1 | MODULE prognostic_equations_mod |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Actual revisions: |
---|
5 | ! ----------------- |
---|
6 | ! add call of plant_canopy_model in the prognostic equation for |
---|
7 | ! the potential temperature |
---|
8 | ! add call of plant_canopy_model in the prognostic equation for |
---|
9 | ! the concentration of a passive scalar |
---|
10 | ! |
---|
11 | ! Former revisions: |
---|
12 | ! ----------------- |
---|
13 | ! $Id: prognostic_equations.f90 153 2008-03-19 09:41:30Z letzel $ |
---|
14 | ! |
---|
15 | ! 138 2007-11-28 10:03:58Z letzel |
---|
16 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
17 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
18 | ! |
---|
19 | ! 106 2007-08-16 14:30:26Z raasch |
---|
20 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
21 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
22 | ! for non-cyclic boundary conditions) |
---|
23 | ! |
---|
24 | ! 97 2007-06-21 08:23:15Z raasch |
---|
25 | ! prognostic equation for salinity, density is calculated from equation of |
---|
26 | ! state for seawater and is used for calculation of buoyancy, |
---|
27 | ! +eqn_state_seawater_mod |
---|
28 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
29 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
30 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
31 | ! calc_mean_profile |
---|
32 | ! |
---|
33 | ! 75 2007-03-22 09:54:05Z raasch |
---|
34 | ! checking for negative q and limiting for positive values, |
---|
35 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
36 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
37 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
38 | ! _vector-version |
---|
39 | ! |
---|
40 | ! 19 2007-02-23 04:53:48Z raasch |
---|
41 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
42 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
43 | ! |
---|
44 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
45 | ! |
---|
46 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
47 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
48 | ! regardless of the timestep scheme used for the other quantities, |
---|
49 | ! new argument diss in call of diffusion_e |
---|
50 | ! |
---|
51 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
52 | ! Initial revision |
---|
53 | ! |
---|
54 | ! |
---|
55 | ! Description: |
---|
56 | ! ------------ |
---|
57 | ! Solving the prognostic equations. |
---|
58 | !------------------------------------------------------------------------------! |
---|
59 | |
---|
60 | USE arrays_3d |
---|
61 | USE control_parameters |
---|
62 | USE cpulog |
---|
63 | USE eqn_state_seawater_mod |
---|
64 | USE grid_variables |
---|
65 | USE indices |
---|
66 | USE interfaces |
---|
67 | USE pegrid |
---|
68 | USE pointer_interfaces |
---|
69 | USE statistics |
---|
70 | |
---|
71 | USE advec_s_pw_mod |
---|
72 | USE advec_s_up_mod |
---|
73 | USE advec_u_pw_mod |
---|
74 | USE advec_u_up_mod |
---|
75 | USE advec_v_pw_mod |
---|
76 | USE advec_v_up_mod |
---|
77 | USE advec_w_pw_mod |
---|
78 | USE advec_w_up_mod |
---|
79 | USE buoyancy_mod |
---|
80 | USE calc_precipitation_mod |
---|
81 | USE calc_radiation_mod |
---|
82 | USE coriolis_mod |
---|
83 | USE diffusion_e_mod |
---|
84 | USE diffusion_s_mod |
---|
85 | USE diffusion_u_mod |
---|
86 | USE diffusion_v_mod |
---|
87 | USE diffusion_w_mod |
---|
88 | USE impact_of_latent_heat_mod |
---|
89 | USE plant_canopy_model_mod |
---|
90 | USE production_e_mod |
---|
91 | USE user_actions_mod |
---|
92 | |
---|
93 | |
---|
94 | PRIVATE |
---|
95 | PUBLIC prognostic_equations_noopt, prognostic_equations_cache, & |
---|
96 | prognostic_equations_vector |
---|
97 | |
---|
98 | INTERFACE prognostic_equations_noopt |
---|
99 | MODULE PROCEDURE prognostic_equations_noopt |
---|
100 | END INTERFACE prognostic_equations_noopt |
---|
101 | |
---|
102 | INTERFACE prognostic_equations_cache |
---|
103 | MODULE PROCEDURE prognostic_equations_cache |
---|
104 | END INTERFACE prognostic_equations_cache |
---|
105 | |
---|
106 | INTERFACE prognostic_equations_vector |
---|
107 | MODULE PROCEDURE prognostic_equations_vector |
---|
108 | END INTERFACE prognostic_equations_vector |
---|
109 | |
---|
110 | |
---|
111 | CONTAINS |
---|
112 | |
---|
113 | |
---|
114 | SUBROUTINE prognostic_equations_noopt |
---|
115 | |
---|
116 | !------------------------------------------------------------------------------! |
---|
117 | ! Version with single loop optimization |
---|
118 | ! |
---|
119 | ! (Optimized over each single prognostic equation.) |
---|
120 | !------------------------------------------------------------------------------! |
---|
121 | |
---|
122 | IMPLICIT NONE |
---|
123 | |
---|
124 | CHARACTER (LEN=9) :: time_to_string |
---|
125 | INTEGER :: i, j, k |
---|
126 | REAL :: sat, sbt |
---|
127 | |
---|
128 | ! |
---|
129 | !-- Calculate those variables needed in the tendency terms which need |
---|
130 | !-- global communication |
---|
131 | CALL calc_mean_profile( pt, 4 ) |
---|
132 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
133 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
134 | |
---|
135 | ! |
---|
136 | !-- u-velocity component |
---|
137 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
138 | |
---|
139 | ! |
---|
140 | !-- u-tendency terms with communication |
---|
141 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
142 | tend = 0.0 |
---|
143 | CALL advec_u_ups |
---|
144 | ENDIF |
---|
145 | |
---|
146 | ! |
---|
147 | !-- u-tendency terms with no communication |
---|
148 | DO i = nxlu, nxr |
---|
149 | DO j = nys, nyn |
---|
150 | ! |
---|
151 | !-- Tendency terms |
---|
152 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
153 | tend(:,j,i) = 0.0 |
---|
154 | CALL advec_u_pw( i, j ) |
---|
155 | ELSE |
---|
156 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
157 | tend(:,j,i) = 0.0 |
---|
158 | CALL advec_u_up( i, j ) |
---|
159 | ENDIF |
---|
160 | ENDIF |
---|
161 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
162 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
163 | usws_m, uswst_m, v_m, w_m ) |
---|
164 | ELSE |
---|
165 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
166 | uswst, v, w ) |
---|
167 | ENDIF |
---|
168 | CALL coriolis( i, j, 1 ) |
---|
169 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, 4 ) |
---|
170 | |
---|
171 | ! |
---|
172 | !-- Drag by plant canopy |
---|
173 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
174 | CALL user_actions( i, j, 'u-tendency' ) |
---|
175 | |
---|
176 | ! |
---|
177 | !-- Prognostic equation for u-velocity component |
---|
178 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
179 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
180 | dt_3d * ( & |
---|
181 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
182 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
183 | ) - & |
---|
184 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
185 | ENDDO |
---|
186 | |
---|
187 | ! |
---|
188 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
189 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
190 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
191 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
192 | tu_m(k,j,i) = tend(k,j,i) |
---|
193 | ENDDO |
---|
194 | ELSEIF ( intermediate_timestep_count < & |
---|
195 | intermediate_timestep_count_max ) THEN |
---|
196 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
197 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
198 | ENDDO |
---|
199 | ENDIF |
---|
200 | ENDIF |
---|
201 | |
---|
202 | ENDDO |
---|
203 | ENDDO |
---|
204 | |
---|
205 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
206 | |
---|
207 | ! |
---|
208 | !-- v-velocity component |
---|
209 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
210 | |
---|
211 | ! |
---|
212 | !-- v-tendency terms with communication |
---|
213 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
214 | tend = 0.0 |
---|
215 | CALL advec_v_ups |
---|
216 | ENDIF |
---|
217 | |
---|
218 | ! |
---|
219 | !-- v-tendency terms with no communication |
---|
220 | DO i = nxl, nxr |
---|
221 | DO j = nysv, nyn |
---|
222 | ! |
---|
223 | !-- Tendency terms |
---|
224 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
225 | tend(:,j,i) = 0.0 |
---|
226 | CALL advec_v_pw( i, j ) |
---|
227 | ELSE |
---|
228 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
229 | tend(:,j,i) = 0.0 |
---|
230 | CALL advec_v_up( i, j ) |
---|
231 | ENDIF |
---|
232 | ENDIF |
---|
233 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
234 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
235 | v_m, vsws_m, vswst_m, w_m ) |
---|
236 | ELSE |
---|
237 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
238 | vsws, vswst, w ) |
---|
239 | ENDIF |
---|
240 | CALL coriolis( i, j, 2 ) |
---|
241 | |
---|
242 | ! |
---|
243 | !-- Drag by plant canopy |
---|
