[1] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[77] | 6 | ! |
---|
[1] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: prognostic_equations.f90 77 2007-03-29 04:26:56Z raasch $ |
---|
[39] | 11 | ! |
---|
[77] | 12 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 13 | ! checking for negative q and limiting for positive values, |
---|
| 14 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
| 15 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
| 16 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
| 17 | ! _vector-version |
---|
| 18 | ! |
---|
[39] | 19 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 20 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
| 21 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
| 22 | ! |
---|
[3] | 23 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 24 | ! |
---|
[1] | 25 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
| 26 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
| 27 | ! regardless of the timestep scheme used for the other quantities, |
---|
| 28 | ! new argument diss in call of diffusion_e |
---|
| 29 | ! |
---|
| 30 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 31 | ! Initial revision |
---|
| 32 | ! |
---|
| 33 | ! |
---|
| 34 | ! Description: |
---|
| 35 | ! ------------ |
---|
[19] | 36 | ! Solving the prognostic equations. |
---|
[1] | 37 | !------------------------------------------------------------------------------! |
---|
| 38 | |
---|
| 39 | USE arrays_3d |
---|
| 40 | USE control_parameters |
---|
| 41 | USE cpulog |
---|
| 42 | USE grid_variables |
---|
| 43 | USE indices |
---|
| 44 | USE interfaces |
---|
| 45 | USE pegrid |
---|
| 46 | USE pointer_interfaces |
---|
| 47 | USE statistics |
---|
| 48 | |
---|
| 49 | USE advec_s_pw_mod |
---|
| 50 | USE advec_s_up_mod |
---|
| 51 | USE advec_u_pw_mod |
---|
| 52 | USE advec_u_up_mod |
---|
| 53 | USE advec_v_pw_mod |
---|
| 54 | USE advec_v_up_mod |
---|
| 55 | USE advec_w_pw_mod |
---|
| 56 | USE advec_w_up_mod |
---|
| 57 | USE buoyancy_mod |
---|
| 58 | USE calc_precipitation_mod |
---|
| 59 | USE calc_radiation_mod |
---|
| 60 | USE coriolis_mod |
---|
| 61 | USE diffusion_e_mod |
---|
| 62 | USE diffusion_s_mod |
---|
| 63 | USE diffusion_u_mod |
---|
| 64 | USE diffusion_v_mod |
---|
| 65 | USE diffusion_w_mod |
---|
| 66 | USE impact_of_latent_heat_mod |
---|
| 67 | USE production_e_mod |
---|
| 68 | USE user_actions_mod |
---|
| 69 | |
---|
| 70 | |
---|
| 71 | PRIVATE |
---|
[63] | 72 | PUBLIC prognostic_equations_noopt, prognostic_equations_cache, & |
---|
| 73 | prognostic_equations_vector |
---|
[1] | 74 | |
---|
[63] | 75 | INTERFACE prognostic_equations_noopt |
---|
| 76 | MODULE PROCEDURE prognostic_equations_noopt |
---|
| 77 | END INTERFACE prognostic_equations_noopt |
---|
[1] | 78 | |
---|
[63] | 79 | INTERFACE prognostic_equations_cache |
---|
| 80 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 81 | END INTERFACE prognostic_equations_cache |
---|
[1] | 82 | |
---|
[63] | 83 | INTERFACE prognostic_equations_vector |
---|
| 84 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 85 | END INTERFACE prognostic_equations_vector |
---|
[1] | 86 | |
---|
| 87 | |
---|
| 88 | CONTAINS |
---|
| 89 | |
---|
| 90 | |
---|
[63] | 91 | SUBROUTINE prognostic_equations_noopt |
---|
[1] | 92 | |
---|
| 93 | !------------------------------------------------------------------------------! |
---|
| 94 | ! Version with single loop optimization |
---|
| 95 | ! |
---|
| 96 | ! (Optimized over each single prognostic equation.) |
---|
| 97 | !------------------------------------------------------------------------------! |
---|
| 98 | |
---|
| 99 | IMPLICIT NONE |
---|
| 100 | |
---|
| 101 | CHARACTER (LEN=9) :: time_to_string |
---|
| 102 | INTEGER :: i, j, k |
---|
| 103 | REAL :: sat, sbt |
---|
| 104 | |
---|
| 105 | ! |
---|
| 106 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 107 | !-- global communication |
---|
| 108 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
[75] | 109 | IF ( humidity ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
[1] | 110 | |
---|
| 111 | ! |
---|
| 112 | !-- u-velocity component |
---|
| 113 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 114 | |
---|
| 115 | ! |
---|
| 116 | !-- u-tendency terms with communication |
---|
| 117 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 118 | tend = 0.0 |
---|
| 119 | CALL advec_u_ups |
---|
| 120 | ENDIF |
---|
| 121 | |
---|
| 122 | ! |
---|
| 123 | !-- u-tendency terms with no communication |
---|
[75] | 124 | DO i = nxl, nxr |
---|
[1] | 125 | DO j = nys, nyn |
---|
| 126 | ! |
---|
| 127 | !-- Tendency terms |
---|
| 128 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 129 | tend(:,j,i) = 0.0 |
---|
| 130 | CALL advec_u_pw( i, j ) |
---|
| 131 | ELSE |
---|
| 132 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 133 | tend(:,j,i) = 0.0 |
---|
| 134 | CALL advec_u_up( i, j ) |
---|
| 135 | ENDIF |
---|
| 136 | ENDIF |
---|
| 137 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 138 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
[57] | 139 | usws_m, v_m, w_m ) |
---|
[1] | 140 | ELSE |
---|
| 141 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
[57] | 142 | v, w ) |
---|
[1] | 143 | ENDIF |
---|
| 144 | CALL coriolis( i, j, 1 ) |
---|
| 145 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, 1, 4 ) |
---|
| 146 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 147 | |
---|
| 148 | ! |
---|
| 149 | !-- Prognostic equation for u-velocity component |
---|
| 150 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 151 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 152 | dt_3d * ( & |
---|
| 153 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 154 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 155 | ) - & |
---|
| 156 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 157 | ENDDO |
---|
| 158 | |
---|
| 159 | ! |
---|
| 160 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 161 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 162 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 163 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 164 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 165 | ENDDO |
---|
| 166 | ELSEIF ( intermediate_timestep_count < & |
---|
| 167 | intermediate_timestep_count_max ) THEN |
---|
| 168 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 169 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 170 | ENDDO |
---|
| 171 | ENDIF |
---|
| 172 | ENDIF |
---|
| 173 | |
---|
| 174 | ENDDO |
---|
| 175 | ENDDO |
---|
| 176 | |
---|
| 177 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 178 | |
---|
| 179 | ! |
---|
| 180 | !-- v-velocity component |
---|
| 181 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 182 | |
---|
| 183 | ! |
---|
| 184 | !-- v-tendency terms with communication |
---|
| 185 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 186 | tend = 0.0 |
---|
| 187 | CALL advec_v_ups |
---|
| 188 | ENDIF |
---|
| 189 | |
---|
| 190 | ! |
---|
| 191 | !-- v-tendency terms with no communication |
---|
| 192 | DO i = nxl, nxr |
---|
[75] | 193 | DO j = nys, nyn |
---|
[1] | 194 | ! |
---|
| 195 | !-- Tendency terms |
---|
| 196 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 197 | tend(:,j,i) = 0.0 |
---|
| 198 | CALL advec_v_pw( i, j ) |
---|
| 199 | ELSE |
---|
| 200 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 201 | tend(:,j,i) = 0.0 |
