[1] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[95] | 6 | ! prognostic equation for salinity |
---|
[94] | 7 | ! new argument zw in calls of diffusion_e |
---|
[1] | 8 | ! |
---|
| 9 | ! Former revisions: |
---|
| 10 | ! ----------------- |
---|
[3] | 11 | ! $Id: prognostic_equations.f90 95 2007-06-02 16:48:38Z raasch $ |
---|
[39] | 12 | ! |
---|
[77] | 13 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 14 | ! checking for negative q and limiting for positive values, |
---|
| 15 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
| 16 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
| 17 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
| 18 | ! _vector-version |
---|
| 19 | ! |
---|
[39] | 20 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 21 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
| 22 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
| 23 | ! |
---|
[3] | 24 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 25 | ! |
---|
[1] | 26 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
| 27 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
| 28 | ! regardless of the timestep scheme used for the other quantities, |
---|
| 29 | ! new argument diss in call of diffusion_e |
---|
| 30 | ! |
---|
| 31 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 32 | ! Initial revision |
---|
| 33 | ! |
---|
| 34 | ! |
---|
| 35 | ! Description: |
---|
| 36 | ! ------------ |
---|
[19] | 37 | ! Solving the prognostic equations. |
---|
[1] | 38 | !------------------------------------------------------------------------------! |
---|
| 39 | |
---|
| 40 | USE arrays_3d |
---|
| 41 | USE control_parameters |
---|
| 42 | USE cpulog |
---|
| 43 | USE grid_variables |
---|
| 44 | USE indices |
---|
| 45 | USE interfaces |
---|
| 46 | USE pegrid |
---|
| 47 | USE pointer_interfaces |
---|
| 48 | USE statistics |
---|
| 49 | |
---|
| 50 | USE advec_s_pw_mod |
---|
| 51 | USE advec_s_up_mod |
---|
| 52 | USE advec_u_pw_mod |
---|
| 53 | USE advec_u_up_mod |
---|
| 54 | USE advec_v_pw_mod |
---|
| 55 | USE advec_v_up_mod |
---|
| 56 | USE advec_w_pw_mod |
---|
| 57 | USE advec_w_up_mod |
---|
| 58 | USE buoyancy_mod |
---|
| 59 | USE calc_precipitation_mod |
---|
| 60 | USE calc_radiation_mod |
---|
| 61 | USE coriolis_mod |
---|
| 62 | USE diffusion_e_mod |
---|
| 63 | USE diffusion_s_mod |
---|
| 64 | USE diffusion_u_mod |
---|
| 65 | USE diffusion_v_mod |
---|
| 66 | USE diffusion_w_mod |
---|
| 67 | USE impact_of_latent_heat_mod |
---|
| 68 | USE production_e_mod |
---|
| 69 | USE user_actions_mod |
---|
| 70 | |
---|
| 71 | |
---|
| 72 | PRIVATE |
---|
[63] | 73 | PUBLIC prognostic_equations_noopt, prognostic_equations_cache, & |
---|
| 74 | prognostic_equations_vector |
---|
[1] | 75 | |
---|
[63] | 76 | INTERFACE prognostic_equations_noopt |
---|
| 77 | MODULE PROCEDURE prognostic_equations_noopt |
---|
| 78 | END INTERFACE prognostic_equations_noopt |
---|
[1] | 79 | |
---|
[63] | 80 | INTERFACE prognostic_equations_cache |
---|
| 81 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 82 | END INTERFACE prognostic_equations_cache |
---|
[1] | 83 | |
---|
[63] | 84 | INTERFACE prognostic_equations_vector |
---|
| 85 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 86 | END INTERFACE prognostic_equations_vector |
---|
[1] | 87 | |
---|
| 88 | |
---|
| 89 | CONTAINS |
---|
| 90 | |
---|
| 91 | |
---|
[63] | 92 | SUBROUTINE prognostic_equations_noopt |
---|
[1] | 93 | |
---|
| 94 | !------------------------------------------------------------------------------! |
---|
| 95 | ! Version with single loop optimization |
---|
| 96 | ! |
---|
| 97 | ! (Optimized over each single prognostic equation.) |
---|
| 98 | !------------------------------------------------------------------------------! |
---|
| 99 | |
---|
| 100 | IMPLICIT NONE |
---|
| 101 | |
---|
| 102 | CHARACTER (LEN=9) :: time_to_string |
---|
| 103 | INTEGER :: i, j, k |
---|
| 104 | REAL :: sat, sbt |
---|
| 105 | |
---|
| 106 | ! |
---|
| 107 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 108 | !-- global communication |
---|
| 109 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
[75] | 110 | IF ( humidity ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
[1] | 111 | |
---|
| 112 | ! |
---|
| 113 | !-- u-velocity component |
---|
| 114 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 115 | |
---|
| 116 | ! |
---|
| 117 | !-- u-tendency terms with communication |
---|
| 118 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 119 | tend = 0.0 |
---|
| 120 | CALL advec_u_ups |
---|
| 121 | ENDIF |
---|
| 122 | |
---|
| 123 | ! |
---|
| 124 | !-- u-tendency terms with no communication |
---|
[75] | 125 | DO i = nxl, nxr |
---|
[1] | 126 | DO j = nys, nyn |
---|
| 127 | ! |
---|
| 128 | !-- Tendency terms |
---|
| 129 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 130 | tend(:,j,i) = 0.0 |
---|
| 131 | CALL advec_u_pw( i, j ) |
---|
| 132 | ELSE |
---|
| 133 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 134 | tend(:,j,i) = 0.0 |
---|
| 135 | CALL advec_u_up( i, j ) |
---|
| 136 | ENDIF |
---|
| 137 | ENDIF |
---|
| 138 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 139 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
[57] | 140 | usws_m, v_m, w_m ) |
---|
[1] | 141 | ELSE |
---|
| 142 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
[57] | 143 | v, w ) |
---|
[1] | 144 | ENDIF |
---|
| 145 | CALL coriolis( i, j, 1 ) |
---|
| 146 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, 1, 4 ) |
---|
| 147 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 148 | |
---|
| 149 | ! |
---|
| 150 | !-- Prognostic equation for u-velocity component |
---|
| 151 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 152 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 153 | dt_3d * ( & |
---|
| 154 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 155 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 156 | ) - & |
---|
| 157 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 158 | ENDDO |
---|
| 159 | |
---|
| 160 | ! |
---|
| 161 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 162 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 163 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 164 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 165 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 166 | ENDDO |
---|
| 167 | ELSEIF ( intermediate_timestep_count < & |
---|
| 168 | intermediate_timestep_count_max ) THEN |
---|
| 169 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 170 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 171 | ENDDO |
---|
| 172 | ENDIF |
---|
| 173 | ENDIF |
---|
| 174 | |
---|
| 175 | ENDDO |
---|
| 176 | ENDDO |
---|
| 177 | |
---|
| 178 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 179 | |
---|
| 180 | ! |
---|
| 181 | !-- v-velocity component |
---|
| 182 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 183 | |
---|
| 184 | ! |
---|
| 185 | !-- v-tendency terms with communication |
---|
| 186 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 187 | tend = 0.0 |
---|
| 188 | CALL advec_v_ups |
---|
| 189 | ENDIF |
---|
| 190 | |
---|
| 191 | ! |
---|
| 192 | !-- v-tendency terms with no communication |
---|
| 193 | DO i = nxl, nxr |
---|
[75] | 194 | DO j = nys, nyn |
---|
[1] | 195 | ! |
---|
| 196 | !-- Tendency terms |
---|
| 197 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 198 | tend(:,j,i) = 0.0 |
---|
| 199 | CALL advec_v_pw( i, j ) |
---|
| 200 | ELSE |
---|
| 201 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 202 | tend(:,j,i) = 0.0 |
---|
| 203 | CALL advec_v_up( i, j ) |
---|
| 204 | ENDIF |
---|
| 205 | ENDIF |
---|
| 206 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 207 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
[57] | 208 | v_m, vsws_m, w_m ) |
---|
[1] | 209 | ELSE |
---|
| 210 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[57] | 211 | vsws, w ) |
---|
[1] | 212 | ENDIF |
---|
| 213 | CALL coriolis( i, j, 2 ) |
---|
| 214 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 215 | |
---|
| 216 | ! |
---|
| 217 | !-- Prognostic equation for v-velocity component |
---|
| 218 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 219 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 220 | dt_3d * ( & |
---|
| 221 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 222 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 223 | ) - & |
---|
| 224 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 225 | ENDDO |
---|
| 226 | |
---|
| 227 | ! |
