1 | MODULE prognostic_equations_mod |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Actual revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Log: prognostic_equations.f90,v $ |
---|
11 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
12 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
13 | ! regardless of the timestep scheme used for the other quantities, |
---|
14 | ! new argument diss in call of diffusion_e |
---|
15 | ! |
---|
16 | ! Revision 1.20 2006/02/23 12:52:08 raasch |
---|
17 | ! nzb_2d replaced by nzb_u/v/w/s_inner, +z0 in argument list of diffusion_u/v/w |
---|
18 | ! |
---|
19 | ! Revision 1.19 2005/06/29 10:33:41 steinfeld |
---|
20 | ! Scalars ug and vg are replaced by homonymous arrays in order to allow for |
---|
21 | ! the consideration of a potential dependency of the geostrophic wind |
---|
22 | ! components on height |
---|
23 | ! |
---|
24 | ! Revision 1.18 2005/03/26 20:58:45 raasch |
---|
25 | ! Extension of horizontal loop upper bounds for non-cyclic boundary conditions, |
---|
26 | ! additional arguments km_damp_x/y for diffusion_u/v/w |
---|
27 | ! |
---|
28 | ! Revision 1.17 2004/04/30 12:46:40 raasch |
---|
29 | ! impulse_advec renamed momentum_advec |
---|
30 | ! |
---|
31 | ! Revision 1.16 2004/01/30 10:36:57 raasch |
---|
32 | ! Scalar lower k index nzb replaced by 2d-array nzb_2d |
---|
33 | ! |
---|
34 | ! Revision 1.15 2004/01/28 15:24:35 raasch |
---|
35 | ! Runge-Kutta schemes available, steering variables at and bt in equations |
---|
36 | ! replaced by array sct |
---|
37 | ! |
---|
38 | ! Revision 1.14 2003/03/12 16:40:48 raasch |
---|
39 | ! New routine prognostic_equations_vec, optimized for vector processors |
---|
40 | ! |
---|
41 | ! Revision 1.13 2002/06/11 13:20:21 raasch |
---|
42 | ! Single node optimization: loops i and j extracted from all those |
---|
43 | ! tendency-subroutines which do not contain communication. Some communication |
---|
44 | ! parts moved before the i,j loops. Call of particle advection moved to |
---|
45 | ! subroutine leap_frog. |
---|
46 | ! Former subroutine changed to a module which contains two versions: one |
---|
47 | ! with loop optimization for the single equations and one version with one |
---|
48 | ! big optimized loop containing all prognostic equations. |
---|
49 | ! |
---|
50 | ! Revision 1.12 2002/05/02 18:54:12 raasch |
---|
51 | ! Timelevel t+dt re-introduced, Asselin filter and exchange of ghost points |
---|
52 | ! moved to routine leap_frog |
---|
53 | ! |
---|
54 | ! Revision 1.11 2002/04/16 08:12:40 08:12:40 raasch (Siegfried Raasch) |
---|
55 | ! Particle advection will be performed only after the simulated time has |
---|
56 | ! exceeded a user defined limit |
---|
57 | ! |
---|
58 | ! Revision 1.10 2001/09/04 12:10:28 raasch |
---|
59 | ! Exchange of ghost points added for the time filtered arrays |
---|
60 | ! |
---|
61 | ! Revision 1.9 2001/08/21 09:59:03 raasch |
---|
62 | ! Calls to user-interface for tendency terms added |
---|
63 | ! |
---|
64 | ! Revision 1.8 2001/03/30 07:50:26 raasch |
---|
65 | ! Timelevel t+dt eliminated, Asselin filter included in prognostic equations, |
---|
66 | ! calling arguments eliminated or cut down from advec_s_bc, production_e, |
---|
67 | ! advec_*_ups, |
---|
68 | ! Translation of remaining German identifiers (variables, subroutines, etc.) |
---|
69 | ! |
---|
70 | ! Revision 1.7 2001/01/29 12:34:20 raasch |
---|
71 | ! Passive scalar is considered |
---|
72 | ! |
---|
73 | ! Revision 1.6 2001/01/22 07:57:20 raasch |
---|
74 | ! Module test_variables removed |
---|
75 | ! |
---|
76 | ! Revision 1.5 2000/12/28 13:38:00 raasch |
---|
77 | ! Advec_particles is called unconditionally |
---|
78 | ! |
---|
79 | ! Revision 1.4 2000/07/03 13:01:02 raasch |
---|
80 | ! module pointer_interfaces added to reduce cpu-time and memory demands |
---|
81 | ! of the compilation process, actual argument "work" eliminated from |
---|
82 | ! parameter list of diffusion_e |
---|
83 | ! |
---|
84 | ! Revision 1.3 2000/04/27 07:09:57 raasch |
---|
85 | ! Temperature offset is added at cyclic boundaries (x-direction) when using |
---|
86 | ! a sloping surface |
---|
87 | ! |
---|
88 | ! Revision 1.2 2000/04/13 15:04:28 schroeter |
---|
89 | ! prognostic equation for the total water content added, new routines: |
---|
90 | ! calc_precipitation, impact_of_latent_heat, calc_radiation, |
---|
91 | ! diffusion_pt renamed to diffusion_s, changes in the parameter list of |
---|
92 | ! subroutines diffusion_e, buyoancy, production_e |
---|
93 | ! |
---|
94 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
95 | ! Initial revision |
---|
96 | ! |
---|
97 | ! |
---|
98 | ! Description: |
---|
99 | ! ------------ |
---|
100 | ! Solving the prognostic equations and advecting particles. |
---|
101 | !------------------------------------------------------------------------------! |
---|
102 | |
---|
103 | USE arrays_3d |
---|
104 | USE control_parameters |
---|
105 | USE cpulog |
---|
106 | USE grid_variables |
---|
107 | USE indices |
---|
108 | USE interfaces |
---|
109 | USE pegrid |
---|
110 | USE pointer_interfaces |
---|
111 | USE statistics |
---|
112 | |
---|
113 | USE advec_s_pw_mod |
---|
114 | USE advec_s_up_mod |
---|
115 | USE advec_u_pw_mod |
---|
116 | USE advec_u_up_mod |
---|
117 | USE advec_v_pw_mod |
---|
118 | USE advec_v_up_mod |
---|
119 | USE advec_w_pw_mod |
---|
120 | USE advec_w_up_mod |
---|
121 | USE buoyancy_mod |
---|
122 | USE calc_precipitation_mod |
---|
123 | USE calc_radiation_mod |
---|
124 | USE coriolis_mod |
---|
125 | USE diffusion_e_mod |
---|
126 | USE diffusion_s_mod |
---|
127 | USE diffusion_u_mod |
---|
128 | USE diffusion_v_mod |
---|
129 | USE diffusion_w_mod |
---|
130 | USE impact_of_latent_heat_mod |
---|
131 | USE production_e_mod |
---|
132 | USE user_actions_mod |
---|
133 | |
---|
134 | |
---|
135 | PRIVATE |
---|
136 | PUBLIC prognostic_equations, prognostic_equations_fast, & |
---|
137 | prognostic_equations_vec |
---|
138 | |
---|
139 | INTERFACE prognostic_equations |
---|
140 | MODULE PROCEDURE prognostic_equations |
---|
141 | END INTERFACE prognostic_equations |
---|
142 | |
---|
143 | INTERFACE prognostic_equations_fast |
---|
144 | MODULE PROCEDURE prognostic_equations_fast |
---|
145 | END INTERFACE prognostic_equations_fast |
---|
146 | |
---|
147 | INTERFACE prognostic_equations_vec |
---|
148 | MODULE PROCEDURE prognostic_equations_vec |
---|
149 | END INTERFACE prognostic_equations_vec |
---|
150 | |
---|
151 | |
---|
152 | CONTAINS |
---|
153 | |
---|
154 | |
---|
155 | SUBROUTINE prognostic_equations |
---|
156 | |
---|
157 | !------------------------------------------------------------------------------! |
---|
158 | ! Version with single loop optimization |
---|
159 | ! |
---|
160 | ! (Optimized over each single prognostic equation.) |
---|
161 | !------------------------------------------------------------------------------! |
---|
162 | |
---|
163 | IMPLICIT NONE |
---|
164 | |
---|
165 | CHARACTER (LEN=9) :: time_to_string |
---|
166 | INTEGER :: i, j, k |
---|
167 | REAL :: sat, sbt |
---|
168 | |
---|
169 | ! |
---|
170 | !-- Calculate those variables needed in the tendency terms which need |
---|
171 | !-- global communication |
---|
172 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
173 | IF ( moisture ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