---|
| 202 | CALL advec_v_up( i, j ) |
---|
| 203 | ENDIF |
---|
| 204 | ENDIF |
---|
| 205 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 206 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
[57] | 207 | v_m, vsws_m, w_m ) |
---|
[1] | 208 | ELSE |
---|
| 209 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[57] | 210 | vsws, w ) |
---|
[1] | 211 | ENDIF |
---|
| 212 | CALL coriolis( i, j, 2 ) |
---|
| 213 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 214 | |
---|
| 215 | ! |
---|
| 216 | !-- Prognostic equation for v-velocity component |
---|
| 217 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 218 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 219 | dt_3d * ( & |
---|
| 220 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 221 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 222 | ) - & |
---|
| 223 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 224 | ENDDO |
---|
| 225 | |
---|
| 226 | ! |
---|
| 227 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 228 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 229 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 230 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 231 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 232 | ENDDO |
---|
| 233 | ELSEIF ( intermediate_timestep_count < & |
---|
| 234 | intermediate_timestep_count_max ) THEN |
---|
| 235 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 236 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 237 | ENDDO |
---|
| 238 | ENDIF |
---|
| 239 | ENDIF |
---|
| 240 | |
---|
| 241 | ENDDO |
---|
| 242 | ENDDO |
---|
| 243 | |
---|
| 244 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 245 | |
---|
| 246 | ! |
---|
| 247 | !-- w-velocity component |
---|
| 248 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 249 | |
---|
| 250 | ! |
---|
| 251 | !-- w-tendency terms with communication |
---|
| 252 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 253 | tend = 0.0 |
---|
| 254 | CALL advec_w_ups |
---|
| 255 | ENDIF |
---|
| 256 | |
---|
| 257 | ! |
---|
| 258 | !-- w-tendency terms with no communication |
---|
| 259 | DO i = nxl, nxr |
---|
| 260 | DO j = nys, nyn |
---|
| 261 | ! |
---|
| 262 | !-- Tendency terms |
---|
| 263 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 264 | tend(:,j,i) = 0.0 |
---|
| 265 | CALL advec_w_pw( i, j ) |
---|
| 266 | ELSE |
---|
| 267 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 268 | tend(:,j,i) = 0.0 |
---|
| 269 | CALL advec_w_up( i, j ) |
---|
| 270 | ENDIF |
---|
| 271 | ENDIF |
---|
| 272 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 273 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
[57] | 274 | tend, u_m, v_m, w_m ) |
---|
[1] | 275 | ELSE |
---|
| 276 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
[57] | 277 | tend, u, v, w ) |
---|
[1] | 278 | ENDIF |
---|
| 279 | CALL coriolis( i, j, 3 ) |
---|
[75] | 280 | IF ( .NOT. humidity ) THEN |
---|
[1] | 281 | CALL buoyancy( i, j, pt, 3, 4 ) |
---|
| 282 | ELSE |
---|
| 283 | CALL buoyancy( i, j, vpt, 3, 44 ) |
---|
| 284 | ENDIF |
---|
| 285 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 286 | |
---|
| 287 | ! |
---|
| 288 | !-- Prognostic equation for w-velocity component |
---|
| 289 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 290 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 291 | dt_3d * ( & |
---|
| 292 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 293 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 294 | ) - & |
---|
| 295 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 296 | ENDDO |
---|
| 297 | |
---|
| 298 | ! |
---|
| 299 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 300 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 301 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 302 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 303 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 304 | ENDDO |
---|
| 305 | ELSEIF ( intermediate_timestep_count < & |
---|
| 306 | intermediate_timestep_count_max ) THEN |
---|
| 307 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 308 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 309 | ENDDO |
---|
| 310 | ENDIF |
---|
| 311 | ENDIF |
---|
| 312 | |
---|
| 313 | ENDDO |
---|
| 314 | ENDDO |
---|
| 315 | |
---|
| 316 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 317 | |
---|
| 318 | ! |
---|
| 319 | !-- potential temperature |
---|
| 320 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 321 | |
---|
| 322 | ! |
---|
| 323 | !-- pt-tendency terms with communication |
---|
[70] | 324 | sat = tsc(1) |
---|
| 325 | sbt = tsc(2) |
---|
[1] | 326 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 327 | |
---|
| 328 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 329 | ! |
---|
[70] | 330 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 331 | !-- switched on. Thus: |
---|
| 332 | sat = 1.0 |
---|
| 333 | sbt = 1.0 |
---|
| 334 | ENDIF |
---|
[1] | 335 | tend = 0.0 |
---|
| 336 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 337 | ELSE |
---|
| 338 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 339 | tend = 0.0 |
---|
| 340 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 341 | ENDIF |
---|
| 342 | ENDIF |
---|
| 343 | |
---|
| 344 | ! |
---|
| 345 | !-- pt-tendency terms with no communication |
---|
| 346 | DO i = nxl, nxr |
---|
| 347 | DO j = nys, nyn |
---|
| 348 | ! |
---|
| 349 | !-- Tendency terms |
---|
| 350 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 351 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 352 | ELSE |
---|
| 353 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 354 | tend(:,j,i) = 0.0 |
---|
| 355 | CALL advec_s_pw( i, j, pt ) |
---|
| 356 | ELSE |
---|
| 357 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 358 | tend(:,j,i) = 0.0 |
---|
| 359 | CALL advec_s_up( i, j, pt ) |
---|
| 360 | ENDIF |
---|
| 361 | ENDIF |
---|
| 362 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 363 | THEN |
---|
[19] | 364 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
| 365 | tswst_m, tend ) |
---|
[1] | 366 | ELSE |
---|
[19] | 367 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 368 | ENDIF |
---|
| 369 | ENDIF |
---|
| 370 | |
---|
| 371 | ! |
---|
| 372 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 373 | !-- processes |
---|
| 374 | IF ( radiation ) THEN |
---|
| 375 | CALL calc_radiation( i, j ) |
---|
| 376 | ENDIF |
---|
| 377 | |
---|
| 378 | ! |
---|
| 379 | !-- If required compute impact of latent heat due to precipitation |
---|
| 380 | IF ( precipitation ) THEN |
---|
| 381 | CALL impact_of_latent_heat( i, j ) |
---|
| 382 | ENDIF |
---|
| 383 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 384 | |
---|
| 385 | ! |
---|
| 386 | !-- Prognostic equation for potential temperature |
---|
[19] | 387 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 388 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 389 | dt_3d * ( & |
---|
| 390 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 391 | ) - & |
---|
| 392 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 393 | ENDDO |
---|
| 394 | |
---|
| 395 | ! |
---|
| 396 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 397 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 398 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 399 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 400 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 401 | ENDDO |
