE chem_photolysis_mod, & |
---|
364 | ONLY: photolysis_control |
---|
365 | |
---|
366 | USE chemistry_model_mod, & |
---|
367 | ONLY: chem_boundary_conds, chem_depo, chem_integrate, & |
---|
368 | chem_prognostic_equations, chem_species, & |
---|
369 | nspec, nvar, spc_names |
---|
370 | |
---|
371 | USE control_parameters, & |
---|
372 | ONLY: air_chemistry, constant_diffusion, & |
---|
373 | dp_external, dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, & |
---|
374 | humidity, intermediate_timestep_count, & |
---|
375 | intermediate_timestep_count_max, large_scale_forcing, & |
---|
376 | large_scale_subsidence, neutral, nudging, & |
---|
377 | ocean_mode, passive_scalar, plant_canopy, pt_reference, & |
---|
378 | scalar_advec, scalar_advec, simulated_time, sloping_surface, & |
---|
379 | timestep_scheme, tsc, use_subsidence_tendencies, & |
---|
380 | use_upstream_for_tke, wind_turbine, ws_scheme_mom, & |
---|
381 | ws_scheme_sca, urban_surface, land_surface, & |
---|
382 | time_since_reference_point, salsa |
---|
383 | |
---|
384 | USE coriolis_mod, & |
---|
385 | ONLY: coriolis |
---|
386 | |
---|
387 | USE cpulog, & |
---|
388 | ONLY: cpu_log, log_point, log_point_s |
---|
389 | |
---|
390 | USE diffusion_s_mod, & |
---|
391 | ONLY: diffusion_s |
---|
392 | |
---|
393 | USE diffusion_u_mod, & |
---|
394 | ONLY: diffusion_u |
---|
395 | |
---|
396 | USE diffusion_v_mod, & |
---|
397 | ONLY: diffusion_v |
---|
398 | |
---|
399 | USE diffusion_w_mod, & |
---|
400 | ONLY: diffusion_w |
---|
401 | |
---|
402 | USE indices, & |
---|
403 | ONLY: nbgp, nxl, nxlg, nxlu, nxr, nxrg, nyn, nyng, nys, nysg, nysv, & |
---|
404 | nzb, nzt, wall_flags_0 |
---|
405 | |
---|
406 | USE kinds |
---|
407 | |
---|
408 | USE lsf_nudging_mod, & |
---|
409 | ONLY: ls_advec, nudge |
---|
410 | |
---|
411 | USE module_interface, & |
---|
412 | ONLY: module_interface_actions |
---|
413 | |
---|
414 | USE ocean_mod, & |
---|
415 | ONLY: ocean_prognostic_equations, stokes_drift_terms, stokes_force, & |
---|
416 | wave_breaking, wave_breaking_term |
---|
417 | |
---|
418 | USE plant_canopy_model_mod, & |
---|
419 | ONLY: cthf, pcm_tendency |
---|
420 | |
---|
421 | USE radiation_model_mod, & |
---|
422 | ONLY: radiation, radiation_tendency, & |
---|
423 | skip_time_do_radiation |
---|
424 | |
---|
425 | USE salsa_mod, & |
---|
426 | ONLY: aerosol_mass, aerosol_number, dt_salsa, last_salsa_time, nbins, & |
---|
427 | ncc_tot, ngast, salsa_boundary_conds, salsa_diagnostics, & |
---|
428 | salsa_driver, salsa_gas, salsa_gases_from_chem, salsa_tendency, & |
---|
429 | skip_time_do_salsa |
---|
430 | |
---|
431 | USE salsa_util_mod, & |
---|
432 | ONLY: sums_salsa_ws_l |
---|
433 | |
---|
434 | USE statistics, & |
---|
435 | ONLY: hom |
---|
436 | |
---|
437 | USE subsidence_mod, & |
---|
438 | ONLY: subsidence |
---|
439 | |
---|
440 | USE surface_mod, & |
---|
441 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
442 | surf_usm_v |
---|
443 | |
---|
444 | USE turbulence_closure_mod, & |
---|
445 | ONLY: tcm_prognostic_equations |
---|
446 | |
---|
447 | USE wind_turbine_model_mod, & |
---|
448 | ONLY: wtm_tendencies |
---|
449 | |
---|
450 | |
---|
451 | PRIVATE |
---|
452 | PUBLIC prognostic_equations_cache, prognostic_equations_vector |
---|
453 | |
---|
454 | INTERFACE prognostic_equations_cache |
---|
455 | MODULE PROCEDURE prognostic_equations_cache |
---|
456 | END INTERFACE prognostic_equations_cache |
---|
457 | |
---|
458 | INTERFACE prognostic_equations_vector |
---|
459 | MODULE PROCEDURE prognostic_equations_vector |
---|
460 | END INTERFACE prognostic_equations_vector |
---|
461 | |
---|
462 | |
---|
463 | CONTAINS |
---|
464 | |
---|
465 | |
---|
466 | !------------------------------------------------------------------------------! |
---|
467 | ! Description: |
---|
468 | ! ------------ |
---|
469 | !> Version with one optimized loop over all equations. It is only allowed to |
---|
470 | !> be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
471 | !> |
---|
472 | !> Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
473 | !> so communication between CPUs is not allowed (does not make sense) within |
---|
474 | !> these loops. |
---|
475 | !> |
---|
476 | !> (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
477 | !------------------------------------------------------------------------------! |
---|
478 | |
---|
479 | SUBROUTINE prognostic_equations_cache |
---|
480 | |
---|
481 | |
---|
482 | IMPLICIT NONE |
---|
483 | |
---|
484 | INTEGER(iwp) :: b !< index for aerosol size bins (salsa) |
---|
485 | INTEGER(iwp) :: c !< index for chemical compounds (salsa) |
---|
486 | INTEGER(iwp) :: g !< index for gaseous compounds (salsa) |
---|
487 | INTEGER(iwp) :: i !< |
---|
488 | INTEGER(iwp) :: i_omp_start !< |
---|
489 | INTEGER(iwp) :: j !< |
---|
490 | INTEGER(iwp) :: k !< |
---|
491 | !$ INTEGER(iwp) :: omp_get_thread_num !< |
---|
492 | INTEGER(iwp) :: tn = 0 !< |
---|
493 | |
---|
494 | LOGICAL :: loop_start !< |
---|
495 | INTEGER(iwp) :: n |
---|
496 | INTEGER(iwp) :: lsp |
---|
497 | INTEGER(iwp) :: lsp_usr !< lsp running index for chem spcs |
---|
498 | |
---|
499 | |
---|
500 | ! |
---|
501 | !-- Time measurement can only be performed for the whole set of equations |
---|
502 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
503 | |
---|
504 | ! |
---|
505 | !-- Calculation of chemical reactions. This is done outside of main loop, |
---|
506 | !-- since exchange of ghost points is required after this update of the |
---|
507 | !-- concentrations of chemical species |
---|
508 | IF ( air_chemistry ) THEN |
---|
509 | lsp_usr = 1 |
---|
510 | ! |
---|
511 | !-- Chemical reactions |
---|
512 | CALL cpu_log( log_point(82), '(chem react + exch_h)', 'start' ) |
---|
513 | |
---|
514 | IF ( chem_gasphase_on ) THEN |
---|
515 | ! |
---|
516 | !-- If required, calculate photolysis frequencies - |
---|
517 | !-- UNFINISHED: Why not before the intermediate timestep loop? |
---|
518 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
519 | CALL photolysis_control |
---|
520 | ENDIF |
---|
521 | DO i = nxl, nxr |
---|
522 | DO j = nys, nyn |
---|
523 | |
---|
524 | IF ( intermediate_timestep_count == 1 .OR. & |
---|
525 | call_chem_at_all_substeps ) THEN |
---|
526 | CALL chem_integrate (i,j) |
---|
527 | IF ( do_depo ) THEN |
---|
528 | CALL chem_depo(i,j) |
---|
529 | ENDIF |
---|
530 | ENDIF |
---|
531 | ENDDO |
---|
532 | ENDDO |
---|
533 | ENDIF |
---|
534 | ! |
---|
535 | !-- Loop over chemical species |
---|
536 | CALL cpu_log( log_point_s(84), 'chemistry exch-horiz ', 'start' ) |
---|
537 | DO lsp = 1, nspec |
---|
538 | CALL exchange_horiz( chem_species(lsp)%conc, nbgp ) |
---|
539 | lsp_usr = 1 |
---|
540 | DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' ) |
---|
541 | IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) ) THEN |
---|
542 | |
---|
543 | CALL chem_boundary_conds( chem_species(lsp)%conc_p, & |
---|
544 | chem_species(lsp)%conc_pr_init ) |
---|
545 | |
---|
546 | ENDIF |
---|
547 | lsp_usr = lsp_usr +1 |
---|
548 | ENDDO |
---|
549 | |
---|
550 | |
---|
551 | ENDDO |
---|
552 | CALL cpu_log( log_point_s(84), 'chemistry exch-horiz ', 'stop' ) |
---|
553 | |
---|
554 | CALL cpu_log( log_point(82), '(chem react + exch_h)', 'stop' ) |
---|
555 | |
---|
556 | ENDIF |
---|
557 | ! |
---|
558 | !-- Run SALSA and aerosol dynamic processes. SALSA is run with a longer time |
---|
559 | !-- step. The exchange of ghost points is required after this update of the |
---|
560 | !-- concentrations of aerosol number and mass |
---|
561 | IF ( salsa ) THEN |
---|
562 | |
---|
563 | IF ( time_since_reference_point >= skip_time_do_salsa ) THEN |
---|
564 | IF ( ( time_since_reference_point - last_salsa_time ) >= dt_salsa ) & |
---|
565 | THEN |
---|
566 | CALL cpu_log( log_point_s(90), 'salsa processes ', 'start' ) |
---|
567 | !$OMP PARALLEL PRIVATE (i,j,b,c,g) |
---|
568 | !$OMP DO |
---|
569 | ! |
---|
570 | !-- Call salsa processes |
---|
571 | DO i = nxl, nxr |
---|
572 | DO j = nys, nyn |
---|
573 | CALL salsa_diagnostics( i, j ) |
---|
574 | CALL salsa_driver( i, j, 3 ) |
---|
575 | CALL salsa_diagnostics( i, j ) |
---|
576 | ENDDO |
---|
577 | ENDDO |
---|
578 | |
---|
579 | CALL cpu_log( log_point_s(90), 'salsa processes ', 'stop' ) |
---|
580 | |
---|
581 | CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' ) |
---|
582 | ! |
---|
583 | !-- Exchange ghost points and decycle if needed. |
---|
584 | DO b = 1, nbins |
---|
585 | CALL exchange_horiz( aerosol_number(b)%conc, nbgp ) |
---|
586 | CALL salsa_boundary_conds( aerosol_number(b)%conc_p, & |
---|
587 | aerosol_number(b)%init ) |
---|
588 | DO c = 1, ncc_tot |
---|
589 | CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc, nbgp ) |
---|
590 | CALL salsa_boundary_conds( & |
---|
591 | aerosol_mass((c-1)*nbins+b)%conc_p, & |
---|
592 | aerosol_mass((c-1)*nbins+b)%init ) |
---|
593 | ENDDO |
---|
594 | ENDDO |
---|
595 | |
---|
596 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
597 | DO g = 1, ngast |
---|
598 | CALL exchange_horiz( salsa_gas(g)%conc, nbgp ) |
---|
599 | CALL salsa_boundary_conds( salsa_gas(g)%conc_p, & |
---|
600 | salsa_gas(g)%init ) |
---|
601 | ENDDO |
---|
602 | ENDIF |
---|
603 | CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' ) |
---|
604 | |
---|
605 | !$OMP END PARALLEL |
---|
606 | last_salsa_time = time_since_reference_point |
---|
607 | |
---|
608 | ENDIF |
---|
609 | |
---|
610 | ENDIF |
---|
611 | |
---|
612 | ENDIF |
---|
613 | |
---|
614 | ! |
---|
615 | !-- If required, calculate cloud microphysics |
---|
616 | IF ( bulk_cloud_model .AND. .NOT. microphysics_sat_adjust .AND. & |
---|
617 | ( intermediate_timestep_count == 1 .OR. & |
---|
618 | call_microphysics_at_all_substeps ) ) & |
---|
619 | THEN |
---|
620 | !$OMP PARALLEL PRIVATE (i,j) |
---|
621 | !$OMP DO |
---|
622 | DO i = nxlg, nxrg |
---|
623 | DO j = nysg, nyng |
---|
624 | CALL bcm_actions( i, j ) |
---|
625 | ENDDO |
---|
626 | ENDDO |
---|
627 | !$OMP END PARALLEL |
---|
628 | ENDIF |
---|
629 | |
---|
630 | ! |
---|
631 | !-- Loop over all prognostic equations |
---|
632 | !-- b, c ang g added for SALSA |
---|
633 | !$OMP PARALLEL PRIVATE (i,i_omp_start,j,k,loop_start,tn,b,c,g) |
---|
634 | |
---|
635 | !$ tn = omp_get_thread_num() |
---|
636 | loop_start = .TRUE. |
---|
637 | |
---|
638 | !$OMP DO |
---|
639 | DO i = nxl, nxr |
---|
640 | |
---|
641 | ! |
---|
642 | !-- Store the first loop index. It differs for each thread and is required |
---|
643 | !-- later in advec_ws |
---|
644 | IF ( loop_start ) THEN |
---|
645 | loop_start = .FALSE. |
---|
646 | i_omp_start = i |
---|
647 | ENDIF |
---|
648 | |