---|
| 228 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 229 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 230 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 231 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 232 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 233 | ENDDO |
---|
| 234 | ELSEIF ( intermediate_timestep_count < & |
---|
| 235 | intermediate_timestep_count_max ) THEN |
---|
| 236 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 237 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 238 | ENDDO |
---|
| 239 | ENDIF |
---|
| 240 | ENDIF |
---|
| 241 | |
---|
| 242 | ENDDO |
---|
| 243 | ENDDO |
---|
| 244 | |
---|
| 245 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 246 | |
---|
| 247 | ! |
---|
| 248 | !-- w-velocity component |
---|
| 249 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 250 | |
---|
| 251 | ! |
---|
| 252 | !-- w-tendency terms with communication |
---|
| 253 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 254 | tend = 0.0 |
---|
| 255 | CALL advec_w_ups |
---|
| 256 | ENDIF |
---|
| 257 | |
---|
| 258 | ! |
---|
| 259 | !-- w-tendency terms with no communication |
---|
| 260 | DO i = nxl, nxr |
---|
| 261 | DO j = nys, nyn |
---|
| 262 | ! |
---|
| 263 | !-- Tendency terms |
---|
| 264 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 265 | tend(:,j,i) = 0.0 |
---|
| 266 | CALL advec_w_pw( i, j ) |
---|
| 267 | ELSE |
---|
| 268 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 269 | tend(:,j,i) = 0.0 |
---|
| 270 | CALL advec_w_up( i, j ) |
---|
| 271 | ENDIF |
---|
| 272 | ENDIF |
---|
| 273 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 274 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
[57] | 275 | tend, u_m, v_m, w_m ) |
---|
[1] | 276 | ELSE |
---|
| 277 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
[57] | 278 | tend, u, v, w ) |
---|
[1] | 279 | ENDIF |
---|
| 280 | CALL coriolis( i, j, 3 ) |
---|
[75] | 281 | IF ( .NOT. humidity ) THEN |
---|
[1] | 282 | CALL buoyancy( i, j, pt, 3, 4 ) |
---|
| 283 | ELSE |
---|
| 284 | CALL buoyancy( i, j, vpt, 3, 44 ) |
---|
| 285 | ENDIF |
---|
| 286 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 287 | |
---|
| 288 | ! |
---|
| 289 | !-- Prognostic equation for w-velocity component |
---|
| 290 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 291 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 292 | dt_3d * ( & |
---|
| 293 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 294 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 295 | ) - & |
---|
| 296 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 297 | ENDDO |
---|
| 298 | |
---|
| 299 | ! |
---|
| 300 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 301 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 302 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 303 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 304 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 305 | ENDDO |
---|
| 306 | ELSEIF ( intermediate_timestep_count < & |
---|
| 307 | intermediate_timestep_count_max ) THEN |
---|
| 308 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 309 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 310 | ENDDO |
---|
| 311 | ENDIF |
---|
| 312 | ENDIF |
---|
| 313 | |
---|
| 314 | ENDDO |
---|
| 315 | ENDDO |
---|
| 316 | |
---|
| 317 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 318 | |
---|
| 319 | ! |
---|
| 320 | !-- potential temperature |
---|
| 321 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 322 | |
---|
| 323 | ! |
---|
| 324 | !-- pt-tendency terms with communication |
---|
[70] | 325 | sat = tsc(1) |
---|
| 326 | sbt = tsc(2) |
---|
[1] | 327 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 328 | |
---|
| 329 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 330 | ! |
---|
[70] | 331 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 332 | !-- switched on. Thus: |
---|
| 333 | sat = 1.0 |
---|
| 334 | sbt = 1.0 |
---|
| 335 | ENDIF |
---|
[1] | 336 | tend = 0.0 |
---|
| 337 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 338 | ELSE |
---|
| 339 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 340 | tend = 0.0 |
---|
| 341 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 342 | ENDIF |
---|
| 343 | ENDIF |
---|
| 344 | |
---|
| 345 | ! |
---|
| 346 | !-- pt-tendency terms with no communication |
---|
| 347 | DO i = nxl, nxr |
---|
| 348 | DO j = nys, nyn |
---|
| 349 | ! |
---|
| 350 | !-- Tendency terms |
---|
| 351 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 352 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 353 | ELSE |
---|
| 354 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 355 | tend(:,j,i) = 0.0 |
---|
| 356 | CALL advec_s_pw( i, j, pt ) |
---|
| 357 | ELSE |
---|
| 358 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 359 | tend(:,j,i) = 0.0 |
---|
| 360 | CALL advec_s_up( i, j, pt ) |
---|
| 361 | ENDIF |
---|
| 362 | ENDIF |
---|
| 363 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 364 | THEN |
---|
[19] | 365 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
| 366 | tswst_m, tend ) |
---|
[1] | 367 | ELSE |
---|
[19] | 368 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 369 | ENDIF |
---|
| 370 | ENDIF |
---|
| 371 | |
---|
| 372 | ! |
---|
| 373 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 374 | !-- processes |
---|
| 375 | IF ( radiation ) THEN |
---|
| 376 | CALL calc_radiation( i, j ) |
---|
| 377 | ENDIF |
---|
| 378 | |
---|
| 379 | ! |
---|
| 380 | !-- If required compute impact of latent heat due to precipitation |
---|
| 381 | IF ( precipitation ) THEN |
---|
| 382 | CALL impact_of_latent_heat( i, j ) |
---|
| 383 | ENDIF |
---|
| 384 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 385 | |
---|
| 386 | ! |
---|
| 387 | !-- Prognostic equation for potential temperature |
---|
[19] | 388 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 389 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 390 | dt_3d * ( & |
---|
| 391 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 392 | ) - & |
---|
| 393 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 394 | ENDDO |
---|
| 395 | |
---|
| 396 | ! |
---|
| 397 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 398 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 399 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 400 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 401 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 402 | ENDDO |
---|
| 403 | ELSEIF ( intermediate_timestep_count < & |
---|
| 404 | intermediate_timestep_count_max ) THEN |
---|
[19] | 405 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 406 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 407 | ENDDO |
---|
| 408 | ENDIF |
---|
| 409 | ENDIF |
---|
| 410 | |
---|
| 411 | ENDDO |
---|
| 412 | ENDDO |
---|
| 413 | |
---|
| 414 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 415 | |
---|
| 416 | ! |
---|
[95] | 417 | !-- If required, compute prognostic equation for salinity |
---|
| 418 | IF ( ocean ) THEN |
---|
| 419 | |
---|
| 420 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 421 | |
---|
| 422 | ! |
---|
| 423 | !-- sa-tendency terms with communication |
---|
| 424 | sat = tsc(1) |
---|
| 425 | sbt = tsc(2) |
---|
| 426 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 427 | |
---|
| 428 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 429 | ! |
---|
| 430 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 431 | !-- switched on. Thus: |
---|
| 432 | sat = 1.0 |
---|
| 433 | sbt = 1.0 |
---|
| 434 | ENDIF |
---|
| 435 | tend = 0.0 |
---|
| 436 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 437 | ELSE |
---|
| 438 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 439 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 440 | tend = 0.0 |
---|
| 441 | CALL advec_s_ups( sa, 'sa' ) |
---|
| 442 | ENDIF |
---|
| 443 | ENDIF |
---|
| 444 | ENDIF |
---|
| 445 | |
---|
| 446 | ! |
---|
| 447 | !-- sa terms with no communication |
---|
| 448 | DO i = nxl, nxr |
---|
| 449 | DO j = nys, nyn |
---|
| 450 | ! |
---|
| 451 | !-- Tendency-terms |
---|
| 452 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 453 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 454 | tend ) |
---|
| 455 | ELSE |
---|
| 456 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 457 | tend(:,j,i) = 0.0 |
---|
| 458 | CALL advec_s_pw( i, j, sa ) |
---|
| 459 | ELSE |
---|
| 460 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 461 | tend(:,j,i) = 0.0 |
---|