174 | |
---|
175 | ! |
---|
176 | !-- u-velocity component |
---|
177 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
178 | |
---|
179 | ! |
---|
180 | !-- u-tendency terms with communication |
---|
181 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
182 | tend = 0.0 |
---|
183 | CALL advec_u_ups |
---|
184 | ENDIF |
---|
185 | |
---|
186 | ! |
---|
187 | !-- u-tendency terms with no communication |
---|
188 | DO i = nxl, nxr+uxrp |
---|
189 | DO j = nys, nyn |
---|
190 | ! |
---|
191 | !-- Tendency terms |
---|
192 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
193 | tend(:,j,i) = 0.0 |
---|
194 | CALL advec_u_pw( i, j ) |
---|
195 | ELSE |
---|
196 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
197 | tend(:,j,i) = 0.0 |
---|
198 | CALL advec_u_up( i, j ) |
---|
199 | ENDIF |
---|
200 | ENDIF |
---|
201 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
202 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
203 | usws_m, v_m, w_m, z0 ) |
---|
204 | ELSE |
---|
205 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
206 | v, w, z0 ) |
---|
207 | ENDIF |
---|
208 | CALL coriolis( i, j, 1 ) |
---|
209 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, 1, 4 ) |
---|
210 | CALL user_actions( i, j, 'u-tendency' ) |
---|
211 | |
---|
212 | ! |
---|
213 | !-- Prognostic equation for u-velocity component |
---|
214 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
215 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
216 | dt_3d * ( & |
---|
217 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
218 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
219 | ) - & |
---|
220 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
221 | ENDDO |
---|
222 | |
---|
223 | ! |
---|
224 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
225 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
226 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
227 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
228 | tu_m(k,j,i) = tend(k,j,i) |
---|
229 | ENDDO |
---|
230 | ELSEIF ( intermediate_timestep_count < & |
---|
231 | intermediate_timestep_count_max ) THEN |
---|
232 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
233 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
234 | ENDDO |
---|
235 | ENDIF |
---|
236 | ENDIF |
---|
237 | |
---|
238 | ENDDO |
---|
239 | ENDDO |
---|
240 | |
---|
241 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
242 | |
---|
243 | ! |
---|
244 | !-- v-velocity component |
---|
245 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
246 | |
---|
247 | ! |
---|
248 | !-- v-tendency terms with communication |
---|
249 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
250 | tend = 0.0 |
---|
251 | CALL advec_v_ups |
---|
252 | ENDIF |
---|
253 | |
---|
254 | ! |
---|
255 | !-- v-tendency terms with no communication |
---|
256 | DO i = nxl, nxr |
---|
257 | DO j = nys, nyn+vynp |
---|
258 | ! |
---|
259 | !-- Tendency terms |
---|
260 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
261 | tend(:,j,i) = 0.0 |
---|
262 | CALL advec_v_pw( i, j ) |
---|
263 | ELSE |
---|
264 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
265 | tend(:,j,i) = 0.0 |
---|
266 | CALL advec_v_up( i, j ) |
---|
267 | ENDIF |
---|
268 | ENDIF |
---|
269 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
270 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
271 | v_m, vsws_m, w_m, z0 ) |
---|
272 | ELSE |
---|
273 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
274 | vsws, w, z0 ) |
---|
275 | ENDIF |
---|
276 | CALL coriolis( i, j, 2 ) |
---|
277 | CALL user_actions( i, j, 'v-tendency' ) |
---|
278 | |
---|
279 | ! |
---|
280 | !-- Prognostic equation for v-velocity component |
---|
281 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
282 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
283 | dt_3d * ( & |
---|
284 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
285 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
286 | ) - & |
---|
287 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
288 | ENDDO |
---|
289 | |
---|
290 | ! |
---|
291 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
292 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
293 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
294 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
295 | tv_m(k,j,i) = tend(k,j,i) |
---|
296 | ENDDO |
---|
297 | ELSEIF ( intermediate_timestep_count < & |
---|
298 | intermediate_timestep_count_max ) THEN |
---|
299 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
300 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
301 | ENDDO |
---|
302 | ENDIF |
---|
303 | ENDIF |
---|
304 | |
---|
305 | ENDDO |
---|
306 | ENDDO |
---|
307 | |
---|
308 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
309 | |
---|
310 | ! |
---|
311 | !-- w-velocity component |
---|
312 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
313 | |
---|
314 | ! |
---|
315 | !-- w-tendency terms with communication |
---|
316 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
317 | tend = 0.0 |
---|
318 | CALL advec_w_ups |
---|
319 | ENDIF |
---|
320 | |
---|
321 | ! |
---|
322 | !-- w-tendency terms with no communication |
---|
323 | DO i = nxl, nxr |
---|
324 | DO j = nys, nyn |
---|
325 | ! |
---|
326 | !-- Tendency terms |
---|
327 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
328 | tend(:,j,i) = 0.0 |
---|
329 | CALL advec_w_pw( i, j ) |
---|
330 | ELSE |
---|
331 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
332 | tend(:,j,i) = 0.0 |
---|
333 | CALL advec_w_up( i, j ) |
---|
334 | ENDIF |
---|
335 | ENDIF |
---|
336 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
337 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
338 | tend, u_m, v_m, w_m, z0 ) |
---|
339 | ELSE |
---|
340 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
341 | tend, u, v, w, z0 ) |
---|
342 | ENDIF |
---|
343 | CALL coriolis( i, j, 3 ) |
---|
344 | IF ( .NOT. moisture ) THEN |
---|
345 | CALL buoyancy( i, j, pt, 3, 4 ) |
---|
346 | ELSE |
---|
347 | CALL buoyancy( i, j, vpt, 3, 44 ) |
---|
348 | ENDIF |
---|
349 | CALL user_actions( i, j, 'w-tendency' ) |
---|
350 | |
---|
351 | ! |
---|
352 | !-- Prognostic equation for w-velocity component |
---|
353 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
354 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
355 | dt_3d * ( & |
---|
356 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
357 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
358 | ) - & |
---|
359 | tsc(5) * rdf(k) * w(k,j,i) |
---|
360 | ENDDO |
---|
361 | |
---|
362 | ! |
---|
363 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
364 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
365 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
366 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
367 | tw_m(k,j,i) = tend(k,j,i) |
---|
368 | ENDDO |
---|
369 | ELSEIF ( intermediate_timestep_count < & |
---|
370 | intermediate_timestep_count_max ) THEN |
---|
371 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
372 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
373 | ENDDO |
---|
374 | ENDIF |
---|
375 | ENDIF |
---|
376 | |
---|
377 | ENDDO |
---|
378 | ENDDO |
---|
379 | |
---|
380 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
381 | |
---|
382 | ! |
---|
383 | !-- potential temperature |
---|