---|
649 | DO j = nys, nyn |
---|
650 | ! |
---|
651 | !-- Tendency terms for u-velocity component. Please note, in case of |
---|
652 | !-- non-cyclic boundary conditions the grid point i=0 is excluded from |
---|
653 | !-- the prognostic equations for the u-component. |
---|
654 | IF ( i >= nxlu ) THEN |
---|
655 | |
---|
656 | tend(:,j,i) = 0.0_wp |
---|
657 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
658 | IF ( ws_scheme_mom ) THEN |
---|
659 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
660 | ELSE |
---|
661 | CALL advec_u_pw( i, j ) |
---|
662 | ENDIF |
---|
663 | ELSE |
---|
664 | CALL advec_u_up( i, j ) |
---|
665 | ENDIF |
---|
666 | CALL diffusion_u( i, j ) |
---|
667 | CALL coriolis( i, j, 1 ) |
---|
668 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
669 | CALL buoyancy( i, j, pt, 1 ) |
---|
670 | ENDIF |
---|
671 | |
---|
672 | ! |
---|
673 | !-- Drag by plant canopy |
---|
674 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 1 ) |
---|
675 | |
---|
676 | ! |
---|
677 | !-- External pressure gradient |
---|
678 | IF ( dp_external ) THEN |
---|
679 | DO k = dp_level_ind_b+1, nzt |
---|
680 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
681 | ENDDO |
---|
682 | ENDIF |
---|
683 | |
---|
684 | ! |
---|
685 | !-- Nudging |
---|
686 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
687 | |
---|
688 | ! |
---|
689 | !-- Effect of Stokes drift (in ocean mode only) |
---|
690 | IF ( stokes_force ) CALL stokes_drift_terms( i, j, 1 ) |
---|
691 | |
---|
692 | ! |
---|
693 | !-- Forces by wind turbines |
---|
694 | IF ( wind_turbine ) CALL wtm_tendencies( i, j, 1 ) |
---|
695 | |
---|
696 | CALL module_interface_actions( i, j, 'u-tendency' ) |
---|
697 | ! |
---|
698 | !-- Prognostic equation for u-velocity component |
---|
699 | DO k = nzb+1, nzt |
---|
700 | |
---|
701 | u_p(k,j,i) = u(k,j,i) + ( dt_3d * & |
---|
702 | ( tsc(2) * tend(k,j,i) + & |
---|
703 | tsc(3) * tu_m(k,j,i) ) & |
---|
704 | - tsc(5) * rdf(k) & |
---|
705 | * ( u(k,j,i) - u_init(k) ) & |
---|
706 | ) * MERGE( 1.0_wp, 0.0_wp, & |
---|
707 | BTEST( wall_flags_0(k,j,i), 1 )& |
---|
708 | ) |
---|
709 | ENDDO |
---|
710 | |
---|
711 | ! |
---|
712 | !-- Add turbulence generated by wave breaking (in ocean mode only) |
---|
713 | IF ( wave_breaking .AND. & |
---|
714 | intermediate_timestep_count == intermediate_timestep_count_max )& |
---|
715 | THEN |
---|
716 | CALL wave_breaking_term( i, j, 1 ) |
---|
717 | ENDIF |
---|
718 | |
---|
719 | ! |
---|
720 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
721 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
722 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
723 | DO k = nzb+1, nzt |
---|
724 | tu_m(k,j,i) = tend(k,j,i) |
---|
725 | ENDDO |
---|
726 | ELSEIF ( intermediate_timestep_count < & |
---|
727 | intermediate_timestep_count_max ) THEN |
---|
728 | DO k = nzb+1, nzt |
---|
729 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
730 | + 5.3125_wp * tu_m(k,j,i) |
---|
731 | ENDDO |
---|
732 | ENDIF |
---|
733 | ENDIF |
---|
734 | |
---|
735 | ENDIF |
---|
736 | ! |
---|
737 | !-- Tendency terms for v-velocity component. Please note, in case of |
---|
738 | !-- non-cyclic boundary conditions the grid point j=0 is excluded from |
---|
739 | !-- the prognostic equations for the v-component. !-- |
---|
740 | IF ( j >= nysv ) THEN |
---|
741 | |
---|
742 | tend(:,j,i) = 0.0_wp |
---|
743 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
744 | IF ( ws_scheme_mom ) THEN |
---|
745 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
746 | ELSE |
---|
747 | CALL advec_v_pw( i, j ) |
---|
748 | ENDIF |
---|
749 | ELSE |
---|
750 | CALL advec_v_up( i, j ) |
---|
751 | ENDIF |
---|
752 | CALL diffusion_v( i, j ) |
---|
753 | CALL coriolis( i, j, 2 ) |
---|
754 | |
---|
755 | ! |
---|
756 | !-- Drag by plant canopy |
---|
757 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 2 ) |
---|
758 | |
---|
759 | ! |
---|
760 | !-- External pressure gradient |
---|
761 | IF ( dp_external ) THEN |
---|
762 | DO k = dp_level_ind_b+1, nzt |
---|
763 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
764 | ENDDO |
---|
765 | ENDIF |
---|
766 | |
---|
767 | ! |
---|
768 | !-- Nudging |
---|
769 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
770 | |
---|
771 | ! |
---|
772 | !-- Effect of Stokes drift (in ocean mode only) |
---|
773 | IF ( stokes_force ) CALL stokes_drift_terms( i, j, 2 ) |
---|
774 | |
---|
775 | ! |
---|
776 | !-- Forces by wind turbines |
---|
777 | IF ( wind_turbine ) CALL wtm_tendencies( i, j, 2 ) |
---|
778 | |
---|
779 | CALL module_interface_actions( i, j, 'v-tendency' ) |
---|
780 | ! |
---|
781 | !-- Prognostic equation for v-velocity component |
---|
782 | DO k = nzb+1, nzt |
---|
783 | v_p(k,j,i) = v(k,j,i) + ( dt_3d * & |
---|
784 | ( tsc(2) * tend(k,j,i) + & |
---|
785 | tsc(3) * tv_m(k,j,i) ) & |
---|
786 | - tsc(5) * rdf(k) & |
---|
787 | * ( v(k,j,i) - v_init(k) )& |
---|
788 | ) * MERGE( 1.0_wp, 0.0_wp, & |
---|
789 | BTEST( wall_flags_0(k,j,i), 2 )& |
---|
790 | ) |
---|
791 | ENDDO |
---|
792 | |
---|
793 | ! |
---|
794 | !-- Add turbulence generated by wave breaking (in ocean mode only) |
---|
795 | IF ( wave_breaking .AND. & |
---|
796 | intermediate_timestep_count == intermediate_timestep_count_max )& |
---|
797 | THEN |
---|
798 | CALL wave_breaking_term( i, j, 2 ) |
---|
799 | ENDIF |
---|
800 | |
---|
801 | ! |
---|
802 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
803 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
804 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
805 | DO k = nzb+1, nzt |
---|
806 | tv_m(k,j,i) = tend(k,j,i) |
---|
807 | ENDDO |
---|
808 | ELSEIF ( intermediate_timestep_count < & |
---|
809 | intermediate_timestep_count_max ) THEN |
---|
810 | DO k = nzb+1, nzt |
---|
811 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
812 | + 5.3125_wp * tv_m(k,j,i) |
---|
813 | ENDDO |
---|
814 | ENDIF |
---|
815 | ENDIF |
---|
816 | |
---|
817 | ENDIF |
---|
818 | |
---|
819 | ! |
---|
820 | !-- Tendency terms for w-velocity component |
---|
821 | tend(:,j,i) = 0.0_wp |
---|
822 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
823 | IF ( ws_scheme_mom ) THEN |
---|
824 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
825 | ELSE |
---|
826 | CALL advec_w_pw( i, j ) |
---|
827 | END IF |
---|
828 | ELSE |
---|
829 | CALL advec_w_up( i, j ) |
---|
830 | ENDIF |
---|
831 | CALL diffusion_w( i, j ) |
---|
832 | CALL coriolis( i, j, 3 ) |
---|
833 | |
---|
834 | IF ( .NOT. neutral ) THEN |
---|
835 | IF ( ocean_mode ) THEN |
---|
836 | CALL buoyancy( i, j, rho_ocean, 3 ) |
---|
837 | ELSE |
---|
838 | IF ( .NOT. humidity ) THEN |
---|
839 | CALL buoyancy( i, j, pt, 3 ) |
---|
840 | ELSE |
---|
841 | CALL buoyancy( i, j, vpt, 3 ) |
---|
842 | ENDIF |
---|
843 | ENDIF |
---|
844 | ENDIF |
---|
845 | |
---|
846 | ! |
---|
847 | !-- Drag by plant canopy |
---|
848 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 3 ) |
---|
849 | |
---|
850 | ! |
---|
851 | !-- Effect of Stokes drift (in ocean mode only) |
---|
852 | IF ( stokes_force ) CALL stokes_drift_terms( i, j, 3 ) |
---|
853 | |
---|
854 | ! |
---|
855 | !-- Forces by wind turbines |
---|
856 | IF ( wind_turbine ) CALL wtm_tendencies( i, j, 3 ) |
---|
857 | |
---|
858 | CALL module_interface_actions( i, j, 'w-tendency' ) |
---|
859 | ! |
---|
860 | !-- Prognostic equation for w-velocity component |
---|
861 | DO k = nzb+1, nzt-1 |
---|
862 | w_p(k,j,i) = w(k,j,i) + ( dt_3d * & |
---|
863 | ( tsc(2) * tend(k,j,i) + & |
---|
864 | tsc(3) * tw_m(k,j,i) ) & |
---|
865 | - tsc(5) * rdf(k) * w(k,j,i) & |
---|
866 | ) * MERGE( 1.0_wp, 0.0_wp, & |
---|
867 | BTEST( wall_flags_0(k,j,i), 3 )& |
---|
868 | ) |
---|
869 | ENDDO |
---|
870 | |
---|
871 | ! |
---|
872 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
873 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
874 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
875 | DO k = nzb+1, nzt-1 |
---|
876 | tw_m(k,j,i) = tend(k,j,i) |
---|
877 | ENDDO |
---|
878 | ELSEIF ( intermediate_timestep_count < & |
---|
879 | intermediate_timestep_count_max ) THEN |
---|
880 | DO k = nzb+1, nzt-1 |
---|
881 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
882 | + 5.3125_wp * tw_m(k,j,i) |
---|
883 | ENDDO |
---|
884 | ENDIF |
---|
885 | ENDIF |
---|
886 | |
---|
887 | ! |
---|
888 | !-- If required, compute prognostic equation for potential temperature |
---|
889 | IF ( .NOT. neutral ) THEN |
---|
890 | ! |
---|
891 | !-- Tendency terms for potential temperature |
---|
892 | tend(:,j,i) = 0.0_wp |
---|
893 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
894 | IF ( ws_scheme_sca ) THEN |
---|
895 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
896 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
897 | ELSE |
---|
898 | CALL advec_s_pw( i, j, pt ) |
---|
899 | ENDIF |
---|
900 | ELSE |
---|
901 | CALL advec_s_up( i, j, pt ) |
---|
902 | ENDIF |
---|
903 | CALL diffusion_s( i, j, pt, & |
---|
904 | surf_def_h(0)%shf, surf_def_h(1)%shf, & |
---|
905 | surf_def_h(2)%shf, & |
---|
906 | surf_lsm_h%shf, surf_usm_h%shf, & |
---|
907 | surf_def_v(0)%shf, surf_def_v(1)%shf, & |
---|
908 | surf_def_v(2)%shf, surf_def_v(3)%shf, & |
---|
909 | surf_lsm_v(0)%shf, surf_lsm_v(1)%shf, & |
---|
910 | surf_lsm_v(2)%shf, surf_lsm_v(3)%shf, & |
---|
911 | surf_usm_v(0)%shf, surf_usm_v(1)%shf, & |
---|
912 | surf_usm_v(2)%shf, surf_usm_v(3)%shf ) |
---|
913 | |
---|
914 | ! |
---|
915 | !-- Consideration of heat sources within the plant canopy |
---|
916 | IF ( plant_canopy .AND. & |
---|
917 | (cthf /= 0.0_wp .OR. urban_surface .OR. land_surface) ) THEN |
---|
918 | CALL pcm_tendency( i, j, 4 ) |
---|
919 | ENDIF |
---|
920 | |
---|
921 | ! |
---|
922 | !-- Large scale advection |
---|
923 | IF ( large_scale_forcing ) THEN |
---|
924 | CALL ls_advec( i, j, simulated_time, 'pt' ) |
---|
925 | ENDIF |
---|
926 | |
---|
927 | ! |
---|
928 | !-- Nudging |
---|
929 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
930 | |
---|
931 | ! |
---|
932 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
933 | IF ( large_scale_subsidence .AND. & |
---|
934 | .NOT. use_subsidence_tendencies ) THEN |
---|
935 | CALL subsidence( i, j, tend, pt, pt_init, 2 ) |
---|
936 | ENDIF |
---|
937 | |
---|
938 | ! |
---|
939 | !-- If required, add tendency due to radiative heating/cooling |
---|
940 | IF ( radiation .AND. & |
---|
941 | simulated_time > skip_time_do_radiation ) THEN |
---|
942 | CALL radiation_tendency ( i, j, tend ) |
---|
943 | ENDIF |
---|
944 | |
---|
945 | |
---|
946 | CALL module_interface_actions( i, j, 'pt-tendency' ) |
---|
947 | ! |
---|