| 462 | CALL advec_s_up( i, j, sa ) |
---|
| 463 | ENDIF |
---|
| 464 | ENDIF |
---|
| 465 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 466 | tend ) |
---|
| 467 | ENDIF |
---|
| 468 | |
---|
| 469 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 470 | |
---|
| 471 | ! |
---|
| 472 | !-- Prognostic equation for salinity |
---|
| 473 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 474 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
| 475 | dt_3d * ( & |
---|
| 476 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 477 | ) - & |
---|
| 478 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 479 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 480 | ENDDO |
---|
| 481 | |
---|
| 482 | ! |
---|
| 483 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 484 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 485 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 486 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 487 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 488 | ENDDO |
---|
| 489 | ELSEIF ( intermediate_timestep_count < & |
---|
| 490 | intermediate_timestep_count_max ) THEN |
---|
| 491 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 492 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 493 | 5.3125 * tsa_m(k,j,i) |
---|
| 494 | ENDDO |
---|
| 495 | ENDIF |
---|
| 496 | ENDIF |
---|
| 497 | |
---|
| 498 | ENDDO |
---|
| 499 | ENDDO |
---|
| 500 | |
---|
| 501 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 502 | |
---|
| 503 | ENDIF |
---|
| 504 | |
---|
| 505 | ! |
---|
[1] | 506 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 507 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 508 | |
---|
| 509 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 510 | |
---|
| 511 | ! |
---|
| 512 | !-- Scalar/q-tendency terms with communication |
---|
[70] | 513 | sat = tsc(1) |
---|
| 514 | sbt = tsc(2) |
---|
[1] | 515 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 516 | |
---|
| 517 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 518 | ! |
---|
[70] | 519 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 520 | !-- switched on. Thus: |
---|
| 521 | sat = 1.0 |
---|
| 522 | sbt = 1.0 |
---|
| 523 | ENDIF |
---|
[1] | 524 | tend = 0.0 |
---|
| 525 | CALL advec_s_bc( q, 'q' ) |
---|
| 526 | ELSE |
---|
| 527 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 528 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 529 | tend = 0.0 |
---|
| 530 | CALL advec_s_ups( q, 'q' ) |
---|
| 531 | ENDIF |
---|
| 532 | ENDIF |
---|
| 533 | ENDIF |
---|
| 534 | |
---|
| 535 | ! |
---|
| 536 | !-- Scalar/q-tendency terms with no communication |
---|
| 537 | DO i = nxl, nxr |
---|
| 538 | DO j = nys, nyn |
---|
| 539 | ! |
---|
| 540 | !-- Tendency-terms |
---|
| 541 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 542 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, tend ) |
---|
[1] | 543 | ELSE |
---|
| 544 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 545 | tend(:,j,i) = 0.0 |
---|
| 546 | CALL advec_s_pw( i, j, q ) |
---|
| 547 | ELSE |
---|
| 548 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 549 | tend(:,j,i) = 0.0 |
---|
| 550 | CALL advec_s_up( i, j, q ) |
---|
| 551 | ENDIF |
---|
| 552 | ENDIF |
---|
| 553 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 554 | THEN |
---|
| 555 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
[19] | 556 | qswst_m, tend ) |
---|
| 557 | ELSE |
---|
| 558 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
[1] | 559 | tend ) |
---|
| 560 | ENDIF |
---|
| 561 | ENDIF |
---|
| 562 | |
---|
| 563 | ! |
---|
| 564 | !-- If required compute decrease of total water content due to |
---|
| 565 | !-- precipitation |
---|
| 566 | IF ( precipitation ) THEN |
---|
| 567 | CALL calc_precipitation( i, j ) |
---|
| 568 | ENDIF |
---|
| 569 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 570 | |
---|
| 571 | ! |
---|
| 572 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 573 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 574 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 575 | dt_3d * ( & |
---|
| 576 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 577 | ) - & |
---|
| 578 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 579 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 580 | ENDDO |
---|
| 581 | |
---|
| 582 | ! |
---|
| 583 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 584 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 585 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 586 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 587 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 588 | ENDDO |
---|
| 589 | ELSEIF ( intermediate_timestep_count < & |
---|
| 590 | intermediate_timestep_count_max ) THEN |
---|
[19] | 591 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 592 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 593 | ENDDO |
---|
| 594 | ENDIF |
---|
| 595 | ENDIF |
---|
| 596 | |
---|
| 597 | ENDDO |
---|
| 598 | ENDDO |
---|
| 599 | |
---|
| 600 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 601 | |
---|
| 602 | ENDIF |
---|
| 603 | |
---|
| 604 | ! |
---|
| 605 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 606 | !-- energy (TKE) |
---|
| 607 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 608 | |
---|
| 609 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 610 | |
---|
| 611 | ! |
---|
| 612 | !-- TKE-tendency terms with communication |
---|
| 613 | CALL production_e_init |
---|
[70] | 614 | |
---|
| 615 | sat = tsc(1) |
---|
| 616 | sbt = tsc(2) |
---|
[1] | 617 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 618 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 619 | |
---|
| 620 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 621 | ! |
---|
[70] | 622 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 623 | !-- switched on. Thus: |
---|
| 624 | sat = 1.0 |
---|
| 625 | sbt = 1.0 |
---|
| 626 | ENDIF |
---|
[1] | 627 | tend = 0.0 |
---|
| 628 | CALL advec_s_bc( e, 'e' ) |
---|
| 629 | ELSE |
---|
| 630 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 631 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 632 | tend = 0.0 |
---|
| 633 | CALL advec_s_ups( e, 'e' ) |
---|
| 634 | ENDIF |
---|
| 635 | ENDIF |
---|
| 636 | ENDIF |
---|
| 637 | ENDIF |
---|
| 638 | |
---|
| 639 | ! |
---|
| 640 | !-- TKE-tendency terms with no communication |
---|
| 641 | DO i = nxl, nxr |
---|
| 642 | DO j = nys, nyn |
---|
| 643 | ! |
---|
| 644 | !-- Tendency-terms |
---|
| 645 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
| 646 | .NOT. use_upstream_for_tke ) THEN |
---|
[75] | 647 | IF ( .NOT. humidity ) THEN |
---|
[1] | 648 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
[94] | 649 | l_grid, pt, rif, tend, zu, zw ) |
---|
[1] | 650 | ELSE |
---|
| 651 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
[94] | 652 | l_grid, vpt, rif, tend, zu, zw ) |
---|
[1] | 653 | ENDIF |
---|
| 654 | ELSE |
---|
| 655 | IF ( use_upstream_for_tke ) THEN |
---|
| 656 | tend(:,j,i) = 0.0 |
---|
| 657 | CALL advec_s_up( i, j, e ) |
---|
| 658 | ELSE |
---|
| 659 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 660 | THEN |
---|
| 661 | tend(:,j,i) = 0.0 |
---|
| 662 | CALL advec_s_pw( i, j, e ) |
---|
| 663 | ELSE |
---|
| 664 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 665 | tend(:,j,i) = 0.0 |
---|
| 666 | CALL advec_s_up( i, j, e ) |
---|
| 667 | ENDIF |
---|
| 668 | ENDIF |
---|
| 669 | ENDIF |
---|
| 670 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 671 | THEN |
---|
[75] | 672 | IF ( .NOT. humidity ) THEN |
---|
[1] | 673 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
[94] | 674 | km_m, l_grid, pt_m, rif_m, tend, zu, & |
---|
| 675 | zw ) |
---|
[1] | 676 | ELSE |
---|
| 677 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
[94] | 678 | km_m, l_grid, vpt_m, rif_m, tend, zu, & |
---|
| 679 | zw ) |
---|
[1] | 680 | ENDIF |
---|
| 681 | ELSE |
---|
[75] | 682 | IF ( .NOT. humidity ) THEN |
---|
[1] | 683 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
[94] | 684 | l_grid, pt, rif, tend, zu, zw ) |
---|
[1] | 685 | ELSE |
---|
| 686 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
[94] | 687 | l_grid, vpt, rif, tend, zu, zw ) |
---|
[1] | 688 | ENDIF |
---|
| 689 | ENDIF |
---|
| 690 | ENDIF |
---|
| 691 | CALL production_e( i, j ) |
---|
| 692 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 693 | |
---|
| 694 | ! |
---|
| 695 | !-- Prognostic equation for TKE. |
---|
