1 | MODULE prognostic_equations_mod |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Actual revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: prognostic_equations.f90 4 2007-02-13 11:33:16Z raasch $ |
---|
11 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
12 | ! |
---|
13 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
14 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
15 | ! regardless of the timestep scheme used for the other quantities, |
---|
16 | ! new argument diss in call of diffusion_e |
---|
17 | ! |
---|
18 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
19 | ! Initial revision |
---|
20 | ! |
---|
21 | ! |
---|
22 | ! Description: |
---|
23 | ! ------------ |
---|
24 | ! Solving the prognostic equations and advecting particles. |
---|
25 | !------------------------------------------------------------------------------! |
---|
26 | |
---|
27 | USE arrays_3d |
---|
28 | USE control_parameters |
---|
29 | USE cpulog |
---|
30 | USE grid_variables |
---|
31 | USE indices |
---|
32 | USE interfaces |
---|
33 | USE pegrid |
---|
34 | USE pointer_interfaces |
---|
35 | USE statistics |
---|
36 | |
---|
37 | USE advec_s_pw_mod |
---|
38 | USE advec_s_up_mod |
---|
39 | USE advec_u_pw_mod |
---|
40 | USE advec_u_up_mod |
---|
41 | USE advec_v_pw_mod |
---|
42 | USE advec_v_up_mod |
---|
43 | USE advec_w_pw_mod |
---|
44 | USE advec_w_up_mod |
---|
45 | USE buoyancy_mod |
---|
46 | USE calc_precipitation_mod |
---|
47 | USE calc_radiation_mod |
---|
48 | USE coriolis_mod |
---|
49 | USE diffusion_e_mod |
---|
50 | USE diffusion_s_mod |
---|
51 | USE diffusion_u_mod |
---|
52 | USE diffusion_v_mod |
---|
53 | USE diffusion_w_mod |
---|
54 | USE impact_of_latent_heat_mod |
---|
55 | USE production_e_mod |
---|
56 | USE user_actions_mod |
---|
57 | |
---|
58 | |
---|
59 | PRIVATE |
---|
60 | PUBLIC prognostic_equations, prognostic_equations_fast, & |
---|
61 | prognostic_equations_vec |
---|
62 | |
---|
63 | INTERFACE prognostic_equations |
---|
64 | MODULE PROCEDURE prognostic_equations |
---|
65 | END INTERFACE prognostic_equations |
---|
66 | |
---|
67 | INTERFACE prognostic_equations_fast |
---|
68 | MODULE PROCEDURE prognostic_equations_fast |
---|
69 | END INTERFACE prognostic_equations_fast |
---|
70 | |
---|
71 | INTERFACE prognostic_equations_vec |
---|
72 | MODULE PROCEDURE prognostic_equations_vec |
---|
73 | END INTERFACE prognostic_equations_vec |
---|
74 | |
---|
75 | |
---|
76 | CONTAINS |
---|
77 | |
---|
78 | |
---|
79 | SUBROUTINE prognostic_equations |
---|
80 | |
---|
81 | !------------------------------------------------------------------------------! |
---|
82 | ! Version with single loop optimization |
---|
83 | ! |
---|
84 | ! (Optimized over each single prognostic equation.) |
---|
85 | !------------------------------------------------------------------------------! |
---|
86 | |
---|
87 | IMPLICIT NONE |
---|
88 | |
---|
89 | CHARACTER (LEN=9) :: time_to_string |
---|
90 | INTEGER :: i, j, k |
---|
91 | REAL :: sat, sbt |
---|
92 | |
---|
93 | ! |
---|
94 | !-- Calculate those variables needed in the tendency terms which need |
---|
95 | !-- global communication |
---|
96 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
97 | IF ( moisture ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
98 | |
---|
99 | ! |
---|
100 | !-- u-velocity component |
---|
101 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
102 | |
---|
103 | ! |
---|
104 | !-- u-tendency terms with communication |
---|
105 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
106 | tend = 0.0 |
---|
107 | CALL advec_u_ups |
---|
108 | ENDIF |
---|
109 | |
---|
110 | ! |
---|
111 | !-- u-tendency terms with no communication |
---|
112 | DO i = nxl, nxr+uxrp |
---|
113 | DO j = nys, nyn |
---|
114 | ! |
---|
115 | !-- Tendency terms |
---|
116 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
117 | tend(:,j,i) = 0.0 |
---|
118 | CALL advec_u_pw( i, j ) |
---|
119 | ELSE |
---|
120 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
121 | tend(:,j,i) = 0.0 |
---|
122 | CALL advec_u_up( i, j ) |
---|
123 | ENDIF |
---|
124 | ENDIF |
---|
125 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
126 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
127 | usws_m, v_m, w_m, z0 ) |
---|
128 | ELSE |
---|
129 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
130 | v, w, z0 ) |
---|
131 | ENDIF |
---|
132 | CALL coriolis( i, j, 1 ) |
---|
133 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, 1, 4 ) |
---|
134 | CALL user_actions( i, j, 'u-tendency' ) |
---|
135 | |
---|
136 | ! |
---|
137 | !-- Prognostic equation for u-velocity component |
---|
138 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
139 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
140 | dt_3d * ( & |
---|
141 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
142 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
143 | ) - & |
---|
144 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
145 | ENDDO |
---|
146 | |
---|
147 | ! |
---|
148 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
149 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
150 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
151 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
152 | tu_m(k,j,i) = tend(k,j,i) |
---|
153 | ENDDO |
---|
154 | ELSEIF ( intermediate_timestep_count < & |
---|
155 | intermediate_timestep_count_max ) THEN |
---|
156 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
157 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
158 | ENDDO |
---|
159 | ENDIF |
---|
160 | ENDIF |
---|
161 | |
---|
162 | ENDDO |
---|
163 | ENDDO |
---|
164 | |
---|
165 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
166 | |
---|
167 | ! |
---|
168 | !-- v-velocity component |
---|
169 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
170 | |
---|
171 | ! |
---|
172 | !-- v-tendency terms with communication |
---|
173 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
174 | tend = 0.0 |
---|
175 | CALL advec_v_ups |
---|
176 | ENDIF |
---|
177 | |
---|
178 | ! |
---|
179 | !-- v-tendency terms with no communication |
---|
180 | DO i = nxl, nxr |
---|
181 | DO j = nys, nyn+vynp |
---|
182 | ! |
---|
183 | !-- Tendency terms |
---|
184 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
185 | tend(:,j,i) = 0.0 |
---|
186 | CALL advec_v_pw( i, j ) |
---|
187 | ELSE |
---|
188 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
189 | tend(:,j,i) = 0.0 |
---|
190 | CALL advec_v_up( i, j ) |
---|
191 | ENDIF |
---|
192 | ENDIF |
---|
193 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
194 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
195 | v_m, vsws_m, w_m, z0 ) |
---|
196 | ELSE |
---|
197 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
198 | vsws, w, z0 ) |
---|
199 | ENDIF |
---|
200 | CALL coriolis( i, j, 2 ) |