948 | !-- Prognostic equation for potential temperature |
---|
949 | DO k = nzb+1, nzt |
---|
950 | pt_p(k,j,i) = pt(k,j,i) + ( dt_3d * & |
---|
951 | ( tsc(2) * tend(k,j,i) + & |
---|
952 | tsc(3) * tpt_m(k,j,i) ) & |
---|
953 | - tsc(5) & |
---|
954 | * ( pt(k,j,i) - pt_init(k) ) & |
---|
955 | * ( rdf_sc(k) + ptdf_x(i) & |
---|
956 | + ptdf_y(j) ) & |
---|
957 | ) & |
---|
958 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
959 | BTEST( wall_flags_0(k,j,i), 0 )& |
---|
960 | ) |
---|
961 | ENDDO |
---|
962 | |
---|
963 | ! |
---|
964 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
965 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
966 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
967 | DO k = nzb+1, nzt |
---|
968 | tpt_m(k,j,i) = tend(k,j,i) |
---|
969 | ENDDO |
---|
970 | ELSEIF ( intermediate_timestep_count < & |
---|
971 | intermediate_timestep_count_max ) THEN |
---|
972 | DO k = nzb+1, nzt |
---|
973 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
974 | 5.3125_wp * tpt_m(k,j,i) |
---|
975 | ENDDO |
---|
976 | ENDIF |
---|
977 | ENDIF |
---|
978 | |
---|
979 | ENDIF |
---|
980 | |
---|
981 | ! |
---|
982 | !-- If required, compute prognostic equation for total water content |
---|
983 | IF ( humidity ) THEN |
---|
984 | |
---|
985 | ! |
---|
986 | !-- Tendency-terms for total water content / scalar |
---|
987 | tend(:,j,i) = 0.0_wp |
---|
988 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
989 | THEN |
---|
990 | IF ( ws_scheme_sca ) THEN |
---|
991 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
992 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
993 | ELSE |
---|
994 | CALL advec_s_pw( i, j, q ) |
---|
995 | ENDIF |
---|
996 | ELSE |
---|
997 | CALL advec_s_up( i, j, q ) |
---|
998 | ENDIF |
---|
999 | CALL diffusion_s( i, j, q, & |
---|
1000 | surf_def_h(0)%qsws, surf_def_h(1)%qsws, & |
---|
1001 | surf_def_h(2)%qsws, & |
---|
1002 | surf_lsm_h%qsws, surf_usm_h%qsws, & |
---|
1003 | surf_def_v(0)%qsws, surf_def_v(1)%qsws, & |
---|
1004 | surf_def_v(2)%qsws, surf_def_v(3)%qsws, & |
---|
1005 | surf_lsm_v(0)%qsws, surf_lsm_v(1)%qsws, & |
---|
1006 | surf_lsm_v(2)%qsws, surf_lsm_v(3)%qsws, & |
---|
1007 | surf_usm_v(0)%qsws, surf_usm_v(1)%qsws, & |
---|
1008 | surf_usm_v(2)%qsws, surf_usm_v(3)%qsws ) |
---|
1009 | |
---|
1010 | ! |
---|
1011 | !-- Sink or source of humidity due to canopy elements |
---|
1012 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 5 ) |
---|
1013 | |
---|
1014 | ! |
---|
1015 | !-- Large scale advection |
---|
1016 | IF ( large_scale_forcing ) THEN |
---|
1017 | CALL ls_advec( i, j, simulated_time, 'q' ) |
---|
1018 | ENDIF |
---|
1019 | |
---|
1020 | ! |
---|
1021 | !-- Nudging |
---|
1022 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
1023 | |
---|
1024 | ! |
---|
1025 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1026 | IF ( large_scale_subsidence .AND. & |
---|
1027 | .NOT. use_subsidence_tendencies ) THEN |
---|
1028 | CALL subsidence( i, j, tend, q, q_init, 3 ) |
---|
1029 | ENDIF |
---|
1030 | |
---|
1031 | CALL module_interface_actions( i, j, 'q-tendency' ) |
---|
1032 | |
---|
1033 | ! |
---|
1034 | !-- Prognostic equation for total water content / scalar |
---|
1035 | DO k = nzb+1, nzt |
---|
1036 | q_p(k,j,i) = q(k,j,i) + ( dt_3d * & |
---|
1037 | ( tsc(2) * tend(k,j,i) + & |
---|
1038 | tsc(3) * tq_m(k,j,i) ) & |
---|
1039 | - tsc(5) * rdf_sc(k) * & |
---|
1040 | ( q(k,j,i) - q_init(k) ) & |
---|
1041 | ) & |
---|
1042 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1043 | BTEST( wall_flags_0(k,j,i), 0 )& |
---|
1044 | ) |
---|
1045 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
1046 | ENDDO |
---|
1047 | |
---|
1048 | ! |
---|
1049 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1050 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1051 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1052 | DO k = nzb+1, nzt |
---|
1053 | tq_m(k,j,i) = tend(k,j,i) |
---|
1054 | ENDDO |
---|
1055 | ELSEIF ( intermediate_timestep_count < & |
---|
1056 | intermediate_timestep_count_max ) THEN |
---|
1057 | DO k = nzb+1, nzt |
---|
1058 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
1059 | 5.3125_wp * tq_m(k,j,i) |
---|
1060 | ENDDO |
---|
1061 | ENDIF |
---|
1062 | ENDIF |
---|
1063 | |
---|
1064 | ! |
---|
1065 | !-- If required, calculate prognostic equations for cloud water content |
---|
1066 | !-- and cloud drop concentration |
---|
1067 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
1068 | ! |
---|
1069 | !-- Calculate prognostic equation for cloud water content |
---|
1070 | tend(:,j,i) = 0.0_wp |
---|
1071 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
1072 | THEN |
---|
1073 | IF ( ws_scheme_sca ) THEN |
---|
1074 | CALL advec_s_ws( i, j, qc, 'qc', flux_s_qc, & |
---|
1075 | diss_s_qc, flux_l_qc, diss_l_qc, & |
---|
1076 | i_omp_start, tn ) |
---|
1077 | ELSE |
---|
1078 | CALL advec_s_pw( i, j, qc ) |
---|
1079 | ENDIF |
---|
1080 | ELSE |
---|
1081 | CALL advec_s_up( i, j, qc ) |
---|
1082 | ENDIF |
---|
1083 | CALL diffusion_s( i, j, qc, & |
---|
1084 | surf_def_h(0)%qcsws, surf_def_h(1)%qcsws, & |
---|
1085 | surf_def_h(2)%qcsws, & |
---|
1086 | surf_lsm_h%qcsws, surf_usm_h%qcsws, & |
---|
1087 | surf_def_v(0)%qcsws, surf_def_v(1)%qcsws, & |
---|
1088 | surf_def_v(2)%qcsws, surf_def_v(3)%qcsws, & |
---|
1089 | surf_lsm_v(0)%qcsws, surf_lsm_v(1)%qcsws, & |
---|
1090 | surf_lsm_v(2)%qcsws, surf_lsm_v(3)%qcsws, & |
---|
1091 | surf_usm_v(0)%qcsws, surf_usm_v(1)%qcsws, & |
---|
1092 | surf_usm_v(2)%qcsws, surf_usm_v(3)%qcsws ) |
---|
1093 | |
---|
1094 | ! |
---|
1095 | !-- Prognostic equation for cloud water content |
---|
1096 | DO k = nzb+1, nzt |
---|
1097 | qc_p(k,j,i) = qc(k,j,i) + ( dt_3d * & |
---|
1098 | ( tsc(2) * tend(k,j,i) + & |
---|
1099 | tsc(3) * tqc_m(k,j,i) )& |
---|
1100 | - tsc(5) * rdf_sc(k) & |
---|
1101 | * qc(k,j,i) & |
---|
1102 | ) & |
---|
1103 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1104 | BTEST( wall_flags_0(k,j,i), 0 )& |
---|
1105 | ) |
---|
1106 | IF ( qc_p(k,j,i) < 0.0_wp ) qc_p(k,j,i) = 0.0_wp |
---|
1107 | ENDDO |
---|
1108 | ! |
---|
1109 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1110 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1111 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1112 | DO k = nzb+1, nzt |
---|
1113 | tqc_m(k,j,i) = tend(k,j,i) |
---|
1114 | ENDDO |
---|
1115 | ELSEIF ( intermediate_timestep_count < & |
---|
1116 | intermediate_timestep_count_max ) THEN |
---|
1117 | DO k = nzb+1, nzt |
---|
1118 | tqc_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
1119 | 5.3125_wp * tqc_m(k,j,i) |
---|
1120 | ENDDO |
---|
1121 | ENDIF |
---|
1122 | ENDIF |
---|
1123 | |
---|
1124 | ! |
---|
1125 | !-- Calculate prognostic equation for cloud drop concentration. |
---|
1126 | tend(:,j,i) = 0.0_wp |
---|
1127 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1128 | IF ( ws_scheme_sca ) THEN |
---|
1129 | CALL advec_s_ws( i, j, nc, 'nc', flux_s_nc, & |
---|
1130 | diss_s_nc, flux_l_nc, diss_l_nc, & |
---|
1131 | i_omp_start, tn ) |
---|
1132 | ELSE |
---|
1133 | CALL advec_s_pw( i, j, nc ) |
---|
1134 | ENDIF |
---|
1135 | ELSE |
---|
1136 | CALL advec_s_up( i, j, nc ) |
---|
1137 | ENDIF |
---|
1138 | CALL diffusion_s( i, j, nc, & |
---|
1139 | surf_def_h(0)%ncsws, surf_def_h(1)%ncsws, & |
---|
1140 | surf_def_h(2)%ncsws, & |
---|
1141 | surf_lsm_h%ncsws, surf_usm_h%ncsws, & |
---|
1142 | surf_def_v(0)%ncsws, surf_def_v(1)%ncsws, & |
---|
1143 | surf_def_v(2)%ncsws, surf_def_v(3)%ncsws, & |
---|
1144 | surf_lsm_v(0)%ncsws, surf_lsm_v(1)%ncsws, & |
---|
1145 | surf_lsm_v(2)%ncsws, surf_lsm_v(3)%ncsws, & |
---|
1146 | surf_usm_v(0)%ncsws, surf_usm_v(1)%ncsws, & |
---|
1147 | surf_usm_v(2)%ncsws, surf_usm_v(3)%ncsws ) |
---|
1148 | |
---|
1149 | ! |
---|
1150 | !-- Prognostic equation for cloud drop concentration |
---|
1151 | DO k = nzb+1, nzt |
---|
1152 | nc_p(k,j,i) = nc(k,j,i) + ( dt_3d * & |
---|
1153 | ( tsc(2) * tend(k,j,i) + & |
---|
1154 | tsc(3) * tnc_m(k,j,i) )& |
---|
1155 | - tsc(5) * rdf_sc(k) & |
---|
1156 | * nc(k,j,i) & |
---|
1157 | ) & |
---|
1158 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1159 | BTEST( wall_flags_0(k,j,i), 0 )& |
---|
1160 | ) |
---|
1161 | IF ( nc_p(k,j,i) < 0.0_wp ) nc_p(k,j,i) = 0.0_wp |
---|
1162 | ENDDO |
---|
1163 | ! |
---|
1164 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1165 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1166 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1167 | DO k = nzb+1, nzt |
---|
1168 | tnc_m(k,j,i) = tend(k,j,i) |
---|
1169 | ENDDO |
---|
1170 | ELSEIF ( intermediate_timestep_count < & |
---|
1171 | intermediate_timestep_count_max ) THEN |
---|
1172 | DO k = nzb+1, nzt |
---|
1173 | tnc_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
1174 | 5.3125_wp * tnc_m(k,j,i) |
---|
1175 | ENDDO |
---|
1176 | ENDIF |
---|
1177 | ENDIF |
---|
1178 | |
---|
1179 | ENDIF |
---|
1180 | ! |
---|
1181 | !-- If required, calculate prognostic equations for rain water content |
---|
1182 | !-- and rain drop concentration |
---|
1183 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
1184 | ! |
---|
1185 | !-- Calculate prognostic equation for rain water content |
---|
1186 | tend(:,j,i) = 0.0_wp |
---|
1187 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
1188 | THEN |
---|
1189 | IF ( ws_scheme_sca ) THEN |
---|
1190 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
1191 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
1192 | i_omp_start, tn ) |
---|
1193 | ELSE |
---|
1194 | CALL advec_s_pw( i, j, qr ) |
---|
1195 | ENDIF |
---|
1196 | ELSE |
---|
1197 | CALL advec_s_up( i, j, qr ) |
---|
1198 | ENDIF |
---|
1199 | CALL diffusion_s( i, j, qr, & |
---|
1200 | surf_def_h(0)%qrsws, surf_def_h(1)%qrsws, & |
---|
1201 | surf_def_h(2)%qrsws, & |
---|
1202 | surf_lsm_h%qrsws, surf_usm_h%qrsws, & |
---|
1203 | surf_def_v(0)%qrsws, surf_def_v(1)%qrsws, & |
---|
1204 | surf_def_v(2)%qrsws, surf_def_v(3)%qrsws, & |
---|
1205 | surf_lsm_v(0)%qrsws, surf_lsm_v(1)%qrsws, & |
---|
1206 | surf_lsm_v(2)%qrsws, surf_lsm_v(3)%qrsws, & |
---|
1207 | surf_usm_v(0)%qrsws, surf_usm_v(1)%qrsws, & |
---|
1208 | surf_usm_v(2)%qrsws, surf_usm_v(3)%qrsws ) |
---|
1209 | |
---|
1210 | ! |
---|
1211 | !-- Prognostic equation for rain water content |
---|
1212 | DO k = nzb+1, nzt |
---|
1213 | qr_p(k,j,i) = qr(k,j,i) + ( dt_3d * & |
---|
1214 | ( tsc(2) * tend(k,j,i) + & |
---|
1215 | tsc(3) * tqr_m(k,j,i) )& |
---|
1216 | - tsc(5) * rdf_sc(k) & |
---|
1217 | * qr(k,j,i) & |
---|
1218 | ) & |
---|
1219 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1220 | BTEST( wall_flags_0(k,j,i), 0 )& |
---|
1221 | ) |
---|