244 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
245 | |
---|
246 | CALL user_actions( i, j, 'v-tendency' ) |
---|
247 | |
---|
248 | ! |
---|
249 | !-- Prognostic equation for v-velocity component |
---|
250 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
251 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
252 | dt_3d * ( & |
---|
253 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
254 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
255 | ) - & |
---|
256 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
257 | ENDDO |
---|
258 | |
---|
259 | ! |
---|
260 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
261 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
262 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
263 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
264 | tv_m(k,j,i) = tend(k,j,i) |
---|
265 | ENDDO |
---|
266 | ELSEIF ( intermediate_timestep_count < & |
---|
267 | intermediate_timestep_count_max ) THEN |
---|
268 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
269 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
270 | ENDDO |
---|
271 | ENDIF |
---|
272 | ENDIF |
---|
273 | |
---|
274 | ENDDO |
---|
275 | ENDDO |
---|
276 | |
---|
277 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
278 | |
---|
279 | ! |
---|
280 | !-- w-velocity component |
---|
281 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
282 | |
---|
283 | ! |
---|
284 | !-- w-tendency terms with communication |
---|
285 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
286 | tend = 0.0 |
---|
287 | CALL advec_w_ups |
---|
288 | ENDIF |
---|
289 | |
---|
290 | ! |
---|
291 | !-- w-tendency terms with no communication |
---|
292 | DO i = nxl, nxr |
---|
293 | DO j = nys, nyn |
---|
294 | ! |
---|
295 | !-- Tendency terms |
---|
296 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
297 | tend(:,j,i) = 0.0 |
---|
298 | CALL advec_w_pw( i, j ) |
---|
299 | ELSE |
---|
300 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
301 | tend(:,j,i) = 0.0 |
---|
302 | CALL advec_w_up( i, j ) |
---|
303 | ENDIF |
---|
304 | ENDIF |
---|
305 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
306 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
307 | tend, u_m, v_m, w_m ) |
---|
308 | ELSE |
---|
309 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
310 | tend, u, v, w ) |
---|
311 | ENDIF |
---|
312 | CALL coriolis( i, j, 3 ) |
---|
313 | IF ( ocean ) THEN |
---|
314 | CALL buoyancy( i, j, rho, prho_reference, 3, 64 ) |
---|
315 | ELSE |
---|
316 | IF ( .NOT. humidity ) THEN |
---|
317 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
318 | ELSE |
---|
319 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
320 | ENDIF |
---|
321 | ENDIF |
---|
322 | |
---|
323 | ! |
---|
324 | !-- Drag by plant canopy |
---|
325 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
326 | |
---|
327 | CALL user_actions( i, j, 'w-tendency' ) |
---|
328 | |
---|
329 | ! |
---|
330 | !-- Prognostic equation for w-velocity component |
---|
331 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
332 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
333 | dt_3d * ( & |
---|
334 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
335 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
336 | ) - & |
---|
337 | tsc(5) * rdf(k) * w(k,j,i) |
---|
338 | ENDDO |
---|
339 | |
---|
340 | ! |
---|
341 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
342 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
343 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
344 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
345 | tw_m(k,j,i) = tend(k,j,i) |
---|
346 | ENDDO |
---|
347 | ELSEIF ( intermediate_timestep_count < & |
---|
348 | intermediate_timestep_count_max ) THEN |
---|
349 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
350 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
351 | ENDDO |
---|
352 | ENDIF |
---|
353 | ENDIF |
---|
354 | |
---|
355 | ENDDO |
---|
356 | ENDDO |
---|
357 | |
---|
358 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
359 | |
---|
360 | ! |
---|
361 | !-- potential temperature |
---|
362 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
363 | |
---|
364 | ! |
---|
365 | !-- pt-tendency terms with communication |
---|
366 | sat = tsc(1) |
---|
367 | sbt = tsc(2) |
---|
368 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
369 | |
---|
370 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
371 | ! |
---|
372 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
373 | !-- switched on. Thus: |
---|
374 | sat = 1.0 |
---|
375 | sbt = 1.0 |
---|
376 | ENDIF |
---|
377 | tend = 0.0 |
---|
378 | CALL advec_s_bc( pt, 'pt' ) |
---|
379 | ELSE |
---|
380 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
381 | tend = 0.0 |
---|
382 | CALL advec_s_ups( pt, 'pt' ) |
---|
383 | ENDIF |
---|
384 | ENDIF |
---|
385 | |
---|
386 | ! |
---|
387 | !-- pt-tendency terms with no communication |
---|
388 | DO i = nxl, nxr |
---|
389 | DO j = nys, nyn |
---|
390 | ! |
---|
391 | !-- Tendency terms |
---|
392 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
393 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
394 | wall_heatflux, tend ) |
---|
395 | ELSE |
---|
396 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
397 | tend(:,j,i) = 0.0 |
---|
398 | CALL advec_s_pw( i, j, pt ) |
---|
399 | ELSE |
---|
400 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
401 | tend(:,j,i) = 0.0 |
---|
402 | CALL advec_s_up( i, j, pt ) |
---|
403 | ENDIF |
---|
404 | ENDIF |
---|
405 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
406 | THEN |
---|
407 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
408 | tswst_m, wall_heatflux, tend ) |
---|
409 | ELSE |
---|
410 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
411 | wall_heatflux, tend ) |
---|
412 | ENDIF |
---|
413 | ENDIF |
---|
414 | |
---|
415 | ! |
---|
416 | !-- If required compute heating/cooling due to long wave radiation |
---|
417 | !-- processes |
---|
418 | IF ( radiation ) THEN |
---|
419 | CALL calc_radiation( i, j ) |
---|
420 | ENDIF |
---|
421 | |
---|
422 | ! |
---|
423 | !-- If required compute impact of latent heat due to precipitation |
---|
424 | IF ( precipitation ) THEN |
---|
425 | CALL impact_of_latent_heat( i, j ) |
---|
426 | ENDIF |
---|
427 | |
---|
428 | ! |
---|
429 | !-- Consideration of heat sources within the plant canopy |
---|
430 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
431 | CALL plant_canopy_model( i, j, 4 ) |
---|
432 | ENDIF |
---|
433 | |
---|
434 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
435 | |
---|
436 | ! |
---|
437 | !-- Prognostic equation for potential temperature |
---|
438 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
439 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
440 | dt_3d * ( & |
---|
441 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
442 | ) - & |
---|
443 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
444 | ENDDO |
---|
445 | |
---|
446 | ! |
---|
447 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
448 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
449 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
450 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
451 | tpt_m(k,j,i) = tend(k,j,i) |
---|
452 | ENDDO |
---|
453 | ELSEIF ( intermediate_timestep_count < & |
---|
454 | intermediate_timestep_count_max ) THEN |
---|
455 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
456 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
457 | ENDDO |
---|
458 | ENDIF |
---|
459 | ENDIF |
---|
460 | |
---|
461 | ENDDO |
---|
462 | ENDDO |
---|
463 | |
---|
464 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
465 | |
---|
466 | ! |
---|
467 | !-- If required, compute prognostic equation for salinity |
---|
468 | IF ( ocean ) THEN |
---|
469 | |
---|
470 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
471 | |
---|
472 | ! |
---|
473 | !-- sa-tendency terms with communication |
---|
474 | sat = tsc(1) |
---|
475 | sbt = tsc(2) |
---|
476 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
477 | |
---|
478 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
479 | ! |
---|
480 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
481 | !-- switched on. Thus: |
---|
482 | sat = 1.0 |
---|
483 | sbt = 1.0 |
---|
484 | ENDIF |
---|
485 | tend = 0.0 |
---|
486 | CALL advec_s_bc( sa, 'sa' ) |
---|
487 | ELSE |
---|
488 | IF ( tsc(2) /= 2.0 ) THEN |
---|
489 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
490 | tend = 0.0 |
---|
491 | CALL advec_s_ups( sa, 'sa' ) |
---|
492 | ENDIF |
---|
493 | ENDIF |
---|
494 | ENDIF |
---|
495 | |
---|
496 | ! |
---|
497 | !-- sa terms with no communication |
---|
498 | DO i = nxl, nxr |
---|
499 | DO j = nys, nyn |
---|
500 | ! |
---|
501 | !-- Tendency-terms |
---|
502 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
503 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
504 | wall_salinityflux, tend ) |