384 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
385 | |
---|
386 | ! |
---|
387 | !-- pt-tendency terms with communication |
---|
388 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
389 | ! |
---|
390 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
391 | sat = 1.0 |
---|
392 | sbt = 1.0 |
---|
393 | tend = 0.0 |
---|
394 | CALL advec_s_bc( pt, 'pt' ) |
---|
395 | ELSE |
---|
396 | sat = tsc(1) |
---|
397 | sbt = tsc(2) |
---|
398 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
399 | tend = 0.0 |
---|
400 | CALL advec_s_ups( pt, 'pt' ) |
---|
401 | ENDIF |
---|
402 | ENDIF |
---|
403 | |
---|
404 | ! |
---|
405 | !-- pt-tendency terms with no communication |
---|
406 | DO i = nxl, nxr |
---|
407 | DO j = nys, nyn |
---|
408 | ! |
---|
409 | !-- Tendency terms |
---|
410 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
411 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tend ) |
---|
412 | ELSE |
---|
413 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
414 | tend(:,j,i) = 0.0 |
---|
415 | CALL advec_s_pw( i, j, pt ) |
---|
416 | ELSE |
---|
417 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
418 | tend(:,j,i) = 0.0 |
---|
419 | CALL advec_s_up( i, j, pt ) |
---|
420 | ENDIF |
---|
421 | ENDIF |
---|
422 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
423 | THEN |
---|
424 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, tend ) |
---|
425 | ELSE |
---|
426 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tend ) |
---|
427 | ENDIF |
---|
428 | ENDIF |
---|
429 | |
---|
430 | ! |
---|
431 | !-- If required compute heating/cooling due to long wave radiation |
---|
432 | !-- processes |
---|
433 | IF ( radiation ) THEN |
---|
434 | CALL calc_radiation( i, j ) |
---|
435 | ENDIF |
---|
436 | |
---|
437 | ! |
---|
438 | !-- If required compute impact of latent heat due to precipitation |
---|
439 | IF ( precipitation ) THEN |
---|
440 | CALL impact_of_latent_heat( i, j ) |
---|
441 | ENDIF |
---|
442 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
443 | |
---|
444 | ! |
---|
445 | !-- Prognostic equation for potential temperature |
---|
446 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
447 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
448 | dt_3d * ( & |
---|
449 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
450 | ) - & |
---|
451 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
452 | ENDDO |
---|
453 | |
---|
454 | ! |
---|
455 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
456 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
457 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
458 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
459 | tpt_m(k,j,i) = tend(k,j,i) |
---|
460 | ENDDO |
---|
461 | ELSEIF ( intermediate_timestep_count < & |
---|
462 | intermediate_timestep_count_max ) THEN |
---|
463 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
464 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
465 | ENDDO |
---|
466 | ENDIF |
---|
467 | ENDIF |
---|
468 | |
---|
469 | ENDDO |
---|
470 | ENDDO |
---|
471 | |
---|
472 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
473 | |
---|
474 | ! |
---|
475 | !-- If required, compute prognostic equation for total water content / scalar |
---|
476 | IF ( moisture .OR. passive_scalar ) THEN |
---|
477 | |
---|
478 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
479 | |
---|
480 | ! |
---|
481 | !-- Scalar/q-tendency terms with communication |
---|
482 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
483 | ! |
---|
484 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
485 | sat = 1.0 |
---|
486 | sbt = 1.0 |
---|
487 | tend = 0.0 |
---|
488 | CALL advec_s_bc( q, 'q' ) |
---|
489 | ELSE |
---|
490 | sat = tsc(1) |
---|
491 | sbt = tsc(2) |
---|
492 | IF ( tsc(2) /= 2.0 ) THEN |
---|
493 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
494 | tend = 0.0 |
---|
495 | CALL advec_s_ups( q, 'q' ) |
---|
496 | ENDIF |
---|
497 | ENDIF |
---|
498 | ENDIF |
---|
499 | |
---|
500 | ! |
---|
501 | !-- Scalar/q-tendency terms with no communication |
---|
502 | DO i = nxl, nxr |
---|
503 | DO j = nys, nyn |
---|
504 | ! |
---|
505 | !-- Tendency-terms |
---|
506 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
507 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, tend ) |
---|
508 | ELSE |
---|
509 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
510 | tend(:,j,i) = 0.0 |
---|
511 | CALL advec_s_pw( i, j, q ) |
---|
512 | ELSE |
---|
513 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
514 | tend(:,j,i) = 0.0 |
---|
515 | CALL advec_s_up( i, j, q ) |
---|
516 | ENDIF |
---|
517 | ENDIF |
---|
518 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
519 | THEN |
---|
520 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
521 | tend ) |
---|
522 | ELSE |
---|
523 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, tend ) |
---|
524 | ENDIF |
---|
525 | ENDIF |
---|
526 | |
---|
527 | ! |
---|
528 | !-- If required compute decrease of total water content due to |
---|
529 | !-- precipitation |
---|
530 | IF ( precipitation ) THEN |
---|
531 | CALL calc_precipitation( i, j ) |
---|
532 | ENDIF |
---|
533 | CALL user_actions( i, j, 'q-tendency' ) |
---|
534 | |
---|
535 | ! |
---|
536 | !-- Prognostic equation for total water content / scalar |
---|
537 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
538 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
539 | dt_3d * ( & |
---|
540 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
541 | ) - & |
---|
542 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
543 | ENDDO |
---|
544 | |
---|
545 | ! |
---|
546 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
547 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
548 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
549 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
550 | tq_m(k,j,i) = tend(k,j,i) |
---|
551 | ENDDO |
---|
552 | ELSEIF ( intermediate_timestep_count < & |
---|
553 | intermediate_timestep_count_max ) THEN |
---|
554 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
555 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
556 | ENDDO |
---|
557 | ENDIF |
---|
558 | ENDIF |
---|
559 | |
---|
560 | ENDDO |
---|
561 | ENDDO |
---|
562 | |
---|
563 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
564 | |
---|
565 | ENDIF |
---|
566 | |
---|
567 | ! |
---|
568 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
569 | !-- energy (TKE) |
---|
570 | IF ( .NOT. constant_diffusion ) THEN |
---|
571 | |
---|
572 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
573 | |
---|
574 | ! |
---|
575 | !-- TKE-tendency terms with communication |
---|
576 | CALL production_e_init |
---|
577 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
578 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
579 | ! |
---|
580 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
581 | sat = 1.0 |
---|
582 | sbt = 1.0 |
---|
583 | tend = 0.0 |
---|
584 | CALL advec_s_bc( e, 'e' ) |
---|
585 | ELSE |
---|
586 | sat = tsc(1) |
---|
587 | sbt = tsc(2) |
---|
588 | IF ( tsc(2) /= 2.0 ) THEN |
---|
589 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
590 | tend = 0.0 |
---|
591 | CALL advec_s_ups( e, 'e' ) |
---|
592 | ENDIF |
---|
593 | ENDIF |
---|
594 | ENDIF |
---|
595 | ENDIF |
---|
596 | |
---|
597 | ! |
---|
598 | !-- TKE-tendency terms with no communication |