1222 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
1223 | ENDDO |
---|
1224 | ! |
---|
1225 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1226 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1227 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1228 | DO k = nzb+1, nzt |
---|
1229 | tqr_m(k,j,i) = tend(k,j,i) |
---|
1230 | ENDDO |
---|
1231 | ELSEIF ( intermediate_timestep_count < & |
---|
1232 | intermediate_timestep_count_max ) THEN |
---|
1233 | DO k = nzb+1, nzt |
---|
1234 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
1235 | 5.3125_wp * tqr_m(k,j,i) |
---|
1236 | ENDDO |
---|
1237 | ENDIF |
---|
1238 | ENDIF |
---|
1239 | |
---|
1240 | ! |
---|
1241 | !-- Calculate prognostic equation for rain drop concentration. |
---|
1242 | tend(:,j,i) = 0.0_wp |
---|
1243 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1244 | IF ( ws_scheme_sca ) THEN |
---|
1245 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
1246 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
1247 | i_omp_start, tn ) |
---|
1248 | ELSE |
---|
1249 | CALL advec_s_pw( i, j, nr ) |
---|
1250 | ENDIF |
---|
1251 | ELSE |
---|
1252 | CALL advec_s_up( i, j, nr ) |
---|
1253 | ENDIF |
---|
1254 | CALL diffusion_s( i, j, nr, & |
---|
1255 | surf_def_h(0)%nrsws, surf_def_h(1)%nrsws, & |
---|
1256 | surf_def_h(2)%nrsws, & |
---|
1257 | surf_lsm_h%nrsws, surf_usm_h%nrsws, & |
---|
1258 | surf_def_v(0)%nrsws, surf_def_v(1)%nrsws, & |
---|
1259 | surf_def_v(2)%nrsws, surf_def_v(3)%nrsws, & |
---|
1260 | surf_lsm_v(0)%nrsws, surf_lsm_v(1)%nrsws, & |
---|
1261 | surf_lsm_v(2)%nrsws, surf_lsm_v(3)%nrsws, & |
---|
1262 | surf_usm_v(0)%nrsws, surf_usm_v(1)%nrsws, & |
---|
1263 | surf_usm_v(2)%nrsws, surf_usm_v(3)%nrsws ) |
---|
1264 | |
---|
1265 | ! |
---|
1266 | !-- Prognostic equation for rain drop concentration |
---|
1267 | DO k = nzb+1, nzt |
---|
1268 | nr_p(k,j,i) = nr(k,j,i) + ( dt_3d * & |
---|
1269 | ( tsc(2) * tend(k,j,i) + & |
---|
1270 | tsc(3) * tnr_m(k,j,i) )& |
---|
1271 | - tsc(5) * rdf_sc(k) & |
---|
1272 | * nr(k,j,i) & |
---|
1273 | ) & |
---|
1274 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1275 | BTEST( wall_flags_0(k,j,i), 0 )& |
---|
1276 | ) |
---|
1277 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
1278 | ENDDO |
---|
1279 | ! |
---|
1280 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1281 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1282 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1283 | DO k = nzb+1, nzt |
---|
1284 | tnr_m(k,j,i) = tend(k,j,i) |
---|
1285 | ENDDO |
---|
1286 | ELSEIF ( intermediate_timestep_count < & |
---|
1287 | intermediate_timestep_count_max ) THEN |
---|
1288 | DO k = nzb+1, nzt |
---|
1289 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
1290 | 5.3125_wp * tnr_m(k,j,i) |
---|
1291 | ENDDO |
---|
1292 | ENDIF |
---|
1293 | ENDIF |
---|
1294 | |
---|
1295 | ENDIF |
---|
1296 | |
---|
1297 | ENDIF |
---|
1298 | |
---|
1299 | ! |
---|
1300 | !-- If required, compute prognostic equation for scalar |
---|
1301 | IF ( passive_scalar ) THEN |
---|
1302 | ! |
---|
1303 | !-- Tendency-terms for total water content / scalar |
---|
1304 | tend(:,j,i) = 0.0_wp |
---|
1305 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
1306 | THEN |
---|
1307 | IF ( ws_scheme_sca ) THEN |
---|
1308 | CALL advec_s_ws( i, j, s, 's', flux_s_s, & |
---|
1309 | diss_s_s, flux_l_s, diss_l_s, i_omp_start, tn ) |
---|
1310 | ELSE |
---|
1311 | CALL advec_s_pw( i, j, s ) |
---|
1312 | ENDIF |
---|
1313 | ELSE |
---|
1314 | CALL advec_s_up( i, j, s ) |
---|
1315 | ENDIF |
---|
1316 | CALL diffusion_s( i, j, s, & |
---|
1317 | surf_def_h(0)%ssws, surf_def_h(1)%ssws, & |
---|
1318 | surf_def_h(2)%ssws, & |
---|
1319 | surf_lsm_h%ssws, surf_usm_h%ssws, & |
---|
1320 | surf_def_v(0)%ssws, surf_def_v(1)%ssws, & |
---|
1321 | surf_def_v(2)%ssws, surf_def_v(3)%ssws, & |
---|
1322 | surf_lsm_v(0)%ssws, surf_lsm_v(1)%ssws, & |
---|
1323 | surf_lsm_v(2)%ssws, surf_lsm_v(3)%ssws, & |
---|
1324 | surf_usm_v(0)%ssws, surf_usm_v(1)%ssws, & |
---|
1325 | surf_usm_v(2)%ssws, surf_usm_v(3)%ssws ) |
---|
1326 | |
---|
1327 | ! |
---|
1328 | !-- Sink or source of scalar concentration due to canopy elements |
---|
1329 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 7 ) |
---|
1330 | |
---|
1331 | ! |
---|
1332 | !-- Large scale advection, still need to be extended for scalars |
---|
1333 | ! IF ( large_scale_forcing ) THEN |
---|
1334 | ! CALL ls_advec( i, j, simulated_time, 's' ) |
---|
1335 | ! ENDIF |
---|
1336 | |
---|
1337 | ! |
---|
1338 | !-- Nudging, still need to be extended for scalars |
---|
1339 | ! IF ( nudging ) CALL nudge( i, j, simulated_time, 's' ) |
---|
1340 | |
---|
1341 | ! |
---|
1342 | !-- If required compute influence of large-scale subsidence/ascent. |
---|
1343 | !-- Note, the last argument is of no meaning in this case, as it is |
---|
1344 | !-- only used in conjunction with large_scale_forcing, which is to |
---|
1345 | !-- date not implemented for scalars. |
---|
1346 | IF ( large_scale_subsidence .AND. & |
---|
1347 | .NOT. use_subsidence_tendencies .AND. & |
---|
1348 | .NOT. large_scale_forcing ) THEN |
---|
1349 | CALL subsidence( i, j, tend, s, s_init, 3 ) |
---|
1350 | ENDIF |
---|
1351 | |
---|
1352 | CALL module_interface_actions( i, j, 's-tendency' ) |
---|
1353 | |
---|
1354 | ! |
---|
1355 | !-- Prognostic equation for scalar |
---|
1356 | DO k = nzb+1, nzt |
---|
1357 | s_p(k,j,i) = s(k,j,i) + ( dt_3d * & |
---|
1358 | ( tsc(2) * tend(k,j,i) + & |
---|
1359 | tsc(3) * ts_m(k,j,i) ) & |
---|
1360 | - tsc(5) * rdf_sc(k) & |
---|
1361 | * ( s(k,j,i) - s_init(k) )& |
---|
1362 | ) & |
---|
1363 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1364 | BTEST( wall_flags_0(k,j,i), 0 )& |
---|
1365 | ) |
---|
1366 | IF ( s_p(k,j,i) < 0.0_wp ) s_p(k,j,i) = 0.1_wp * s(k,j,i) |
---|
1367 | ENDDO |
---|
1368 | |
---|
1369 | ! |
---|
1370 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1371 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1372 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1373 | DO k = nzb+1, nzt |
---|
1374 | ts_m(k,j,i) = tend(k,j,i) |
---|
1375 | ENDDO |
---|
1376 | ELSEIF ( intermediate_timestep_count < & |
---|
1377 | intermediate_timestep_count_max ) THEN |
---|
1378 | DO k = nzb+1, nzt |
---|
1379 | ts_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
1380 | 5.3125_wp * ts_m(k,j,i) |
---|
1381 | ENDDO |
---|
1382 | ENDIF |
---|
1383 | ENDIF |
---|
1384 | |
---|
1385 | ENDIF |
---|
1386 | ! |
---|
1387 | !-- Calculate prognostic equations for turbulence closure |
---|
1388 | CALL tcm_prognostic_equations( i, j, i_omp_start, tn ) |
---|
1389 | |
---|
1390 | ! |
---|
1391 | !-- Calculate prognostic equation for chemical quantites |
---|
1392 | IF ( air_chemistry ) THEN |
---|
1393 | !> TODO: remove time measurement since it slows down performance because it will be called extremely often |
---|
1394 | ! |
---|
1395 | !-- Loop over chemical species |
---|
1396 | DO lsp = 1, nvar |
---|
1397 | CALL chem_prognostic_equations( chem_species(lsp)%conc_p, & |
---|
1398 | chem_species(lsp)%conc, & |
---|
1399 | chem_species(lsp)%tconc_m, & |
---|
1400 | chem_species(lsp)%conc_pr_init, & |
---|
1401 | i, j, i_omp_start, tn, lsp, & |
---|
1402 | chem_species(lsp)%flux_s_cs, & |
---|
1403 | chem_species(lsp)%diss_s_cs, & |
---|
1404 | chem_species(lsp)%flux_l_cs, & |
---|
1405 | chem_species(lsp)%diss_l_cs ) |
---|
1406 | ENDDO |
---|
1407 | |
---|
1408 | ENDIF ! Chemical equations |
---|
1409 | ! |
---|
1410 | !-- Calculate prognostic equations for the ocean |
---|
1411 | IF ( ocean_mode ) THEN |
---|
1412 | CALL ocean_prognostic_equations( i, j, i_omp_start, tn ) |
---|
1413 | ENDIF |
---|
1414 | |
---|
1415 | IF ( salsa ) THEN |
---|
1416 | ! |
---|
1417 | !-- Loop over aerosol size bins: number and mass bins |
---|
1418 | IF ( time_since_reference_point >= skip_time_do_salsa ) THEN |
---|
1419 | |
---|
1420 | DO b = 1, nbins |
---|
1421 | sums_salsa_ws_l = aerosol_number(b)%sums_ws_l |
---|
1422 | CALL salsa_tendency( 'aerosol_number', & |
---|
1423 | aerosol_number(b)%conc_p, & |
---|
1424 | aerosol_number(b)%conc, & |
---|
1425 | aerosol_number(b)%tconc_m, & |
---|
1426 | i, j, i_omp_start, tn, b, b, & |
---|
1427 | aerosol_number(b)%flux_s, & |
---|
1428 | aerosol_number(b)%diss_s, & |
---|
1429 | aerosol_number(b)%flux_l, & |
---|
1430 | aerosol_number(b)%diss_l, & |
---|
1431 | aerosol_number(b)%init ) |
---|
1432 | aerosol_number(b)%sums_ws_l = sums_salsa_ws_l |
---|
1433 | DO c = 1, ncc_tot |
---|
1434 | sums_salsa_ws_l = aerosol_mass((c-1)*nbins+b)%sums_ws_l |
---|
1435 | CALL salsa_tendency( 'aerosol_mass', & |
---|
1436 | aerosol_mass((c-1)*nbins+b)%conc_p,& |
---|
1437 | aerosol_mass((c-1)*nbins+b)%conc, & |
---|
1438 | aerosol_mass((c-1)*nbins+b)%tconc_m,& |
---|
1439 | i, j, i_omp_start, tn, b, c, & |
---|
1440 | aerosol_mass((c-1)*nbins+b)%flux_s,& |
---|
1441 | aerosol_mass((c-1)*nbins+b)%diss_s,& |
---|
1442 | aerosol_mass((c-1)*nbins+b)%flux_l,& |
---|
1443 | aerosol_mass((c-1)*nbins+b)%diss_l,& |
---|
1444 | aerosol_mass((c-1)*nbins+b)%init ) |
---|
1445 | aerosol_mass((c-1)*nbins+b)%sums_ws_l = sums_salsa_ws_l |
---|
1446 | ENDDO |
---|
1447 | ENDDO |
---|
1448 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
1449 | DO g = 1, ngast |
---|
1450 | sums_salsa_ws_l = salsa_gas(g)%sums_ws_l |
---|
1451 | CALL salsa_tendency( 'salsa_gas', salsa_gas(g)%conc_p, & |
---|
1452 | salsa_gas(g)%conc, salsa_gas(g)%tconc_m, & |
---|
1453 | i, j, i_omp_start, tn, g, g, & |
---|
1454 | salsa_gas(g)%flux_s, salsa_gas(g)%diss_s,& |
---|
1455 | salsa_gas(g)%flux_l, salsa_gas(g)%diss_l,& |
---|
1456 | salsa_gas(g)%init ) |
---|
1457 | salsa_gas(g)%sums_ws_l = sums_salsa_ws_l |
---|
1458 | ENDDO |
---|
1459 | ENDIF |
---|
1460 | |
---|
1461 | ENDIF |
---|
1462 | |
---|
1463 | ENDIF |
---|
1464 | |
---|
1465 | ENDDO ! loop over j |
---|
1466 | ENDDO ! loop over i |
---|
1467 | !$OMP END PARALLEL |
---|
1468 | |
---|
1469 | |
---|
1470 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
1471 | |
---|
1472 | |
---|
1473 | END SUBROUTINE prognostic_equations_cache |
---|
1474 | |
---|
1475 | |
---|
1476 | !------------------------------------------------------------------------------! |
---|
1477 | ! Description: |
---|
1478 | ! ------------ |
---|
1479 | !> Version for vector machines |
---|
1480 | !------------------------------------------------------------------------------! |
---|
1481 | |
---|
1482 | SUBROUTINE prognostic_equations_vector |
---|
1483 | |
---|
1484 | |
---|
1485 | IMPLICIT NONE |
---|
1486 | |
---|
1487 | INTEGER(iwp) :: b !< index for aerosol size bins (salsa) |
---|