---|
| 402 | ELSEIF ( intermediate_timestep_count < & |
---|
| 403 | intermediate_timestep_count_max ) THEN |
---|
[19] | 404 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 405 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 406 | ENDDO |
---|
| 407 | ENDIF |
---|
| 408 | ENDIF |
---|
| 409 | |
---|
| 410 | ENDDO |
---|
| 411 | ENDDO |
---|
| 412 | |
---|
| 413 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 414 | |
---|
| 415 | ! |
---|
| 416 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 417 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 418 | |
---|
| 419 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 420 | |
---|
| 421 | ! |
---|
| 422 | !-- Scalar/q-tendency terms with communication |
---|
[70] | 423 | sat = tsc(1) |
---|
| 424 | sbt = tsc(2) |
---|
[1] | 425 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 426 | |
---|
| 427 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 428 | ! |
---|
[70] | 429 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 430 | !-- switched on. Thus: |
---|
| 431 | sat = 1.0 |
---|
| 432 | sbt = 1.0 |
---|
| 433 | ENDIF |
---|
[1] | 434 | tend = 0.0 |
---|
| 435 | CALL advec_s_bc( q, 'q' ) |
---|
| 436 | ELSE |
---|
| 437 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 438 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 439 | tend = 0.0 |
---|
| 440 | CALL advec_s_ups( q, 'q' ) |
---|
| 441 | ENDIF |
---|
| 442 | ENDIF |
---|
| 443 | ENDIF |
---|
| 444 | |
---|
| 445 | ! |
---|
| 446 | !-- Scalar/q-tendency terms with no communication |
---|
| 447 | DO i = nxl, nxr |
---|
| 448 | DO j = nys, nyn |
---|
| 449 | ! |
---|
| 450 | !-- Tendency-terms |
---|
| 451 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 452 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, tend ) |
---|
[1] | 453 | ELSE |
---|
| 454 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 455 | tend(:,j,i) = 0.0 |
---|
| 456 | CALL advec_s_pw( i, j, q ) |
---|
| 457 | ELSE |
---|
| 458 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 459 | tend(:,j,i) = 0.0 |
---|
| 460 | CALL advec_s_up( i, j, q ) |
---|
| 461 | ENDIF |
---|
| 462 | ENDIF |
---|
| 463 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 464 | THEN |
---|
| 465 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
[19] | 466 | qswst_m, tend ) |
---|
| 467 | ELSE |
---|
| 468 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
[1] | 469 | tend ) |
---|
| 470 | ENDIF |
---|
| 471 | ENDIF |
---|
| 472 | |
---|
| 473 | ! |
---|
| 474 | !-- If required compute decrease of total water content due to |
---|
| 475 | !-- precipitation |
---|
| 476 | IF ( precipitation ) THEN |
---|
| 477 | CALL calc_precipitation( i, j ) |
---|
| 478 | ENDIF |
---|
| 479 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 480 | |
---|
| 481 | ! |
---|
| 482 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 483 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 484 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 485 | dt_3d * ( & |
---|
| 486 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 487 | ) - & |
---|
| 488 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 489 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 490 | ENDDO |
---|
| 491 | |
---|
| 492 | ! |
---|
| 493 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 494 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 495 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 496 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 497 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 498 | ENDDO |
---|
| 499 | ELSEIF ( intermediate_timestep_count < & |
---|
| 500 | intermediate_timestep_count_max ) THEN |
---|
[19] | 501 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 502 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 503 | ENDDO |
---|
| 504 | ENDIF |
---|
| 505 | ENDIF |
---|
| 506 | |
---|
| 507 | ENDDO |
---|
| 508 | ENDDO |
---|
| 509 | |
---|
| 510 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 511 | |
---|
| 512 | ENDIF |
---|
| 513 | |
---|
| 514 | ! |
---|
| 515 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 516 | !-- energy (TKE) |
---|
| 517 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 518 | |
---|
| 519 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 520 | |
---|
| 521 | ! |
---|
| 522 | !-- TKE-tendency terms with communication |
---|
| 523 | CALL production_e_init |
---|
[70] | 524 | |
---|
| 525 | sat = tsc(1) |
---|
| 526 | sbt = tsc(2) |
---|
[1] | 527 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 528 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 529 | |
---|
| 530 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 531 | ! |
---|
[70] | 532 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 533 | !-- switched on. Thus: |
---|
| 534 | sat = 1.0 |
---|
| 535 | sbt = 1.0 |
---|
| 536 | ENDIF |
---|
[1] | 537 | tend = 0.0 |
---|
| 538 | CALL advec_s_bc( e, 'e' ) |
---|
| 539 | ELSE |
---|
| 540 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 541 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 542 | tend = 0.0 |
---|
| 543 | CALL advec_s_ups( e, 'e' ) |
---|
| 544 | ENDIF |
---|
| 545 | ENDIF |
---|
| 546 | ENDIF |
---|
| 547 | ENDIF |
---|
| 548 | |
---|
| 549 | ! |
---|
| 550 | !-- TKE-tendency terms with no communication |
---|
| 551 | DO i = nxl, nxr |
---|
| 552 | DO j = nys, nyn |
---|
| 553 | ! |
---|
| 554 | !-- Tendency-terms |
---|
| 555 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
| 556 | .NOT. use_upstream_for_tke ) THEN |
---|
[75] | 557 | IF ( .NOT. humidity ) THEN |
---|
[1] | 558 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 559 | l_grid, pt, rif, tend, zu ) |
---|
| 560 | ELSE |
---|
| 561 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 562 | l_grid, vpt, rif, tend, zu ) |
---|
| 563 | ENDIF |
---|
| 564 | ELSE |
---|
| 565 | IF ( use_upstream_for_tke ) THEN |
---|
| 566 | tend(:,j,i) = 0.0 |
---|
| 567 | CALL advec_s_up( i, j, e ) |
---|
| 568 | ELSE |
---|
| 569 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 570 | THEN |
---|
| 571 | tend(:,j,i) = 0.0 |
---|
| 572 | CALL advec_s_pw( i, j, e ) |
---|
| 573 | ELSE |
---|
| 574 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 575 | tend(:,j,i) = 0.0 |
---|
| 576 | CALL advec_s_up( i, j, e ) |
---|
| 577 | ENDIF |
---|
| 578 | ENDIF |
---|
| 579 | ENDIF |
---|
| 580 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 581 | THEN |
---|
[75] | 582 | IF ( .NOT. humidity ) THEN |
---|
[1] | 583 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 584 | km_m, l_grid, pt_m, rif_m, tend, zu ) |
---|
| 585 | ELSE |
---|
| 586 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 587 | km_m, l_grid, vpt_m, rif_m, tend, zu ) |
---|
| 588 | ENDIF |
---|
| 589 | ELSE |
---|
[75] | 590 | IF ( .NOT. humidity ) THEN |
---|
[1] | 591 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 592 | l_grid, pt, rif, tend, zu ) |
---|
| 593 | ELSE |
---|
| 594 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 595 | l_grid, vpt, rif, tend, zu ) |
---|
| 596 | ENDIF |
---|
| 597 | ENDIF |
---|
| 598 | ENDIF |
---|
| 599 | CALL production_e( i, j ) |
---|
| 600 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 601 | |
---|
| 602 | ! |
---|
| 603 | !-- Prognostic equation for TKE. |
---|
| 604 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 605 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 606 | !-- value is reduced by 90%. |
---|