---|
201 | CALL user_actions( i, j, 'v-tendency' ) |
---|
202 | |
---|
203 | ! |
---|
204 | !-- Prognostic equation for v-velocity component |
---|
205 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
206 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
207 | dt_3d * ( & |
---|
208 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
209 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
210 | ) - & |
---|
211 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
212 | ENDDO |
---|
213 | |
---|
214 | ! |
---|
215 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
216 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
217 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
218 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
219 | tv_m(k,j,i) = tend(k,j,i) |
---|
220 | ENDDO |
---|
221 | ELSEIF ( intermediate_timestep_count < & |
---|
222 | intermediate_timestep_count_max ) THEN |
---|
223 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
224 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
225 | ENDDO |
---|
226 | ENDIF |
---|
227 | ENDIF |
---|
228 | |
---|
229 | ENDDO |
---|
230 | ENDDO |
---|
231 | |
---|
232 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
233 | |
---|
234 | ! |
---|
235 | !-- w-velocity component |
---|
236 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
237 | |
---|
238 | ! |
---|
239 | !-- w-tendency terms with communication |
---|
240 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
241 | tend = 0.0 |
---|
242 | CALL advec_w_ups |
---|
243 | ENDIF |
---|
244 | |
---|
245 | ! |
---|
246 | !-- w-tendency terms with no communication |
---|
247 | DO i = nxl, nxr |
---|
248 | DO j = nys, nyn |
---|
249 | ! |
---|
250 | !-- Tendency terms |
---|
251 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
252 | tend(:,j,i) = 0.0 |
---|
253 | CALL advec_w_pw( i, j ) |
---|
254 | ELSE |
---|
255 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
256 | tend(:,j,i) = 0.0 |
---|
257 | CALL advec_w_up( i, j ) |
---|
258 | ENDIF |
---|
259 | ENDIF |
---|
260 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
261 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
262 | tend, u_m, v_m, w_m, z0 ) |
---|
263 | ELSE |
---|
264 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
265 | tend, u, v, w, z0 ) |
---|
266 | ENDIF |
---|
267 | CALL coriolis( i, j, 3 ) |
---|
268 | IF ( .NOT. moisture ) THEN |
---|
269 | CALL buoyancy( i, j, pt, 3, 4 ) |
---|
270 | ELSE |
---|
271 | CALL buoyancy( i, j, vpt, 3, 44 ) |
---|
272 | ENDIF |
---|
273 | CALL user_actions( i, j, 'w-tendency' ) |
---|
274 | |
---|
275 | ! |
---|
276 | !-- Prognostic equation for w-velocity component |
---|
277 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
278 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
279 | dt_3d * ( & |
---|
280 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
281 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
282 | ) - & |
---|
283 | tsc(5) * rdf(k) * w(k,j,i) |
---|
284 | ENDDO |
---|
285 | |
---|
286 | ! |
---|
287 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
288 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
289 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
290 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
291 | tw_m(k,j,i) = tend(k,j,i) |
---|
292 | ENDDO |
---|
293 | ELSEIF ( intermediate_timestep_count < & |
---|
294 | intermediate_timestep_count_max ) THEN |
---|
295 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
296 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
297 | ENDDO |
---|
298 | ENDIF |
---|
299 | ENDIF |
---|
300 | |
---|
301 | ENDDO |
---|
302 | ENDDO |
---|
303 | |
---|
304 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
305 | |
---|
306 | ! |
---|
307 | !-- potential temperature |
---|
308 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
309 | |
---|
310 | ! |
---|
311 | !-- pt-tendency terms with communication |
---|
312 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
313 | ! |
---|
314 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
315 | sat = 1.0 |
---|
316 | sbt = 1.0 |
---|
317 | tend = 0.0 |
---|
318 | CALL advec_s_bc( pt, 'pt' ) |
---|
319 | ELSE |
---|
320 | sat = tsc(1) |
---|
321 | sbt = tsc(2) |
---|
322 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
323 | tend = 0.0 |
---|
324 | CALL advec_s_ups( pt, 'pt' ) |
---|
325 | ENDIF |
---|
326 | ENDIF |
---|
327 | |
---|
328 | ! |
---|
329 | !-- pt-tendency terms with no communication |
---|
330 | DO i = nxl, nxr |
---|
331 | DO j = nys, nyn |
---|
332 | ! |
---|
333 | !-- Tendency terms |
---|
334 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
335 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tend ) |
---|
336 | ELSE |
---|
337 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
338 | tend(:,j,i) = 0.0 |
---|
339 | CALL advec_s_pw( i, j, pt ) |
---|
340 | ELSE |
---|
341 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
342 | tend(:,j,i) = 0.0 |
---|
343 | CALL advec_s_up( i, j, pt ) |
---|
344 | ENDIF |
---|
345 | ENDIF |
---|
346 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
347 | THEN |
---|
348 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, tend ) |
---|
349 | ELSE |
---|
350 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tend ) |
---|
351 | ENDIF |
---|
352 | ENDIF |
---|
353 | |
---|
354 | ! |
---|
355 | !-- If required compute heating/cooling due to long wave radiation |
---|
356 | !-- processes |
---|
357 | IF ( radiation ) THEN |
---|
358 | CALL calc_radiation( i, j ) |
---|
359 | ENDIF |
---|
360 | |
---|
361 | ! |
---|
362 | !-- If required compute impact of latent heat due to precipitation |
---|
363 | IF ( precipitation ) THEN |
---|
364 | CALL impact_of_latent_heat( i, j ) |
---|
365 | ENDIF |
---|
366 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
367 | |
---|
368 | ! |
---|
369 | !-- Prognostic equation for potential temperature |
---|
370 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
371 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
372 | dt_3d * ( & |
---|
373 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
374 | ) - & |
---|
375 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
376 | ENDDO |
---|
377 | |
---|
378 | ! |
---|
379 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
380 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
381 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
382 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
383 | tpt_m(k,j,i) = tend(k,j,i) |
---|
384 | ENDDO |
---|
385 | ELSEIF ( intermediate_timestep_count < & |
---|
386 | intermediate_timestep_count_max ) THEN |
---|
387 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
388 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
389 | ENDDO |
---|
390 | ENDIF |
---|
391 | ENDIF |
---|
392 | |
---|
393 | ENDDO |
---|
394 | ENDDO |