1488 | INTEGER(iwp) :: c !< index for chemical compounds (salsa) |
---|
1489 | INTEGER(iwp) :: g !< index for gaseous compounds (salsa) |
---|
1490 | INTEGER(iwp) :: i !< |
---|
1491 | INTEGER(iwp) :: j !< |
---|
1492 | INTEGER(iwp) :: k !< |
---|
1493 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
1494 | |
---|
1495 | REAL(wp) :: sbt !< |
---|
1496 | |
---|
1497 | ! |
---|
1498 | !-- Run SALSA and aerosol dynamic processes. SALSA is run with a longer time |
---|
1499 | !-- step. The exchange of ghost points is required after this update of the |
---|
1500 | !-- concentrations of aerosol number and mass |
---|
1501 | IF ( salsa ) THEN |
---|
1502 | |
---|
1503 | IF ( time_since_reference_point >= skip_time_do_salsa ) THEN |
---|
1504 | |
---|
1505 | IF ( ( time_since_reference_point - last_salsa_time ) >= dt_salsa ) & |
---|
1506 | THEN |
---|
1507 | |
---|
1508 | CALL cpu_log( log_point_s(90), 'salsa processes ', 'start' ) |
---|
1509 | !$OMP PARALLEL PRIVATE (i,j,b,c,g) |
---|
1510 | !$OMP DO |
---|
1511 | ! |
---|
1512 | !-- Call salsa processes |
---|
1513 | DO i = nxl, nxr |
---|
1514 | DO j = nys, nyn |
---|
1515 | CALL salsa_diagnostics( i, j ) |
---|
1516 | CALL salsa_driver( i, j, 3 ) |
---|
1517 | CALL salsa_diagnostics( i, j ) |
---|
1518 | ENDDO |
---|
1519 | ENDDO |
---|
1520 | |
---|
1521 | CALL cpu_log( log_point_s(90), 'salsa processes ', 'stop' ) |
---|
1522 | |
---|
1523 | CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' ) |
---|
1524 | ! |
---|
1525 | !-- Exchange ghost points and decycle if needed. |
---|
1526 | DO b = 1, nbins |
---|
1527 | CALL exchange_horiz( aerosol_number(b)%conc, nbgp ) |
---|
1528 | CALL salsa_boundary_conds( aerosol_number(b)%conc_p, & |
---|
1529 | aerosol_number(b)%init ) |
---|
1530 | DO c = 1, ncc_tot |
---|
1531 | CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc, nbgp ) |
---|
1532 | CALL salsa_boundary_conds( & |
---|
1533 | aerosol_mass((c-1)*nbins+b)%conc_p, & |
---|
1534 | aerosol_mass((c-1)*nbins+b)%init ) |
---|
1535 | ENDDO |
---|
1536 | ENDDO |
---|
1537 | |
---|
1538 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
1539 | DO g = 1, ngast |
---|
1540 | CALL exchange_horiz( salsa_gas(g)%conc, nbgp ) |
---|
1541 | CALL salsa_boundary_conds( salsa_gas(g)%conc_p, & |
---|
1542 | salsa_gas(g)%init ) |
---|
1543 | ENDDO |
---|
1544 | ENDIF |
---|
1545 | CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' ) |
---|
1546 | |
---|
1547 | !$OMP END PARALLEL |
---|
1548 | last_salsa_time = time_since_reference_point |
---|
1549 | |
---|
1550 | ENDIF |
---|
1551 | |
---|
1552 | ENDIF |
---|
1553 | |
---|
1554 | ENDIF |
---|
1555 | |
---|
1556 | ! |
---|
1557 | !-- If required, calculate cloud microphysical impacts |
---|
1558 | IF ( bulk_cloud_model .AND. .NOT. microphysics_sat_adjust .AND. & |
---|
1559 | ( intermediate_timestep_count == 1 .OR. & |
---|
1560 | call_microphysics_at_all_substeps ) & |
---|
1561 | ) THEN |
---|
1562 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
1563 | CALL bcm_actions |
---|
1564 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
1565 | ENDIF |
---|
1566 | |
---|
1567 | ! |
---|
1568 | !-- u-velocity component |
---|
1569 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
1570 | |
---|
1571 | !$ACC KERNELS PRESENT(tend) |
---|
1572 | tend = 0.0_wp |
---|
1573 | !$ACC END KERNELS |
---|
1574 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1575 | IF ( ws_scheme_mom ) THEN |
---|
1576 | CALL advec_u_ws |
---|
1577 | ELSE |
---|
1578 | CALL advec_u_pw |
---|
1579 | ENDIF |
---|
1580 | ELSE |
---|
1581 | CALL advec_u_up |
---|
1582 | ENDIF |
---|
1583 | CALL diffusion_u |
---|
1584 | CALL coriolis( 1 ) |
---|
1585 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
1586 | CALL buoyancy( pt, 1 ) |
---|
1587 | ENDIF |
---|
1588 | |
---|
1589 | ! |
---|
1590 | !-- Drag by plant canopy |
---|
1591 | IF ( plant_canopy ) CALL pcm_tendency( 1 ) |
---|
1592 | |
---|
1593 | ! |
---|
1594 | !-- External pressure gradient |
---|
1595 | IF ( dp_external ) THEN |
---|
1596 | DO i = nxlu, nxr |
---|
1597 | DO j = nys, nyn |
---|
1598 | DO k = dp_level_ind_b+1, nzt |
---|
1599 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
1600 | ENDDO |
---|
1601 | ENDDO |
---|
1602 | ENDDO |
---|
1603 | ENDIF |
---|
1604 | |
---|
1605 | ! |
---|
1606 | !-- Nudging |
---|
1607 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
1608 | |
---|
1609 | ! |
---|
1610 | !-- Effect of Stokes drift (in ocean mode only) |
---|
1611 | IF ( stokes_force ) CALL stokes_drift_terms( 1 ) |
---|
1612 | |
---|
1613 | ! |
---|
1614 | !-- Forces by wind turbines |
---|
1615 | IF ( wind_turbine ) CALL wtm_tendencies( 1 ) |
---|
1616 | |
---|
1617 | CALL module_interface_actions( 'u-tendency' ) |
---|
1618 | |
---|
1619 | ! |
---|
1620 | !-- Prognostic equation for u-velocity component |
---|
1621 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1622 | !$ACC PRESENT(u, tend, tu_m, u_init, rdf, wall_flags_0) & |
---|
1623 | !$ACC PRESENT(tsc(2:5)) & |
---|
1624 | !$ACC PRESENT(u_p) |
---|
1625 | DO i = nxlu, nxr |
---|
1626 | DO j = nys, nyn |
---|
1627 | DO k = nzb+1, nzt |
---|
1628 | u_p(k,j,i) = u(k,j,i) + ( dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1629 | tsc(3) * tu_m(k,j,i) ) & |
---|
1630 | - tsc(5) * rdf(k) * & |
---|
1631 | ( u(k,j,i) - u_init(k) ) & |
---|
1632 | ) * MERGE( 1.0_wp, 0.0_wp, & |
---|
1633 | BTEST( wall_flags_0(k,j,i), 1 ) & |
---|
1634 | ) |
---|
1635 | ENDDO |
---|
1636 | ENDDO |
---|
1637 | ENDDO |
---|
1638 | |
---|
1639 | ! |
---|
1640 | !-- Add turbulence generated by wave breaking (in ocean mode only) |
---|
1641 | IF ( wave_breaking .AND. & |
---|
1642 | intermediate_timestep_count == intermediate_timestep_count_max ) & |
---|
1643 | THEN |
---|
1644 | CALL wave_breaking_term( 1 ) |
---|
1645 | ENDIF |
---|
1646 | |
---|
1647 | ! |
---|
1648 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1649 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1650 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1651 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1652 | !$ACC PRESENT(tend, tu_m) |
---|
1653 | DO i = nxlu, nxr |
---|
1654 | DO j = nys, nyn |
---|
1655 | DO k = nzb+1, nzt |
---|
1656 | tu_m(k,j,i) = tend(k,j,i) |
---|
1657 | ENDDO |
---|
1658 | ENDDO |
---|
1659 | ENDDO |
---|
1660 | ELSEIF ( intermediate_timestep_count < & |
---|
1661 | intermediate_timestep_count_max ) THEN |
---|
1662 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1663 | !$ACC PRESENT(tend, tu_m) |
---|
1664 | DO i = nxlu, nxr |
---|
1665 | DO j = nys, nyn |
---|
1666 | DO k = nzb+1, nzt |
---|
1667 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
1668 | + 5.3125_wp * tu_m(k,j,i) |
---|
1669 | ENDDO |
---|
1670 | ENDDO |
---|
1671 | ENDDO |
---|
1672 | ENDIF |
---|
1673 | ENDIF |
---|
1674 | |
---|
1675 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
1676 | |
---|
1677 | ! |
---|
1678 | !-- v-velocity component |
---|
1679 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
1680 | |
---|
1681 | !$ACC KERNELS PRESENT(tend) |
---|
1682 | tend = 0.0_wp |
---|
1683 | !$ACC END KERNELS |
---|
1684 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1685 | IF ( ws_scheme_mom ) THEN |
---|
1686 | CALL advec_v_ws |
---|
1687 | ELSE |
---|
1688 | CALL advec_v_pw |
---|
1689 | END IF |
---|
1690 | ELSE |
---|
1691 | CALL advec_v_up |
---|
1692 | ENDIF |
---|
1693 | CALL diffusion_v |
---|
1694 | CALL coriolis( 2 ) |
---|
1695 | |
---|
1696 | ! |
---|
1697 | !-- Drag by plant canopy |
---|
1698 | IF ( plant_canopy ) CALL pcm_tendency( 2 ) |
---|
1699 | |
---|
1700 | ! |
---|
1701 | !-- External pressure gradient |
---|
1702 | IF ( dp_external ) THEN |
---|
1703 | DO i = nxl, nxr |
---|
1704 | DO j = nysv, nyn |
---|
1705 | DO k = dp_level_ind_b+1, nzt |
---|
1706 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
1707 | ENDDO |
---|
1708 | ENDDO |
---|
1709 | ENDDO |
---|
1710 | ENDIF |
---|
1711 | |
---|
1712 | ! |
---|
1713 | !-- Nudging |
---|
1714 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
1715 | |
---|
1716 | ! |
---|
1717 | !-- Effect of Stokes drift (in ocean mode only) |
---|
1718 | IF ( stokes_force ) CALL stokes_drift_terms( 2 ) |
---|
1719 | |
---|
1720 | ! |
---|
1721 | !-- Forces by wind turbines |
---|
1722 | IF ( wind_turbine ) CALL wtm_tendencies( 2 ) |
---|
1723 | |
---|
1724 | CALL module_interface_actions( 'v-tendency' ) |
---|
1725 | |
---|
1726 | ! |
---|
1727 | !-- Prognostic equation for v-velocity component |
---|
1728 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1729 | !$ACC PRESENT(v, tend, tv_m, v_init, rdf, wall_flags_0) & |
---|
1730 | !$ACC PRESENT(tsc(2:5)) & |
---|
1731 | !$ACC PRESENT(v_p) |
---|
1732 | DO i = nxl, nxr |
---|
1733 | DO j = nysv, nyn |
---|
1734 | DO k = nzb+1, nzt |
---|
1735 | v_p(k,j,i) = v(k,j,i) + ( dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1736 | tsc(3) * tv_m(k,j,i) ) & |
---|
1737 | - tsc(5) * rdf(k) * & |
---|
1738 | ( v(k,j,i) - v_init(k) ) & |
---|
1739 | ) * MERGE( 1.0_wp, 0.0_wp, & |
---|
1740 | BTEST( wall_flags_0(k,j,i), 2 )& |
---|
1741 | ) |
---|
1742 | ENDDO |
---|
1743 | ENDDO |
---|
1744 | ENDDO |
---|
1745 | |
---|
1746 | ! |
---|
1747 | !-- Add turbulence generated by wave breaking (in ocean mode only) |
---|
1748 | IF ( wave_breaking .AND. & |
---|
1749 | intermediate_timestep_count == intermediate_timestep_count_max ) & |
---|
1750 | THEN |
---|
1751 | CALL wave_breaking_term( 2 ) |
---|
1752 | ENDIF |
---|
1753 | |
---|
1754 | ! |
---|
1755 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1756 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1757 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1758 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1759 | !$ACC PRESENT(tend, tv_m) |
---|
1760 | DO i = nxl, nxr |
---|
1761 | DO j = nysv, nyn |
---|
1762 | DO k = nzb+1, nzt |
---|
1763 | tv_m(k,j,i) = tend(k,j,i) |
---|
1764 | ENDDO |
---|
1765 | ENDDO |
---|
1766 | ENDDO |
---|
1767 | ELSEIF ( intermediate_timestep_count < & |
---|
1768 | intermediate_timestep_count_max ) THEN |
---|
1769 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1770 | !$ACC PRESENT(tend, tv_m) |
---|
1771 | DO i = nxl, nxr |
---|
1772 | DO j = nysv, nyn |
---|
1773 | DO k = nzb+1, nzt |
---|
1774 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
1775 | + 5.3125_wp * tv_m(k,j,i) |
---|
1776 | ENDDO |
---|
1777 | ENDDO |
---|
1778 | ENDDO |
---|
1779 | ENDIF |
---|
1780 | ENDIF |
---|
1781 | |
---|
1782 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
1783 | |
---|
1784 | ! |
---|
1785 | !-- w-velocity component |
---|
1786 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
1787 | |
---|