[19] | 607 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 608 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 609 | dt_3d * ( & |
---|
| 610 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 611 | ) |
---|
| 612 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 613 | ENDDO |
---|
| 614 | |
---|
| 615 | ! |
---|
| 616 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 617 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 618 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 619 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 620 | te_m(k,j,i) = tend(k,j,i) |
---|
| 621 | ENDDO |
---|
| 622 | ELSEIF ( intermediate_timestep_count < & |
---|
| 623 | intermediate_timestep_count_max ) THEN |
---|
[19] | 624 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 625 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 626 | ENDDO |
---|
| 627 | ENDIF |
---|
| 628 | ENDIF |
---|
| 629 | |
---|
| 630 | ENDDO |
---|
| 631 | ENDDO |
---|
| 632 | |
---|
| 633 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 634 | |
---|
| 635 | ENDIF |
---|
| 636 | |
---|
| 637 | |
---|
[63] | 638 | END SUBROUTINE prognostic_equations_noopt |
---|
[1] | 639 | |
---|
| 640 | |
---|
[63] | 641 | SUBROUTINE prognostic_equations_cache |
---|
[1] | 642 | |
---|
| 643 | !------------------------------------------------------------------------------! |
---|
| 644 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 645 | ! be called for the standard Piascek-Williams advection scheme. |
---|
| 646 | ! |
---|
| 647 | ! The call of this subroutine is embedded in two DO loops over i and j, thus |
---|
| 648 | ! communication between CPUs is not allowed in this subroutine. |
---|
| 649 | ! |
---|
| 650 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 651 | !------------------------------------------------------------------------------! |
---|
| 652 | |
---|
| 653 | IMPLICIT NONE |
---|
| 654 | |
---|
| 655 | CHARACTER (LEN=9) :: time_to_string |
---|
| 656 | INTEGER :: i, j, k |
---|
| 657 | |
---|
| 658 | |
---|
| 659 | ! |
---|
| 660 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 661 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 662 | |
---|
| 663 | |
---|
| 664 | ! |
---|
| 665 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 666 | !-- global communication |
---|
| 667 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
[75] | 668 | IF ( humidity ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
[1] | 669 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
| 670 | |
---|
| 671 | |
---|
| 672 | ! |
---|
| 673 | !-- Loop over all prognostic equations |
---|
| 674 | !$OMP PARALLEL private (i,j,k) |
---|
| 675 | !$OMP DO |
---|
[75] | 676 | DO i = nxl, nxr |
---|
| 677 | DO j = nys, nyn |
---|
[1] | 678 | ! |
---|
| 679 | !-- Tendency terms for u-velocity component |
---|
| 680 | IF ( j < nyn+1 ) THEN |
---|
| 681 | |
---|
| 682 | tend(:,j,i) = 0.0 |
---|
| 683 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 684 | CALL advec_u_pw( i, j ) |
---|
| 685 | ELSE |
---|
| 686 | CALL advec_u_up( i, j ) |
---|
| 687 | ENDIF |
---|
| 688 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 689 | THEN |
---|
| 690 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
[57] | 691 | u_m, usws_m, v_m, w_m ) |
---|
[1] | 692 | ELSE |
---|
| 693 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
[57] | 694 | usws, v, w ) |
---|
[1] | 695 | ENDIF |
---|
| 696 | CALL coriolis( i, j, 1 ) |
---|
| 697 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, 1, 4 ) |
---|
| 698 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 699 | |
---|
| 700 | ! |
---|
| 701 | !-- Prognostic equation for u-velocity component |
---|
| 702 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 703 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 704 | dt_3d * ( & |
---|
| 705 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 706 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 707 | ) - & |
---|
| 708 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 709 | ENDDO |
---|
| 710 | |
---|
| 711 | ! |
---|
| 712 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 713 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 714 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 715 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 716 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 717 | ENDDO |
---|
| 718 | ELSEIF ( intermediate_timestep_count < & |
---|
| 719 | intermediate_timestep_count_max ) THEN |
---|
| 720 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 721 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 722 | ENDDO |
---|
| 723 | ENDIF |
---|
| 724 | ENDIF |
---|
| 725 | |
---|
| 726 | ENDIF |
---|
| 727 | |
---|
| 728 | ! |
---|
| 729 | !-- Tendency terms for v-velocity component |
---|
| 730 | IF ( i < nxr+1 ) THEN |
---|
| 731 | |
---|
| 732 | tend(:,j,i) = 0.0 |
---|
| 733 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 734 | CALL advec_v_pw( i, j ) |
---|
| 735 | ELSE |
---|
| 736 | CALL advec_v_up( i, j ) |
---|
| 737 | ENDIF |
---|
| 738 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 739 | THEN |
---|
| 740 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
[57] | 741 | u_m, v_m, vsws_m, w_m ) |
---|
[1] | 742 | ELSE |
---|
| 743 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[57] | 744 | vsws, w ) |
---|
[1] | 745 | ENDIF |
---|
| 746 | CALL coriolis( i, j, 2 ) |
---|
| 747 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 748 | |
---|
| 749 | ! |
---|
| 750 | !-- Prognostic equation for v-velocity component |
---|
| 751 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 752 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 753 | dt_3d * ( & |
---|
| 754 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 755 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 756 | ) - & |
---|
| 757 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 758 | ENDDO |
---|
| 759 | |
---|
| 760 | ! |
---|
| 761 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 762 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 763 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 764 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 765 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 766 | ENDDO |
---|
| 767 | ELSEIF ( intermediate_timestep_count < & |
---|
| 768 | intermediate_timestep_count_max ) THEN |
---|
| 769 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 770 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 771 | ENDDO |
---|
| 772 | ENDIF |
---|
| 773 | ENDIF |
---|
| 774 | |
---|
| 775 | ENDIF |
---|
| 776 | |
---|
| 777 | ! |
---|
| 778 | !-- Tendency terms for w-velocity component |
---|
| 779 | IF ( i < nxr+1 .AND. j < nyn+1 ) THEN |
---|
| 780 | |
---|
| 781 | tend(:,j,i) = 0.0 |
---|
| 782 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 783 | CALL advec_w_pw( i, j ) |
---|
| 784 | ELSE |
---|
| 785 | CALL advec_w_up( i, j ) |
---|
| 786 | ENDIF |
---|
| 787 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 788 | THEN |
---|
| 789 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
[57] | 790 | km_damp_y, tend, u_m, v_m, w_m ) |
---|
[1] | 791 | ELSE |
---|
| 792 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
[57] | 793 | tend, u, v, w ) |
---|
[1] | 794 | ENDIF |
---|
| 795 | CALL coriolis( i, j, 3 ) |
---|
[75] | 796 | IF ( .NOT. humidity ) THEN |
---|
[1] | 797 | CALL buoyancy( i, j, pt, 3, 4 ) |
---|
| 798 | ELSE |