---|
395 | |
---|
396 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
397 | |
---|
398 | ! |
---|
399 | !-- If required, compute prognostic equation for total water content / scalar |
---|
400 | IF ( moisture .OR. passive_scalar ) THEN |
---|
401 | |
---|
402 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
403 | |
---|
404 | ! |
---|
405 | !-- Scalar/q-tendency terms with communication |
---|
406 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
407 | ! |
---|
408 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
409 | sat = 1.0 |
---|
410 | sbt = 1.0 |
---|
411 | tend = 0.0 |
---|
412 | CALL advec_s_bc( q, 'q' ) |
---|
413 | ELSE |
---|
414 | sat = tsc(1) |
---|
415 | sbt = tsc(2) |
---|
416 | IF ( tsc(2) /= 2.0 ) THEN |
---|
417 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
418 | tend = 0.0 |
---|
419 | CALL advec_s_ups( q, 'q' ) |
---|
420 | ENDIF |
---|
421 | ENDIF |
---|
422 | ENDIF |
---|
423 | |
---|
424 | ! |
---|
425 | !-- Scalar/q-tendency terms with no communication |
---|
426 | DO i = nxl, nxr |
---|
427 | DO j = nys, nyn |
---|
428 | ! |
---|
429 | !-- Tendency-terms |
---|
430 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
431 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, tend ) |
---|
432 | ELSE |
---|
433 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
434 | tend(:,j,i) = 0.0 |
---|
435 | CALL advec_s_pw( i, j, q ) |
---|
436 | ELSE |
---|
437 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
438 | tend(:,j,i) = 0.0 |
---|
439 | CALL advec_s_up( i, j, q ) |
---|
440 | ENDIF |
---|
441 | ENDIF |
---|
442 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
443 | THEN |
---|
444 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
445 | tend ) |
---|
446 | ELSE |
---|
447 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, tend ) |
---|
448 | ENDIF |
---|
449 | ENDIF |
---|
450 | |
---|
451 | ! |
---|
452 | !-- If required compute decrease of total water content due to |
---|
453 | !-- precipitation |
---|
454 | IF ( precipitation ) THEN |
---|
455 | CALL calc_precipitation( i, j ) |
---|
456 | ENDIF |
---|
457 | CALL user_actions( i, j, 'q-tendency' ) |
---|
458 | |
---|
459 | ! |
---|
460 | !-- Prognostic equation for total water content / scalar |
---|
461 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
462 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
463 | dt_3d * ( & |
---|
464 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
465 | ) - & |
---|
466 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
467 | ENDDO |
---|
468 | |
---|
469 | ! |
---|
470 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
471 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
472 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
473 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
474 | tq_m(k,j,i) = tend(k,j,i) |
---|
475 | ENDDO |
---|
476 | ELSEIF ( intermediate_timestep_count < & |
---|
477 | intermediate_timestep_count_max ) THEN |
---|
478 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
479 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
480 | ENDDO |
---|
481 | ENDIF |
---|
482 | ENDIF |
---|
483 | |
---|
484 | ENDDO |
---|
485 | ENDDO |
---|
486 | |
---|
487 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
488 | |
---|
489 | ENDIF |
---|
490 | |
---|
491 | ! |
---|
492 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
493 | !-- energy (TKE) |
---|
494 | IF ( .NOT. constant_diffusion ) THEN |
---|
495 | |
---|
496 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
497 | |
---|
498 | ! |
---|
499 | !-- TKE-tendency terms with communication |
---|
500 | CALL production_e_init |
---|
501 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
502 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
503 | ! |
---|
504 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
505 | sat = 1.0 |
---|
506 | sbt = 1.0 |
---|
507 | tend = 0.0 |
---|
508 | CALL advec_s_bc( e, 'e' ) |
---|
509 | ELSE |
---|
510 | sat = tsc(1) |
---|
511 | sbt = tsc(2) |
---|
512 | IF ( tsc(2) /= 2.0 ) THEN |
---|
513 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
514 | tend = 0.0 |
---|
515 | CALL advec_s_ups( e, 'e' ) |
---|
516 | ENDIF |
---|
517 | ENDIF |
---|
518 | ENDIF |
---|
519 | ENDIF |
---|
520 | |
---|
521 | ! |
---|
522 | !-- TKE-tendency terms with no communication |
---|
523 | DO i = nxl, nxr |
---|
524 | DO j = nys, nyn |
---|
525 | ! |
---|
526 | !-- Tendency-terms |
---|
527 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
528 | .NOT. use_upstream_for_tke ) THEN |
---|
529 | IF ( .NOT. moisture ) THEN |
---|
530 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
531 | l_grid, pt, rif, tend, zu ) |
---|
532 | ELSE |
---|
533 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
534 | l_grid, vpt, rif, tend, zu ) |
---|
535 | ENDIF |
---|
536 | ELSE |
---|
537 | IF ( use_upstream_for_tke ) THEN |
---|
538 | tend(:,j,i) = 0.0 |
---|
539 | CALL advec_s_up( i, j, e ) |
---|
540 | ELSE |
---|
541 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
542 | THEN |
---|
543 | tend(:,j,i) = 0.0 |
---|
544 | CALL advec_s_pw( i, j, e ) |
---|
545 | ELSE |
---|
546 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
547 | tend(:,j,i) = 0.0 |
---|
548 | CALL advec_s_up( i, j, e ) |
---|
549 | ENDIF |
---|
550 | ENDIF |
---|
551 | ENDIF |
---|
552 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
553 | THEN |
---|
554 | IF ( .NOT. moisture ) THEN |
---|
555 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
556 | km_m, l_grid, pt_m, rif_m, tend, zu ) |
---|
557 | ELSE |
---|
558 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
559 | km_m, l_grid, vpt_m, rif_m, tend, zu ) |
---|
560 | ENDIF |
---|
561 | ELSE |
---|
562 | IF ( .NOT. moisture ) THEN |
---|
563 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
564 | l_grid, pt, rif, tend, zu ) |
---|
565 | ELSE |
---|
566 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
567 | l_grid, vpt, rif, tend, zu ) |
---|
568 | ENDIF |
---|
569 | ENDIF |
---|
570 | ENDIF |
---|
571 | CALL production_e( i, j ) |
---|
572 | CALL user_actions( i, j, 'e-tendency' ) |
---|
573 | |
---|
574 | ! |
---|
575 | !-- Prognostic equation for TKE. |
---|
576 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
577 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
578 | !-- value is reduced by 90%. |
---|
579 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
580 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
581 | dt_3d * ( & |
---|
582 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
583 | ) |
---|
584 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
585 | ENDDO |
---|
586 | |
---|
587 | ! |
---|
588 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
589 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
590 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