| 696 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 697 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 698 | !-- value is reduced by 90%. |
---|
[19] | 699 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 700 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 701 | dt_3d * ( & |
---|
| 702 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 703 | ) |
---|
| 704 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 705 | ENDDO |
---|
| 706 | |
---|
| 707 | ! |
---|
| 708 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 709 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 710 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 711 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 712 | te_m(k,j,i) = tend(k,j,i) |
---|
| 713 | ENDDO |
---|
| 714 | ELSEIF ( intermediate_timestep_count < & |
---|
| 715 | intermediate_timestep_count_max ) THEN |
---|
[19] | 716 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 717 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 718 | ENDDO |
---|
| 719 | ENDIF |
---|
| 720 | ENDIF |
---|
| 721 | |
---|
| 722 | ENDDO |
---|
| 723 | ENDDO |
---|
| 724 | |
---|
| 725 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 726 | |
---|
| 727 | ENDIF |
---|
| 728 | |
---|
| 729 | |
---|
[63] | 730 | END SUBROUTINE prognostic_equations_noopt |
---|
[1] | 731 | |
---|
| 732 | |
---|
[63] | 733 | SUBROUTINE prognostic_equations_cache |
---|
[1] | 734 | |
---|
| 735 | !------------------------------------------------------------------------------! |
---|
| 736 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 737 | ! be called for the standard Piascek-Williams advection scheme. |
---|
| 738 | ! |
---|
[95] | 739 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 740 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 741 | ! these loops. |
---|
[1] | 742 | ! |
---|
| 743 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 744 | !------------------------------------------------------------------------------! |
---|
| 745 | |
---|
| 746 | IMPLICIT NONE |
---|
| 747 | |
---|
| 748 | CHARACTER (LEN=9) :: time_to_string |
---|
| 749 | INTEGER :: i, j, k |
---|
| 750 | |
---|
| 751 | |
---|
| 752 | ! |
---|
| 753 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 754 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 755 | |
---|
| 756 | |
---|
| 757 | ! |
---|
| 758 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 759 | !-- global communication |
---|
| 760 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
[75] | 761 | IF ( humidity ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
[1] | 762 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
| 763 | |
---|
| 764 | |
---|
| 765 | ! |
---|
| 766 | !-- Loop over all prognostic equations |
---|
| 767 | !$OMP PARALLEL private (i,j,k) |
---|
| 768 | !$OMP DO |
---|
[75] | 769 | DO i = nxl, nxr |
---|
| 770 | DO j = nys, nyn |
---|
[1] | 771 | ! |
---|
| 772 | !-- Tendency terms for u-velocity component |
---|
| 773 | IF ( j < nyn+1 ) THEN |
---|
| 774 | |
---|
| 775 | tend(:,j,i) = 0.0 |
---|
| 776 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 777 | CALL advec_u_pw( i, j ) |
---|
| 778 | ELSE |
---|
| 779 | CALL advec_u_up( i, j ) |
---|
| 780 | ENDIF |
---|
| 781 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 782 | THEN |
---|
| 783 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
[57] | 784 | u_m, usws_m, v_m, w_m ) |
---|
[1] | 785 | ELSE |
---|
| 786 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
[57] | 787 | usws, v, w ) |
---|
[1] | 788 | ENDIF |
---|
| 789 | CALL coriolis( i, j, 1 ) |
---|
| 790 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, 1, 4 ) |
---|
| 791 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 792 | |
---|
| 793 | ! |
---|
| 794 | !-- Prognostic equation for u-velocity component |
---|
| 795 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 796 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 797 | dt_3d * ( & |
---|
| 798 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 799 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 800 | ) - & |
---|
| 801 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 802 | ENDDO |
---|
| 803 | |
---|
| 804 | ! |
---|
| 805 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 806 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 807 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 808 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 809 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 810 | ENDDO |
---|
| 811 | ELSEIF ( intermediate_timestep_count < & |
---|
| 812 | intermediate_timestep_count_max ) THEN |
---|
| 813 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 814 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 815 | ENDDO |
---|
| 816 | ENDIF |
---|
| 817 | ENDIF |
---|
| 818 | |
---|
| 819 | ENDIF |
---|
| 820 | |
---|
| 821 | ! |
---|
| 822 | !-- Tendency terms for v-velocity component |
---|
| 823 | IF ( i < nxr+1 ) THEN |
---|
| 824 | |
---|
| 825 | tend(:,j,i) = 0.0 |
---|
| 826 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 827 | CALL advec_v_pw( i, j ) |
---|
| 828 | ELSE |
---|
| 829 | CALL advec_v_up( i, j ) |
---|
| 830 | ENDIF |
---|
| 831 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 832 | THEN |
---|
| 833 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
[57] | 834 | u_m, v_m, vsws_m, w_m ) |
---|
[1] | 835 | ELSE |
---|
| 836 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[57] | 837 | vsws, w ) |
---|
[1] | 838 | ENDIF |
---|
| 839 | CALL coriolis( i, j, 2 ) |
---|
| 840 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 841 | |
---|
| 842 | ! |
---|
| 843 | !-- Prognostic equation for v-velocity component |
---|
| 844 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 845 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 846 | dt_3d * ( & |
---|
| 847 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 848 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 849 | ) - & |
---|
| 850 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 851 | ENDDO |
---|
| 852 | |
---|
| 853 | ! |
---|
| 854 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 855 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 856 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 857 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 858 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 859 | ENDDO |
---|
| 860 | ELSEIF ( intermediate_timestep_count < & |
---|
| 861 | intermediate_timestep_count_max ) THEN |
---|
| 862 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 863 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 864 | ENDDO |
---|
| 865 | ENDIF |
---|
| 866 | ENDIF |
---|
| 867 | |
---|
| 868 | ENDIF |
---|
| 869 | |
---|
| 870 | ! |
---|
| 871 | !-- Tendency terms for w-velocity component |
---|
| 872 | IF ( i < nxr+1 .AND. j < nyn+1 ) THEN |
---|
| 873 | |
---|
| 874 | tend(:,j,i) = 0.0 |
---|
| 875 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 876 | CALL advec_w_pw( i, j ) |
---|
| 877 | ELSE |
---|
| 878 | CALL advec_w_up( i, j ) |
---|
| 879 | ENDIF |
---|
| 880 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 881 | THEN |
---|
| 882 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
[57] | 883 | km_damp_y, tend, u_m, v_m, w_m ) |
---|
[1] | 884 | ELSE |
---|
| 885 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
[57] | 886 | tend, u, v, w ) |
---|
[1] | 887 | ENDIF |
---|
| 888 | CALL coriolis( i, j, 3 ) |
---|
[75] | 889 | IF ( .NOT. humidity ) THEN |
---|
[1] | 890 | CALL buoyancy( i, j, pt, 3, 4 ) |
---|
| 891 | ELSE |
---|
| 892 | CALL buoyancy( i, j, vpt, 3, 44 ) |
---|
| 893 | ENDIF |
---|
| 894 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 895 | |
---|
| 896 | ! |
---|
| 897 | !-- Prognostic equation for w-velocity component |
---|
| 898 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 899 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 900 | dt_3d * ( & |
---|
| 901 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 902 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 903 | ) - & |
---|
| 904 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 905 | ENDDO |
---|
| 906 | |
---|
| 907 | ! |
---|
| 908 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 909 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 910 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 911 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 912 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 913 | ENDDO |
---|
| 914 | ELSEIF ( intermediate_timestep_count < & |
---|