---|
505 | ELSE |
---|
506 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
507 | tend(:,j,i) = 0.0 |
---|
508 | CALL advec_s_pw( i, j, sa ) |
---|
509 | ELSE |
---|
510 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
511 | tend(:,j,i) = 0.0 |
---|
512 | CALL advec_s_up( i, j, sa ) |
---|
513 | ENDIF |
---|
514 | ENDIF |
---|
515 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
516 | wall_salinityflux, tend ) |
---|
517 | ENDIF |
---|
518 | |
---|
519 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
520 | |
---|
521 | ! |
---|
522 | !-- Prognostic equation for salinity |
---|
523 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
524 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
525 | dt_3d * ( & |
---|
526 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
527 | ) - & |
---|
528 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
529 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
530 | ENDDO |
---|
531 | |
---|
532 | ! |
---|
533 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
534 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
535 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
536 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
537 | tsa_m(k,j,i) = tend(k,j,i) |
---|
538 | ENDDO |
---|
539 | ELSEIF ( intermediate_timestep_count < & |
---|
540 | intermediate_timestep_count_max ) THEN |
---|
541 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
542 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
543 | 5.3125 * tsa_m(k,j,i) |
---|
544 | ENDDO |
---|
545 | ENDIF |
---|
546 | ENDIF |
---|
547 | |
---|
548 | ! |
---|
549 | !-- Calculate density by the equation of state for seawater |
---|
550 | CALL eqn_state_seawater( i, j ) |
---|
551 | |
---|
552 | ENDDO |
---|
553 | ENDDO |
---|
554 | |
---|
555 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
556 | |
---|
557 | ENDIF |
---|
558 | |
---|
559 | ! |
---|
560 | !-- If required, compute prognostic equation for total water content / scalar |
---|
561 | IF ( humidity .OR. passive_scalar ) THEN |
---|
562 | |
---|
563 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
564 | |
---|
565 | ! |
---|
566 | !-- Scalar/q-tendency terms with communication |
---|
567 | sat = tsc(1) |
---|
568 | sbt = tsc(2) |
---|
569 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
570 | |
---|
571 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
572 | ! |
---|
573 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
574 | !-- switched on. Thus: |
---|
575 | sat = 1.0 |
---|
576 | sbt = 1.0 |
---|
577 | ENDIF |
---|
578 | tend = 0.0 |
---|
579 | CALL advec_s_bc( q, 'q' ) |
---|
580 | ELSE |
---|
581 | IF ( tsc(2) /= 2.0 ) THEN |
---|
582 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
583 | tend = 0.0 |
---|
584 | CALL advec_s_ups( q, 'q' ) |
---|
585 | ENDIF |
---|
586 | ENDIF |
---|
587 | ENDIF |
---|
588 | |
---|
589 | ! |
---|
590 | !-- Scalar/q-tendency terms with no communication |
---|
591 | DO i = nxl, nxr |
---|
592 | DO j = nys, nyn |
---|
593 | ! |
---|
594 | !-- Tendency-terms |
---|
595 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
596 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
597 | wall_qflux, tend ) |
---|
598 | ELSE |
---|
599 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
600 | tend(:,j,i) = 0.0 |
---|
601 | CALL advec_s_pw( i, j, q ) |
---|
602 | ELSE |
---|
603 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
604 | tend(:,j,i) = 0.0 |
---|
605 | CALL advec_s_up( i, j, q ) |
---|
606 | ENDIF |
---|
607 | ENDIF |
---|
608 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
609 | THEN |
---|
610 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
611 | qswst_m, wall_qflux, tend ) |
---|
612 | ELSE |
---|
613 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
614 | wall_qflux, tend ) |
---|
615 | ENDIF |
---|
616 | ENDIF |
---|
617 | |
---|
618 | ! |
---|
619 | !-- If required compute decrease of total water content due to |
---|
620 | !-- precipitation |
---|
621 | IF ( precipitation ) THEN |
---|
622 | CALL calc_precipitation( i, j ) |
---|
623 | ENDIF |
---|
624 | |
---|
625 | ! |
---|
626 | !-- Sink or source of scalar concentration due to canopy elements |
---|
627 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
628 | |
---|
629 | CALL user_actions( i, j, 'q-tendency' ) |
---|
630 | |
---|
631 | ! |
---|
632 | !-- Prognostic equation for total water content / scalar |
---|
633 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
634 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
635 | dt_3d * ( & |
---|
636 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
637 | ) - & |
---|
638 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
639 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
640 | ENDDO |
---|
641 | |
---|
642 | ! |
---|
643 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
644 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
645 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
646 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
647 | tq_m(k,j,i) = tend(k,j,i) |
---|
648 | ENDDO |
---|
649 | ELSEIF ( intermediate_timestep_count < & |
---|
650 | intermediate_timestep_count_max ) THEN |
---|
651 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
652 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
653 | ENDDO |
---|
654 | ENDIF |
---|
655 | ENDIF |
---|
656 | |
---|
657 | ENDDO |
---|
658 | ENDDO |
---|
659 | |
---|
660 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
661 | |
---|
662 | ENDIF |
---|
663 | |
---|
664 | ! |
---|
665 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
666 | !-- energy (TKE) |
---|
667 | IF ( .NOT. constant_diffusion ) THEN |
---|
668 | |
---|
669 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
670 | |
---|
671 | ! |
---|
672 | !-- TKE-tendency terms with communication |
---|
673 | CALL production_e_init |
---|
674 | |
---|
675 | sat = tsc(1) |
---|
676 | sbt = tsc(2) |
---|
677 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
678 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
679 | |
---|
680 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
681 | ! |
---|
682 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
683 | !-- switched on. Thus: |
---|
684 | sat = 1.0 |
---|
685 | sbt = 1.0 |
---|
686 | ENDIF |
---|
687 | tend = 0.0 |
---|
688 | CALL advec_s_bc( e, 'e' ) |
---|
689 | ELSE |
---|
690 | IF ( tsc(2) /= 2.0 ) THEN |
---|
691 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
692 | tend = 0.0 |
---|
693 | CALL advec_s_ups( e, 'e' ) |
---|
694 | ENDIF |
---|
695 | ENDIF |
---|
696 | ENDIF |
---|
697 | ENDIF |
---|
698 | |
---|
699 | ! |
---|
700 | !-- TKE-tendency terms with no communication |
---|
701 | DO i = nxl, nxr |
---|
702 | DO j = nys, nyn |
---|
703 | ! |
---|
704 | !-- Tendency-terms |
---|
705 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
706 | .NOT. use_upstream_for_tke ) THEN |
---|
707 | IF ( .NOT. humidity ) THEN |
---|
708 | IF ( ocean ) THEN |
---|
709 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
710 | l_grid, rho, prho_reference, rif, tend, & |
---|
711 | zu, zw ) |
---|
712 | ELSE |
---|
713 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
714 | l_grid, pt, pt_reference, rif, tend, & |
---|
715 | zu, zw ) |
---|
716 | ENDIF |
---|
717 | ELSE |
---|
718 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
719 | l_grid, vpt, pt_reference, rif, tend, zu, & |
---|
720 | zw ) |
---|
721 | ENDIF |
---|
722 | ELSE |
---|
723 | IF ( use_upstream_for_tke ) THEN |
---|
724 | tend(:,j,i) = 0.0 |
---|
725 | CALL advec_s_up( i, j, e ) |
---|
726 | ELSE |
---|
727 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
728 | THEN |
---|
729 | tend(:,j,i) = 0.0 |
---|
730 | CALL advec_s_pw( i, j, e ) |
---|
731 | ELSE |
---|
732 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
733 | tend(:,j,i) = 0.0 |
---|
734 | CALL advec_s_up( i, j, e ) |
---|
735 | ENDIF |
---|
736 | ENDIF |
---|
737 | ENDIF |
---|
738 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
739 | THEN |
---|
740 | IF ( .NOT. humidity ) THEN |
---|
741 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
742 | km_m, l_grid, pt_m, pt_reference, & |
---|
743 | rif_m, tend, zu, zw ) |
---|
744 | ELSE |
---|
745 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
746 | km_m, l_grid, vpt_m, pt_reference, & |
---|
747 | rif_m, tend, zu, zw ) |
---|
748 | ENDIF |
---|
749 | ELSE |
---|
750 | IF ( .NOT. humidity ) THEN |
---|
751 | IF ( ocean ) THEN |
---|
752 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
753 | km, l_grid, rho, prho_reference, & |
---|
754 | rif, tend, zu, zw ) |
---|
755 | ELSE |
---|
756 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
757 | km, l_grid, pt, pt_reference, rif, & |
---|
758 | tend, zu, zw ) |
---|
759 | ENDIF |
---|
760 | ELSE |
---|
761 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
762 | l_grid, vpt, pt_reference, rif, tend, & |
---|
763 | zu, zw ) |
---|