591 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
592 | te_m(k,j,i) = tend(k,j,i) |
---|
593 | ENDDO |
---|
594 | ELSEIF ( intermediate_timestep_count < & |
---|
595 | intermediate_timestep_count_max ) THEN |
---|
596 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
597 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
598 | ENDDO |
---|
599 | ENDIF |
---|
600 | ENDIF |
---|
601 | |
---|
602 | ENDDO |
---|
603 | ENDDO |
---|
604 | |
---|
605 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
606 | |
---|
607 | ENDIF |
---|
608 | |
---|
609 | |
---|
610 | END SUBROUTINE prognostic_equations |
---|
611 | |
---|
612 | |
---|
613 | SUBROUTINE prognostic_equations_fast |
---|
614 | |
---|
615 | !------------------------------------------------------------------------------! |
---|
616 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
617 | ! be called for the standard Piascek-Williams advection scheme. |
---|
618 | ! |
---|
619 | ! The call of this subroutine is embedded in two DO loops over i and j, thus |
---|
620 | ! communication between CPUs is not allowed in this subroutine. |
---|
621 | ! |
---|
622 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
623 | !------------------------------------------------------------------------------! |
---|
624 | |
---|
625 | IMPLICIT NONE |
---|
626 | |
---|
627 | CHARACTER (LEN=9) :: time_to_string |
---|
628 | INTEGER :: i, j, k |
---|
629 | |
---|
630 | |
---|
631 | ! |
---|
632 | !-- Time measurement can only be performed for the whole set of equations |
---|
633 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
634 | |
---|
635 | |
---|
636 | ! |
---|
637 | !-- Calculate those variables needed in the tendency terms which need |
---|
638 | !-- global communication |
---|
639 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
640 | IF ( moisture ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
641 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
642 | |
---|
643 | |
---|
644 | ! |
---|
645 | !-- Loop over all prognostic equations |
---|
646 | !$OMP PARALLEL private (i,j,k) |
---|
647 | !$OMP DO |
---|
648 | DO i = nxl, nxr+uxrp ! Additional levels for non cyclic boundary |
---|
649 | DO j = nys, nyn+vynp ! conditions are included |
---|
650 | ! |
---|
651 | !-- Tendency terms for u-velocity component |
---|
652 | IF ( j < nyn+1 ) THEN |
---|
653 | |
---|
654 | tend(:,j,i) = 0.0 |
---|
655 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
656 | CALL advec_u_pw( i, j ) |
---|
657 | ELSE |
---|
658 | CALL advec_u_up( i, j ) |
---|
659 | ENDIF |
---|
660 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
661 | THEN |
---|
662 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
663 | u_m, usws_m, v_m, w_m, z0 ) |
---|
664 | ELSE |
---|
665 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
666 | usws, v, w, z0 ) |
---|
667 | ENDIF |
---|
668 | CALL coriolis( i, j, 1 ) |
---|
669 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, 1, 4 ) |
---|
670 | CALL user_actions( i, j, 'u-tendency' ) |
---|
671 | |
---|
672 | ! |
---|
673 | !-- Prognostic equation for u-velocity component |
---|
674 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
675 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
676 | dt_3d * ( & |
---|
677 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
678 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
679 | ) - & |
---|
680 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
681 | ENDDO |
---|
682 | |
---|
683 | ! |
---|
684 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
685 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
686 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
687 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
688 | tu_m(k,j,i) = tend(k,j,i) |
---|
689 | ENDDO |
---|
690 | ELSEIF ( intermediate_timestep_count < & |
---|
691 | intermediate_timestep_count_max ) THEN |
---|
692 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
693 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
694 | ENDDO |
---|
695 | ENDIF |
---|
696 | ENDIF |
---|
697 | |
---|
698 | ENDIF |
---|
699 | |
---|
700 | ! |
---|
701 | !-- Tendency terms for v-velocity component |
---|
702 | IF ( i < nxr+1 ) THEN |
---|
703 | |
---|
704 | tend(:,j,i) = 0.0 |
---|
705 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
706 | CALL advec_v_pw( i, j ) |
---|
707 | ELSE |
---|
708 | CALL advec_v_up( i, j ) |
---|
709 | ENDIF |
---|
710 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
711 | THEN |
---|
712 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
713 | u_m, v_m, vsws_m, w_m, z0 ) |
---|
714 | ELSE |
---|
715 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
716 | vsws, w, z0 ) |
---|
717 | ENDIF |
---|
718 | CALL coriolis( i, j, 2 ) |
---|
719 | CALL user_actions( i, j, 'v-tendency' ) |
---|
720 | |
---|
721 | ! |
---|
722 | !-- Prognostic equation for v-velocity component |
---|
723 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
724 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
725 | dt_3d * ( & |
---|
726 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
727 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
728 | ) - & |
---|
729 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
730 | ENDDO |
---|
731 | |
---|
732 | ! |
---|
733 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
734 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
735 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
736 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
737 | tv_m(k,j,i) = tend(k,j,i) |
---|
738 | ENDDO |
---|
739 | ELSEIF ( intermediate_timestep_count < & |
---|
740 | intermediate_timestep_count_max ) THEN |
---|
741 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
742 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
743 | ENDDO |
---|
744 | ENDIF |
---|
745 | ENDIF |
---|
746 | |
---|
747 | ENDIF |
---|
748 | |
---|
749 | ! |
---|
750 | !-- Tendency terms for w-velocity component |
---|
751 | IF ( i < nxr+1 .AND. j < nyn+1 ) THEN |
---|
752 | |
---|
753 | tend(:,j,i) = 0.0 |
---|
754 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
755 | CALL advec_w_pw( i, j ) |
---|
756 | ELSE |
---|
757 | CALL advec_w_up( i, j ) |
---|
758 | ENDIF |
---|
759 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
760 | THEN |
---|
761 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
762 | km_damp_y, tend, u_m, v_m, w_m, z0 ) |
---|
763 | ELSE |
---|
764 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
765 | tend, u, v, w, z0 ) |
---|
766 | ENDIF |
---|
767 | CALL coriolis( i, j, 3 ) |
---|
768 | IF ( .NOT. moisture ) THEN |
---|
769 | CALL buoyancy( i, j, pt, 3, 4 ) |
---|
770 | ELSE |
---|
771 | CALL buoyancy( i, j, vpt, 3, 44 ) |
---|
772 | ENDIF |
---|
773 | CALL user_actions( i, j, 'w-tendency' ) |
---|
774 | |
---|
775 | ! |
---|
776 | !-- Prognostic equation for w-velocity component |