1788 | !$ACC KERNELS PRESENT(tend) |
---|
1789 | tend = 0.0_wp |
---|
1790 | !$ACC END KERNELS |
---|
1791 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1792 | IF ( ws_scheme_mom ) THEN |
---|
1793 | CALL advec_w_ws |
---|
1794 | ELSE |
---|
1795 | CALL advec_w_pw |
---|
1796 | ENDIF |
---|
1797 | ELSE |
---|
1798 | CALL advec_w_up |
---|
1799 | ENDIF |
---|
1800 | CALL diffusion_w |
---|
1801 | CALL coriolis( 3 ) |
---|
1802 | |
---|
1803 | IF ( .NOT. neutral ) THEN |
---|
1804 | IF ( ocean_mode ) THEN |
---|
1805 | CALL buoyancy( rho_ocean, 3 ) |
---|
1806 | ELSE |
---|
1807 | IF ( .NOT. humidity ) THEN |
---|
1808 | CALL buoyancy( pt, 3 ) |
---|
1809 | ELSE |
---|
1810 | CALL buoyancy( vpt, 3 ) |
---|
1811 | ENDIF |
---|
1812 | ENDIF |
---|
1813 | ENDIF |
---|
1814 | |
---|
1815 | ! |
---|
1816 | !-- Drag by plant canopy |
---|
1817 | IF ( plant_canopy ) CALL pcm_tendency( 3 ) |
---|
1818 | |
---|
1819 | ! |
---|
1820 | !-- Effect of Stokes drift (in ocean mode only) |
---|
1821 | IF ( stokes_force ) CALL stokes_drift_terms( 3 ) |
---|
1822 | |
---|
1823 | ! |
---|
1824 | !-- Forces by wind turbines |
---|
1825 | IF ( wind_turbine ) CALL wtm_tendencies( 3 ) |
---|
1826 | |
---|
1827 | CALL module_interface_actions( 'w-tendency' ) |
---|
1828 | |
---|
1829 | ! |
---|
1830 | !-- Prognostic equation for w-velocity component |
---|
1831 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1832 | !$ACC PRESENT(w, tend, tw_m, v_init, rdf, wall_flags_0) & |
---|
1833 | !$ACC PRESENT(tsc(2:5)) & |
---|
1834 | !$ACC PRESENT(w_p) |
---|
1835 | DO i = nxl, nxr |
---|
1836 | DO j = nys, nyn |
---|
1837 | DO k = nzb+1, nzt-1 |
---|
1838 | w_p(k,j,i) = w(k,j,i) + ( dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1839 | tsc(3) * tw_m(k,j,i) ) & |
---|
1840 | - tsc(5) * rdf(k) * w(k,j,i) & |
---|
1841 | ) * MERGE( 1.0_wp, 0.0_wp, & |
---|
1842 | BTEST( wall_flags_0(k,j,i), 3 )& |
---|
1843 | ) |
---|
1844 | ENDDO |
---|
1845 | ENDDO |
---|
1846 | ENDDO |
---|
1847 | |
---|
1848 | ! |
---|
1849 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1850 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1851 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1852 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1853 | !$ACC PRESENT(tend, tw_m) |
---|
1854 | DO i = nxl, nxr |
---|
1855 | DO j = nys, nyn |
---|
1856 | DO k = nzb+1, nzt-1 |
---|
1857 | tw_m(k,j,i) = tend(k,j,i) |
---|
1858 | ENDDO |
---|
1859 | ENDDO |
---|
1860 | ENDDO |
---|
1861 | ELSEIF ( intermediate_timestep_count < & |
---|
1862 | intermediate_timestep_count_max ) THEN |
---|
1863 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1864 | !$ACC PRESENT(tend, tw_m) |
---|
1865 | DO i = nxl, nxr |
---|
1866 | DO j = nys, nyn |
---|
1867 | DO k = nzb+1, nzt-1 |
---|
1868 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
1869 | + 5.3125_wp * tw_m(k,j,i) |
---|
1870 | ENDDO |
---|
1871 | ENDDO |
---|
1872 | ENDDO |
---|
1873 | ENDIF |
---|
1874 | ENDIF |
---|
1875 | |
---|
1876 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
1877 | |
---|
1878 | |
---|
1879 | ! |
---|
1880 | !-- If required, compute prognostic equation for potential temperature |
---|
1881 | IF ( .NOT. neutral ) THEN |
---|
1882 | |
---|
1883 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
1884 | |
---|
1885 | ! |
---|
1886 | !-- pt-tendency terms with communication |
---|
1887 | sbt = tsc(2) |
---|
1888 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1889 | |
---|
1890 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1891 | ! |
---|
1892 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1893 | sbt = 1.0_wp |
---|
1894 | ENDIF |
---|
1895 | tend = 0.0_wp |
---|
1896 | CALL advec_s_bc( pt, 'pt' ) |
---|
1897 | |
---|
1898 | ENDIF |
---|
1899 | |
---|
1900 | ! |
---|
1901 | !-- pt-tendency terms with no communication |
---|
1902 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1903 | !$ACC KERNELS PRESENT(tend) |
---|
1904 | tend = 0.0_wp |
---|
1905 | !$ACC END KERNELS |
---|
1906 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1907 | IF ( ws_scheme_sca ) THEN |
---|
1908 | CALL advec_s_ws( pt, 'pt' ) |
---|
1909 | ELSE |
---|
1910 | CALL advec_s_pw( pt ) |
---|
1911 | ENDIF |
---|
1912 | ELSE |
---|
1913 | CALL advec_s_up( pt ) |
---|
1914 | ENDIF |
---|
1915 | ENDIF |
---|
1916 | |
---|
1917 | CALL diffusion_s( pt, & |
---|
1918 | surf_def_h(0)%shf, surf_def_h(1)%shf, & |
---|
1919 | surf_def_h(2)%shf, & |
---|
1920 | surf_lsm_h%shf, surf_usm_h%shf, & |
---|
1921 | surf_def_v(0)%shf, surf_def_v(1)%shf, & |
---|
1922 | surf_def_v(2)%shf, surf_def_v(3)%shf, & |
---|
1923 | surf_lsm_v(0)%shf, surf_lsm_v(1)%shf, & |
---|
1924 | surf_lsm_v(2)%shf, surf_lsm_v(3)%shf, & |
---|
1925 | surf_usm_v(0)%shf, surf_usm_v(1)%shf, & |
---|
1926 | surf_usm_v(2)%shf, surf_usm_v(3)%shf ) |
---|
1927 | |
---|
1928 | ! |
---|
1929 | !-- Consideration of heat sources within the plant canopy |
---|
1930 | IF ( plant_canopy .AND. & |
---|
1931 | (cthf /= 0.0_wp .OR. urban_surface .OR. land_surface) ) THEN |
---|
1932 | CALL pcm_tendency( 4 ) |
---|
1933 | ENDIF |
---|
1934 | |
---|
1935 | ! |
---|
1936 | !-- Large scale advection |
---|
1937 | IF ( large_scale_forcing ) THEN |
---|
1938 | CALL ls_advec( simulated_time, 'pt' ) |
---|
1939 | ENDIF |
---|
1940 | |
---|
1941 | ! |
---|
1942 | !-- Nudging |
---|
1943 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
1944 | |
---|
1945 | ! |
---|
1946 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1947 | IF ( large_scale_subsidence .AND. & |
---|
1948 | .NOT. use_subsidence_tendencies ) THEN |
---|
1949 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
1950 | ENDIF |
---|
1951 | |
---|
1952 | ! |
---|
1953 | !-- If required, add tendency due to radiative heating/cooling |
---|
1954 | IF ( radiation .AND. & |
---|
1955 | simulated_time > skip_time_do_radiation ) THEN |
---|
1956 | CALL radiation_tendency ( tend ) |
---|
1957 | ENDIF |
---|
1958 | |
---|
1959 | CALL module_interface_actions( 'pt-tendency' ) |
---|
1960 | |
---|
1961 | ! |
---|
1962 | !-- Prognostic equation for potential temperature |
---|
1963 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1964 | !$ACC PRESENT(pt, tend, tpt_m, wall_flags_0) & |
---|
1965 | !$ACC PRESENT(pt_init, rdf_sc, ptdf_x, ptdf_y) & |
---|
1966 | !$ACC PRESENT(tsc(3:5)) & |
---|
1967 | !$ACC PRESENT(pt_p) |
---|
1968 | DO i = nxl, nxr |
---|
1969 | DO j = nys, nyn |
---|
1970 | DO k = nzb+1, nzt |
---|
1971 | pt_p(k,j,i) = pt(k,j,i) + ( dt_3d * ( sbt * tend(k,j,i) + & |
---|
1972 | tsc(3) * tpt_m(k,j,i) ) & |
---|
1973 | - tsc(5) * & |
---|
1974 | ( pt(k,j,i) - pt_init(k) ) *& |
---|
1975 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) )& |
---|
1976 | ) & |
---|
1977 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1978 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
1979 | ) |
---|
1980 | ENDDO |
---|
1981 | ENDDO |
---|
1982 | ENDDO |
---|
1983 | ! |
---|
1984 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1985 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1986 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1987 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1988 | !$ACC PRESENT(tend, tpt_m) |
---|
1989 | DO i = nxl, nxr |
---|
1990 | DO j = nys, nyn |
---|
1991 | DO k = nzb+1, nzt |
---|
1992 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1993 | ENDDO |
---|
1994 | ENDDO |
---|
1995 | ENDDO |
---|
1996 | ELSEIF ( intermediate_timestep_count < & |
---|
1997 | intermediate_timestep_count_max ) THEN |
---|
1998 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k) & |
---|
1999 | !$ACC PRESENT(tend, tpt_m) |
---|
2000 | DO i = nxl, nxr |
---|
2001 | DO j = nys, nyn |
---|
2002 | DO k = nzb+1, nzt |
---|
2003 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
2004 | 5.3125_wp * tpt_m(k,j,i) |
---|
2005 | ENDDO |
---|
2006 | ENDDO |
---|
2007 | ENDDO |
---|
2008 | ENDIF |
---|
2009 | ENDIF |
---|
2010 | |
---|
2011 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
2012 | |
---|
2013 | ENDIF |
---|
2014 | |
---|
2015 | ! |
---|
2016 | !-- If required, compute prognostic equation for total water content |
---|
2017 | IF ( humidity ) THEN |
---|
2018 | |
---|
2019 | CALL cpu_log( log_point(29), 'q-equation', 'start' ) |
---|
2020 | |
---|
2021 | ! |
---|
2022 | !-- Scalar/q-tendency terms with communication |
---|
2023 | sbt = tsc(2) |
---|
2024 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
2025 | |
---|
2026 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
2027 | ! |
---|
2028 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
2029 | sbt = 1.0_wp |
---|
2030 | ENDIF |
---|
2031 | tend = 0.0_wp |
---|
2032 | CALL advec_s_bc( q, 'q' ) |
---|
2033 | |
---|
2034 | ENDIF |
---|
2035 | |
---|
2036 | ! |
---|
2037 | !-- Scalar/q-tendency terms with no communication |
---|
2038 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
2039 | tend = 0.0_wp |
---|
2040 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2041 | IF ( ws_scheme_sca ) THEN |
---|
2042 | CALL advec_s_ws( q, 'q' ) |
---|
2043 | ELSE |
---|
2044 | CALL advec_s_pw( q ) |
---|
2045 | ENDIF |
---|
2046 | ELSE |
---|
2047 | CALL advec_s_up( q ) |
---|
2048 | ENDIF |
---|
2049 | ENDIF |
---|
2050 | |
---|
2051 | CALL diffusion_s( q, & |
---|
2052 | surf_def_h(0)%qsws, surf_def_h(1)%qsws, & |
---|
2053 | surf_def_h(2)%qsws, & |
---|
2054 | surf_lsm_h%qsws, surf_usm_h%qsws, & |
---|
2055 | surf_def_v(0)%qsws, surf_def_v(1)%qsws, & |
---|
2056 | surf_def_v(2)%qsws, surf_def_v(3)%qsws, & |
---|
2057 | surf_lsm_v(0)%qsws, surf_lsm_v(1)%qsws, & |
---|
2058 | surf_lsm_v(2)%qsws, surf_lsm_v(3)%qsws, & |
---|
2059 | surf_usm_v(0)%qsws, surf_usm_v(1)%qsws, & |
---|
2060 | surf_usm_v(2)%qsws, surf_usm_v(3)%qsws ) |
---|
2061 | |
---|
2062 | ! |
---|
2063 | !-- Sink or source of humidity due to canopy elements |
---|
2064 | IF ( plant_canopy ) CALL pcm_tendency( 5 ) |
---|
2065 | |
---|
2066 | ! |
---|
2067 | !-- Large scale advection |
---|
2068 | IF ( large_scale_forcing ) THEN |
---|
2069 | CALL ls_advec( simulated_time, 'q' ) |
---|
2070 | ENDIF |
---|
2071 | |
---|
2072 | ! |
---|
2073 | !-- Nudging |
---|
2074 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
2075 | |
---|
2076 | ! |
---|
2077 | !-- If required compute influence of large-scale subsidence/ascent |
---|
2078 | IF ( large_scale_subsidence .AND. & |
---|
2079 | .NOT. use_subsidence_tendencies ) THEN |
---|
2080 | CALL subsidence( tend, q, q_init, 3 ) |
---|
2081 | ENDIF |
---|
2082 | |
---|
2083 | CALL module_interface_actions( 'q-tendency' ) |
---|
2084 | |
---|
2085 | ! |
---|
2086 | !-- Prognostic equation for total water content |
---|
2087 | DO i = nxl, nxr |
---|