764 | ENDIF |
---|
765 | ENDIF |
---|
766 | ENDIF |
---|
767 | CALL production_e( i, j ) |
---|
768 | |
---|
769 | ! |
---|
770 | !-- Additional sink term for flows through plant canopies |
---|
771 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
772 | |
---|
773 | CALL user_actions( i, j, 'e-tendency' ) |
---|
774 | |
---|
775 | ! |
---|
776 | !-- Prognostic equation for TKE. |
---|
777 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
778 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
779 | !-- value is reduced by 90%. |
---|
780 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
781 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
782 | dt_3d * ( & |
---|
783 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
784 | ) |
---|
785 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
786 | ENDDO |
---|
787 | |
---|
788 | ! |
---|
789 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
790 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
791 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
792 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
793 | te_m(k,j,i) = tend(k,j,i) |
---|
794 | ENDDO |
---|
795 | ELSEIF ( intermediate_timestep_count < & |
---|
796 | intermediate_timestep_count_max ) THEN |
---|
797 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
798 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
799 | ENDDO |
---|
800 | ENDIF |
---|
801 | ENDIF |
---|
802 | |
---|
803 | ENDDO |
---|
804 | ENDDO |
---|
805 | |
---|
806 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
807 | |
---|
808 | ENDIF |
---|
809 | |
---|
810 | |
---|
811 | END SUBROUTINE prognostic_equations_noopt |
---|
812 | |
---|
813 | |
---|
814 | SUBROUTINE prognostic_equations_cache |
---|
815 | |
---|
816 | !------------------------------------------------------------------------------! |
---|
817 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
818 | ! be called for the standard Piascek-Williams advection scheme. |
---|
819 | ! |
---|
820 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
821 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
822 | ! these loops. |
---|
823 | ! |
---|
824 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
825 | !------------------------------------------------------------------------------! |
---|
826 | |
---|
827 | IMPLICIT NONE |
---|
828 | |
---|
829 | CHARACTER (LEN=9) :: time_to_string |
---|
830 | INTEGER :: i, j, k |
---|
831 | |
---|
832 | |
---|
833 | ! |
---|
834 | !-- Time measurement can only be performed for the whole set of equations |
---|
835 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
836 | |
---|
837 | |
---|
838 | ! |
---|
839 | !-- Calculate those variables needed in the tendency terms which need |
---|
840 | !-- global communication |
---|
841 | CALL calc_mean_profile( pt, 4 ) |
---|
842 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
843 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
844 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
845 | |
---|
846 | |
---|
847 | ! |
---|
848 | !-- Loop over all prognostic equations |
---|
849 | !$OMP PARALLEL private (i,j,k) |
---|
850 | !$OMP DO |
---|
851 | DO i = nxl, nxr |
---|
852 | DO j = nys, nyn |
---|
853 | ! |
---|
854 | !-- Tendency terms for u-velocity component |
---|
855 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
856 | |
---|
857 | tend(:,j,i) = 0.0 |
---|
858 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
859 | CALL advec_u_pw( i, j ) |
---|
860 | ELSE |
---|
861 | CALL advec_u_up( i, j ) |
---|
862 | ENDIF |
---|
863 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
864 | THEN |
---|
865 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
866 | u_m, usws_m, uswst_m, v_m, w_m ) |
---|
867 | ELSE |
---|
868 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
869 | usws, uswst, v, w ) |
---|
870 | ENDIF |
---|
871 | CALL coriolis( i, j, 1 ) |
---|
872 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, & |
---|
873 | 4 ) |
---|
874 | |
---|
875 | ! |
---|
876 | !-- Drag by plant canopy |
---|
877 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
878 | |
---|
879 | CALL user_actions( i, j, 'u-tendency' ) |
---|
880 | |
---|
881 | ! |
---|
882 | !-- Prognostic equation for u-velocity component |
---|
883 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
884 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
885 | dt_3d * ( & |
---|
886 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
887 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
888 | ) - & |
---|
889 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
890 | ENDDO |
---|
891 | |
---|
892 | ! |
---|
893 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
894 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
895 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
896 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
897 | tu_m(k,j,i) = tend(k,j,i) |
---|
898 | ENDDO |
---|
899 | ELSEIF ( intermediate_timestep_count < & |
---|
900 | intermediate_timestep_count_max ) THEN |
---|
901 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
902 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
903 | ENDDO |
---|
904 | ENDIF |
---|
905 | ENDIF |
---|
906 | |
---|
907 | ENDIF |
---|
908 | |
---|
909 | ! |
---|
910 | !-- Tendency terms for v-velocity component |
---|
911 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
912 | |
---|
913 | tend(:,j,i) = 0.0 |
---|
914 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
915 | CALL advec_v_pw( i, j ) |
---|
916 | ELSE |
---|
917 | CALL advec_v_up( i, j ) |
---|
918 | ENDIF |
---|
919 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
920 | THEN |
---|
921 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
922 | u_m, v_m, vsws_m, vswst_m, w_m ) |
---|
923 | ELSE |
---|
924 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
925 | vsws, vswst, w ) |
---|
926 | ENDIF |
---|
927 | CALL coriolis( i, j, 2 ) |
---|
928 | |
---|
929 | ! |
---|
930 | !-- Drag by plant canopy |
---|
931 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
932 | |
---|
933 | CALL user_actions( i, j, 'v-tendency' ) |
---|
934 | |
---|
935 | ! |
---|
936 | !-- Prognostic equation for v-velocity component |
---|
937 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
938 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
939 | dt_3d * ( & |
---|
940 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
941 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
942 | ) - & |
---|
943 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
944 | ENDDO |
---|
945 | |
---|
946 | ! |
---|
947 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
948 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
949 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
950 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
951 | tv_m(k,j,i) = tend(k,j,i) |
---|
952 | ENDDO |
---|
953 | ELSEIF ( intermediate_timestep_count < & |
---|
954 | intermediate_timestep_count_max ) THEN |
---|
955 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
956 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
957 | ENDDO |
---|
958 | ENDIF |
---|
959 | ENDIF |
---|
960 | |
---|
961 | ENDIF |
---|
962 | |
---|
963 | ! |
---|
964 | !-- Tendency terms for w-velocity component |
---|
965 | tend(:,j,i) = 0.0 |
---|
966 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
967 | CALL advec_w_pw( i, j ) |
---|
968 | ELSE |
---|
969 | CALL advec_w_up( i, j ) |
---|
970 | ENDIF |
---|
971 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
972 | THEN |
---|
973 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
974 | km_damp_y, tend, u_m, v_m, w_m ) |
---|
975 | ELSE |
---|
976 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
977 | tend, u, v, w ) |
---|
978 | ENDIF |
---|
979 | CALL coriolis( i, j, 3 ) |
---|
980 | IF ( ocean ) THEN |
---|
981 | CALL buoyancy( i, j, rho, prho_reference, 3, 64 ) |
---|
982 | ELSE |
---|
983 | IF ( .NOT. humidity ) THEN |
---|
984 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
985 | ELSE |
---|
986 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
987 | ENDIF |
---|
988 | ENDIF |
---|
989 | |
---|
990 | ! |
---|
991 | !-- Drag by plant canopy |
---|
992 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
993 | |
---|
994 | CALL user_actions( i, j, 'w-tendency' ) |
---|
995 | |
---|
996 | ! |
---|
997 | !-- Prognostic equation for w-velocity component |
---|
998 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
999 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
1000 | dt_3d * ( & |
---|
1001 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
1002 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
1003 | ) - & |
---|
1004 | tsc(5) * rdf(k) * w(k,j,i) |
---|
1005 | ENDDO |
---|
1006 | |
---|
1007 | ! |
---|
1008 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1009 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1010 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1011 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1012 | tw_m(k,j,i) = tend(k,j,i) |