---|
777 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
778 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
779 | dt_3d * ( & |
---|
780 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
781 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
782 | ) - & |
---|
783 | tsc(5) * rdf(k) * w(k,j,i) |
---|
784 | ENDDO |
---|
785 | |
---|
786 | ! |
---|
787 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
788 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
789 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
790 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
791 | tw_m(k,j,i) = tend(k,j,i) |
---|
792 | ENDDO |
---|
793 | ELSEIF ( intermediate_timestep_count < & |
---|
794 | intermediate_timestep_count_max ) THEN |
---|
795 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
796 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
797 | ENDDO |
---|
798 | ENDIF |
---|
799 | ENDIF |
---|
800 | |
---|
801 | ! |
---|
802 | !-- Tendency terms for potential temperature |
---|
803 | tend(:,j,i) = 0.0 |
---|
804 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
805 | CALL advec_s_pw( i, j, pt ) |
---|
806 | ELSE |
---|
807 | CALL advec_s_up( i, j, pt ) |
---|
808 | ENDIF |
---|
809 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
810 | THEN |
---|
811 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, tend ) |
---|
812 | ELSE |
---|
813 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tend ) |
---|
814 | ENDIF |
---|
815 | |
---|
816 | ! |
---|
817 | !-- If required compute heating/cooling due to long wave radiation |
---|
818 | !-- processes |
---|
819 | IF ( radiation ) THEN |
---|
820 | CALL calc_radiation( i, j ) |
---|
821 | ENDIF |
---|
822 | |
---|
823 | ! |
---|
824 | !-- If required compute impact of latent heat due to precipitation |
---|
825 | IF ( precipitation ) THEN |
---|
826 | CALL impact_of_latent_heat( i, j ) |
---|
827 | ENDIF |
---|
828 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
829 | |
---|
830 | ! |
---|
831 | !-- Prognostic equation for potential temperature |
---|
832 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
833 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
834 | dt_3d * ( & |
---|
835 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
836 | ) - & |
---|
837 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
838 | ENDDO |
---|
839 | |
---|
840 | ! |
---|
841 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
842 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
843 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
844 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
845 | tpt_m(k,j,i) = tend(k,j,i) |
---|
846 | ENDDO |
---|
847 | ELSEIF ( intermediate_timestep_count < & |
---|
848 | intermediate_timestep_count_max ) THEN |
---|
849 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
850 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
851 | 5.3125 * tpt_m(k,j,i) |
---|
852 | ENDDO |
---|
853 | ENDIF |
---|
854 | ENDIF |
---|
855 | |
---|
856 | ! |
---|
857 | !-- If required, compute prognostic equation for total water content / |
---|
858 | !-- scalar |
---|
859 | IF ( moisture .OR. passive_scalar ) THEN |
---|
860 | |
---|
861 | ! |
---|
862 | !-- Tendency-terms for total water content / scalar |
---|
863 | tend(:,j,i) = 0.0 |
---|
864 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
865 | THEN |
---|
866 | CALL advec_s_pw( i, j, q ) |
---|
867 | ELSE |
---|
868 | CALL advec_s_up( i, j, q ) |
---|
869 | ENDIF |
---|
870 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
871 | THEN |
---|
872 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, tend ) |
---|
873 | ELSE |
---|
874 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, tend ) |
---|
875 | ENDIF |
---|
876 | |
---|
877 | ! |
---|
878 | !-- If required compute decrease of total water content due to |
---|
879 | !-- precipitation |
---|
880 | IF ( precipitation ) THEN |
---|
881 | CALL calc_precipitation( i, j ) |
---|
882 | ENDIF |
---|
883 | CALL user_actions( i, j, 'q-tendency' ) |
---|
884 | |
---|
885 | ! |
---|
886 | !-- Prognostic equation for total water content / scalar |
---|
887 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
888 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
889 | dt_3d * ( & |
---|
890 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
891 | ) - & |
---|
892 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
893 | ENDDO |
---|
894 | |
---|
895 | ! |
---|
896 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
897 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
898 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
899 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
900 | tq_m(k,j,i) = tend(k,j,i) |
---|
901 | ENDDO |
---|
902 | ELSEIF ( intermediate_timestep_count < & |
---|
903 | intermediate_timestep_count_max ) THEN |
---|
904 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
905 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
906 | 5.3125 * tq_m(k,j,i) |
---|
907 | ENDDO |
---|
908 | ENDIF |
---|
909 | ENDIF |
---|
910 | |
---|
911 | ENDIF |
---|
912 | |
---|
913 | ! |
---|
914 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
915 | !-- energy (TKE) |
---|
916 | IF ( .NOT. constant_diffusion ) THEN |
---|
917 | |
---|
918 | ! |
---|
919 | !-- Tendency-terms for TKE |
---|
920 | tend(:,j,i) = 0.0 |
---|
921 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
922 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
923 | CALL advec_s_pw( i, j, e ) |
---|
924 | ELSE |
---|
925 | CALL advec_s_up( i, j, e ) |
---|
926 | ENDIF |
---|
927 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
928 | THEN |
---|
929 | IF ( .NOT. moisture ) THEN |
---|
930 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
931 | km_m, l_grid, pt_m, rif_m, tend, zu ) |
---|
932 | ELSE |
---|
933 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
934 | km_m, l_grid, vpt_m, rif_m, tend, zu ) |
---|
935 | ENDIF |
---|
936 | ELSE |
---|
937 | IF ( .NOT. moisture ) THEN |
---|
938 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
939 | l_grid, pt, rif, tend, zu ) |
---|
940 | ELSE |
---|
941 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
942 | l_grid, vpt, rif, tend, zu ) |
---|
943 | ENDIF |
---|
944 | ENDIF |
---|
945 | CALL production_e( i, j ) |
---|
946 | CALL user_actions( i, j, 'e-tendency' ) |
---|
947 | |
---|
948 | ! |
---|
949 | !-- Prognostic equation for TKE. |
---|
950 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
951 | !-- reasons in the course of the integration. In such cases the old |
---|
952 | !-- TKE value is reduced by 90%. |
---|
953 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
954 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
955 | dt_3d * ( & |
---|
956 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
957 | ) |
---|