| 915 | intermediate_timestep_count_max ) THEN |
---|
| 916 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 917 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 918 | ENDDO |
---|
| 919 | ENDIF |
---|
| 920 | ENDIF |
---|
| 921 | |
---|
| 922 | ! |
---|
| 923 | !-- Tendency terms for potential temperature |
---|
| 924 | tend(:,j,i) = 0.0 |
---|
| 925 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 926 | CALL advec_s_pw( i, j, pt ) |
---|
| 927 | ELSE |
---|
| 928 | CALL advec_s_up( i, j, pt ) |
---|
| 929 | ENDIF |
---|
| 930 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 931 | THEN |
---|
[19] | 932 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
| 933 | tswst_m, tend ) |
---|
[1] | 934 | ELSE |
---|
[19] | 935 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 936 | ENDIF |
---|
| 937 | |
---|
| 938 | ! |
---|
| 939 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 940 | !-- processes |
---|
| 941 | IF ( radiation ) THEN |
---|
| 942 | CALL calc_radiation( i, j ) |
---|
| 943 | ENDIF |
---|
| 944 | |
---|
| 945 | ! |
---|
| 946 | !-- If required compute impact of latent heat due to precipitation |
---|
| 947 | IF ( precipitation ) THEN |
---|
| 948 | CALL impact_of_latent_heat( i, j ) |
---|
| 949 | ENDIF |
---|
| 950 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 951 | |
---|
| 952 | ! |
---|
| 953 | !-- Prognostic equation for potential temperature |
---|
[19] | 954 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 955 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
| 956 | dt_3d * ( & |
---|
| 957 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 958 | ) - & |
---|
| 959 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 960 | ENDDO |
---|
| 961 | |
---|
| 962 | ! |
---|
| 963 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 964 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 965 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 966 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 967 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 968 | ENDDO |
---|
| 969 | ELSEIF ( intermediate_timestep_count < & |
---|
| 970 | intermediate_timestep_count_max ) THEN |
---|
[19] | 971 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 972 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 973 | 5.3125 * tpt_m(k,j,i) |
---|
| 974 | ENDDO |
---|
| 975 | ENDIF |
---|
| 976 | ENDIF |
---|
| 977 | |
---|
| 978 | ! |
---|
[95] | 979 | !-- If required, compute prognostic equation for salinity |
---|
| 980 | IF ( ocean ) THEN |
---|
| 981 | |
---|
| 982 | ! |
---|
| 983 | !-- Tendency-terms for salinity |
---|
| 984 | tend(:,j,i) = 0.0 |
---|
| 985 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 986 | THEN |
---|
| 987 | CALL advec_s_pw( i, j, sa ) |
---|
| 988 | ELSE |
---|
| 989 | CALL advec_s_up( i, j, sa ) |
---|
| 990 | ENDIF |
---|
| 991 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 992 | tend ) |
---|
| 993 | |
---|
| 994 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 995 | |
---|
| 996 | ! |
---|
| 997 | !-- Prognostic equation for salinity |
---|
| 998 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 999 | sa_p(k,j,i) = tsc(1) * sa(k,j,i) + & |
---|
| 1000 | dt_3d * ( & |
---|
| 1001 | tsc(2) * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 1002 | ) - & |
---|
| 1003 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 1004 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1005 | ENDDO |
---|
| 1006 | |
---|
| 1007 | ! |
---|
| 1008 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1009 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1010 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1011 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1012 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1013 | ENDDO |
---|
| 1014 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1015 | intermediate_timestep_count_max ) THEN |
---|
| 1016 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1017 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1018 | 5.3125 * tsa_m(k,j,i) |
---|
| 1019 | ENDDO |
---|
| 1020 | ENDIF |
---|
| 1021 | ENDIF |
---|
| 1022 | |
---|
| 1023 | ENDIF |
---|
| 1024 | |
---|
| 1025 | ! |
---|
[1] | 1026 | !-- If required, compute prognostic equation for total water content / |
---|
| 1027 | !-- scalar |
---|
[75] | 1028 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 1029 | |
---|
| 1030 | ! |
---|
| 1031 | !-- Tendency-terms for total water content / scalar |
---|
| 1032 | tend(:,j,i) = 0.0 |
---|
| 1033 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 1034 | THEN |
---|
| 1035 | CALL advec_s_pw( i, j, q ) |
---|
| 1036 | ELSE |
---|
| 1037 | CALL advec_s_up( i, j, q ) |
---|
| 1038 | ENDIF |
---|
| 1039 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 1040 | THEN |
---|
[19] | 1041 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
| 1042 | qswst_m, tend ) |
---|
[1] | 1043 | ELSE |
---|
[19] | 1044 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 1045 | tend ) |
---|
[1] | 1046 | ENDIF |
---|
| 1047 | |
---|
| 1048 | ! |
---|
| 1049 | !-- If required compute decrease of total water content due to |
---|
| 1050 | !-- precipitation |
---|
| 1051 | IF ( precipitation ) THEN |
---|
| 1052 | CALL calc_precipitation( i, j ) |
---|
| 1053 | ENDIF |
---|
| 1054 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 1055 | |
---|
| 1056 | ! |
---|
| 1057 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 1058 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1059 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
| 1060 | dt_3d * ( & |
---|
| 1061 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1062 | ) - & |
---|
| 1063 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 1064 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 1065 | ENDDO |
---|
| 1066 | |
---|
| 1067 | ! |
---|
| 1068 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1069 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1070 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 1071 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1072 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1073 | ENDDO |
---|
| 1074 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1075 | intermediate_timestep_count_max ) THEN |
---|
[19] | 1076 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1077 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1078 | 5.3125 * tq_m(k,j,i) |
---|
| 1079 | ENDDO |
---|
| 1080 | ENDIF |
---|
| 1081 | ENDIF |
---|
| 1082 | |
---|
| 1083 | ENDIF |
---|
| 1084 | |
---|
| 1085 | ! |
---|
| 1086 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1087 | !-- energy (TKE) |
---|
| 1088 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1089 | |
---|
| 1090 | ! |
---|
| 1091 | !-- Tendency-terms for TKE |
---|
| 1092 | tend(:,j,i) = 0.0 |
---|
| 1093 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 1094 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
| 1095 | CALL advec_s_pw( i, j, e ) |
---|
| 1096 | ELSE |
---|
| 1097 | CALL advec_s_up( i, j, e ) |
---|
| 1098 | ENDIF |
---|
| 1099 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 1100 | THEN |
---|
[75] | 1101 | IF ( .NOT. humidity ) THEN |
---|
[1] | 1102 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
[94] | 1103 | km_m, l_grid, pt_m, rif_m, tend, zu, & |
---|
| 1104 | zw ) |
---|
[1] | 1105 | ELSE |
---|
| 1106 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
[94] | 1107 | km_m, l_grid, vpt_m, rif_m, tend, zu, & |
---|
| 1108 | zw ) |
---|
[1] | 1109 | ENDIF |
---|
| 1110 | ELSE |
---|
[75] | 1111 | IF ( .NOT. humidity ) THEN |
---|
[1] | 1112 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
[94] | 1113 | l_grid, pt, rif, tend, zu, zw ) |
---|
[1] | 1114 | ELSE |
---|
| 1115 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
[94] | 1116 | l_grid, vpt, rif, tend, zu, zw ) |
---|
[1] | 1117 | ENDIF |
---|
| 1118 | ENDIF |
---|
| 1119 | CALL production_e( i, j ) |
---|
| 1120 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 1121 | |
---|
| 1122 | ! |
---|
| 1123 | !-- Prognostic equation for TKE. |
---|
| 1124 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1125 | !-- reasons in the course of the integration. In such cases the old |
---|
| 1126 | !-- TKE value is reduced by 90%. |
---|
[19] | 1127 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1128 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
| 1129 | dt_3d * ( & |
---|
| 1130 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 1131 | ) |
---|
| 1132 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1133 | ENDDO |