---|
599 | DO i = nxl, nxr |
---|
600 | DO j = nys, nyn |
---|
601 | ! |
---|
602 | !-- Tendency-terms |
---|
603 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
604 | .NOT. use_upstream_for_tke ) THEN |
---|
605 | IF ( .NOT. moisture ) THEN |
---|
606 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
607 | l_grid, pt, rif, tend, zu ) |
---|
608 | ELSE |
---|
609 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
610 | l_grid, vpt, rif, tend, zu ) |
---|
611 | ENDIF |
---|
612 | ELSE |
---|
613 | IF ( use_upstream_for_tke ) THEN |
---|
614 | tend(:,j,i) = 0.0 |
---|
615 | CALL advec_s_up( i, j, e ) |
---|
616 | ELSE |
---|
617 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
618 | THEN |
---|
619 | tend(:,j,i) = 0.0 |
---|
620 | CALL advec_s_pw( i, j, e ) |
---|
621 | ELSE |
---|
622 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
623 | tend(:,j,i) = 0.0 |
---|
624 | CALL advec_s_up( i, j, e ) |
---|
625 | ENDIF |
---|
626 | ENDIF |
---|
627 | ENDIF |
---|
628 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
629 | THEN |
---|
630 | IF ( .NOT. moisture ) THEN |
---|
631 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
632 | km_m, l_grid, pt_m, rif_m, tend, zu ) |
---|
633 | ELSE |
---|
634 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
635 | km_m, l_grid, vpt_m, rif_m, tend, zu ) |
---|
636 | ENDIF |
---|
637 | ELSE |
---|
638 | IF ( .NOT. moisture ) THEN |
---|
639 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
640 | l_grid, pt, rif, tend, zu ) |
---|
641 | ELSE |
---|
642 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
643 | l_grid, vpt, rif, tend, zu ) |
---|
644 | ENDIF |
---|
645 | ENDIF |
---|
646 | ENDIF |
---|
647 | CALL production_e( i, j ) |
---|
648 | CALL user_actions( i, j, 'e-tendency' ) |
---|
649 | |
---|
650 | ! |
---|
651 | !-- Prognostic equation for TKE. |
---|
652 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
653 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
654 | !-- value is reduced by 90%. |
---|
655 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
656 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
657 | dt_3d * ( & |
---|
658 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
659 | ) |
---|
660 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
661 | ENDDO |
---|
662 | |
---|
663 | ! |
---|
664 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
665 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
666 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
667 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
668 | te_m(k,j,i) = tend(k,j,i) |
---|
669 | ENDDO |
---|
670 | ELSEIF ( intermediate_timestep_count < & |
---|
671 | intermediate_timestep_count_max ) THEN |
---|
672 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
673 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
674 | ENDDO |
---|
675 | ENDIF |
---|
676 | ENDIF |
---|
677 | |
---|
678 | ENDDO |
---|
679 | ENDDO |
---|
680 | |
---|
681 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
682 | |
---|
683 | ENDIF |
---|
684 | |
---|
685 | |
---|
686 | END SUBROUTINE prognostic_equations |
---|
687 | |
---|
688 | |
---|
689 | SUBROUTINE prognostic_equations_fast |
---|
690 | |
---|
691 | !------------------------------------------------------------------------------! |
---|
692 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
693 | ! be called for the standard Piascek-Williams advection scheme. |
---|
694 | ! |
---|
695 | ! The call of this subroutine is embedded in two DO loops over i and j, thus |
---|
696 | ! communication between CPUs is not allowed in this subroutine. |
---|
697 | ! |
---|
698 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
699 | !------------------------------------------------------------------------------! |
---|
700 | |
---|
701 | IMPLICIT NONE |
---|
702 | |
---|
703 | CHARACTER (LEN=9) :: time_to_string |
---|
704 | INTEGER :: i, j, k |
---|
705 | |
---|
706 | |
---|
707 | ! |
---|
708 | !-- Time measurement can only be performed for the whole set of equations |
---|
709 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
710 | |
---|
711 | |
---|
712 | ! |
---|
713 | !-- Calculate those variables needed in the tendency terms which need |
---|
714 | !-- global communication |
---|
715 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
716 | IF ( moisture ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
717 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
718 | |
---|
719 | |
---|
720 | ! |
---|
721 | !-- Loop over all prognostic equations |
---|
722 | !$OMP PARALLEL private (i,j,k) |
---|
723 | !$OMP DO |
---|
724 | DO i = nxl, nxr+uxrp ! Additional levels for non cyclic boundary |
---|
725 | DO j = nys, nyn+vynp ! conditions are included |
---|
726 | ! |
---|
727 | !-- Tendency terms for u-velocity component |
---|
728 | IF ( j < nyn+1 ) THEN |
---|
729 | |
---|
730 | tend(:,j,i) = 0.0 |
---|
731 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
732 | CALL advec_u_pw( i, j ) |
---|
733 | ELSE |
---|
734 | CALL advec_u_up( i, j ) |
---|
735 | ENDIF |
---|
736 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
737 | THEN |
---|
738 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
739 | u_m, usws_m, v_m, w_m, z0 ) |
---|
740 | ELSE |
---|
741 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
742 | usws, v, w, z0 ) |
---|
743 | ENDIF |
---|
744 | CALL coriolis( i, j, 1 ) |
---|
745 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, 1, 4 ) |
---|
746 | CALL user_actions( i, j, 'u-tendency' ) |
---|
747 | |
---|
748 | ! |
---|
749 | !-- Prognostic equation for u-velocity component |
---|
750 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
751 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
752 | dt_3d * ( & |
---|
753 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
754 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
755 | ) - & |
---|
756 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
757 | ENDDO |
---|
758 | |
---|
759 | ! |
---|
760 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
761 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
762 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
763 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
764 | tu_m(k,j,i) = tend(k,j,i) |
---|
765 | ENDDO |
---|
766 | ELSEIF ( intermediate_timestep_count < & |
---|
767 | intermediate_timestep_count_max ) THEN |
---|
768 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
769 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
770 | ENDDO |
---|
771 | ENDIF |
---|
772 | ENDIF |
---|
773 | |
---|
774 | ENDIF |
---|
775 | |
---|
776 | ! |
---|
777 | !-- Tendency terms for v-velocity component |
---|
778 | IF ( i < nxr+1 ) THEN |
---|
779 | |
---|
780 | tend(:,j,i) = 0.0 |
---|
781 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
782 | CALL advec_v_pw( i, j ) |
---|
783 | ELSE |
---|
784 | CALL advec_v_up( i, j ) |
---|
785 | ENDIF |
---|
786 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
787 | THEN |
---|
788 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
789 | u_m, v_m, vsws_m, w_m, z0 ) |
---|
790 | ELSE |
---|
791 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
792 | vsws, w, z0 ) |
---|
793 | ENDIF |
---|
794 | CALL coriolis( i, j, 2 ) |
---|
795 | CALL user_actions( i, j, 'v-tendency' ) |
---|
796 | |
---|
797 | ! |
---|
798 | !-- Prognostic equation for v-velocity component |