---|
1013 | ENDDO |
---|
1014 | ELSEIF ( intermediate_timestep_count < & |
---|
1015 | intermediate_timestep_count_max ) THEN |
---|
1016 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1017 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1018 | ENDDO |
---|
1019 | ENDIF |
---|
1020 | ENDIF |
---|
1021 | |
---|
1022 | ! |
---|
1023 | !-- Tendency terms for potential temperature |
---|
1024 | tend(:,j,i) = 0.0 |
---|
1025 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1026 | CALL advec_s_pw( i, j, pt ) |
---|
1027 | ELSE |
---|
1028 | CALL advec_s_up( i, j, pt ) |
---|
1029 | ENDIF |
---|
1030 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
1031 | THEN |
---|
1032 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
1033 | tswst_m, wall_heatflux, tend ) |
---|
1034 | ELSE |
---|
1035 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
1036 | wall_heatflux, tend ) |
---|
1037 | ENDIF |
---|
1038 | |
---|
1039 | ! |
---|
1040 | !-- If required compute heating/cooling due to long wave radiation |
---|
1041 | !-- processes |
---|
1042 | IF ( radiation ) THEN |
---|
1043 | CALL calc_radiation( i, j ) |
---|
1044 | ENDIF |
---|
1045 | |
---|
1046 | ! |
---|
1047 | !-- If required compute impact of latent heat due to precipitation |
---|
1048 | IF ( precipitation ) THEN |
---|
1049 | CALL impact_of_latent_heat( i, j ) |
---|
1050 | ENDIF |
---|
1051 | |
---|
1052 | ! |
---|
1053 | !-- Consideration of heat sources within the plant canopy |
---|
1054 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
1055 | CALL plant_canopy_model( i, j, 4 ) |
---|
1056 | ENDIF |
---|
1057 | |
---|
1058 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
1059 | |
---|
1060 | ! |
---|
1061 | !-- Prognostic equation for potential temperature |
---|
1062 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1063 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
1064 | dt_3d * ( & |
---|
1065 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
1066 | ) - & |
---|
1067 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
1068 | ENDDO |
---|
1069 | |
---|
1070 | ! |
---|
1071 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1072 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1073 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1074 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1075 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1076 | ENDDO |
---|
1077 | ELSEIF ( intermediate_timestep_count < & |
---|
1078 | intermediate_timestep_count_max ) THEN |
---|
1079 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1080 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1081 | 5.3125 * tpt_m(k,j,i) |
---|
1082 | ENDDO |
---|
1083 | ENDIF |
---|
1084 | ENDIF |
---|
1085 | |
---|
1086 | ! |
---|
1087 | !-- If required, compute prognostic equation for salinity |
---|
1088 | IF ( ocean ) THEN |
---|
1089 | |
---|
1090 | ! |
---|
1091 | !-- Tendency-terms for salinity |
---|
1092 | tend(:,j,i) = 0.0 |
---|
1093 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
1094 | THEN |
---|
1095 | CALL advec_s_pw( i, j, sa ) |
---|
1096 | ELSE |
---|
1097 | CALL advec_s_up( i, j, sa ) |
---|
1098 | ENDIF |
---|
1099 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
1100 | wall_salinityflux, tend ) |
---|
1101 | |
---|
1102 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
1103 | |
---|
1104 | ! |
---|
1105 | !-- Prognostic equation for salinity |
---|
1106 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1107 | sa_p(k,j,i) = tsc(1) * sa(k,j,i) + & |
---|
1108 | dt_3d * ( & |
---|
1109 | tsc(2) * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
1110 | ) - & |
---|
1111 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
1112 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
1113 | ENDDO |
---|
1114 | |
---|
1115 | ! |
---|
1116 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1117 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1118 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1119 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1120 | tsa_m(k,j,i) = tend(k,j,i) |
---|
1121 | ENDDO |
---|
1122 | ELSEIF ( intermediate_timestep_count < & |
---|
1123 | intermediate_timestep_count_max ) THEN |
---|
1124 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1125 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1126 | 5.3125 * tsa_m(k,j,i) |
---|
1127 | ENDDO |
---|
1128 | ENDIF |
---|
1129 | ENDIF |
---|
1130 | |
---|
1131 | ! |
---|
1132 | !-- Calculate density by the equation of state for seawater |
---|
1133 | CALL eqn_state_seawater( i, j ) |
---|
1134 | |
---|
1135 | ENDIF |
---|
1136 | |
---|
1137 | ! |
---|
1138 | !-- If required, compute prognostic equation for total water content / |
---|
1139 | !-- scalar |
---|
1140 | IF ( humidity .OR. passive_scalar ) THEN |
---|
1141 | |
---|
1142 | ! |
---|
1143 | !-- Tendency-terms for total water content / scalar |
---|
1144 | tend(:,j,i) = 0.0 |
---|
1145 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
1146 | THEN |
---|
1147 | CALL advec_s_pw( i, j, q ) |
---|
1148 | ELSE |
---|
1149 | CALL advec_s_up( i, j, q ) |
---|
1150 | ENDIF |
---|
1151 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
1152 | THEN |
---|
1153 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
1154 | qswst_m, wall_qflux, tend ) |
---|
1155 | ELSE |
---|
1156 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
1157 | wall_qflux, tend ) |
---|
1158 | ENDIF |
---|
1159 | |
---|
1160 | ! |
---|
1161 | !-- If required compute decrease of total water content due to |
---|
1162 | !-- precipitation |
---|
1163 | IF ( precipitation ) THEN |
---|
1164 | CALL calc_precipitation( i, j ) |
---|
1165 | ENDIF |
---|
1166 | |
---|
1167 | ! |
---|
1168 | !-- Sink or source of scalar concentration due to canopy elements |
---|
1169 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
1170 | |
---|
1171 | |
---|
1172 | CALL user_actions( i, j, 'q-tendency' ) |
---|
1173 | |
---|
1174 | ! |
---|
1175 | !-- Prognostic equation for total water content / scalar |
---|
1176 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1177 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
1178 | dt_3d * ( & |
---|
1179 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
1180 | ) - & |
---|
1181 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
1182 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
1183 | ENDDO |
---|
1184 | |
---|
1185 | ! |
---|
1186 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1187 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1188 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1189 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1190 | tq_m(k,j,i) = tend(k,j,i) |
---|
1191 | ENDDO |
---|
1192 | ELSEIF ( intermediate_timestep_count < & |
---|
1193 | intermediate_timestep_count_max ) THEN |
---|
1194 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1195 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1196 | 5.3125 * tq_m(k,j,i) |
---|
1197 | ENDDO |
---|
1198 | ENDIF |
---|
1199 | ENDIF |
---|
1200 | |
---|
1201 | ENDIF |
---|
1202 | |
---|
1203 | ! |
---|
1204 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1205 | !-- energy (TKE) |
---|
1206 | IF ( .NOT. constant_diffusion ) THEN |
---|
1207 | |
---|
1208 | ! |
---|
1209 | !-- Tendency-terms for TKE |
---|
1210 | tend(:,j,i) = 0.0 |
---|
1211 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
1212 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
1213 | CALL advec_s_pw( i, j, e ) |
---|
1214 | ELSE |
---|
1215 | CALL advec_s_up( i, j, e ) |
---|
1216 | ENDIF |
---|
1217 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
1218 | THEN |
---|
1219 | IF ( .NOT. humidity ) THEN |
---|
1220 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
1221 | km_m, l_grid, pt_m, pt_reference, & |
---|
1222 | rif_m, tend, zu, zw ) |
---|
1223 | ELSE |
---|
1224 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
1225 | km_m, l_grid, vpt_m, pt_reference, & |
---|
1226 | rif_m, tend, zu, zw ) |
---|
1227 | ENDIF |
---|
1228 | ELSE |
---|
1229 | IF ( .NOT. humidity ) THEN |
---|
1230 | IF ( ocean ) THEN |
---|
1231 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
1232 | km, l_grid, rho, prho_reference, & |
---|
1233 | rif, tend, zu, zw ) |
---|
1234 | ELSE |
---|
1235 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
1236 | km, l_grid, pt, pt_reference, rif, & |
---|
1237 | tend, zu, zw ) |
---|
1238 | ENDIF |
---|
1239 | ELSE |
---|
1240 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
1241 | l_grid, vpt, pt_reference, rif, tend, & |
---|
1242 | zu, zw ) |
---|
1243 | ENDIF |
---|
1244 | ENDIF |
---|
1245 | CALL production_e( i, j ) |
---|
1246 | |
---|
1247 | ! |
---|
1248 | !-- Additional sink term for flows through plant canopies |
---|
1249 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
1250 | |