---|
| 1134 | |
---|
| 1135 | ! |
---|
| 1136 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1137 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1138 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 1139 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1140 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1141 | ENDDO |
---|
| 1142 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1143 | intermediate_timestep_count_max ) THEN |
---|
[19] | 1144 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1145 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1146 | 5.3125 * te_m(k,j,i) |
---|
| 1147 | ENDDO |
---|
| 1148 | ENDIF |
---|
| 1149 | ENDIF |
---|
| 1150 | |
---|
| 1151 | ENDIF ! TKE equation |
---|
| 1152 | |
---|
| 1153 | ENDIF ! Gridpoints excluding the non-cyclic wall |
---|
| 1154 | |
---|
| 1155 | ENDDO |
---|
| 1156 | ENDDO |
---|
| 1157 | !$OMP END PARALLEL |
---|
| 1158 | |
---|
| 1159 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 1160 | |
---|
| 1161 | |
---|
[63] | 1162 | END SUBROUTINE prognostic_equations_cache |
---|
[1] | 1163 | |
---|
| 1164 | |
---|
[63] | 1165 | SUBROUTINE prognostic_equations_vector |
---|
[1] | 1166 | |
---|
| 1167 | !------------------------------------------------------------------------------! |
---|
| 1168 | ! Version for vector machines |
---|
| 1169 | !------------------------------------------------------------------------------! |
---|
| 1170 | |
---|
| 1171 | IMPLICIT NONE |
---|
| 1172 | |
---|
| 1173 | CHARACTER (LEN=9) :: time_to_string |
---|
| 1174 | INTEGER :: i, j, k |
---|
| 1175 | REAL :: sat, sbt |
---|
| 1176 | |
---|
| 1177 | ! |
---|
| 1178 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 1179 | !-- global communication |
---|
| 1180 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
[75] | 1181 | IF ( humidity ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
[1] | 1182 | |
---|
| 1183 | ! |
---|
| 1184 | !-- u-velocity component |
---|
| 1185 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1186 | |
---|
| 1187 | ! |
---|
| 1188 | !-- u-tendency terms with communication |
---|
| 1189 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1190 | tend = 0.0 |
---|
| 1191 | CALL advec_u_ups |
---|
| 1192 | ENDIF |
---|
| 1193 | |
---|
| 1194 | ! |
---|
| 1195 | !-- u-tendency terms with no communication |
---|
| 1196 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1197 | tend = 0.0 |
---|
| 1198 | CALL advec_u_pw |
---|
| 1199 | ELSE |
---|
| 1200 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1201 | tend = 0.0 |
---|
| 1202 | CALL advec_u_up |
---|
| 1203 | ENDIF |
---|
| 1204 | ENDIF |
---|
| 1205 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1206 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, v_m, & |
---|
[57] | 1207 | w_m ) |
---|
[1] | 1208 | ELSE |
---|
[57] | 1209 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, v, w ) |
---|
[1] | 1210 | ENDIF |
---|
| 1211 | CALL coriolis( 1 ) |
---|
| 1212 | IF ( sloping_surface ) CALL buoyancy( pt, 1, 4 ) |
---|
| 1213 | CALL user_actions( 'u-tendency' ) |
---|
| 1214 | |
---|
| 1215 | ! |
---|
| 1216 | !-- Prognostic equation for u-velocity component |
---|
[75] | 1217 | DO i = nxl, nxr |
---|
[1] | 1218 | DO j = nys, nyn |
---|
| 1219 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1220 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 1221 | dt_3d * ( & |
---|
| 1222 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 1223 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 1224 | ) - & |
---|
| 1225 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1226 | ENDDO |
---|
| 1227 | ENDDO |
---|
| 1228 | ENDDO |
---|
| 1229 | |
---|
| 1230 | ! |
---|
| 1231 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1232 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1233 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[75] | 1234 | DO i = nxl, nxr |
---|
[1] | 1235 | DO j = nys, nyn |
---|
| 1236 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1237 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1238 | ENDDO |
---|
| 1239 | ENDDO |
---|
| 1240 | ENDDO |
---|
| 1241 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1242 | intermediate_timestep_count_max ) THEN |
---|
[75] | 1243 | DO i = nxl, nxr |
---|
[1] | 1244 | DO j = nys, nyn |
---|
| 1245 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1246 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 1247 | ENDDO |
---|
| 1248 | ENDDO |
---|
| 1249 | ENDDO |
---|
| 1250 | ENDIF |
---|
| 1251 | ENDIF |
---|
| 1252 | |
---|
| 1253 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1254 | |
---|
| 1255 | ! |
---|
| 1256 | !-- v-velocity component |
---|
| 1257 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1258 | |
---|
| 1259 | ! |
---|
| 1260 | !-- v-tendency terms with communication |
---|
| 1261 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1262 | tend = 0.0 |
---|
| 1263 | CALL advec_v_ups |
---|
| 1264 | ENDIF |
---|
| 1265 | |
---|
| 1266 | ! |
---|
| 1267 | !-- v-tendency terms with no communication |
---|
| 1268 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1269 | tend = 0.0 |
---|
| 1270 | CALL advec_v_pw |
---|
| 1271 | ELSE |
---|
| 1272 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1273 | tend = 0.0 |
---|
| 1274 | CALL advec_v_up |
---|
| 1275 | ENDIF |
---|
| 1276 | ENDIF |
---|
| 1277 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1278 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
[57] | 1279 | w_m ) |
---|
[1] | 1280 | ELSE |
---|
[57] | 1281 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, w ) |
---|
[1] | 1282 | ENDIF |
---|
| 1283 | CALL coriolis( 2 ) |
---|
| 1284 | CALL user_actions( 'v-tendency' ) |
---|
| 1285 | |
---|
| 1286 | ! |
---|
| 1287 | !-- Prognostic equation for v-velocity component |
---|
| 1288 | DO i = nxl, nxr |
---|
[75] | 1289 | DO j = nys, nyn |
---|
[1] | 1290 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1291 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 1292 | dt_3d * ( & |
---|
| 1293 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 1294 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 1295 | ) - & |
---|
| 1296 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1297 | ENDDO |
---|
| 1298 | ENDDO |
---|
| 1299 | ENDDO |
---|
| 1300 | |
---|
| 1301 | ! |
---|
| 1302 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1303 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1304 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1305 | DO i = nxl, nxr |
---|
[75] | 1306 | DO j = nys, nyn |
---|
[1] | 1307 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1308 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1309 | ENDDO |
---|
| 1310 | ENDDO |
---|
| 1311 | ENDDO |
---|
| 1312 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1313 | intermediate_timestep_count_max ) THEN |
---|
| 1314 | DO i = nxl, nxr |
---|
[75] | 1315 | DO j = nys, nyn |
---|
[1] | 1316 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1317 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1318 | ENDDO |
---|
| 1319 | ENDDO |
---|
| 1320 | ENDDO |
---|
| 1321 | ENDIF |
---|
| 1322 | ENDIF |
---|
| 1323 | |
---|
| 1324 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1325 | |
---|
| 1326 | ! |
---|
| 1327 | !-- w-velocity component |
---|
| 1328 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1329 | |
---|
| 1330 | ! |
---|
| 1331 | !-- w-tendency terms with communication |
---|
| 1332 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1333 | tend = 0.0 |
---|
| 1334 | CALL advec_w_ups |
---|
| 1335 | ENDIF |
---|
| 1336 | |
---|
| 1337 | ! |
---|
| 1338 | !-- w-tendency terms with no communication |
---|
| 1339 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1340 | tend = 0.0 |
---|
| 1341 | CALL advec_w_pw |
---|
| 1342 | ELSE |
---|
| 1343 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1344 | tend = 0.0 |
---|
| 1345 | CALL advec_w_up |
---|
| 1346 | ENDIF |
---|
| 1347 | ENDIF |
---|
| 1348 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1349 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
[57] | 1350 | v_m, w_m ) |
---|
[1] | 1351 | ELSE |
---|
[57] | 1352 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w ) |
---|
[1] | 1353 | ENDIF |
---|
| 1354 | CALL coriolis( 3 ) |
---|
[75] | 1355 | IF ( .NOT. humidity ) THEN |
---|
[1] | 1356 | CALL buoyancy( pt, 3, 4 ) |
---|
| 1357 | ELSE |
---|
| 1358 | CALL buoyancy( vpt, 3, 44 ) |
---|
| 1359 | ENDIF |
---|
| 1360 | CALL user_actions( 'w-tendency' ) |