---|
799 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
800 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
801 | dt_3d * ( & |
---|
802 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
803 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
804 | ) - & |
---|
805 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
806 | ENDDO |
---|
807 | |
---|
808 | ! |
---|
809 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
810 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
811 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
812 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
813 | tv_m(k,j,i) = tend(k,j,i) |
---|
814 | ENDDO |
---|
815 | ELSEIF ( intermediate_timestep_count < & |
---|
816 | intermediate_timestep_count_max ) THEN |
---|
817 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
818 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
819 | ENDDO |
---|
820 | ENDIF |
---|
821 | ENDIF |
---|
822 | |
---|
823 | ENDIF |
---|
824 | |
---|
825 | ! |
---|
826 | !-- Tendency terms for w-velocity component |
---|
827 | IF ( i < nxr+1 .AND. j < nyn+1 ) THEN |
---|
828 | |
---|
829 | tend(:,j,i) = 0.0 |
---|
830 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
831 | CALL advec_w_pw( i, j ) |
---|
832 | ELSE |
---|
833 | CALL advec_w_up( i, j ) |
---|
834 | ENDIF |
---|
835 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
836 | THEN |
---|
837 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
838 | km_damp_y, tend, u_m, v_m, w_m, z0 ) |
---|
839 | ELSE |
---|
840 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
841 | tend, u, v, w, z0 ) |
---|
842 | ENDIF |
---|
843 | CALL coriolis( i, j, 3 ) |
---|
844 | IF ( .NOT. moisture ) THEN |
---|
845 | CALL buoyancy( i, j, pt, 3, 4 ) |
---|
846 | ELSE |
---|
847 | CALL buoyancy( i, j, vpt, 3, 44 ) |
---|
848 | ENDIF |
---|
849 | CALL user_actions( i, j, 'w-tendency' ) |
---|
850 | |
---|
851 | ! |
---|
852 | !-- Prognostic equation for w-velocity component |
---|
853 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
854 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
855 | dt_3d * ( & |
---|
856 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
857 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
858 | ) - & |
---|
859 | tsc(5) * rdf(k) * w(k,j,i) |
---|
860 | ENDDO |
---|
861 | |
---|
862 | ! |
---|
863 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
864 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
865 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
866 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
867 | tw_m(k,j,i) = tend(k,j,i) |
---|
868 | ENDDO |
---|
869 | ELSEIF ( intermediate_timestep_count < & |
---|
870 | intermediate_timestep_count_max ) THEN |
---|
871 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
872 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
873 | ENDDO |
---|
874 | ENDIF |
---|
875 | ENDIF |
---|
876 | |
---|
877 | ! |
---|
878 | !-- Tendency terms for potential temperature |
---|
879 | tend(:,j,i) = 0.0 |
---|
880 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
881 | CALL advec_s_pw( i, j, pt ) |
---|
882 | ELSE |
---|
883 | CALL advec_s_up( i, j, pt ) |
---|
884 | ENDIF |
---|
885 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
886 | THEN |
---|
887 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, tend ) |
---|
888 | ELSE |
---|
889 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tend ) |
---|
890 | ENDIF |
---|
891 | |
---|
892 | ! |
---|
893 | !-- If required compute heating/cooling due to long wave radiation |
---|
894 | !-- processes |
---|
895 | IF ( radiation ) THEN |
---|
896 | CALL calc_radiation( i, j ) |
---|
897 | ENDIF |
---|
898 | |
---|
899 | ! |
---|
900 | !-- If required compute impact of latent heat due to precipitation |
---|
901 | IF ( precipitation ) THEN |
---|
902 | CALL impact_of_latent_heat( i, j ) |
---|
903 | ENDIF |
---|
904 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
905 | |
---|
906 | ! |
---|
907 | !-- Prognostic equation for potential temperature |
---|
908 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
909 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
910 | dt_3d * ( & |
---|
911 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
912 | ) - & |
---|
913 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
914 | ENDDO |
---|
915 | |
---|
916 | ! |
---|
917 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
918 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
919 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
920 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
921 | tpt_m(k,j,i) = tend(k,j,i) |
---|
922 | ENDDO |
---|
923 | ELSEIF ( intermediate_timestep_count < & |
---|
924 | intermediate_timestep_count_max ) THEN |
---|
925 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
926 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
927 | 5.3125 * tpt_m(k,j,i) |
---|
928 | ENDDO |
---|
929 | ENDIF |
---|
930 | ENDIF |
---|
931 | |
---|
932 | ! |
---|
933 | !-- If required, compute prognostic equation for total water content / |
---|
934 | !-- scalar |
---|
935 | IF ( moisture .OR. passive_scalar ) THEN |
---|
936 | |
---|
937 | ! |
---|
938 | !-- Tendency-terms for total water content / scalar |
---|
939 | tend(:,j,i) = 0.0 |
---|
940 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
941 | THEN |
---|
942 | CALL advec_s_pw( i, j, q ) |
---|
943 | ELSE |
---|
944 | CALL advec_s_up( i, j, q ) |
---|
945 | ENDIF |
---|
946 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
947 | THEN |
---|
948 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, tend ) |
---|
949 | ELSE |
---|
950 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, tend ) |
---|
951 | ENDIF |
---|
952 | |
---|
953 | ! |
---|
954 | !-- If required compute decrease of total water content due to |
---|
955 | !-- precipitation |
---|
956 | IF ( precipitation ) THEN |
---|
957 | CALL calc_precipitation( i, j ) |
---|
958 | ENDIF |
---|
959 | CALL user_actions( i, j, 'q-tendency' ) |
---|
960 | |
---|
961 | ! |
---|
962 | !-- Prognostic equation for total water content / scalar |
---|
963 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
964 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
965 | dt_3d * ( & |
---|
966 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
967 | ) - & |
---|
968 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
969 | ENDDO |
---|
970 | |
---|
971 | ! |
---|
972 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
973 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
974 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
975 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
976 | tq_m(k,j,i) = tend(k,j,i) |
---|
977 | ENDDO |
---|
978 | ELSEIF ( intermediate_timestep_count < & |
---|
979 | intermediate_timestep_count_max ) THEN |
---|
980 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
981 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
982 | 5.3125 * tq_m(k,j,i) |
---|
983 | ENDDO |
---|
984 | ENDIF |
---|
985 | ENDIF |
---|
986 | |
---|
987 | ENDIF |
---|
988 | |
---|
989 | ! |
---|
990 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
991 | !-- energy (TKE) |
---|
992 | IF ( .NOT. constant_diffusion ) THEN |
---|
993 | |
---|
994 | ! |
---|
995 | !-- Tendency-terms for TKE |
---|
996 | tend(:,j,i) = 0.0 |
---|