2088 | DO j = nys, nyn |
---|
2089 | DO k = nzb+1, nzt |
---|
2090 | q_p(k,j,i) = q(k,j,i) + ( dt_3d * ( sbt * tend(k,j,i) + & |
---|
2091 | tsc(3) * tq_m(k,j,i) ) & |
---|
2092 | - tsc(5) * rdf_sc(k) * & |
---|
2093 | ( q(k,j,i) - q_init(k) ) & |
---|
2094 | ) * MERGE( 1.0_wp, 0.0_wp, & |
---|
2095 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
2096 | ) |
---|
2097 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
2098 | ENDDO |
---|
2099 | ENDDO |
---|
2100 | ENDDO |
---|
2101 | |
---|
2102 | ! |
---|
2103 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2104 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2105 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2106 | DO i = nxl, nxr |
---|
2107 | DO j = nys, nyn |
---|
2108 | DO k = nzb+1, nzt |
---|
2109 | tq_m(k,j,i) = tend(k,j,i) |
---|
2110 | ENDDO |
---|
2111 | ENDDO |
---|
2112 | ENDDO |
---|
2113 | ELSEIF ( intermediate_timestep_count < & |
---|
2114 | intermediate_timestep_count_max ) THEN |
---|
2115 | DO i = nxl, nxr |
---|
2116 | DO j = nys, nyn |
---|
2117 | DO k = nzb+1, nzt |
---|
2118 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
2119 | + 5.3125_wp * tq_m(k,j,i) |
---|
2120 | ENDDO |
---|
2121 | ENDDO |
---|
2122 | ENDDO |
---|
2123 | ENDIF |
---|
2124 | ENDIF |
---|
2125 | |
---|
2126 | CALL cpu_log( log_point(29), 'q-equation', 'stop' ) |
---|
2127 | |
---|
2128 | ! |
---|
2129 | !-- If required, calculate prognostic equations for cloud water content |
---|
2130 | !-- and cloud drop concentration |
---|
2131 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
2132 | |
---|
2133 | CALL cpu_log( log_point(67), 'qc-equation', 'start' ) |
---|
2134 | |
---|
2135 | ! |
---|
2136 | !-- Calculate prognostic equation for cloud water content |
---|
2137 | sbt = tsc(2) |
---|
2138 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
2139 | |
---|
2140 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
2141 | ! |
---|
2142 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
2143 | sbt = 1.0_wp |
---|
2144 | ENDIF |
---|
2145 | tend = 0.0_wp |
---|
2146 | CALL advec_s_bc( qc, 'qc' ) |
---|
2147 | |
---|
2148 | ENDIF |
---|
2149 | |
---|
2150 | ! |
---|
2151 | !-- qc-tendency terms with no communication |
---|
2152 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
2153 | tend = 0.0_wp |
---|
2154 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2155 | IF ( ws_scheme_sca ) THEN |
---|
2156 | CALL advec_s_ws( qc, 'qc' ) |
---|
2157 | ELSE |
---|
2158 | CALL advec_s_pw( qc ) |
---|
2159 | ENDIF |
---|
2160 | ELSE |
---|
2161 | CALL advec_s_up( qc ) |
---|
2162 | ENDIF |
---|
2163 | ENDIF |
---|
2164 | |
---|
2165 | CALL diffusion_s( qc, & |
---|
2166 | surf_def_h(0)%qcsws, surf_def_h(1)%qcsws, & |
---|
2167 | surf_def_h(2)%qcsws, & |
---|
2168 | surf_lsm_h%qcsws, surf_usm_h%qcsws, & |
---|
2169 | surf_def_v(0)%qcsws, surf_def_v(1)%qcsws, & |
---|
2170 | surf_def_v(2)%qcsws, surf_def_v(3)%qcsws, & |
---|
2171 | surf_lsm_v(0)%qcsws, surf_lsm_v(1)%qcsws, & |
---|
2172 | surf_lsm_v(2)%qcsws, surf_lsm_v(3)%qcsws, & |
---|
2173 | surf_usm_v(0)%qcsws, surf_usm_v(1)%qcsws, & |
---|
2174 | surf_usm_v(2)%qcsws, surf_usm_v(3)%qcsws ) |
---|
2175 | |
---|
2176 | ! |
---|
2177 | !-- Prognostic equation for cloud water content |
---|
2178 | DO i = nxl, nxr |
---|
2179 | DO j = nys, nyn |
---|
2180 | DO k = nzb+1, nzt |
---|
2181 | qc_p(k,j,i) = qc(k,j,i) + ( dt_3d * ( sbt * tend(k,j,i) + & |
---|
2182 | tsc(3) * tqc_m(k,j,i) ) & |
---|
2183 | - tsc(5) * rdf_sc(k) * & |
---|
2184 | qc(k,j,i) & |
---|
2185 | ) & |
---|
2186 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
2187 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
2188 | ) |
---|
2189 | IF ( qc_p(k,j,i) < 0.0_wp ) qc_p(k,j,i) = 0.0_wp |
---|
2190 | ENDDO |
---|
2191 | ENDDO |
---|
2192 | ENDDO |
---|
2193 | |
---|
2194 | ! |
---|
2195 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2196 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2197 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2198 | DO i = nxl, nxr |
---|
2199 | DO j = nys, nyn |
---|
2200 | DO k = nzb+1, nzt |
---|
2201 | tqc_m(k,j,i) = tend(k,j,i) |
---|
2202 | ENDDO |
---|
2203 | ENDDO |
---|
2204 | ENDDO |
---|
2205 | ELSEIF ( intermediate_timestep_count < & |
---|
2206 | intermediate_timestep_count_max ) THEN |
---|
2207 | DO i = nxl, nxr |
---|
2208 | DO j = nys, nyn |
---|
2209 | DO k = nzb+1, nzt |
---|
2210 | tqc_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
2211 | + 5.3125_wp * tqc_m(k,j,i) |
---|
2212 | ENDDO |
---|
2213 | ENDDO |
---|
2214 | ENDDO |
---|
2215 | ENDIF |
---|
2216 | ENDIF |
---|
2217 | |
---|
2218 | CALL cpu_log( log_point(67), 'qc-equation', 'stop' ) |
---|
2219 | |
---|
2220 | CALL cpu_log( log_point(68), 'nc-equation', 'start' ) |
---|
2221 | ! |
---|
2222 | !-- Calculate prognostic equation for cloud drop concentration |
---|
2223 | sbt = tsc(2) |
---|
2224 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
2225 | |
---|
2226 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
2227 | ! |
---|
2228 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
2229 | sbt = 1.0_wp |
---|
2230 | ENDIF |
---|
2231 | tend = 0.0_wp |
---|
2232 | CALL advec_s_bc( nc, 'nc' ) |
---|
2233 | |
---|
2234 | ENDIF |
---|
2235 | |
---|
2236 | ! |
---|
2237 | !-- nc-tendency terms with no communication |
---|
2238 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
2239 | tend = 0.0_wp |
---|
2240 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2241 | IF ( ws_scheme_sca ) THEN |
---|
2242 | CALL advec_s_ws( nc, 'nc' ) |
---|
2243 | ELSE |
---|
2244 | CALL advec_s_pw( nc ) |
---|
2245 | ENDIF |
---|
2246 | ELSE |
---|
2247 | CALL advec_s_up( nc ) |
---|
2248 | ENDIF |
---|
2249 | ENDIF |
---|
2250 | |
---|
2251 | CALL diffusion_s( nc, & |
---|
2252 | surf_def_h(0)%ncsws, surf_def_h(1)%ncsws, & |
---|
2253 | surf_def_h(2)%ncsws, & |
---|
2254 | surf_lsm_h%ncsws, surf_usm_h%ncsws, & |
---|
2255 | surf_def_v(0)%ncsws, surf_def_v(1)%ncsws, & |
---|
2256 | surf_def_v(2)%ncsws, surf_def_v(3)%ncsws, & |
---|
2257 | surf_lsm_v(0)%ncsws, surf_lsm_v(1)%ncsws, & |
---|
2258 | surf_lsm_v(2)%ncsws, surf_lsm_v(3)%ncsws, & |
---|
2259 | surf_usm_v(0)%ncsws, surf_usm_v(1)%ncsws, & |
---|
2260 | surf_usm_v(2)%ncsws, surf_usm_v(3)%ncsws ) |
---|
2261 | |
---|
2262 | ! |
---|
2263 | !-- Prognostic equation for cloud drop concentration |
---|
2264 | DO i = nxl, nxr |
---|
2265 | DO j = nys, nyn |
---|
2266 | DO k = nzb+1, nzt |
---|
2267 | nc_p(k,j,i) = nc(k,j,i) + ( dt_3d * ( sbt * tend(k,j,i) + & |
---|
2268 | tsc(3) * tnc_m(k,j,i) ) & |
---|
2269 | - tsc(5) * rdf_sc(k) * & |
---|
2270 | nc(k,j,i) & |
---|
2271 | ) & |
---|
2272 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
2273 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
2274 | ) |
---|
2275 | IF ( nc_p(k,j,i) < 0.0_wp ) nc_p(k,j,i) = 0.0_wp |
---|
2276 | ENDDO |
---|
2277 | ENDDO |
---|
2278 | ENDDO |
---|
2279 | |
---|
2280 | ! |
---|
2281 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2282 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2283 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2284 | DO i = nxl, nxr |
---|
2285 | DO j = nys, nyn |
---|
2286 | DO k = nzb+1, nzt |
---|
2287 | tnc_m(k,j,i) = tend(k,j,i) |
---|
2288 | ENDDO |
---|
2289 | ENDDO |
---|
2290 | ENDDO |
---|
2291 | ELSEIF ( intermediate_timestep_count < & |
---|
2292 | intermediate_timestep_count_max ) THEN |
---|
2293 | DO i = nxl, nxr |
---|
2294 | DO j = nys, nyn |
---|
2295 | DO k = nzb+1, nzt |
---|
2296 | tnc_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
2297 | + 5.3125_wp * tnc_m(k,j,i) |
---|
2298 | ENDDO |
---|
2299 | ENDDO |
---|
2300 | ENDDO |
---|
2301 | ENDIF |
---|
2302 | ENDIF |
---|
2303 | |
---|
2304 | CALL cpu_log( log_point(68), 'nc-equation', 'stop' ) |
---|
2305 | |
---|
2306 | ENDIF |
---|
2307 | ! |
---|
2308 | !-- If required, calculate prognostic equations for rain water content |
---|
2309 | !-- and rain drop concentration |
---|
2310 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
2311 | |
---|
2312 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
2313 | |
---|
2314 | ! |
---|
2315 | !-- Calculate prognostic equation for rain water content |
---|
2316 | sbt = tsc(2) |
---|
2317 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
2318 | |
---|
2319 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
2320 | ! |
---|
2321 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
2322 | sbt = 1.0_wp |
---|
2323 | ENDIF |
---|
2324 | tend = 0.0_wp |
---|
2325 | CALL advec_s_bc( qr, 'qr' ) |
---|
2326 | |
---|
2327 | ENDIF |
---|
2328 | |
---|
2329 | ! |
---|
2330 | !-- qr-tendency terms with no communication |
---|
2331 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
2332 | tend = 0.0_wp |
---|
2333 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2334 | IF ( ws_scheme_sca ) THEN |
---|
2335 | CALL advec_s_ws( qr, 'qr' ) |
---|
2336 | ELSE |
---|
2337 | CALL advec_s_pw( qr ) |
---|
2338 | ENDIF |
---|
2339 | ELSE |
---|
2340 | CALL advec_s_up( qr ) |
---|
2341 | ENDIF |
---|
2342 | ENDIF |
---|
2343 | |
---|
2344 | CALL diffusion_s( qr, & |
---|
2345 | surf_def_h(0)%qrsws, surf_def_h(1)%qrsws, & |
---|
2346 | surf_def_h(2)%qrsws, & |
---|
2347 | surf_lsm_h%qrsws, surf_usm_h%qrsws, & |
---|
2348 | surf_def_v(0)%qrsws, surf_def_v(1)%qrsws, & |
---|
2349 | surf_def_v(2)%qrsws, surf_def_v(3)%qrsws, & |
---|
2350 | surf_lsm_v(0)%qrsws, surf_lsm_v(1)%qrsws, & |
---|
2351 | surf_lsm_v(2)%qrsws, surf_lsm_v(3)%qrsws, & |
---|
2352 | surf_usm_v(0)%qrsws, surf_usm_v(1)%qrsws, & |
---|
2353 | surf_usm_v(2)%qrsws, surf_usm_v(3)%qrsws ) |
---|
2354 | |
---|
2355 | ! |
---|
2356 | !-- Prognostic equation for rain water content |
---|
2357 | DO i = nxl, nxr |
---|
2358 | DO j = nys, nyn |
---|
2359 | DO k = nzb+1, nzt |
---|
2360 | qr_p(k,j,i) = qr(k,j,i) + ( dt_3d * ( sbt * tend(k,j,i) + & |
---|
2361 | tsc(3) * tqr_m(k,j,i) ) & |
---|
2362 | - tsc(5) * rdf_sc(k) * & |
---|
2363 | qr(k,j,i) & |
---|
2364 | ) & |
---|
2365 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
2366 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
2367 | ) |
---|
2368 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
2369 | ENDDO |
---|
2370 | ENDDO |
---|
2371 | ENDDO |
---|
2372 | |
---|
2373 | ! |
---|
2374 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2375 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2376 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2377 | DO i = nxl, nxr |
---|
2378 | DO j = nys, nyn |
---|
2379 | DO k = nzb+1, nzt |
---|
2380 | tqr_m(k,j,i) = tend(k,j,i) |
---|
2381 | ENDDO |
---|
2382 | ENDDO |
---|
2383 | ENDDO |
---|
2384 | ELSEIF ( intermediate_timestep_count < & |