958 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
959 | ENDDO |
---|
960 | |
---|
961 | ! |
---|
962 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
963 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
964 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
965 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
966 | te_m(k,j,i) = tend(k,j,i) |
---|
967 | ENDDO |
---|
968 | ELSEIF ( intermediate_timestep_count < & |
---|
969 | intermediate_timestep_count_max ) THEN |
---|
970 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
971 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
972 | 5.3125 * te_m(k,j,i) |
---|
973 | ENDDO |
---|
974 | ENDIF |
---|
975 | ENDIF |
---|
976 | |
---|
977 | ENDIF ! TKE equation |
---|
978 | |
---|
979 | ENDIF ! Gridpoints excluding the non-cyclic wall |
---|
980 | |
---|
981 | ENDDO |
---|
982 | ENDDO |
---|
983 | !$OMP END PARALLEL |
---|
984 | |
---|
985 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
986 | |
---|
987 | |
---|
988 | END SUBROUTINE prognostic_equations_fast |
---|
989 | |
---|
990 | |
---|
991 | SUBROUTINE prognostic_equations_vec |
---|
992 | |
---|
993 | !------------------------------------------------------------------------------! |
---|
994 | ! Version for vector machines |
---|
995 | !------------------------------------------------------------------------------! |
---|
996 | |
---|
997 | IMPLICIT NONE |
---|
998 | |
---|
999 | CHARACTER (LEN=9) :: time_to_string |
---|
1000 | INTEGER :: i, j, k |
---|
1001 | REAL :: sat, sbt |
---|
1002 | |
---|
1003 | ! |
---|
1004 | !-- Calculate those variables needed in the tendency terms which need |
---|
1005 | !-- global communication |
---|
1006 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
1007 | IF ( moisture ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
1008 | |
---|
1009 | ! |
---|
1010 | !-- u-velocity component |
---|
1011 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
1012 | |
---|
1013 | ! |
---|
1014 | !-- u-tendency terms with communication |
---|
1015 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1016 | tend = 0.0 |
---|
1017 | CALL advec_u_ups |
---|
1018 | ENDIF |
---|
1019 | |
---|
1020 | ! |
---|
1021 | !-- u-tendency terms with no communication |
---|
1022 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1023 | tend = 0.0 |
---|
1024 | CALL advec_u_pw |
---|
1025 | ELSE |
---|
1026 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1027 | tend = 0.0 |
---|
1028 | CALL advec_u_up |
---|
1029 | ENDIF |
---|
1030 | ENDIF |
---|
1031 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1032 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, v_m, & |
---|
1033 | w_m, z0 ) |
---|
1034 | ELSE |
---|
1035 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, v, w, z0 ) |
---|
1036 | ENDIF |
---|
1037 | CALL coriolis( 1 ) |
---|
1038 | IF ( sloping_surface ) CALL buoyancy( pt, 1, 4 ) |
---|
1039 | CALL user_actions( 'u-tendency' ) |
---|
1040 | |
---|
1041 | ! |
---|
1042 | !-- Prognostic equation for u-velocity component |
---|
1043 | DO i = nxl, nxr+uxrp |
---|
1044 | DO j = nys, nyn |
---|
1045 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1046 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
1047 | dt_3d * ( & |
---|
1048 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
1049 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
1050 | ) - & |
---|
1051 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
1052 | ENDDO |
---|
1053 | ENDDO |
---|
1054 | ENDDO |
---|
1055 | |
---|
1056 | ! |
---|
1057 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1058 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1059 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1060 | DO i = nxl, nxr+uxrp |
---|
1061 | DO j = nys, nyn |
---|
1062 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1063 | tu_m(k,j,i) = tend(k,j,i) |
---|
1064 | ENDDO |
---|
1065 | ENDDO |
---|
1066 | ENDDO |
---|
1067 | ELSEIF ( intermediate_timestep_count < & |
---|
1068 | intermediate_timestep_count_max ) THEN |
---|
1069 | DO i = nxl, nxr+uxrp |
---|
1070 | DO j = nys, nyn |
---|
1071 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1072 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
1073 | ENDDO |
---|
1074 | ENDDO |
---|
1075 | ENDDO |
---|
1076 | ENDIF |
---|
1077 | ENDIF |
---|
1078 | |
---|
1079 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
1080 | |
---|
1081 | ! |
---|
1082 | !-- v-velocity component |
---|
1083 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
1084 | |
---|
1085 | ! |
---|
1086 | !-- v-tendency terms with communication |
---|
1087 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1088 | tend = 0.0 |
---|
1089 | CALL advec_v_ups |
---|
1090 | ENDIF |
---|
1091 | |
---|
1092 | ! |
---|
1093 | !-- v-tendency terms with no communication |
---|
1094 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1095 | tend = 0.0 |
---|
1096 | CALL advec_v_pw |
---|
1097 | ELSE |
---|
1098 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1099 | tend = 0.0 |
---|
1100 | CALL advec_v_up |
---|
1101 | ENDIF |
---|
1102 | ENDIF |
---|
1103 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1104 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
1105 | w_m, z0 ) |
---|
1106 | ELSE |
---|
1107 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, w, z0 ) |
---|
1108 | ENDIF |
---|
1109 | CALL coriolis( 2 ) |
---|
1110 | CALL user_actions( 'v-tendency' ) |
---|
1111 | |
---|
1112 | ! |
---|
1113 | !-- Prognostic equation for v-velocity component |
---|
1114 | DO i = nxl, nxr |
---|
1115 | DO j = nys, nyn+vynp |
---|
1116 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1117 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
1118 | dt_3d * ( & |
---|
1119 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
1120 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
1121 | ) - & |
---|
1122 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
1123 | ENDDO |
---|
1124 | ENDDO |
---|
1125 | ENDDO |
---|
1126 | |
---|
1127 | ! |
---|
1128 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1129 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1130 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1131 | DO i = nxl, nxr |
---|
1132 | DO j = nys, nyn+vynp |
---|
1133 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1134 | tv_m(k,j,i) = tend(k,j,i) |
---|
1135 | ENDDO |
---|
1136 | ENDDO |
---|
1137 | ENDDO |
---|
1138 | ELSEIF ( intermediate_timestep_count < & |
---|
1139 | intermediate_timestep_count_max ) THEN |
---|
1140 | DO i = nxl, nxr |
---|
1141 | DO j = nys, nyn+vynp |
---|
1142 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1143 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
1144 | ENDDO |
---|
1145 | ENDDO |
---|
1146 | ENDDO |
---|
1147 | ENDIF |
---|
1148 | ENDIF |
---|
1149 | |
---|
1150 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