997 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
998 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
999 | CALL advec_s_pw( i, j, e ) |
---|
1000 | ELSE |
---|
1001 | CALL advec_s_up( i, j, e ) |
---|
1002 | ENDIF |
---|
1003 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
1004 | THEN |
---|
1005 | IF ( .NOT. moisture ) THEN |
---|
1006 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
1007 | km_m, l_grid, pt_m, rif_m, tend, zu ) |
---|
1008 | ELSE |
---|
1009 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
1010 | km_m, l_grid, vpt_m, rif_m, tend, zu ) |
---|
1011 | ENDIF |
---|
1012 | ELSE |
---|
1013 | IF ( .NOT. moisture ) THEN |
---|
1014 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
1015 | l_grid, pt, rif, tend, zu ) |
---|
1016 | ELSE |
---|
1017 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
1018 | l_grid, vpt, rif, tend, zu ) |
---|
1019 | ENDIF |
---|
1020 | ENDIF |
---|
1021 | CALL production_e( i, j ) |
---|
1022 | CALL user_actions( i, j, 'e-tendency' ) |
---|
1023 | |
---|
1024 | ! |
---|
1025 | !-- Prognostic equation for TKE. |
---|
1026 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
1027 | !-- reasons in the course of the integration. In such cases the old |
---|
1028 | !-- TKE value is reduced by 90%. |
---|
1029 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1030 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
1031 | dt_3d * ( & |
---|
1032 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
1033 | ) |
---|
1034 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
1035 | ENDDO |
---|
1036 | |
---|
1037 | ! |
---|
1038 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1039 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1040 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1041 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1042 | te_m(k,j,i) = tend(k,j,i) |
---|
1043 | ENDDO |
---|
1044 | ELSEIF ( intermediate_timestep_count < & |
---|
1045 | intermediate_timestep_count_max ) THEN |
---|
1046 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1047 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1048 | 5.3125 * te_m(k,j,i) |
---|
1049 | ENDDO |
---|
1050 | ENDIF |
---|
1051 | ENDIF |
---|
1052 | |
---|
1053 | ENDIF ! TKE equation |
---|
1054 | |
---|
1055 | ENDIF ! Gridpoints excluding the non-cyclic wall |
---|
1056 | |
---|
1057 | ENDDO |
---|
1058 | ENDDO |
---|
1059 | !$OMP END PARALLEL |
---|
1060 | |
---|
1061 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
1062 | |
---|
1063 | |
---|
1064 | END SUBROUTINE prognostic_equations_fast |
---|
1065 | |
---|
1066 | |
---|
1067 | SUBROUTINE prognostic_equations_vec |
---|
1068 | |
---|
1069 | !------------------------------------------------------------------------------! |
---|
1070 | ! Version for vector machines |
---|
1071 | !------------------------------------------------------------------------------! |
---|
1072 | |
---|
1073 | IMPLICIT NONE |
---|
1074 | |
---|
1075 | CHARACTER (LEN=9) :: time_to_string |
---|
1076 | INTEGER :: i, j, k |
---|
1077 | REAL :: sat, sbt |
---|
1078 | |
---|
1079 | ! |
---|
1080 | !-- Calculate those variables needed in the tendency terms which need |
---|
1081 | !-- global communication |
---|
1082 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
1083 | IF ( moisture ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
1084 | |
---|
1085 | ! |
---|
1086 | !-- u-velocity component |
---|
1087 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
1088 | |
---|
1089 | ! |
---|
1090 | !-- u-tendency terms with communication |
---|
1091 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1092 | tend = 0.0 |
---|
1093 | CALL advec_u_ups |
---|
1094 | ENDIF |
---|
1095 | |
---|
1096 | ! |
---|
1097 | !-- u-tendency terms with no communication |
---|
1098 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1099 | tend = 0.0 |
---|
1100 | CALL advec_u_pw |
---|
1101 | ELSE |
---|
1102 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1103 | tend = 0.0 |
---|
1104 | CALL advec_u_up |
---|
1105 | ENDIF |
---|
1106 | ENDIF |
---|
1107 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1108 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, v_m, & |
---|
1109 | w_m, z0 ) |
---|
1110 | ELSE |
---|
1111 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, v, w, z0 ) |
---|
1112 | ENDIF |
---|
1113 | CALL coriolis( 1 ) |
---|
1114 | IF ( sloping_surface ) CALL buoyancy( pt, 1, 4 ) |
---|
1115 | CALL user_actions( 'u-tendency' ) |
---|
1116 | |
---|
1117 | ! |
---|
1118 | !-- Prognostic equation for u-velocity component |
---|
1119 | DO i = nxl, nxr+uxrp |
---|
1120 | DO j = nys, nyn |
---|
1121 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1122 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
1123 | dt_3d * ( & |
---|
1124 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
1125 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
1126 | ) - & |
---|
1127 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
1128 | ENDDO |
---|
1129 | ENDDO |
---|
1130 | ENDDO |
---|
1131 | |
---|
1132 | ! |
---|
1133 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1134 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1135 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1136 | DO i = nxl, nxr+uxrp |
---|
1137 | DO j = nys, nyn |
---|
1138 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1139 | tu_m(k,j,i) = tend(k,j,i) |
---|
1140 | ENDDO |
---|
1141 | ENDDO |
---|
1142 | ENDDO |
---|
1143 | ELSEIF ( intermediate_timestep_count < & |
---|
1144 | intermediate_timestep_count_max ) THEN |
---|
1145 | DO i = nxl, nxr+uxrp |
---|
1146 | DO j = nys, nyn |
---|
1147 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
1148 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
1149 | ENDDO |
---|
1150 | ENDDO |
---|
1151 | ENDDO |
---|
1152 | ENDIF |
---|
1153 | ENDIF |
---|
1154 | |
---|
1155 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
1156 | |
---|
1157 | ! |
---|
1158 | !-- v-velocity component |
---|
1159 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
1160 | |
---|
1161 | ! |
---|
1162 | !-- v-tendency terms with communication |
---|
1163 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1164 | tend = 0.0 |
---|
1165 | CALL advec_v_ups |
---|
1166 | ENDIF |
---|
1167 | |
---|
1168 | ! |
---|
1169 | !-- v-tendency terms with no communication |
---|
1170 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1171 | tend = 0.0 |
---|
1172 | CALL advec_v_pw |
---|
1173 | ELSE |
---|
1174 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1175 | tend = 0.0 |
---|
1176 | CALL advec_v_up |
---|
1177 | ENDIF |
---|
1178 | ENDIF |
---|
1179 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1180 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
1181 | w_m, z0 ) |
---|
1182 | ELSE |
---|
1183 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, w, z0 ) |
---|
1184 | ENDIF |
---|
1185 | CALL coriolis( 2 ) |
---|
1186 | CALL user_actions( 'v-tendency' ) |
---|
1187 | |
---|
1188 | ! |
---|
1189 | !-- Prognostic equation for v-velocity component |
---|
1190 | DO i = nxl, nxr |
---|
1191 | DO j = nys, nyn+vynp |
---|
1192 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1193 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
1194 | dt_3d * ( & |
---|
1195 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