---|
| 799 | CALL buoyancy( i, j, vpt, 3, 44 ) |
---|
| 800 | ENDIF |
---|
| 801 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 802 | |
---|
| 803 | ! |
---|
| 804 | !-- Prognostic equation for w-velocity component |
---|
| 805 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 806 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 807 | dt_3d * ( & |
---|
| 808 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 809 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 810 | ) - & |
---|
| 811 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 812 | ENDDO |
---|
| 813 | |
---|
| 814 | ! |
---|
| 815 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 816 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 817 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 818 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 819 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 820 | ENDDO |
---|
| 821 | ELSEIF ( intermediate_timestep_count < & |
---|
| 822 | intermediate_timestep_count_max ) THEN |
---|
| 823 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 824 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 825 | ENDDO |
---|
| 826 | ENDIF |
---|
| 827 | ENDIF |
---|
| 828 | |
---|
| 829 | ! |
---|
| 830 | !-- Tendency terms for potential temperature |
---|
| 831 | tend(:,j,i) = 0.0 |
---|
| 832 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 833 | CALL advec_s_pw( i, j, pt ) |
---|
| 834 | ELSE |
---|
| 835 | CALL advec_s_up( i, j, pt ) |
---|
| 836 | ENDIF |
---|
| 837 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 838 | THEN |
---|
[19] | 839 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
| 840 | tswst_m, tend ) |
---|
[1] | 841 | ELSE |
---|
[19] | 842 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 843 | ENDIF |
---|
| 844 | |
---|
| 845 | ! |
---|
| 846 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 847 | !-- processes |
---|
| 848 | IF ( radiation ) THEN |
---|
| 849 | CALL calc_radiation( i, j ) |
---|
| 850 | ENDIF |
---|
| 851 | |
---|
| 852 | ! |
---|
| 853 | !-- If required compute impact of latent heat due to precipitation |
---|
| 854 | IF ( precipitation ) THEN |
---|
| 855 | CALL impact_of_latent_heat( i, j ) |
---|
| 856 | ENDIF |
---|
| 857 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 858 | |
---|
| 859 | ! |
---|
| 860 | !-- Prognostic equation for potential temperature |
---|
[19] | 861 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 862 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
| 863 | dt_3d * ( & |
---|
| 864 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 865 | ) - & |
---|
| 866 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 867 | ENDDO |
---|
| 868 | |
---|
| 869 | ! |
---|
| 870 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 871 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 872 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 873 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 874 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 875 | ENDDO |
---|
| 876 | ELSEIF ( intermediate_timestep_count < & |
---|
| 877 | intermediate_timestep_count_max ) THEN |
---|
[19] | 878 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 879 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 880 | 5.3125 * tpt_m(k,j,i) |
---|
| 881 | ENDDO |
---|
| 882 | ENDIF |
---|
| 883 | ENDIF |
---|
| 884 | |
---|
| 885 | ! |
---|
| 886 | !-- If required, compute prognostic equation for total water content / |
---|
| 887 | !-- scalar |
---|
[75] | 888 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 889 | |
---|
| 890 | ! |
---|
| 891 | !-- Tendency-terms for total water content / scalar |
---|
| 892 | tend(:,j,i) = 0.0 |
---|
| 893 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 894 | THEN |
---|
| 895 | CALL advec_s_pw( i, j, q ) |
---|
| 896 | ELSE |
---|
| 897 | CALL advec_s_up( i, j, q ) |
---|
| 898 | ENDIF |
---|
| 899 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 900 | THEN |
---|
[19] | 901 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
| 902 | qswst_m, tend ) |
---|
[1] | 903 | ELSE |
---|
[19] | 904 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 905 | tend ) |
---|
[1] | 906 | ENDIF |
---|
| 907 | |
---|
| 908 | ! |
---|
| 909 | !-- If required compute decrease of total water content due to |
---|
| 910 | !-- precipitation |
---|
| 911 | IF ( precipitation ) THEN |
---|
| 912 | CALL calc_precipitation( i, j ) |
---|
| 913 | ENDIF |
---|
| 914 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 915 | |
---|
| 916 | ! |
---|
| 917 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 918 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 919 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
| 920 | dt_3d * ( & |
---|
| 921 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 922 | ) - & |
---|
| 923 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 924 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 925 | ENDDO |
---|
| 926 | |
---|
| 927 | ! |
---|
| 928 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 929 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 930 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 931 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 932 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 933 | ENDDO |
---|
| 934 | ELSEIF ( intermediate_timestep_count < & |
---|
| 935 | intermediate_timestep_count_max ) THEN |
---|
[19] | 936 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 937 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 938 | 5.3125 * tq_m(k,j,i) |
---|
| 939 | ENDDO |
---|
| 940 | ENDIF |
---|
| 941 | ENDIF |
---|
| 942 | |
---|
| 943 | ENDIF |
---|
| 944 | |
---|
| 945 | ! |
---|
| 946 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 947 | !-- energy (TKE) |
---|
| 948 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 949 | |
---|
| 950 | ! |
---|
| 951 | !-- Tendency-terms for TKE |
---|
| 952 | tend(:,j,i) = 0.0 |
---|
| 953 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 954 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
| 955 | CALL advec_s_pw( i, j, e ) |
---|
| 956 | ELSE |
---|
| 957 | CALL advec_s_up( i, j, e ) |
---|
| 958 | ENDIF |
---|
| 959 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 960 | THEN |
---|
[75] | 961 | IF ( .NOT. humidity ) THEN |
---|
[1] | 962 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 963 | km_m, l_grid, pt_m, rif_m, tend, zu ) |
---|
| 964 | ELSE |
---|
| 965 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 966 | km_m, l_grid, vpt_m, rif_m, tend, zu ) |
---|
| 967 | ENDIF |
---|
| 968 | ELSE |
---|
[75] | 969 | IF ( .NOT. humidity ) THEN |
---|
[1] | 970 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 971 | l_grid, pt, rif, tend, zu ) |
---|
| 972 | ELSE |
---|
| 973 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 974 | l_grid, vpt, rif, tend, zu ) |
---|
| 975 | ENDIF |
---|
| 976 | ENDIF |
---|
| 977 | CALL production_e( i, j ) |
---|
| 978 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 979 | |
---|
| 980 | ! |
---|
| 981 | !-- Prognostic equation for TKE. |
---|
| 982 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 983 | !-- reasons in the course of the integration. In such cases the old |
---|
| 984 | !-- TKE value is reduced by 90%. |
---|
[19] | 985 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 986 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
| 987 | dt_3d * ( & |