---|
1251 | CALL user_actions( i, j, 'e-tendency' ) |
---|
1252 | |
---|
1253 | ! |
---|
1254 | !-- Prognostic equation for TKE. |
---|
1255 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
1256 | !-- reasons in the course of the integration. In such cases the old |
---|
1257 | !-- TKE value is reduced by 90%. |
---|
1258 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1259 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
1260 | dt_3d * ( & |
---|
1261 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
1262 | ) |
---|
1263 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
1264 | ENDDO |
---|
1265 | |
---|
1266 | ! |
---|
1267 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1268 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1269 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1270 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1271 | te_m(k,j,i) = tend(k,j,i) |
---|
1272 | ENDDO |
---|
1273 | ELSEIF ( intermediate_timestep_count < & |
---|
1274 | intermediate_timestep_count_max ) THEN |
---|
1275 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1276 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1277 | 5.3125 * te_m(k,j,i) |
---|
1278 | ENDDO |
---|
1279 | ENDIF |
---|
1280 | ENDIF |
---|
1281 | |
---|
1282 | ENDIF ! TKE equation |
---|
1283 | |
---|
1284 | ENDDO |
---|
1285 | ENDDO |
---|
1286 | !$OMP END PARALLEL |
---|
1287 | |
---|
1288 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
1289 | |
---|
1290 | |
---|
1291 | END SUBROUTINE prognostic_equations_cache |
---|
1292 | |
---|
1293 | |
---|
1294 | SUBROUTINE prognostic_equations_vector |
---|
1295 | |
---|
1296 | !------------------------------------------------------------------------------! |
---|
1297 | ! Version for vector machines |
---|
1298 | !------------------------------------------------------------------------------! |
---|
1299 | |
---|
1300 | IMPLICIT NONE |
---|
1301 | |
---|
1302 | CHARACTER (LEN=9) :: time_to_string |
---|
1303 | INTEGER :: i, j, k |
---|
1304 | REAL :: sat, sbt |
---|
1305 | |
---|
1306 | ! |
---|
1307 | !-- Calculate those variables needed in the tendency terms which need |
---|
1308 | !-- global communication |
---|
1309 | CALL calc_mean_profile( pt, 4 ) |
---|
1310 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
1311 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
1312 | |
---|
1313 | ! |
---|
1314 | !-- u-velocity component |
---|
1315 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
1316 | |
---|
1317 | ! |
---|
1318 | !-- u-tendency terms with communication |
---|
1319 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1320 | tend = 0.0 |
---|
1321 | CALL advec_u_ups |
---|
1322 | ENDIF |
---|
1323 | |
---|
1324 | ! |
---|
1325 | !-- u-tendency terms with no communication |
---|
1326 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1327 | tend = 0.0 |
---|
1328 | CALL advec_u_pw |
---|
1329 | ELSE |
---|
1330 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1331 | tend = 0.0 |
---|
1332 | CALL advec_u_up |
---|
1333 | ENDIF |
---|
1334 | ENDIF |
---|
1335 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1336 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, & |
---|
1337 | uswst_m, v_m, w_m ) |
---|
1338 | ELSE |
---|
1339 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, uswst, v, w ) |
---|
1340 | ENDIF |
---|
1341 | CALL coriolis( 1 ) |
---|
1342 | IF ( sloping_surface ) CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
1343 | |
---|
1344 | ! |
---|
1345 | !-- Drag by plant canopy |
---|
1346 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
1347 | |
---|
1348 | CALL user_actions( 'u-tendency' ) |
---|
1349 | |
---|
1350 | ! |
---|
1351 | !-- Prognostic equation for u-velocity component |
---|
1352 | DO i = nxlu, nxr |
---|
1353 | DO j = nys, nyn |
---|
1354 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1355 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
1356 | dt_3d * ( & |
---|
1357 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
1358 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
1359 | ) - & |
---|
1360 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
1361 | ENDDO |
---|
1362 | ENDDO |
---|
1363 | ENDDO |
---|
1364 | |
---|
1365 | ! |
---|
1366 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1367 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1368 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1369 | DO i = nxlu, nxr |
---|
1370 | DO j = nys, nyn |
---|
1371 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1372 | tu_m(k,j,i) = tend(k,j,i) |
---|
1373 | ENDDO |
---|
1374 | ENDDO |
---|
1375 | ENDDO |
---|
1376 | ELSEIF ( intermediate_timestep_count < & |
---|
1377 | intermediate_timestep_count_max ) THEN |
---|
1378 | DO i = nxlu, nxr |
---|
1379 | DO j = nys, nyn |
---|
1380 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1381 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
1382 | ENDDO |
---|
1383 | ENDDO |
---|
1384 | ENDDO |
---|
1385 | ENDIF |
---|
1386 | ENDIF |
---|
1387 | |
---|
1388 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
1389 | |
---|
1390 | ! |
---|
1391 | !-- v-velocity component |
---|
1392 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
1393 | |
---|
1394 | ! |
---|
1395 | !-- v-tendency terms with communication |
---|
1396 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1397 | tend = 0.0 |
---|
1398 | CALL advec_v_ups |
---|
1399 | ENDIF |
---|
1400 | |
---|
1401 | ! |
---|
1402 | !-- v-tendency terms with no communication |
---|
1403 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1404 | tend = 0.0 |
---|
1405 | CALL advec_v_pw |
---|
1406 | ELSE |
---|
1407 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1408 | tend = 0.0 |
---|
1409 | CALL advec_v_up |
---|
1410 | ENDIF |
---|
1411 | ENDIF |
---|
1412 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1413 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
1414 | vswst_m, w_m ) |
---|
1415 | ELSE |
---|
1416 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, vswst, w ) |
---|
1417 | ENDIF |
---|
1418 | CALL coriolis( 2 ) |
---|
1419 | |
---|
1420 | ! |
---|
1421 | !-- Drag by plant canopy |
---|
1422 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
1423 | CALL user_actions( 'v-tendency' ) |
---|
1424 | |
---|
1425 | ! |
---|
1426 | !-- Prognostic equation for v-velocity component |
---|
1427 | DO i = nxl, nxr |
---|
1428 | DO j = nysv, nyn |
---|
1429 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1430 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
1431 | dt_3d * ( & |
---|
1432 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
1433 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
1434 | ) - & |
---|
1435 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
1436 | ENDDO |
---|
1437 | ENDDO |
---|
1438 | ENDDO |
---|
1439 | |
---|
1440 | ! |
---|
1441 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1442 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1443 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1444 | DO i = nxl, nxr |
---|
1445 | DO j = nysv, nyn |
---|
1446 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1447 | tv_m(k,j,i) = tend(k,j,i) |
---|
1448 | ENDDO |
---|
1449 | ENDDO |
---|
1450 | ENDDO |
---|
1451 | ELSEIF ( intermediate_timestep_count < & |
---|
1452 | intermediate_timestep_count_max ) THEN |
---|
1453 | DO i = nxl, nxr |
---|
1454 | DO j = nysv, nyn |
---|
1455 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1456 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
1457 | ENDDO |
---|
1458 | ENDDO |
---|
1459 | ENDDO |
---|
1460 | ENDIF |
---|
1461 | ENDIF |
---|
1462 | |
---|
1463 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
1464 | |
---|
1465 | ! |
---|
1466 | !-- w-velocity component |
---|
1467 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
1468 | |
---|
1469 | ! |
---|
1470 | !-- w-tendency terms with communication |
---|
1471 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1472 | tend = 0.0 |
---|
1473 | CALL advec_w_ups |
---|
1474 | ENDIF |
---|
1475 | |
---|
1476 | ! |
---|
1477 | !-- w-tendency terms with no communication |
---|
1478 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1479 | tend = 0.0 |
---|
1480 | CALL advec_w_pw |
---|
1481 | ELSE |
---|
1482 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1483 | tend = 0.0 |
---|
1484 | CALL advec_w_up |
---|
1485 | ENDIF |
---|
1486 | ENDIF |
---|
1487 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1488 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
1489 | v_m, w_m ) |
---|
1490 | ELSE |
---|
1491 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w ) |
---|
1492 | ENDIF |
---|
1493 | CALL coriolis( 3 ) |
---|
1494 | IF ( ocean ) THEN |
---|
1495 | CALL buoyancy( rho, prho_reference, 3, 64 ) |
---|
1496 | ELSE |
---|
1497 | IF ( .NOT. humidity ) THEN |
---|
1498 | CALL buoyancy( pt, pt_reference, 3, 4 ) |
---|
1499 | ELSE |
---|