1196 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
1197 | ) - & |
---|
1198 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
1199 | ENDDO |
---|
1200 | ENDDO |
---|
1201 | ENDDO |
---|
1202 | |
---|
1203 | ! |
---|
1204 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1205 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1206 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1207 | DO i = nxl, nxr |
---|
1208 | DO j = nys, nyn+vynp |
---|
1209 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1210 | tv_m(k,j,i) = tend(k,j,i) |
---|
1211 | ENDDO |
---|
1212 | ENDDO |
---|
1213 | ENDDO |
---|
1214 | ELSEIF ( intermediate_timestep_count < & |
---|
1215 | intermediate_timestep_count_max ) THEN |
---|
1216 | DO i = nxl, nxr |
---|
1217 | DO j = nys, nyn+vynp |
---|
1218 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
1219 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
1220 | ENDDO |
---|
1221 | ENDDO |
---|
1222 | ENDDO |
---|
1223 | ENDIF |
---|
1224 | ENDIF |
---|
1225 | |
---|
1226 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
1227 | |
---|
1228 | ! |
---|
1229 | !-- w-velocity component |
---|
1230 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
1231 | |
---|
1232 | ! |
---|
1233 | !-- w-tendency terms with communication |
---|
1234 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
1235 | tend = 0.0 |
---|
1236 | CALL advec_w_ups |
---|
1237 | ENDIF |
---|
1238 | |
---|
1239 | ! |
---|
1240 | !-- w-tendency terms with no communication |
---|
1241 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1242 | tend = 0.0 |
---|
1243 | CALL advec_w_pw |
---|
1244 | ELSE |
---|
1245 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
1246 | tend = 0.0 |
---|
1247 | CALL advec_w_up |
---|
1248 | ENDIF |
---|
1249 | ENDIF |
---|
1250 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1251 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
1252 | v_m, w_m, z0 ) |
---|
1253 | ELSE |
---|
1254 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w, & |
---|
1255 | z0 ) |
---|
1256 | ENDIF |
---|
1257 | CALL coriolis( 3 ) |
---|
1258 | IF ( .NOT. moisture ) THEN |
---|
1259 | CALL buoyancy( pt, 3, 4 ) |
---|
1260 | ELSE |
---|
1261 | CALL buoyancy( vpt, 3, 44 ) |
---|
1262 | ENDIF |
---|
1263 | CALL user_actions( 'w-tendency' ) |
---|
1264 | |
---|
1265 | ! |
---|
1266 | !-- Prognostic equation for w-velocity component |
---|
1267 | DO i = nxl, nxr |
---|
1268 | DO j = nys, nyn |
---|
1269 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1270 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
1271 | dt_3d * ( & |
---|
1272 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
1273 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
1274 | ) - & |
---|
1275 | tsc(5) * rdf(k) * w(k,j,i) |
---|
1276 | ENDDO |
---|
1277 | ENDDO |
---|
1278 | ENDDO |
---|
1279 | |
---|
1280 | ! |
---|
1281 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1282 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1283 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1284 | DO i = nxl, nxr |
---|
1285 | DO j = nys, nyn |
---|
1286 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1287 | tw_m(k,j,i) = tend(k,j,i) |
---|
1288 | ENDDO |
---|
1289 | ENDDO |
---|
1290 | ENDDO |
---|
1291 | ELSEIF ( intermediate_timestep_count < & |
---|
1292 | intermediate_timestep_count_max ) THEN |
---|
1293 | DO i = nxl, nxr |
---|
1294 | DO j = nys, nyn |
---|
1295 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1296 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1297 | ENDDO |
---|
1298 | ENDDO |
---|
1299 | ENDDO |
---|
1300 | ENDIF |
---|
1301 | ENDIF |
---|
1302 | |
---|
1303 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
1304 | |
---|
1305 | ! |
---|
1306 | !-- potential temperature |
---|
1307 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
1308 | |
---|
1309 | ! |
---|
1310 | !-- pt-tendency terms with communication |
---|
1311 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1312 | ! |
---|
1313 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1314 | sat = 1.0 |
---|
1315 | sbt = 1.0 |
---|
1316 | tend = 0.0 |
---|
1317 | CALL advec_s_bc( pt, 'pt' ) |
---|
1318 | ELSE |
---|
1319 | sat = tsc(1) |
---|
1320 | sbt = tsc(2) |
---|
1321 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
1322 | tend = 0.0 |
---|
1323 | CALL advec_s_ups( pt, 'pt' ) |
---|
1324 | ENDIF |
---|
1325 | ENDIF |
---|
1326 | |
---|
1327 | ! |
---|
1328 | !-- pt-tendency terms with no communication |
---|
1329 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1330 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tend ) |
---|
1331 | ELSE |
---|
1332 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1333 | tend = 0.0 |
---|
1334 | CALL advec_s_pw( pt ) |
---|
1335 | ELSE |
---|
1336 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1337 | tend = 0.0 |
---|
1338 | CALL advec_s_up( pt ) |
---|
1339 | ENDIF |
---|
1340 | ENDIF |
---|
1341 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1342 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tend ) |
---|
1343 | ELSE |
---|
1344 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tend ) |
---|
1345 | ENDIF |
---|
1346 | ENDIF |
---|
1347 | |
---|
1348 | ! |
---|
1349 | !-- If required compute heating/cooling due to long wave radiation |
---|
1350 | !-- processes |
---|
1351 | IF ( radiation ) THEN |
---|
1352 | CALL calc_radiation |
---|
1353 | ENDIF |
---|
1354 | |
---|
1355 | ! |
---|
1356 | !-- If required compute impact of latent heat due to precipitation |
---|
1357 | IF ( precipitation ) THEN |
---|
1358 | CALL impact_of_latent_heat |
---|
1359 | ENDIF |
---|
1360 | CALL user_actions( 'pt-tendency' ) |
---|
1361 | |
---|
1362 | ! |
---|
1363 | !-- Prognostic equation for potential temperature |
---|
1364 | DO i = nxl, nxr |
---|
1365 | DO j = nys, nyn |
---|
1366 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1367 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
1368 | dt_3d * ( & |
---|
1369 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
1370 | ) - & |
---|
1371 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
1372 | ENDDO |
---|
1373 | ENDDO |
---|
1374 | ENDDO |
---|
1375 | |
---|
1376 | ! |
---|
1377 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1378 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1379 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1380 | DO i = nxl, nxr |
---|
1381 | DO j = nys, nyn |
---|
1382 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1383 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1384 | ENDDO |
---|
1385 | ENDDO |
---|
1386 | ENDDO |
---|
1387 | ELSEIF ( intermediate_timestep_count < & |
---|
1388 | intermediate_timestep_count_max ) THEN |
---|
1389 | DO i = nxl, nxr |
---|
1390 | DO j = nys, nyn |
---|
1391 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1392 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
1393 | ENDDO |
---|
1394 | ENDDO |
---|
1395 | ENDDO |
---|
1396 | ENDIF |
---|
1397 | ENDIF |
---|
1398 | |
---|
1399 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
1400 | |
---|
1401 | ! |
---|
1402 | !-- If required, compute prognostic equation for total water content / scalar |
---|
1403 | IF ( moisture .OR. passive_scalar ) THEN |
---|
1404 | |
---|
1405 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
1406 | |
---|
1407 | ! |
---|
1408 | !-- Scalar/q-tendency terms with communication |