---|
| 988 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 989 | ) |
---|
| 990 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 991 | ENDDO |
---|
| 992 | |
---|
| 993 | ! |
---|
| 994 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 995 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 996 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 997 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 998 | te_m(k,j,i) = tend(k,j,i) |
---|
| 999 | ENDDO |
---|
| 1000 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1001 | intermediate_timestep_count_max ) THEN |
---|
[19] | 1002 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1003 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1004 | 5.3125 * te_m(k,j,i) |
---|
| 1005 | ENDDO |
---|
| 1006 | ENDIF |
---|
| 1007 | ENDIF |
---|
| 1008 | |
---|
| 1009 | ENDIF ! TKE equation |
---|
| 1010 | |
---|
| 1011 | ENDIF ! Gridpoints excluding the non-cyclic wall |
---|
| 1012 | |
---|
| 1013 | ENDDO |
---|
| 1014 | ENDDO |
---|
| 1015 | !$OMP END PARALLEL |
---|
| 1016 | |
---|
| 1017 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 1018 | |
---|
| 1019 | |
---|
[63] | 1020 | END SUBROUTINE prognostic_equations_cache |
---|
[1] | 1021 | |
---|
| 1022 | |
---|
[63] | 1023 | SUBROUTINE prognostic_equations_vector |
---|
[1] | 1024 | |
---|
| 1025 | !------------------------------------------------------------------------------! |
---|
| 1026 | ! Version for vector machines |
---|
| 1027 | !------------------------------------------------------------------------------! |
---|
| 1028 | |
---|
| 1029 | IMPLICIT NONE |
---|
| 1030 | |
---|
| 1031 | CHARACTER (LEN=9) :: time_to_string |
---|
| 1032 | INTEGER :: i, j, k |
---|
| 1033 | REAL :: sat, sbt |
---|
| 1034 | |
---|
| 1035 | ! |
---|
| 1036 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 1037 | !-- global communication |
---|
| 1038 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
[75] | 1039 | IF ( humidity ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
[1] | 1040 | |
---|
| 1041 | ! |
---|
| 1042 | !-- u-velocity component |
---|
| 1043 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1044 | |
---|
| 1045 | ! |
---|
| 1046 | !-- u-tendency terms with communication |
---|
| 1047 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1048 | tend = 0.0 |
---|
| 1049 | CALL advec_u_ups |
---|
| 1050 | ENDIF |
---|
| 1051 | |
---|
| 1052 | ! |
---|
| 1053 | !-- u-tendency terms with no communication |
---|
| 1054 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1055 | tend = 0.0 |
---|
| 1056 | CALL advec_u_pw |
---|
| 1057 | ELSE |
---|
| 1058 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1059 | tend = 0.0 |
---|
| 1060 | CALL advec_u_up |
---|
| 1061 | ENDIF |
---|
| 1062 | ENDIF |
---|
| 1063 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1064 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, v_m, & |
---|
[57] | 1065 | w_m ) |
---|
[1] | 1066 | ELSE |
---|
[57] | 1067 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, v, w ) |
---|
[1] | 1068 | ENDIF |
---|
| 1069 | CALL coriolis( 1 ) |
---|
| 1070 | IF ( sloping_surface ) CALL buoyancy( pt, 1, 4 ) |
---|
| 1071 | CALL user_actions( 'u-tendency' ) |
---|
| 1072 | |
---|
| 1073 | ! |
---|
| 1074 | !-- Prognostic equation for u-velocity component |
---|
[75] | 1075 | DO i = nxl, nxr |
---|
[1] | 1076 | DO j = nys, nyn |
---|
| 1077 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1078 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 1079 | dt_3d * ( & |
---|
| 1080 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 1081 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 1082 | ) - & |
---|
| 1083 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1084 | ENDDO |
---|
| 1085 | ENDDO |
---|
| 1086 | ENDDO |
---|
| 1087 | |
---|
| 1088 | ! |
---|
| 1089 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1090 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1091 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[75] | 1092 | DO i = nxl, nxr |
---|
[1] | 1093 | DO j = nys, nyn |
---|
| 1094 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1095 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1096 | ENDDO |
---|
| 1097 | ENDDO |
---|
| 1098 | ENDDO |
---|
| 1099 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1100 | intermediate_timestep_count_max ) THEN |
---|
[75] | 1101 | DO i = nxl, nxr |
---|
[1] | 1102 | DO j = nys, nyn |
---|
| 1103 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1104 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 1105 | ENDDO |
---|
| 1106 | ENDDO |
---|
| 1107 | ENDDO |
---|
| 1108 | ENDIF |
---|
| 1109 | ENDIF |
---|
| 1110 | |
---|
| 1111 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1112 | |
---|
| 1113 | ! |
---|
| 1114 | !-- v-velocity component |
---|
| 1115 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1116 | |
---|
| 1117 | ! |
---|
| 1118 | !-- v-tendency terms with communication |
---|
| 1119 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1120 | tend = 0.0 |
---|
| 1121 | CALL advec_v_ups |
---|
| 1122 | ENDIF |
---|
| 1123 | |
---|
| 1124 | ! |
---|
| 1125 | !-- v-tendency terms with no communication |
---|
| 1126 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1127 | tend = 0.0 |
---|
| 1128 | CALL advec_v_pw |
---|
| 1129 | ELSE |
---|
| 1130 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1131 | tend = 0.0 |
---|
| 1132 | CALL advec_v_up |
---|
| 1133 | ENDIF |
---|
| 1134 | ENDIF |
---|
| 1135 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1136 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
[57] | 1137 | w_m ) |
---|
[1] | 1138 | ELSE |
---|
[57] | 1139 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, w ) |
---|
[1] | 1140 | ENDIF |
---|
| 1141 | CALL coriolis( 2 ) |
---|
| 1142 | CALL user_actions( 'v-tendency' ) |
---|
| 1143 | |
---|
| 1144 | ! |
---|
| 1145 | !-- Prognostic equation for v-velocity component |
---|
| 1146 | DO i = nxl, nxr |
---|
[75] | 1147 | DO j = nys, nyn |
---|
[1] | 1148 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1149 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 1150 | dt_3d * ( & |
---|
| 1151 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 1152 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 1153 | ) - & |
---|
| 1154 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1155 | ENDDO |
---|
| 1156 | ENDDO |
---|
| 1157 | ENDDO |
---|
| 1158 | |
---|
| 1159 | ! |
---|
| 1160 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1161 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1162 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1163 | DO i = nxl, nxr |
---|
[75] | 1164 | DO j = nys, nyn |
---|
[1] | 1165 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1166 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1167 | ENDDO |
---|
| 1168 | ENDDO |
---|
| 1169 | ENDDO |
---|
| 1170 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1171 | intermediate_timestep_count_max ) THEN |
---|
| 1172 | DO i = nxl, nxr |
---|
[75] | 1173 | DO j = nys, nyn |
---|
[1] | 1174 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1175 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1176 | ENDDO |
---|
| 1177 | ENDDO |
---|
| 1178 | ENDDO |
---|
| 1179 | ENDIF |
---|
| 1180 | ENDIF |
---|
| 1181 | |
---|
| 1182 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1183 | |
---|
| 1184 | ! |
---|
| 1185 | !-- w-velocity component |
---|