---|
2385 | intermediate_timestep_count_max ) THEN |
---|
2386 | DO i = nxl, nxr |
---|
2387 | DO j = nys, nyn |
---|
2388 | DO k = nzb+1, nzt |
---|
2389 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
2390 | + 5.3125_wp * tqr_m(k,j,i) |
---|
2391 | ENDDO |
---|
2392 | ENDDO |
---|
2393 | ENDDO |
---|
2394 | ENDIF |
---|
2395 | ENDIF |
---|
2396 | |
---|
2397 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
2398 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
2399 | |
---|
2400 | ! |
---|
2401 | !-- Calculate prognostic equation for rain drop concentration |
---|
2402 | sbt = tsc(2) |
---|
2403 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
2404 | |
---|
2405 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
2406 | ! |
---|
2407 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
2408 | sbt = 1.0_wp |
---|
2409 | ENDIF |
---|
2410 | tend = 0.0_wp |
---|
2411 | CALL advec_s_bc( nr, 'nr' ) |
---|
2412 | |
---|
2413 | ENDIF |
---|
2414 | |
---|
2415 | ! |
---|
2416 | !-- nr-tendency terms with no communication |
---|
2417 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
2418 | tend = 0.0_wp |
---|
2419 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2420 | IF ( ws_scheme_sca ) THEN |
---|
2421 | CALL advec_s_ws( nr, 'nr' ) |
---|
2422 | ELSE |
---|
2423 | CALL advec_s_pw( nr ) |
---|
2424 | ENDIF |
---|
2425 | ELSE |
---|
2426 | CALL advec_s_up( nr ) |
---|
2427 | ENDIF |
---|
2428 | ENDIF |
---|
2429 | |
---|
2430 | CALL diffusion_s( nr, & |
---|
2431 | surf_def_h(0)%nrsws, surf_def_h(1)%nrsws, & |
---|
2432 | surf_def_h(2)%nrsws, & |
---|
2433 | surf_lsm_h%nrsws, surf_usm_h%nrsws, & |
---|
2434 | surf_def_v(0)%nrsws, surf_def_v(1)%nrsws, & |
---|
2435 | surf_def_v(2)%nrsws, surf_def_v(3)%nrsws, & |
---|
2436 | surf_lsm_v(0)%nrsws, surf_lsm_v(1)%nrsws, & |
---|
2437 | surf_lsm_v(2)%nrsws, surf_lsm_v(3)%nrsws, & |
---|
2438 | surf_usm_v(0)%nrsws, surf_usm_v(1)%nrsws, & |
---|
2439 | surf_usm_v(2)%nrsws, surf_usm_v(3)%nrsws ) |
---|
2440 | |
---|
2441 | ! |
---|
2442 | !-- Prognostic equation for rain drop concentration |
---|
2443 | DO i = nxl, nxr |
---|
2444 | DO j = nys, nyn |
---|
2445 | DO k = nzb+1, nzt |
---|
2446 | nr_p(k,j,i) = nr(k,j,i) + ( dt_3d * ( sbt * tend(k,j,i) + & |
---|
2447 | tsc(3) * tnr_m(k,j,i) ) & |
---|
2448 | - tsc(5) * rdf_sc(k) * & |
---|
2449 | nr(k,j,i) & |
---|
2450 | ) & |
---|
2451 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
2452 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
2453 | ) |
---|
2454 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
2455 | ENDDO |
---|
2456 | ENDDO |
---|
2457 | ENDDO |
---|
2458 | |
---|
2459 | ! |
---|
2460 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2461 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2462 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2463 | DO i = nxl, nxr |
---|
2464 | DO j = nys, nyn |
---|
2465 | DO k = nzb+1, nzt |
---|
2466 | tnr_m(k,j,i) = tend(k,j,i) |
---|
2467 | ENDDO |
---|
2468 | ENDDO |
---|
2469 | ENDDO |
---|
2470 | ELSEIF ( intermediate_timestep_count < & |
---|
2471 | intermediate_timestep_count_max ) THEN |
---|
2472 | DO i = nxl, nxr |
---|
2473 | DO j = nys, nyn |
---|
2474 | DO k = nzb+1, nzt |
---|
2475 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
2476 | + 5.3125_wp * tnr_m(k,j,i) |
---|
2477 | ENDDO |
---|
2478 | ENDDO |
---|
2479 | ENDDO |
---|
2480 | ENDIF |
---|
2481 | ENDIF |
---|
2482 | |
---|
2483 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
2484 | |
---|
2485 | ENDIF |
---|
2486 | |
---|
2487 | ENDIF |
---|
2488 | ! |
---|
2489 | !-- If required, compute prognostic equation for scalar |
---|
2490 | IF ( passive_scalar ) THEN |
---|
2491 | |
---|
2492 | CALL cpu_log( log_point(66), 's-equation', 'start' ) |
---|
2493 | |
---|
2494 | ! |
---|
2495 | !-- Scalar/q-tendency terms with communication |
---|
2496 | sbt = tsc(2) |
---|
2497 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
2498 | |
---|
2499 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
2500 | ! |
---|
2501 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
2502 | sbt = 1.0_wp |
---|
2503 | ENDIF |
---|
2504 | tend = 0.0_wp |
---|
2505 | CALL advec_s_bc( s, 's' ) |
---|
2506 | |
---|
2507 | ENDIF |
---|
2508 | |
---|
2509 | ! |
---|
2510 | !-- Scalar/q-tendency terms with no communication |
---|
2511 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
2512 | tend = 0.0_wp |
---|
2513 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2514 | IF ( ws_scheme_sca ) THEN |
---|
2515 | CALL advec_s_ws( s, 's' ) |
---|
2516 | ELSE |
---|
2517 | CALL advec_s_pw( s ) |
---|
2518 | ENDIF |
---|
2519 | ELSE |
---|
2520 | CALL advec_s_up( s ) |
---|
2521 | ENDIF |
---|
2522 | ENDIF |
---|
2523 | |
---|
2524 | CALL diffusion_s( s, & |
---|
2525 | surf_def_h(0)%ssws, surf_def_h(1)%ssws, & |
---|
2526 | surf_def_h(2)%ssws, & |
---|
2527 | surf_lsm_h%ssws, surf_usm_h%ssws, & |
---|
2528 | surf_def_v(0)%ssws, surf_def_v(1)%ssws, & |
---|
2529 | surf_def_v(2)%ssws, surf_def_v(3)%ssws, & |
---|
2530 | surf_lsm_v(0)%ssws, surf_lsm_v(1)%ssws, & |
---|
2531 | surf_lsm_v(2)%ssws, surf_lsm_v(3)%ssws, & |
---|
2532 | surf_usm_v(0)%ssws, surf_usm_v(1)%ssws, & |
---|
2533 | surf_usm_v(2)%ssws, surf_usm_v(3)%ssws ) |
---|
2534 | |
---|
2535 | ! |
---|
2536 | !-- Sink or source of humidity due to canopy elements |
---|
2537 | IF ( plant_canopy ) CALL pcm_tendency( 7 ) |
---|
2538 | |
---|
2539 | ! |
---|
2540 | !-- Large scale advection. Not implemented for scalars so far. |
---|
2541 | ! IF ( large_scale_forcing ) THEN |
---|
2542 | ! CALL ls_advec( simulated_time, 'q' ) |
---|
2543 | ! ENDIF |
---|
2544 | |
---|
2545 | ! |
---|
2546 | !-- Nudging. Not implemented for scalars so far. |
---|
2547 | ! IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
2548 | |
---|
2549 | ! |
---|
2550 | !-- If required compute influence of large-scale subsidence/ascent. |
---|
2551 | !-- Not implemented for scalars so far. |
---|
2552 | IF ( large_scale_subsidence .AND. & |
---|
2553 | .NOT. use_subsidence_tendencies .AND. & |
---|
2554 | .NOT. large_scale_forcing ) THEN |
---|
2555 | CALL subsidence( tend, s, s_init, 3 ) |
---|
2556 | ENDIF |
---|
2557 | |
---|
2558 | CALL module_interface_actions( 's-tendency' ) |
---|
2559 | |
---|
2560 | ! |
---|
2561 | !-- Prognostic equation for total water content |
---|
2562 | DO i = nxl, nxr |
---|
2563 | DO j = nys, nyn |
---|
2564 | DO k = nzb+1, nzt |
---|
2565 | s_p(k,j,i) = s(k,j,i) + ( dt_3d * ( sbt * tend(k,j,i) + & |
---|
2566 | tsc(3) * ts_m(k,j,i) ) & |
---|
2567 | - tsc(5) * rdf_sc(k) * & |
---|
2568 | ( s(k,j,i) - s_init(k) ) & |
---|
2569 | ) & |
---|
2570 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
2571 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
2572 | ) |
---|
2573 | IF ( s_p(k,j,i) < 0.0_wp ) s_p(k,j,i) = 0.1_wp * s(k,j,i) |
---|
2574 | ENDDO |
---|
2575 | ENDDO |
---|
2576 | ENDDO |
---|
2577 | |
---|
2578 | ! |
---|
2579 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2580 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2581 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2582 | DO i = nxl, nxr |
---|
2583 | DO j = nys, nyn |
---|
2584 | DO k = nzb+1, nzt |
---|
2585 | ts_m(k,j,i) = tend(k,j,i) |
---|
2586 | ENDDO |
---|
2587 | ENDDO |
---|
2588 | ENDDO |
---|
2589 | ELSEIF ( intermediate_timestep_count < & |
---|
2590 | intermediate_timestep_count_max ) THEN |
---|
2591 | DO i = nxl, nxr |
---|
2592 | DO j = nys, nyn |
---|
2593 | DO k = nzb+1, nzt |
---|
2594 | ts_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
2595 | + 5.3125_wp * ts_m(k,j,i) |
---|
2596 | ENDDO |
---|
2597 | ENDDO |
---|
2598 | ENDDO |
---|
2599 | ENDIF |
---|
2600 | ENDIF |
---|
2601 | |
---|
2602 | CALL cpu_log( log_point(66), 's-equation', 'stop' ) |
---|
2603 | |
---|
2604 | ENDIF |
---|
2605 | |
---|
2606 | ! |
---|
2607 | !-- Calculate prognostic equations for turbulence closure |
---|
2608 | CALL tcm_prognostic_equations() |
---|
2609 | |
---|
2610 | ! |
---|
2611 | !-- Calculate prognostic equation for chemical quantites |
---|
2612 | IF ( air_chemistry ) THEN |
---|
2613 | CALL cpu_log( log_point(83), '(chem advec+diff+prog)', 'start' ) |
---|
2614 | ! |
---|
2615 | !-- Loop over chemical species |
---|
2616 | DO lsp = 1, nvar |
---|
2617 | CALL chem_prognostic_equations( chem_species(lsp)%conc_p, & |
---|
2618 | chem_species(lsp)%conc, & |
---|
2619 | chem_species(lsp)%tconc_m, & |
---|
2620 | chem_species(lsp)%conc_pr_init, & |
---|
2621 | lsp ) |
---|
2622 | ENDDO |
---|
2623 | |
---|
2624 | CALL cpu_log( log_point(83), '(chem advec+diff+prog)', 'stop' ) |
---|
2625 | ENDIF ! Chemicals equations |
---|
2626 | |
---|
2627 | IF ( salsa ) THEN |
---|
2628 | CALL cpu_log( log_point_s(92), 'salsa advec+diff+prog ', 'start' ) |
---|
2629 | ! |
---|
2630 | !-- Loop over aerosol size bins: number and mass bins |
---|
2631 | IF ( time_since_reference_point >= skip_time_do_salsa ) THEN |
---|
2632 | |
---|
2633 | DO b = 1, nbins |
---|
2634 | sums_salsa_ws_l = aerosol_number(b)%sums_ws_l |
---|
2635 | CALL salsa_tendency( 'aerosol_number', aerosol_number(b)%conc_p, & |
---|
2636 | aerosol_number(b)%conc, & |
---|
2637 | aerosol_number(b)%tconc_m, & |
---|
2638 | b, b, aerosol_number(b)%init ) |
---|
2639 | aerosol_number(b)%sums_ws_l = sums_salsa_ws_l |
---|
2640 | DO c = 1, ncc_tot |
---|
2641 | sums_salsa_ws_l = aerosol_mass((c-1)*nbins+b)%sums_ws_l |
---|
2642 | CALL salsa_tendency( 'aerosol_mass', & |
---|
2643 | aerosol_mass((c-1)*nbins+b)%conc_p, & |
---|
2644 | aerosol_mass((c-1)*nbins+b)%conc, & |
---|
2645 | aerosol_mass((c-1)*nbins+b)%tconc_m, & |
---|
2646 | b, c, aerosol_mass((c-1)*nbins+b)%init ) |
---|
2647 | aerosol_mass((c-1)*nbins+b)%sums_ws_l = sums_salsa_ws_l |
---|
2648 | ENDDO |
---|
2649 | ENDDO |
---|
2650 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
2651 | DO g = 1, ngast |
---|
2652 | sums_salsa_ws_l = salsa_gas(g)%sums_ws_l |
---|
2653 | CALL salsa_tendency( 'salsa_gas', salsa_gas(g)%conc_p, & |
---|
2654 | salsa_gas(g)%conc, salsa_gas(g)%tconc_m, & |
---|
2655 | g, g, salsa_gas(g)%init ) |
---|
2656 | salsa_gas(g)%sums_ws_l = sums_salsa_ws_l |
---|
2657 | ENDDO |
---|
2658 | ENDIF |
---|
2659 | |
---|
2660 | ENDIF |
---|
2661 | |
---|
2662 | CALL cpu_log( log_point_s(92), 'salsa advec+diff+prog ', 'stop' ) |
---|
2663 | ENDIF |
---|
2664 | |
---|
2665 | ! |
---|
2666 | !-- Calculate prognostic equations for the ocean |
---|
2667 | IF ( ocean_mode ) CALL ocean_prognostic_equations() |
---|
2668 | |
---|
2669 | END SUBROUTINE prognostic_equations_vector |
---|
2670 | |
---|
2671 | |
---|
2672 | END MODULE prognostic_equations_mod |
---|