---|
| 1361 | |
---|
| 1362 | ! |
---|
| 1363 | !-- Prognostic equation for w-velocity component |
---|
| 1364 | DO i = nxl, nxr |
---|
| 1365 | DO j = nys, nyn |
---|
| 1366 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1367 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 1368 | dt_3d * ( & |
---|
| 1369 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 1370 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 1371 | ) - & |
---|
| 1372 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1373 | ENDDO |
---|
| 1374 | ENDDO |
---|
| 1375 | ENDDO |
---|
| 1376 | |
---|
| 1377 | ! |
---|
| 1378 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1379 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1380 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1381 | DO i = nxl, nxr |
---|
| 1382 | DO j = nys, nyn |
---|
| 1383 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1384 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1385 | ENDDO |
---|
| 1386 | ENDDO |
---|
| 1387 | ENDDO |
---|
| 1388 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1389 | intermediate_timestep_count_max ) THEN |
---|
| 1390 | DO i = nxl, nxr |
---|
| 1391 | DO j = nys, nyn |
---|
| 1392 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1393 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1394 | ENDDO |
---|
| 1395 | ENDDO |
---|
| 1396 | ENDDO |
---|
| 1397 | ENDIF |
---|
| 1398 | ENDIF |
---|
| 1399 | |
---|
| 1400 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1401 | |
---|
| 1402 | ! |
---|
| 1403 | !-- potential temperature |
---|
| 1404 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1405 | |
---|
| 1406 | ! |
---|
| 1407 | !-- pt-tendency terms with communication |
---|
[63] | 1408 | sat = tsc(1) |
---|
| 1409 | sbt = tsc(2) |
---|
[1] | 1410 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1411 | |
---|
| 1412 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1413 | ! |
---|
[63] | 1414 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1415 | !-- switched on. Thus: |
---|
| 1416 | sat = 1.0 |
---|
| 1417 | sbt = 1.0 |
---|
| 1418 | ENDIF |
---|
[1] | 1419 | tend = 0.0 |
---|
| 1420 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1421 | ELSE |
---|
| 1422 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 1423 | tend = 0.0 |
---|
| 1424 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 1425 | ENDIF |
---|
| 1426 | ENDIF |
---|
| 1427 | |
---|
| 1428 | ! |
---|
| 1429 | !-- pt-tendency terms with no communication |
---|
| 1430 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 1431 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 1432 | ELSE |
---|
| 1433 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1434 | tend = 0.0 |
---|
| 1435 | CALL advec_s_pw( pt ) |
---|
| 1436 | ELSE |
---|
| 1437 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1438 | tend = 0.0 |
---|
| 1439 | CALL advec_s_up( pt ) |
---|
| 1440 | ENDIF |
---|
| 1441 | ENDIF |
---|
| 1442 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[19] | 1443 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tswst_m, tend ) |
---|
[1] | 1444 | ELSE |
---|
[19] | 1445 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 1446 | ENDIF |
---|
| 1447 | ENDIF |
---|
| 1448 | |
---|
| 1449 | ! |
---|
| 1450 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 1451 | !-- processes |
---|
| 1452 | IF ( radiation ) THEN |
---|
| 1453 | CALL calc_radiation |
---|
| 1454 | ENDIF |
---|
| 1455 | |
---|
| 1456 | ! |
---|
| 1457 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1458 | IF ( precipitation ) THEN |
---|
| 1459 | CALL impact_of_latent_heat |
---|
| 1460 | ENDIF |
---|
| 1461 | CALL user_actions( 'pt-tendency' ) |
---|
| 1462 | |
---|
| 1463 | ! |
---|
| 1464 | !-- Prognostic equation for potential temperature |
---|
| 1465 | DO i = nxl, nxr |
---|
| 1466 | DO j = nys, nyn |
---|
[19] | 1467 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1468 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 1469 | dt_3d * ( & |
---|
| 1470 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1471 | ) - & |
---|
| 1472 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1473 | ENDDO |
---|
| 1474 | ENDDO |
---|
| 1475 | ENDDO |
---|
| 1476 | |
---|
| 1477 | ! |
---|
| 1478 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1479 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1480 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1481 | DO i = nxl, nxr |
---|
| 1482 | DO j = nys, nyn |
---|
[19] | 1483 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1484 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1485 | ENDDO |
---|
| 1486 | ENDDO |
---|
| 1487 | ENDDO |
---|
| 1488 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1489 | intermediate_timestep_count_max ) THEN |
---|
| 1490 | DO i = nxl, nxr |
---|
| 1491 | DO j = nys, nyn |
---|
[19] | 1492 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1493 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 1494 | ENDDO |
---|
| 1495 | ENDDO |
---|
| 1496 | ENDDO |
---|
| 1497 | ENDIF |
---|
| 1498 | ENDIF |
---|
| 1499 | |
---|
| 1500 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1501 | |
---|
| 1502 | ! |
---|
[95] | 1503 | !-- If required, compute prognostic equation for salinity |
---|
| 1504 | IF ( ocean ) THEN |
---|
| 1505 | |
---|
| 1506 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1507 | |
---|
| 1508 | ! |
---|
| 1509 | !-- sa-tendency terms with communication |
---|
| 1510 | sat = tsc(1) |
---|
| 1511 | sbt = tsc(2) |
---|
| 1512 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1513 | |
---|
| 1514 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1515 | ! |
---|
| 1516 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1517 | !-- switched on. Thus: |
---|
| 1518 | sat = 1.0 |
---|
| 1519 | sbt = 1.0 |
---|
| 1520 | ENDIF |
---|
| 1521 | tend = 0.0 |
---|
| 1522 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 1523 | ELSE |
---|
| 1524 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1525 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1526 | tend = 0.0 |
---|
| 1527 | CALL advec_s_ups( sa, 'sa' ) |
---|
| 1528 | ENDIF |
---|
| 1529 | ENDIF |
---|
| 1530 | ENDIF |
---|
| 1531 | |
---|
| 1532 | ! |
---|
| 1533 | !-- Scalar/q-tendency terms with no communication |
---|
| 1534 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1535 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, tend ) |
---|
| 1536 | ELSE |
---|
| 1537 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1538 | tend = 0.0 |
---|
| 1539 | CALL advec_s_pw( sa ) |
---|
| 1540 | ELSE |
---|
| 1541 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1542 | tend = 0.0 |
---|
| 1543 | CALL advec_s_up( sa ) |
---|
| 1544 | ENDIF |
---|
| 1545 | ENDIF |
---|
| 1546 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, tend ) |
---|
| 1547 | ENDIF |
---|
| 1548 | |
---|
| 1549 | CALL user_actions( 'sa-tendency' ) |
---|
| 1550 | |
---|
| 1551 | ! |
---|
| 1552 | !-- Prognostic equation for salinity |
---|
| 1553 | DO i = nxl, nxr |
---|
| 1554 | DO j = nys, nyn |
---|
| 1555 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1556 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
| 1557 | dt_3d * ( & |
---|
| 1558 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 1559 | ) - & |
---|
| 1560 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 1561 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1562 | ENDDO |
---|
| 1563 | ENDDO |
---|
| 1564 | ENDDO |
---|
| 1565 | |
---|
| 1566 | ! |
---|
| 1567 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1568 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1569 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1570 | DO i = nxl, nxr |
---|
| 1571 | DO j = nys, nyn |
---|
| 1572 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1573 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1574 | ENDDO |
---|
| 1575 | ENDDO |
---|
| 1576 | ENDDO |
---|
| 1577 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1578 | intermediate_timestep_count_max ) THEN |
---|
| 1579 | DO i = nxl, nxr |
---|
| 1580 | DO j = nys, nyn |
---|
| 1581 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1582 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1583 | 5.3125 * tsa_m(k,j,i) |
---|
| 1584 | ENDDO |
---|
| 1585 | ENDDO |
---|
| 1586 | ENDDO |
---|
| 1587 | ENDIF |
---|
| 1588 | ENDIF |
---|
| 1589 | |
---|
| 1590 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1591 | |
---|
| 1592 | ENDIF |
---|
| 1593 | |
---|
| 1594 | ! |
---|