1500 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
1501 | ENDIF |
---|
1502 | ENDIF |
---|
1503 | |
---|
1504 | ! |
---|
1505 | !-- Drag by plant canopy |
---|
1506 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
1507 | |
---|
1508 | CALL user_actions( 'w-tendency' ) |
---|
1509 | |
---|
1510 | ! |
---|
1511 | !-- Prognostic equation for w-velocity component |
---|
1512 | DO i = nxl, nxr |
---|
1513 | DO j = nys, nyn |
---|
1514 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1515 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
1516 | dt_3d * ( & |
---|
1517 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
1518 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
1519 | ) - & |
---|
1520 | tsc(5) * rdf(k) * w(k,j,i) |
---|
1521 | ENDDO |
---|
1522 | ENDDO |
---|
1523 | ENDDO |
---|
1524 | |
---|
1525 | ! |
---|
1526 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1527 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1528 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1529 | DO i = nxl, nxr |
---|
1530 | DO j = nys, nyn |
---|
1531 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1532 | tw_m(k,j,i) = tend(k,j,i) |
---|
1533 | ENDDO |
---|
1534 | ENDDO |
---|
1535 | ENDDO |
---|
1536 | ELSEIF ( intermediate_timestep_count < & |
---|
1537 | intermediate_timestep_count_max ) THEN |
---|
1538 | DO i = nxl, nxr |
---|
1539 | DO j = nys, nyn |
---|
1540 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1541 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1542 | ENDDO |
---|
1543 | ENDDO |
---|
1544 | ENDDO |
---|
1545 | ENDIF |
---|
1546 | ENDIF |
---|
1547 | |
---|
1548 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
1549 | |
---|
1550 | ! |
---|
1551 | !-- potential temperature |
---|
1552 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
1553 | |
---|
1554 | ! |
---|
1555 | !-- pt-tendency terms with communication |
---|
1556 | sat = tsc(1) |
---|
1557 | sbt = tsc(2) |
---|
1558 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1559 | |
---|
1560 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1561 | ! |
---|
1562 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1563 | !-- switched on. Thus: |
---|
1564 | sat = 1.0 |
---|
1565 | sbt = 1.0 |
---|
1566 | ENDIF |
---|
1567 | tend = 0.0 |
---|
1568 | CALL advec_s_bc( pt, 'pt' ) |
---|
1569 | ELSE |
---|
1570 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
1571 | tend = 0.0 |
---|
1572 | CALL advec_s_ups( pt, 'pt' ) |
---|
1573 | ENDIF |
---|
1574 | ENDIF |
---|
1575 | |
---|
1576 | ! |
---|
1577 | !-- pt-tendency terms with no communication |
---|
1578 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1579 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
1580 | tend ) |
---|
1581 | ELSE |
---|
1582 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1583 | tend = 0.0 |
---|
1584 | CALL advec_s_pw( pt ) |
---|
1585 | ELSE |
---|
1586 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1587 | tend = 0.0 |
---|
1588 | CALL advec_s_up( pt ) |
---|
1589 | ENDIF |
---|
1590 | ENDIF |
---|
1591 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1592 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tswst_m, & |
---|
1593 | wall_heatflux, tend ) |
---|
1594 | ELSE |
---|
1595 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
1596 | tend ) |
---|
1597 | ENDIF |
---|
1598 | ENDIF |
---|
1599 | |
---|
1600 | ! |
---|
1601 | !-- If required compute heating/cooling due to long wave radiation |
---|
1602 | !-- processes |
---|
1603 | IF ( radiation ) THEN |
---|
1604 | CALL calc_radiation |
---|
1605 | ENDIF |
---|
1606 | |
---|
1607 | ! |
---|
1608 | !-- If required compute impact of latent heat due to precipitation |
---|
1609 | IF ( precipitation ) THEN |
---|
1610 | CALL impact_of_latent_heat |
---|
1611 | ENDIF |
---|
1612 | |
---|
1613 | ! |
---|
1614 | !-- Consideration of heat sources within the plant canopy |
---|
1615 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
1616 | CALL plant_canopy_model( 4 ) |
---|
1617 | ENDIF |
---|
1618 | |
---|
1619 | |
---|
1620 | CALL user_actions( 'pt-tendency' ) |
---|
1621 | |
---|
1622 | ! |
---|
1623 | !-- Prognostic equation for potential temperature |
---|
1624 | DO i = nxl, nxr |
---|
1625 | DO j = nys, nyn |
---|
1626 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1627 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
1628 | dt_3d * ( & |
---|
1629 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
1630 | ) - & |
---|
1631 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
1632 | ENDDO |
---|
1633 | ENDDO |
---|
1634 | ENDDO |
---|
1635 | |
---|
1636 | ! |
---|
1637 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1638 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1639 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1640 | DO i = nxl, nxr |
---|
1641 | DO j = nys, nyn |
---|
1642 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1643 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1644 | ENDDO |
---|
1645 | ENDDO |
---|
1646 | ENDDO |
---|
1647 | ELSEIF ( intermediate_timestep_count < & |
---|
1648 | intermediate_timestep_count_max ) THEN |
---|
1649 | DO i = nxl, nxr |
---|
1650 | DO j = nys, nyn |
---|
1651 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1652 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
1653 | ENDDO |
---|
1654 | ENDDO |
---|
1655 | ENDDO |
---|
1656 | ENDIF |
---|
1657 | ENDIF |
---|
1658 | |
---|
1659 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
1660 | |
---|
1661 | ! |
---|
1662 | !-- If required, compute prognostic equation for salinity |
---|
1663 | IF ( ocean ) THEN |
---|
1664 | |
---|
1665 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
1666 | |
---|
1667 | ! |
---|
1668 | !-- sa-tendency terms with communication |
---|
1669 | sat = tsc(1) |
---|
1670 | sbt = tsc(2) |
---|
1671 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1672 | |
---|
1673 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1674 | ! |
---|
1675 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1676 | !-- switched on. Thus: |
---|
1677 | sat = 1.0 |
---|
1678 | sbt = 1.0 |
---|
1679 | ENDIF |
---|
1680 | tend = 0.0 |
---|
1681 | CALL advec_s_bc( sa, 'sa' ) |
---|
1682 | ELSE |
---|
1683 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1684 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1685 | tend = 0.0 |
---|
1686 | CALL advec_s_ups( sa, 'sa' ) |
---|
1687 | ENDIF |
---|
1688 | ENDIF |
---|
1689 | ENDIF |
---|
1690 | |
---|
1691 | ! |
---|
1692 | !-- sa-tendency terms with no communication |
---|
1693 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1694 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
1695 | wall_salinityflux, tend ) |
---|
1696 | ELSE |
---|
1697 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1698 | tend = 0.0 |
---|
1699 | CALL advec_s_pw( sa ) |
---|
1700 | ELSE |
---|
1701 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1702 | tend = 0.0 |
---|
1703 | CALL advec_s_up( sa ) |
---|
1704 | ENDIF |
---|
1705 | ENDIF |
---|
1706 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
1707 | wall_salinityflux, tend ) |
---|
1708 | ENDIF |
---|
1709 | |
---|
1710 | CALL user_actions( 'sa-tendency' ) |
---|
1711 | |
---|
1712 | ! |
---|
1713 | !-- Prognostic equation for salinity |
---|
1714 | DO i = nxl, nxr |
---|
1715 | DO j = nys, nyn |
---|
1716 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1717 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
1718 | dt_3d * ( & |
---|
1719 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
1720 | ) - & |
---|
1721 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
1722 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
1723 | ENDDO |
---|
1724 | ENDDO |
---|
1725 | ENDDO |
---|
1726 | |
---|
1727 | ! |
---|
1728 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1729 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1730 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1731 | DO i = nxl, nxr |
---|
1732 | DO j = nys, nyn |
---|
1733 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1734 | tsa_m(k,j,i) = tend(k,j,i) |
---|
1735 | ENDDO |
---|
1736 | ENDDO |
---|
1737 | ENDDO |
---|
1738 | ELSEIF ( intermediate_timestep_count < & |
---|
1739 | intermediate_timestep_count_max ) THEN |
---|
1740 | DO i = nxl, nxr |
---|
1741 | DO j = nys, nyn |
---|
1742 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1743 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1744 | 5.3125 * tsa_m(k,j,i) |
---|
1745 | ENDDO |
---|
1746 | ENDDO |
---|
1747 | ENDDO |
---|
1748 | ENDIF |
---|
1749 | ENDIF |
---|
1750 | |
---|
1751 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
1752 | |
---|
1753 | ! |
---|
1754 | !-- Calculate density by the equation of state for seawater |
---|
1755 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
1756 | CALL eqn_state_seawater |
---|
1757 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
1758 | |
---|
1759 | ENDIF |
---|
1760 | |