1151 | |
---|
1152 | ! |
---|
1153 | !-- w-velocity component |
---|
1154 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
1155 | |
---|
1156 | ! |
---|
1157 | !-- w-tendency terms with communication |
---|
1158 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1159 | tend = 0.0 |
---|
1160 | CALL advec_w_ups |
---|
1161 | ENDIF |
---|
1162 | |
---|
1163 | ! |
---|
1164 | !-- w-tendency terms with no communication |
---|
1165 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1166 | tend = 0.0 |
---|
1167 | CALL advec_w_pw |
---|
1168 | ELSE |
---|
1169 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1170 | tend = 0.0 |
---|
1171 | CALL advec_w_up |
---|
1172 | ENDIF |
---|
1173 | ENDIF |
---|
1174 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1175 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
1176 | v_m, w_m, z0 ) |
---|
1177 | ELSE |
---|
1178 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w, & |
---|
1179 | z0 ) |
---|
1180 | ENDIF |
---|
1181 | CALL coriolis( 3 ) |
---|
1182 | IF ( .NOT. moisture ) THEN |
---|
1183 | CALL buoyancy( pt, 3, 4 ) |
---|
1184 | ELSE |
---|
1185 | CALL buoyancy( vpt, 3, 44 ) |
---|
1186 | ENDIF |
---|
1187 | CALL user_actions( 'w-tendency' ) |
---|
1188 | |
---|
1189 | ! |
---|
1190 | !-- Prognostic equation for w-velocity component |
---|
1191 | DO i = nxl, nxr |
---|
1192 | DO j = nys, nyn |
---|
1193 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1194 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
1195 | dt_3d * ( & |
---|
1196 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
1197 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
1198 | ) - & |
---|
1199 | tsc(5) * rdf(k) * w(k,j,i) |
---|
1200 | ENDDO |
---|
1201 | ENDDO |
---|
1202 | ENDDO |
---|
1203 | |
---|
1204 | ! |
---|
1205 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1206 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1207 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1208 | DO i = nxl, nxr |
---|
1209 | DO j = nys, nyn |
---|
1210 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1211 | tw_m(k,j,i) = tend(k,j,i) |
---|
1212 | ENDDO |
---|
1213 | ENDDO |
---|
1214 | ENDDO |
---|
1215 | ELSEIF ( intermediate_timestep_count < & |
---|
1216 | intermediate_timestep_count_max ) THEN |
---|
1217 | DO i = nxl, nxr |
---|
1218 | DO j = nys, nyn |
---|
1219 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1220 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1221 | ENDDO |
---|
1222 | ENDDO |
---|
1223 | ENDDO |
---|
1224 | ENDIF |
---|
1225 | ENDIF |
---|
1226 | |
---|
1227 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
1228 | |
---|
1229 | ! |
---|
1230 | !-- potential temperature |
---|
1231 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
1232 | |
---|
1233 | ! |
---|
1234 | !-- pt-tendency terms with communication |
---|
1235 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1236 | ! |
---|
1237 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1238 | sat = 1.0 |
---|
1239 | sbt = 1.0 |
---|
1240 | tend = 0.0 |
---|
1241 | CALL advec_s_bc( pt, 'pt' ) |
---|
1242 | ELSE |
---|
1243 | sat = tsc(1) |
---|
1244 | sbt = tsc(2) |
---|
1245 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
1246 | tend = 0.0 |
---|
1247 | CALL advec_s_ups( pt, 'pt' ) |
---|
1248 | ENDIF |
---|
1249 | ENDIF |
---|
1250 | |
---|
1251 | ! |
---|
1252 | !-- pt-tendency terms with no communication |
---|
1253 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1254 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tend ) |
---|
1255 | ELSE |
---|
1256 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1257 | tend = 0.0 |
---|
1258 | CALL advec_s_pw( pt ) |
---|
1259 | ELSE |
---|
1260 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1261 | tend = 0.0 |
---|
1262 | CALL advec_s_up( pt ) |
---|
1263 | ENDIF |
---|
1264 | ENDIF |
---|
1265 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1266 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tend ) |
---|
1267 | ELSE |
---|
1268 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tend ) |
---|
1269 | ENDIF |
---|
1270 | ENDIF |
---|
1271 | |
---|
1272 | ! |
---|
1273 | !-- If required compute heating/cooling due to long wave radiation |
---|
1274 | !-- processes |
---|
1275 | IF ( radiation ) THEN |
---|
1276 | CALL calc_radiation |
---|
1277 | ENDIF |
---|
1278 | |
---|
1279 | ! |
---|
1280 | !-- If required compute impact of latent heat due to precipitation |
---|
1281 | IF ( precipitation ) THEN |
---|
1282 | CALL impact_of_latent_heat |
---|
1283 | ENDIF |
---|
1284 | CALL user_actions( 'pt-tendency' ) |
---|
1285 | |
---|
1286 | ! |
---|
1287 | !-- Prognostic equation for potential temperature |
---|
1288 | DO i = nxl, nxr |
---|
1289 | DO j = nys, nyn |
---|
1290 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1291 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
1292 | dt_3d * ( & |
---|
1293 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
1294 | ) - & |
---|
1295 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
1296 | ENDDO |
---|
1297 | ENDDO |
---|
1298 | ENDDO |
---|
1299 | |
---|
1300 | ! |
---|
1301 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1302 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1303 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1304 | DO i = nxl, nxr |
---|
1305 | DO j = nys, nyn |
---|
1306 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1307 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1308 | ENDDO |
---|
1309 | ENDDO |
---|
1310 | ENDDO |
---|
1311 | ELSEIF ( intermediate_timestep_count < & |
---|
1312 | intermediate_timestep_count_max ) THEN |
---|
1313 | DO i = nxl, nxr |
---|
1314 | DO j = nys, nyn |
---|
1315 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1316 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
1317 | ENDDO |
---|
1318 | ENDDO |
---|
1319 | ENDDO |
---|
1320 | ENDIF |
---|
1321 | ENDIF |
---|
1322 | |
---|
1323 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
1324 | |
---|
1325 | ! |
---|
1326 | !-- If required, compute prognostic equation for total water content / scalar |
---|
1327 | IF ( moisture .OR. passive_scalar ) THEN |
---|
1328 | |
---|
1329 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
1330 | |
---|
1331 | ! |
---|
1332 | !-- Scalar/q-tendency terms with communication |
---|
1333 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1334 | ! |
---|
1335 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1336 | sat = 1.0 |
---|
1337 | sbt = 1.0 |
---|
1338 | tend = 0.0 |
---|
1339 | CALL advec_s_bc( q, 'q' ) |
---|
1340 | ELSE |
---|
1341 | sat = tsc(1) |
---|
1342 | sbt = tsc(2) |
---|
1343 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1344 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1345 | tend = 0.0 |
---|
1346 | CALL advec_s_ups( q, 'q' ) |
---|