| 1186 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1187 | |
---|
| 1188 | ! |
---|
| 1189 | !-- w-tendency terms with communication |
---|
| 1190 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1191 | tend = 0.0 |
---|
| 1192 | CALL advec_w_ups |
---|
| 1193 | ENDIF |
---|
| 1194 | |
---|
| 1195 | ! |
---|
| 1196 | !-- w-tendency terms with no communication |
---|
| 1197 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1198 | tend = 0.0 |
---|
| 1199 | CALL advec_w_pw |
---|
| 1200 | ELSE |
---|
| 1201 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1202 | tend = 0.0 |
---|
| 1203 | CALL advec_w_up |
---|
| 1204 | ENDIF |
---|
| 1205 | ENDIF |
---|
| 1206 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1207 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
[57] | 1208 | v_m, w_m ) |
---|
[1] | 1209 | ELSE |
---|
[57] | 1210 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w ) |
---|
[1] | 1211 | ENDIF |
---|
| 1212 | CALL coriolis( 3 ) |
---|
[75] | 1213 | IF ( .NOT. humidity ) THEN |
---|
[1] | 1214 | CALL buoyancy( pt, 3, 4 ) |
---|
| 1215 | ELSE |
---|
| 1216 | CALL buoyancy( vpt, 3, 44 ) |
---|
| 1217 | ENDIF |
---|
| 1218 | CALL user_actions( 'w-tendency' ) |
---|
| 1219 | |
---|
| 1220 | ! |
---|
| 1221 | !-- Prognostic equation for w-velocity component |
---|
| 1222 | DO i = nxl, nxr |
---|
| 1223 | DO j = nys, nyn |
---|
| 1224 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1225 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 1226 | dt_3d * ( & |
---|
| 1227 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 1228 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 1229 | ) - & |
---|
| 1230 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1231 | ENDDO |
---|
| 1232 | ENDDO |
---|
| 1233 | ENDDO |
---|
| 1234 | |
---|
| 1235 | ! |
---|
| 1236 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1237 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1238 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1239 | DO i = nxl, nxr |
---|
| 1240 | DO j = nys, nyn |
---|
| 1241 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1242 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1243 | ENDDO |
---|
| 1244 | ENDDO |
---|
| 1245 | ENDDO |
---|
| 1246 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1247 | intermediate_timestep_count_max ) THEN |
---|
| 1248 | DO i = nxl, nxr |
---|
| 1249 | DO j = nys, nyn |
---|
| 1250 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1251 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1252 | ENDDO |
---|
| 1253 | ENDDO |
---|
| 1254 | ENDDO |
---|
| 1255 | ENDIF |
---|
| 1256 | ENDIF |
---|
| 1257 | |
---|
| 1258 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1259 | |
---|
| 1260 | ! |
---|
| 1261 | !-- potential temperature |
---|
| 1262 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1263 | |
---|
| 1264 | ! |
---|
| 1265 | !-- pt-tendency terms with communication |
---|
[63] | 1266 | sat = tsc(1) |
---|
| 1267 | sbt = tsc(2) |
---|
[1] | 1268 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1269 | |
---|
| 1270 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1271 | ! |
---|
[63] | 1272 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1273 | !-- switched on. Thus: |
---|
| 1274 | sat = 1.0 |
---|
| 1275 | sbt = 1.0 |
---|
| 1276 | ENDIF |
---|
[1] | 1277 | tend = 0.0 |
---|
| 1278 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1279 | ELSE |
---|
| 1280 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 1281 | tend = 0.0 |
---|
| 1282 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 1283 | ENDIF |
---|
| 1284 | ENDIF |
---|
| 1285 | |
---|
| 1286 | ! |
---|
| 1287 | !-- pt-tendency terms with no communication |
---|
| 1288 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 1289 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 1290 | ELSE |
---|
| 1291 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1292 | tend = 0.0 |
---|
| 1293 | CALL advec_s_pw( pt ) |
---|
| 1294 | ELSE |
---|
| 1295 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1296 | tend = 0.0 |
---|
| 1297 | CALL advec_s_up( pt ) |
---|
| 1298 | ENDIF |
---|
| 1299 | ENDIF |
---|
| 1300 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[19] | 1301 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tswst_m, tend ) |
---|
[1] | 1302 | ELSE |
---|
[19] | 1303 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 1304 | ENDIF |
---|
| 1305 | ENDIF |
---|
| 1306 | |
---|
| 1307 | ! |
---|
| 1308 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 1309 | !-- processes |
---|
| 1310 | IF ( radiation ) THEN |
---|
| 1311 | CALL calc_radiation |
---|
| 1312 | ENDIF |
---|
| 1313 | |
---|
| 1314 | ! |
---|
| 1315 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1316 | IF ( precipitation ) THEN |
---|
| 1317 | CALL impact_of_latent_heat |
---|
| 1318 | ENDIF |
---|
| 1319 | CALL user_actions( 'pt-tendency' ) |
---|
| 1320 | |
---|
| 1321 | ! |
---|
| 1322 | !-- Prognostic equation for potential temperature |
---|
| 1323 | DO i = nxl, nxr |
---|
| 1324 | DO j = nys, nyn |
---|
[19] | 1325 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1326 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 1327 | dt_3d * ( & |
---|
| 1328 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1329 | ) - & |
---|
| 1330 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1331 | ENDDO |
---|
| 1332 | ENDDO |
---|
| 1333 | ENDDO |
---|
| 1334 | |
---|
| 1335 | ! |
---|
| 1336 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1337 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1338 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1339 | DO i = nxl, nxr |
---|
| 1340 | DO j = nys, nyn |
---|
[19] | 1341 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1342 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1343 | ENDDO |
---|
| 1344 | ENDDO |
---|
| 1345 | ENDDO |
---|
| 1346 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1347 | intermediate_timestep_count_max ) THEN |
---|
| 1348 | DO i = nxl, nxr |
---|
| 1349 | DO j = nys, nyn |
---|
[19] | 1350 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1351 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 1352 | ENDDO |
---|
| 1353 | ENDDO |
---|
| 1354 | ENDDO |
---|
| 1355 | ENDIF |
---|
| 1356 | ENDIF |
---|
| 1357 | |
---|
| 1358 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1359 | |
---|
| 1360 | ! |
---|
| 1361 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 1362 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 1363 | |
---|
| 1364 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1365 | |
---|
| 1366 | ! |
---|
| 1367 | !-- Scalar/q-tendency terms with communication |
---|
[63] | 1368 | sat = tsc(1) |
---|
| 1369 | sbt = tsc(2) |
---|
[1] | 1370 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1371 | |
---|
| 1372 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1373 | ! |
---|
[63] | 1374 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1375 | !-- switched on. Thus: |
---|
| 1376 | sat = 1.0 |
---|
| 1377 | sbt = 1.0 |
---|
| 1378 | ENDIF |
---|
[1] | 1379 | tend = 0.0 |
---|
| 1380 | CALL advec_s_bc( q, 'q' ) |
---|
| 1381 | ELSE |
---|
| 1382 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1383 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1384 | tend = 0.0 |
---|
| 1385 | CALL advec_s_ups( q, 'q' ) |
---|
| 1386 | ENDIF |
---|
| 1387 | ENDIF |
---|
| 1388 | ENDIF |
---|
| 1389 | |
---|
| 1390 | ! |