---|
1761 | ! |
---|
1762 | !-- If required, compute prognostic equation for total water content / scalar |
---|
1763 | IF ( humidity .OR. passive_scalar ) THEN |
---|
1764 | |
---|
1765 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
1766 | |
---|
1767 | ! |
---|
1768 | !-- Scalar/q-tendency terms with communication |
---|
1769 | sat = tsc(1) |
---|
1770 | sbt = tsc(2) |
---|
1771 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1772 | |
---|
1773 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1774 | ! |
---|
1775 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1776 | !-- switched on. Thus: |
---|
1777 | sat = 1.0 |
---|
1778 | sbt = 1.0 |
---|
1779 | ENDIF |
---|
1780 | tend = 0.0 |
---|
1781 | CALL advec_s_bc( q, 'q' ) |
---|
1782 | ELSE |
---|
1783 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1784 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1785 | tend = 0.0 |
---|
1786 | CALL advec_s_ups( q, 'q' ) |
---|
1787 | ENDIF |
---|
1788 | ENDIF |
---|
1789 | ENDIF |
---|
1790 | |
---|
1791 | ! |
---|
1792 | !-- Scalar/q-tendency terms with no communication |
---|
1793 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1794 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, wall_qflux, tend ) |
---|
1795 | ELSE |
---|
1796 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1797 | tend = 0.0 |
---|
1798 | CALL advec_s_pw( q ) |
---|
1799 | ELSE |
---|
1800 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1801 | tend = 0.0 |
---|
1802 | CALL advec_s_up( q ) |
---|
1803 | ENDIF |
---|
1804 | ENDIF |
---|
1805 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1806 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, qswst_m, & |
---|
1807 | wall_qflux, tend ) |
---|
1808 | ELSE |
---|
1809 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, & |
---|
1810 | wall_qflux, tend ) |
---|
1811 | ENDIF |
---|
1812 | ENDIF |
---|
1813 | |
---|
1814 | ! |
---|
1815 | !-- If required compute decrease of total water content due to |
---|
1816 | !-- precipitation |
---|
1817 | IF ( precipitation ) THEN |
---|
1818 | CALL calc_precipitation |
---|
1819 | ENDIF |
---|
1820 | |
---|
1821 | ! |
---|
1822 | !-- Sink or source of scalar concentration due to canopy elements |
---|
1823 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
1824 | |
---|
1825 | CALL user_actions( 'q-tendency' ) |
---|
1826 | |
---|
1827 | ! |
---|
1828 | !-- Prognostic equation for total water content / scalar |
---|
1829 | DO i = nxl, nxr |
---|
1830 | DO j = nys, nyn |
---|
1831 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1832 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
1833 | dt_3d * ( & |
---|
1834 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
1835 | ) - & |
---|
1836 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
1837 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
1838 | ENDDO |
---|
1839 | ENDDO |
---|
1840 | ENDDO |
---|
1841 | |
---|
1842 | ! |
---|
1843 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1844 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1845 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1846 | DO i = nxl, nxr |
---|
1847 | DO j = nys, nyn |
---|
1848 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1849 | tq_m(k,j,i) = tend(k,j,i) |
---|
1850 | ENDDO |
---|
1851 | ENDDO |
---|
1852 | ENDDO |
---|
1853 | ELSEIF ( intermediate_timestep_count < & |
---|
1854 | intermediate_timestep_count_max ) THEN |
---|
1855 | DO i = nxl, nxr |
---|
1856 | DO j = nys, nyn |
---|
1857 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1858 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
1859 | ENDDO |
---|
1860 | ENDDO |
---|
1861 | ENDDO |
---|
1862 | ENDIF |
---|
1863 | ENDIF |
---|
1864 | |
---|
1865 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
1866 | |
---|
1867 | ENDIF |
---|
1868 | |
---|
1869 | ! |
---|
1870 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1871 | !-- energy (TKE) |
---|
1872 | IF ( .NOT. constant_diffusion ) THEN |
---|
1873 | |
---|
1874 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
1875 | |
---|
1876 | ! |
---|
1877 | !-- TKE-tendency terms with communication |
---|
1878 | CALL production_e_init |
---|
1879 | |
---|
1880 | sat = tsc(1) |
---|
1881 | sbt = tsc(2) |
---|
1882 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
1883 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1884 | |
---|
1885 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1886 | ! |
---|
1887 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
1888 | !-- switched on. Thus: |
---|
1889 | sat = 1.0 |
---|
1890 | sbt = 1.0 |
---|
1891 | ENDIF |
---|
1892 | tend = 0.0 |
---|
1893 | CALL advec_s_bc( e, 'e' ) |
---|
1894 | ELSE |
---|
1895 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1896 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1897 | tend = 0.0 |
---|
1898 | CALL advec_s_ups( e, 'e' ) |
---|
1899 | ENDIF |
---|
1900 | ENDIF |
---|
1901 | ENDIF |
---|
1902 | ENDIF |
---|
1903 | |
---|
1904 | ! |
---|
1905 | !-- TKE-tendency terms with no communication |
---|
1906 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
1907 | THEN |
---|
1908 | IF ( .NOT. humidity ) THEN |
---|
1909 | IF ( ocean ) THEN |
---|
1910 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, rho, & |
---|
1911 | prho_reference, rif, tend, zu, zw ) |
---|
1912 | ELSE |
---|
1913 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
1914 | pt_reference, rif, tend, zu, zw ) |
---|
1915 | ENDIF |
---|
1916 | ELSE |
---|
1917 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
1918 | pt_reference, rif, tend, zu, zw ) |
---|
1919 | ENDIF |
---|
1920 | ELSE |
---|
1921 | IF ( use_upstream_for_tke ) THEN |
---|
1922 | tend = 0.0 |
---|
1923 | CALL advec_s_up( e ) |
---|
1924 | ELSE |
---|
1925 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1926 | tend = 0.0 |
---|
1927 | CALL advec_s_pw( e ) |
---|
1928 | ELSE |
---|
1929 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1930 | tend = 0.0 |
---|
1931 | CALL advec_s_up( e ) |
---|
1932 | ENDIF |
---|
1933 | ENDIF |
---|
1934 | ENDIF |
---|
1935 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1936 | IF ( .NOT. humidity ) THEN |
---|
1937 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
1938 | pt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
1939 | ELSE |
---|
1940 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
1941 | vpt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
1942 | ENDIF |
---|
1943 | ELSE |
---|
1944 | IF ( .NOT. humidity ) THEN |
---|
1945 | IF ( ocean ) THEN |
---|
1946 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
1947 | rho, prho_reference, rif, tend, zu, zw ) |
---|
1948 | ELSE |
---|
1949 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
1950 | pt, pt_reference, rif, tend, zu, zw ) |
---|
1951 | ENDIF |
---|
1952 | ELSE |
---|
1953 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
1954 | pt_reference, rif, tend, zu, zw ) |
---|
1955 | ENDIF |
---|
1956 | ENDIF |
---|
1957 | ENDIF |
---|
1958 | CALL production_e |
---|
1959 | |
---|
1960 | ! |
---|
1961 | !-- Additional sink term for flows through plant canopies |
---|
1962 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
1963 | CALL user_actions( 'e-tendency' ) |
---|
1964 | |
---|
1965 | ! |
---|
1966 | !-- Prognostic equation for TKE. |
---|
1967 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
1968 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
1969 | !-- value is reduced by 90%. |
---|
1970 | DO i = nxl, nxr |
---|
1971 | DO j = nys, nyn |
---|
1972 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1973 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
1974 | dt_3d * ( & |
---|
1975 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
1976 | ) |
---|
1977 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
1978 | ENDDO |
---|
1979 | ENDDO |
---|
1980 | ENDDO |
---|
1981 | |
---|
1982 | ! |
---|
1983 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1984 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1985 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1986 | DO i = nxl, nxr |
---|
1987 | DO j = nys, nyn |
---|
1988 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1989 | te_m(k,j,i) = tend(k,j,i) |
---|
1990 | ENDDO |
---|
1991 | ENDDO |
---|
1992 | ENDDO |
---|
1993 | ELSEIF ( intermediate_timestep_count < & |
---|
1994 | intermediate_timestep_count_max ) THEN |
---|
1995 | DO i = nxl, nxr |
---|
1996 | DO j = nys, nyn |
---|
1997 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1998 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
1999 | ENDDO |
---|
2000 | ENDDO |
---|
2001 | ENDDO |
---|
2002 | ENDIF |
---|
2003 | ENDIF |
---|
2004 | |
---|
2005 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
2006 | |
---|
2007 | ENDIF |
---|
2008 | |
---|
2009 | |
---|
2010 | END SUBROUTINE prognostic_equations_vector |
---|
2011 | |
---|
2012 | |
---|
2013 | END MODULE prognostic_equations_mod |
---|