1347 | ENDIF |
---|
1348 | ENDIF |
---|
1349 | ENDIF |
---|
1350 | |
---|
1351 | ! |
---|
1352 | !-- Scalar/q-tendency terms with no communication |
---|
1353 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1354 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, tend ) |
---|
1355 | ELSE |
---|
1356 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1357 | tend = 0.0 |
---|
1358 | CALL advec_s_pw( q ) |
---|
1359 | ELSE |
---|
1360 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1361 | tend = 0.0 |
---|
1362 | CALL advec_s_up( q ) |
---|
1363 | ENDIF |
---|
1364 | ENDIF |
---|
1365 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1366 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, tend ) |
---|
1367 | ELSE |
---|
1368 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, tend ) |
---|
1369 | ENDIF |
---|
1370 | ENDIF |
---|
1371 | |
---|
1372 | ! |
---|
1373 | !-- If required compute decrease of total water content due to |
---|
1374 | !-- precipitation |
---|
1375 | IF ( precipitation ) THEN |
---|
1376 | CALL calc_precipitation |
---|
1377 | ENDIF |
---|
1378 | CALL user_actions( 'q-tendency' ) |
---|
1379 | |
---|
1380 | ! |
---|
1381 | !-- Prognostic equation for total water content / scalar |
---|
1382 | DO i = nxl, nxr |
---|
1383 | DO j = nys, nyn |
---|
1384 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1385 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
1386 | dt_3d * ( & |
---|
1387 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
1388 | ) - & |
---|
1389 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
1390 | ENDDO |
---|
1391 | ENDDO |
---|
1392 | ENDDO |
---|
1393 | |
---|
1394 | ! |
---|
1395 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1396 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1397 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1398 | DO i = nxl, nxr |
---|
1399 | DO j = nys, nyn |
---|
1400 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1401 | tq_m(k,j,i) = tend(k,j,i) |
---|
1402 | ENDDO |
---|
1403 | ENDDO |
---|
1404 | ENDDO |
---|
1405 | ELSEIF ( intermediate_timestep_count < & |
---|
1406 | intermediate_timestep_count_max ) THEN |
---|
1407 | DO i = nxl, nxr |
---|
1408 | DO j = nys, nyn |
---|
1409 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1410 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
1411 | ENDDO |
---|
1412 | ENDDO |
---|
1413 | ENDDO |
---|
1414 | ENDIF |
---|
1415 | ENDIF |
---|
1416 | |
---|
1417 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
1418 | |
---|
1419 | ENDIF |
---|
1420 | |
---|
1421 | ! |
---|
1422 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1423 | !-- energy (TKE) |
---|
1424 | IF ( .NOT. constant_diffusion ) THEN |
---|
1425 | |
---|
1426 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
1427 | |
---|
1428 | ! |
---|
1429 | !-- TKE-tendency terms with communication |
---|
1430 | CALL production_e_init |
---|
1431 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
1432 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1433 | ! |
---|
1434 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1435 | sat = 1.0 |
---|
1436 | sbt = 1.0 |
---|
1437 | tend = 0.0 |
---|
1438 | CALL advec_s_bc( e, 'e' ) |
---|
1439 | ELSE |
---|
1440 | sat = tsc(1) |
---|
1441 | sbt = tsc(2) |
---|
1442 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1443 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1444 | tend = 0.0 |
---|
1445 | CALL advec_s_ups( e, 'e' ) |
---|
1446 | ENDIF |
---|
1447 | ENDIF |
---|
1448 | ENDIF |
---|
1449 | ENDIF |
---|
1450 | |
---|
1451 | ! |
---|
1452 | !-- TKE-tendency terms with no communication |
---|
1453 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
1454 | THEN |
---|
1455 | IF ( .NOT. moisture ) THEN |
---|
1456 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
1457 | rif, tend, zu ) |
---|
1458 | ELSE |
---|
1459 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
1460 | rif, tend, zu ) |
---|
1461 | ENDIF |
---|
1462 | ELSE |
---|
1463 | IF ( use_upstream_for_tke ) THEN |
---|
1464 | tend = 0.0 |
---|
1465 | CALL advec_s_up( e ) |
---|
1466 | ELSE |
---|
1467 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1468 | tend = 0.0 |
---|
1469 | CALL advec_s_pw( e ) |
---|
1470 | ELSE |
---|
1471 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1472 | tend = 0.0 |
---|
1473 | CALL advec_s_up( e ) |
---|
1474 | ENDIF |
---|
1475 | ENDIF |
---|
1476 | ENDIF |
---|
1477 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1478 | IF ( .NOT. moisture ) THEN |
---|
1479 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
1480 | pt_m, rif_m, tend, zu ) |
---|
1481 | ELSE |
---|
1482 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
1483 | vpt_m, rif_m, tend, zu ) |
---|
1484 | ENDIF |
---|
1485 | ELSE |
---|
1486 | IF ( .NOT. moisture ) THEN |
---|
1487 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
1488 | rif, tend, zu ) |
---|
1489 | ELSE |
---|
1490 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
1491 | rif, tend, zu ) |
---|
1492 | ENDIF |
---|
1493 | ENDIF |
---|
1494 | ENDIF |
---|
1495 | CALL production_e |
---|
1496 | CALL user_actions( 'e-tendency' ) |
---|
1497 | |
---|
1498 | ! |
---|
1499 | !-- Prognostic equation for TKE. |
---|
1500 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
1501 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
1502 | !-- value is reduced by 90%. |
---|
1503 | DO i = nxl, nxr |
---|
1504 | DO j = nys, nyn |
---|
1505 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1506 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
1507 | dt_3d * ( & |
---|
1508 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
1509 | ) |
---|
1510 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
1511 | ENDDO |
---|
1512 | ENDDO |
---|
1513 | ENDDO |
---|
1514 | |
---|
1515 | ! |
---|
1516 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1517 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1518 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1519 | DO i = nxl, nxr |
---|
1520 | DO j = nys, nyn |
---|
1521 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1522 | te_m(k,j,i) = tend(k,j,i) |
---|
1523 | ENDDO |
---|
1524 | ENDDO |
---|
1525 | ENDDO |
---|
1526 | ELSEIF ( intermediate_timestep_count < & |
---|
1527 | intermediate_timestep_count_max ) THEN |
---|
1528 | DO i = nxl, nxr |
---|
1529 | DO j = nys, nyn |
---|
1530 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1531 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
1532 | ENDDO |
---|
1533 | ENDDO |
---|
1534 | ENDDO |
---|
1535 | ENDIF |
---|
1536 | ENDIF |
---|
1537 | |
---|
1538 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
1539 | |
---|
1540 | ENDIF |
---|
1541 | |
---|
1542 | |
---|
1543 | END SUBROUTINE prognostic_equations_vec |
---|
1544 | |
---|
1545 | |
---|
1546 | END MODULE prognostic_equations_mod |
---|