---|
| 1391 | !-- Scalar/q-tendency terms with no communication |
---|
| 1392 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 1393 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, tend ) |
---|
[1] | 1394 | ELSE |
---|
| 1395 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1396 | tend = 0.0 |
---|
| 1397 | CALL advec_s_pw( q ) |
---|
| 1398 | ELSE |
---|
| 1399 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1400 | tend = 0.0 |
---|
| 1401 | CALL advec_s_up( q ) |
---|
| 1402 | ENDIF |
---|
| 1403 | ENDIF |
---|
| 1404 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[19] | 1405 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, qswst_m, tend ) |
---|
[1] | 1406 | ELSE |
---|
[19] | 1407 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, tend ) |
---|
[1] | 1408 | ENDIF |
---|
| 1409 | ENDIF |
---|
| 1410 | |
---|
| 1411 | ! |
---|
| 1412 | !-- If required compute decrease of total water content due to |
---|
| 1413 | !-- precipitation |
---|
| 1414 | IF ( precipitation ) THEN |
---|
| 1415 | CALL calc_precipitation |
---|
| 1416 | ENDIF |
---|
| 1417 | CALL user_actions( 'q-tendency' ) |
---|
| 1418 | |
---|
| 1419 | ! |
---|
| 1420 | !-- Prognostic equation for total water content / scalar |
---|
| 1421 | DO i = nxl, nxr |
---|
| 1422 | DO j = nys, nyn |
---|
[19] | 1423 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1424 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 1425 | dt_3d * ( & |
---|
| 1426 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1427 | ) - & |
---|
| 1428 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 1429 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 1430 | ENDDO |
---|
| 1431 | ENDDO |
---|
| 1432 | ENDDO |
---|
| 1433 | |
---|
| 1434 | ! |
---|
| 1435 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1436 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1437 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1438 | DO i = nxl, nxr |
---|
| 1439 | DO j = nys, nyn |
---|
[19] | 1440 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1441 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1442 | ENDDO |
---|
| 1443 | ENDDO |
---|
| 1444 | ENDDO |
---|
| 1445 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1446 | intermediate_timestep_count_max ) THEN |
---|
| 1447 | DO i = nxl, nxr |
---|
| 1448 | DO j = nys, nyn |
---|
[19] | 1449 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1450 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1451 | ENDDO |
---|
| 1452 | ENDDO |
---|
| 1453 | ENDDO |
---|
| 1454 | ENDIF |
---|
| 1455 | ENDIF |
---|
| 1456 | |
---|
| 1457 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1458 | |
---|
| 1459 | ENDIF |
---|
| 1460 | |
---|
| 1461 | ! |
---|
| 1462 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1463 | !-- energy (TKE) |
---|
| 1464 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1465 | |
---|
| 1466 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1467 | |
---|
| 1468 | ! |
---|
| 1469 | !-- TKE-tendency terms with communication |
---|
| 1470 | CALL production_e_init |
---|
[63] | 1471 | |
---|
| 1472 | sat = tsc(1) |
---|
| 1473 | sbt = tsc(2) |
---|
[1] | 1474 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1475 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1476 | |
---|
| 1477 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1478 | ! |
---|
[63] | 1479 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1480 | !-- switched on. Thus: |
---|
| 1481 | sat = 1.0 |
---|
| 1482 | sbt = 1.0 |
---|
| 1483 | ENDIF |
---|
[1] | 1484 | tend = 0.0 |
---|
| 1485 | CALL advec_s_bc( e, 'e' ) |
---|
| 1486 | ELSE |
---|
| 1487 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1488 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1489 | tend = 0.0 |
---|
| 1490 | CALL advec_s_ups( e, 'e' ) |
---|
| 1491 | ENDIF |
---|
| 1492 | ENDIF |
---|
| 1493 | ENDIF |
---|
| 1494 | ENDIF |
---|
| 1495 | |
---|
| 1496 | ! |
---|
| 1497 | !-- TKE-tendency terms with no communication |
---|
| 1498 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
| 1499 | THEN |
---|
[75] | 1500 | IF ( .NOT. humidity ) THEN |
---|
[1] | 1501 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
| 1502 | rif, tend, zu ) |
---|
| 1503 | ELSE |
---|
| 1504 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
| 1505 | rif, tend, zu ) |
---|
| 1506 | ENDIF |
---|
| 1507 | ELSE |
---|
| 1508 | IF ( use_upstream_for_tke ) THEN |
---|
| 1509 | tend = 0.0 |
---|
| 1510 | CALL advec_s_up( e ) |
---|
| 1511 | ELSE |
---|
| 1512 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1513 | tend = 0.0 |
---|
| 1514 | CALL advec_s_pw( e ) |
---|
| 1515 | ELSE |
---|
| 1516 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1517 | tend = 0.0 |
---|
| 1518 | CALL advec_s_up( e ) |
---|
| 1519 | ENDIF |
---|
| 1520 | ENDIF |
---|
| 1521 | ENDIF |
---|
| 1522 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[75] | 1523 | IF ( .NOT. humidity ) THEN |
---|
[1] | 1524 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
| 1525 | pt_m, rif_m, tend, zu ) |
---|
| 1526 | ELSE |
---|
| 1527 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
| 1528 | vpt_m, rif_m, tend, zu ) |
---|
| 1529 | ENDIF |
---|
| 1530 | ELSE |
---|
[75] | 1531 | IF ( .NOT. humidity ) THEN |
---|
[1] | 1532 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
| 1533 | rif, tend, zu ) |
---|
| 1534 | ELSE |
---|
| 1535 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
| 1536 | rif, tend, zu ) |
---|
| 1537 | ENDIF |
---|
| 1538 | ENDIF |
---|
| 1539 | ENDIF |
---|
| 1540 | CALL production_e |
---|
| 1541 | CALL user_actions( 'e-tendency' ) |
---|
| 1542 | |
---|
| 1543 | ! |
---|
| 1544 | !-- Prognostic equation for TKE. |
---|
| 1545 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1546 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1547 | !-- value is reduced by 90%. |
---|
| 1548 | DO i = nxl, nxr |
---|
| 1549 | DO j = nys, nyn |
---|
[19] | 1550 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1551 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 1552 | dt_3d * ( & |
---|
| 1553 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 1554 | ) |
---|
| 1555 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1556 | ENDDO |
---|
| 1557 | ENDDO |
---|
| 1558 | ENDDO |
---|
| 1559 | |
---|
| 1560 | ! |
---|
| 1561 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1562 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1563 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1564 | DO i = nxl, nxr |
---|
| 1565 | DO j = nys, nyn |
---|
[19] | 1566 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1567 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1568 | ENDDO |
---|
| 1569 | ENDDO |
---|
| 1570 | ENDDO |
---|
| 1571 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1572 | intermediate_timestep_count_max ) THEN |
---|
| 1573 | DO i = nxl, nxr |
---|
| 1574 | DO j = nys, nyn |
---|
[19] | 1575 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1576 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 1577 | ENDDO |
---|
| 1578 | ENDDO |
---|
| 1579 | ENDDO |
---|
| 1580 | ENDIF |
---|
| 1581 | ENDIF |
---|
| 1582 | |
---|
| 1583 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1584 | |
---|
| 1585 | ENDIF |
---|
| 1586 | |
---|
| 1587 | |
---|
[63] | 1588 | END SUBROUTINE prognostic_equations_vector |
---|
[1] | 1589 | |
---|
| 1590 | |
---|
| 1591 | END MODULE prognostic_equations_mod |
---|