---|
1409 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1410 | ! |
---|
1411 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1412 | sat = 1.0 |
---|
1413 | sbt = 1.0 |
---|
1414 | tend = 0.0 |
---|
1415 | CALL advec_s_bc( q, 'q' ) |
---|
1416 | ELSE |
---|
1417 | sat = tsc(1) |
---|
1418 | sbt = tsc(2) |
---|
1419 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1420 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1421 | tend = 0.0 |
---|
1422 | CALL advec_s_ups( q, 'q' ) |
---|
1423 | ENDIF |
---|
1424 | ENDIF |
---|
1425 | ENDIF |
---|
1426 | |
---|
1427 | ! |
---|
1428 | !-- Scalar/q-tendency terms with no communication |
---|
1429 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1430 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, tend ) |
---|
1431 | ELSE |
---|
1432 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1433 | tend = 0.0 |
---|
1434 | CALL advec_s_pw( q ) |
---|
1435 | ELSE |
---|
1436 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1437 | tend = 0.0 |
---|
1438 | CALL advec_s_up( q ) |
---|
1439 | ENDIF |
---|
1440 | ENDIF |
---|
1441 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1442 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, tend ) |
---|
1443 | ELSE |
---|
1444 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, tend ) |
---|
1445 | ENDIF |
---|
1446 | ENDIF |
---|
1447 | |
---|
1448 | ! |
---|
1449 | !-- If required compute decrease of total water content due to |
---|
1450 | !-- precipitation |
---|
1451 | IF ( precipitation ) THEN |
---|
1452 | CALL calc_precipitation |
---|
1453 | ENDIF |
---|
1454 | CALL user_actions( 'q-tendency' ) |
---|
1455 | |
---|
1456 | ! |
---|
1457 | !-- Prognostic equation for total water content / scalar |
---|
1458 | DO i = nxl, nxr |
---|
1459 | DO j = nys, nyn |
---|
1460 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1461 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
1462 | dt_3d * ( & |
---|
1463 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
1464 | ) - & |
---|
1465 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
1466 | ENDDO |
---|
1467 | ENDDO |
---|
1468 | ENDDO |
---|
1469 | |
---|
1470 | ! |
---|
1471 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1472 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1473 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1474 | DO i = nxl, nxr |
---|
1475 | DO j = nys, nyn |
---|
1476 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1477 | tq_m(k,j,i) = tend(k,j,i) |
---|
1478 | ENDDO |
---|
1479 | ENDDO |
---|
1480 | ENDDO |
---|
1481 | ELSEIF ( intermediate_timestep_count < & |
---|
1482 | intermediate_timestep_count_max ) THEN |
---|
1483 | DO i = nxl, nxr |
---|
1484 | DO j = nys, nyn |
---|
1485 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1486 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
1487 | ENDDO |
---|
1488 | ENDDO |
---|
1489 | ENDDO |
---|
1490 | ENDIF |
---|
1491 | ENDIF |
---|
1492 | |
---|
1493 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
1494 | |
---|
1495 | ENDIF |
---|
1496 | |
---|
1497 | ! |
---|
1498 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1499 | !-- energy (TKE) |
---|
1500 | IF ( .NOT. constant_diffusion ) THEN |
---|
1501 | |
---|
1502 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
1503 | |
---|
1504 | ! |
---|
1505 | !-- TKE-tendency terms with communication |
---|
1506 | CALL production_e_init |
---|
1507 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
1508 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1509 | ! |
---|
1510 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1511 | sat = 1.0 |
---|
1512 | sbt = 1.0 |
---|
1513 | tend = 0.0 |
---|
1514 | CALL advec_s_bc( e, 'e' ) |
---|
1515 | ELSE |
---|
1516 | sat = tsc(1) |
---|
1517 | sbt = tsc(2) |
---|
1518 | IF ( tsc(2) /= 2.0 ) THEN |
---|
1519 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
1520 | tend = 0.0 |
---|
1521 | CALL advec_s_ups( e, 'e' ) |
---|
1522 | ENDIF |
---|
1523 | ENDIF |
---|
1524 | ENDIF |
---|
1525 | ENDIF |
---|
1526 | |
---|
1527 | ! |
---|
1528 | !-- TKE-tendency terms with no communication |
---|
1529 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
1530 | THEN |
---|
1531 | IF ( .NOT. moisture ) THEN |
---|
1532 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
1533 | rif, tend, zu ) |
---|
1534 | ELSE |
---|
1535 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
1536 | rif, tend, zu ) |
---|
1537 | ENDIF |
---|
1538 | ELSE |
---|
1539 | IF ( use_upstream_for_tke ) THEN |
---|
1540 | tend = 0.0 |
---|
1541 | CALL advec_s_up( e ) |
---|
1542 | ELSE |
---|
1543 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
1544 | tend = 0.0 |
---|
1545 | CALL advec_s_pw( e ) |
---|
1546 | ELSE |
---|
1547 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
1548 | tend = 0.0 |
---|
1549 | CALL advec_s_up( e ) |
---|
1550 | ENDIF |
---|
1551 | ENDIF |
---|
1552 | ENDIF |
---|
1553 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
1554 | IF ( .NOT. moisture ) THEN |
---|
1555 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
1556 | pt_m, rif_m, tend, zu ) |
---|
1557 | ELSE |
---|
1558 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
1559 | vpt_m, rif_m, tend, zu ) |
---|
1560 | ENDIF |
---|
1561 | ELSE |
---|
1562 | IF ( .NOT. moisture ) THEN |
---|
1563 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
1564 | rif, tend, zu ) |
---|
1565 | ELSE |
---|
1566 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
1567 | rif, tend, zu ) |
---|
1568 | ENDIF |
---|
1569 | ENDIF |
---|
1570 | ENDIF |
---|
1571 | CALL production_e |
---|
1572 | CALL user_actions( 'e-tendency' ) |
---|
1573 | |
---|
1574 | ! |
---|
1575 | !-- Prognostic equation for TKE. |
---|
1576 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
1577 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
1578 | !-- value is reduced by 90%. |
---|
1579 | DO i = nxl, nxr |
---|
1580 | DO j = nys, nyn |
---|
1581 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1582 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
1583 | dt_3d * ( & |
---|
1584 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
1585 | ) |
---|
1586 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
1587 | ENDDO |
---|
1588 | ENDDO |
---|
1589 | ENDDO |
---|
1590 | |
---|
1591 | ! |
---|
1592 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1593 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1594 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1595 | DO i = nxl, nxr |
---|
1596 | DO j = nys, nyn |
---|
1597 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1598 | te_m(k,j,i) = tend(k,j,i) |
---|
1599 | ENDDO |
---|
1600 | ENDDO |
---|
1601 | ENDDO |
---|
1602 | ELSEIF ( intermediate_timestep_count < & |
---|
1603 | intermediate_timestep_count_max ) THEN |
---|
1604 | DO i = nxl, nxr |
---|
1605 | DO j = nys, nyn |
---|
1606 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
1607 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
1608 | ENDDO |
---|
1609 | ENDDO |
---|
1610 | ENDDO |
---|
1611 | ENDIF |
---|
1612 | ENDIF |
---|
1613 | |
---|
1614 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
1615 | |
---|
1616 | ENDIF |
---|
1617 | |
---|
1618 | |
---|
1619 | END SUBROUTINE prognostic_equations_vec |
---|
1620 | |
---|
1621 | |
---|
1622 | END MODULE prognostic_equations_mod |
---|