[1] | 1595 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 1596 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 1597 | |
---|
| 1598 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1599 | |
---|
| 1600 | ! |
---|
| 1601 | !-- Scalar/q-tendency terms with communication |
---|
[63] | 1602 | sat = tsc(1) |
---|
| 1603 | sbt = tsc(2) |
---|
[1] | 1604 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1605 | |
---|
| 1606 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1607 | ! |
---|
[63] | 1608 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1609 | !-- switched on. Thus: |
---|
| 1610 | sat = 1.0 |
---|
| 1611 | sbt = 1.0 |
---|
| 1612 | ENDIF |
---|
[1] | 1613 | tend = 0.0 |
---|
| 1614 | CALL advec_s_bc( q, 'q' ) |
---|
| 1615 | ELSE |
---|
| 1616 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1617 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1618 | tend = 0.0 |
---|
| 1619 | CALL advec_s_ups( q, 'q' ) |
---|
| 1620 | ENDIF |
---|
| 1621 | ENDIF |
---|
| 1622 | ENDIF |
---|
| 1623 | |
---|
| 1624 | ! |
---|
| 1625 | !-- Scalar/q-tendency terms with no communication |
---|
| 1626 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 1627 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, tend ) |
---|
[1] | 1628 | ELSE |
---|
| 1629 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1630 | tend = 0.0 |
---|
| 1631 | CALL advec_s_pw( q ) |
---|
| 1632 | ELSE |
---|
| 1633 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1634 | tend = 0.0 |
---|
| 1635 | CALL advec_s_up( q ) |
---|
| 1636 | ENDIF |
---|
| 1637 | ENDIF |
---|
| 1638 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[19] | 1639 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, qswst_m, tend ) |
---|
[1] | 1640 | ELSE |
---|
[19] | 1641 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, tend ) |
---|
[1] | 1642 | ENDIF |
---|
| 1643 | ENDIF |
---|
| 1644 | |
---|
| 1645 | ! |
---|
| 1646 | !-- If required compute decrease of total water content due to |
---|
| 1647 | !-- precipitation |
---|
| 1648 | IF ( precipitation ) THEN |
---|
| 1649 | CALL calc_precipitation |
---|
| 1650 | ENDIF |
---|
| 1651 | CALL user_actions( 'q-tendency' ) |
---|
| 1652 | |
---|
| 1653 | ! |
---|
| 1654 | !-- Prognostic equation for total water content / scalar |
---|
| 1655 | DO i = nxl, nxr |
---|
| 1656 | DO j = nys, nyn |
---|
[19] | 1657 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1658 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 1659 | dt_3d * ( & |
---|
| 1660 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1661 | ) - & |
---|
| 1662 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 1663 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 1664 | ENDDO |
---|
| 1665 | ENDDO |
---|
| 1666 | ENDDO |
---|
| 1667 | |
---|
| 1668 | ! |
---|
| 1669 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1670 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1671 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1672 | DO i = nxl, nxr |
---|
| 1673 | DO j = nys, nyn |
---|
[19] | 1674 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1675 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1676 | ENDDO |
---|
| 1677 | ENDDO |
---|
| 1678 | ENDDO |
---|
| 1679 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1680 | intermediate_timestep_count_max ) THEN |
---|
| 1681 | DO i = nxl, nxr |
---|
| 1682 | DO j = nys, nyn |
---|
[19] | 1683 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1684 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1685 | ENDDO |
---|
| 1686 | ENDDO |
---|
| 1687 | ENDDO |
---|
| 1688 | ENDIF |
---|
| 1689 | ENDIF |
---|
| 1690 | |
---|
| 1691 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1692 | |
---|
| 1693 | ENDIF |
---|
| 1694 | |
---|
| 1695 | ! |
---|
| 1696 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1697 | !-- energy (TKE) |
---|
| 1698 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1699 | |
---|
| 1700 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1701 | |
---|
| 1702 | ! |
---|
| 1703 | !-- TKE-tendency terms with communication |
---|
| 1704 | CALL production_e_init |
---|
[63] | 1705 | |
---|
| 1706 | sat = tsc(1) |
---|
| 1707 | sbt = tsc(2) |
---|
[1] | 1708 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1709 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1710 | |
---|
| 1711 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1712 | ! |
---|
[63] | 1713 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1714 | !-- switched on. Thus: |
---|
| 1715 | sat = 1.0 |
---|
| 1716 | sbt = 1.0 |
---|
| 1717 | ENDIF |
---|
[1] | 1718 | tend = 0.0 |
---|
| 1719 | CALL advec_s_bc( e, 'e' ) |
---|
| 1720 | ELSE |
---|
| 1721 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1722 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1723 | tend = 0.0 |
---|
| 1724 | CALL advec_s_ups( e, 'e' ) |
---|
| 1725 | ENDIF |
---|
| 1726 | ENDIF |
---|
| 1727 | ENDIF |
---|
| 1728 | ENDIF |
---|
| 1729 | |
---|
| 1730 | ! |
---|
| 1731 | !-- TKE-tendency terms with no communication |
---|
| 1732 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
| 1733 | THEN |
---|
[75] | 1734 | IF ( .NOT. humidity ) THEN |
---|
[1] | 1735 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
[94] | 1736 | rif, tend, zu, zw ) |
---|
[1] | 1737 | ELSE |
---|
| 1738 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
[94] | 1739 | rif, tend, zu, zw ) |
---|
[1] | 1740 | ENDIF |
---|
| 1741 | ELSE |
---|
| 1742 | IF ( use_upstream_for_tke ) THEN |
---|
| 1743 | tend = 0.0 |
---|
| 1744 | CALL advec_s_up( e ) |
---|
| 1745 | ELSE |
---|
| 1746 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1747 | tend = 0.0 |
---|
| 1748 | CALL advec_s_pw( e ) |
---|
| 1749 | ELSE |
---|
| 1750 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1751 | tend = 0.0 |
---|
| 1752 | CALL advec_s_up( e ) |
---|
| 1753 | ENDIF |
---|
| 1754 | ENDIF |
---|
| 1755 | ENDIF |
---|
| 1756 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[75] | 1757 | IF ( .NOT. humidity ) THEN |
---|
[1] | 1758 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
[94] | 1759 | pt_m, rif_m, tend, zu, zw ) |
---|
[1] | 1760 | ELSE |
---|
| 1761 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
[94] | 1762 | vpt_m, rif_m, tend, zu, zw ) |
---|
[1] | 1763 | ENDIF |
---|
| 1764 | ELSE |
---|
[75] | 1765 | IF ( .NOT. humidity ) THEN |
---|
[1] | 1766 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
[94] | 1767 | rif, tend, zu, zw ) |
---|
[1] | 1768 | ELSE |
---|
| 1769 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
[94] | 1770 | rif, tend, zu, zw ) |
---|
[1] | 1771 | ENDIF |
---|
| 1772 | ENDIF |
---|
| 1773 | ENDIF |
---|
| 1774 | CALL production_e |
---|
| 1775 | CALL user_actions( 'e-tendency' ) |
---|
| 1776 | |
---|
| 1777 | ! |
---|
| 1778 | !-- Prognostic equation for TKE. |
---|
| 1779 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1780 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1781 | !-- value is reduced by 90%. |
---|
| 1782 | DO i = nxl, nxr |
---|
| 1783 | DO j = nys, nyn |
---|
[19] | 1784 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1785 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 1786 | dt_3d * ( & |
---|
| 1787 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 1788 | ) |
---|
| 1789 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1790 | ENDDO |
---|
| 1791 | ENDDO |
---|
| 1792 | ENDDO |
---|
| 1793 | |
---|
| 1794 | ! |
---|
| 1795 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1796 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1797 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1798 | DO i = nxl, nxr |
---|
| 1799 | DO j = nys, nyn |
---|
[19] | 1800 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1801 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1802 | ENDDO |
---|
| 1803 | ENDDO |
---|
| 1804 | ENDDO |
---|
| 1805 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1806 | intermediate_timestep_count_max ) THEN |
---|
| 1807 | DO i = nxl, nxr |
---|
| 1808 | DO j = nys, nyn |
---|
[19] | 1809 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1810 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 1811 | ENDDO |
---|
| 1812 | ENDDO |
---|
| 1813 | ENDDO |
---|
| 1814 | ENDIF |
---|
| 1815 | ENDIF |
---|
| 1816 | |
---|
| 1817 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1818 | |
---|
| 1819 | ENDIF |
---|
| 1820 | |
---|
| 1821 | |
---|
[63] | 1822 | END SUBROUTINE prognostic_equations_vector |
---|
[1] | 1823 | |
---|
| 1824 | |
---|
| 1825 | END MODULE prognostic_equations_mod |
---|