[736] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Current revisions: |
---|
| 5 | ! ----------------- |
---|
| 6 | ! |
---|
| 7 | ! Former revisions: |
---|
| 8 | ! ----------------- |
---|
| 9 | ! $Id: prognostic_equations.f90 737 2011-08-17 14:17:56Z heinze $ |
---|
| 10 | ! |
---|
[737] | 11 | ! 736 2011-08-17 14:13:26Z suehring |
---|
| 12 | ! Bugfix: determination of first thread index i for WS-scheme |
---|
| 13 | ! |
---|
[736] | 14 | ! 709 2011-03-30 09:31:40Z raasch |
---|
| 15 | ! formatting adjustments |
---|
| 16 | ! |
---|
| 17 | ! 673 2011-01-18 16:19:48Z suehring |
---|
| 18 | ! Consideration of the pressure gradient (steered by tsc(4)) during the time |
---|
| 19 | ! integration removed. |
---|
| 20 | ! |
---|
| 21 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 22 | ! Calls of the advection routines with WS5 added. |
---|
| 23 | ! Calls of ws_statistics added to set the statistical arrays to zero after each |
---|
| 24 | ! time step. |
---|
| 25 | ! |
---|
| 26 | ! 531 2010-04-21 06:47:21Z heinze |
---|
| 27 | ! add call of subsidence in the equation for humidity / passive scalar |
---|
| 28 | ! |
---|
| 29 | ! 411 2009-12-11 14:15:58Z heinze |
---|
| 30 | ! add call of subsidence in the equation for potential temperature |
---|
| 31 | ! |
---|
| 32 | ! 388 2009-09-23 09:40:33Z raasch |
---|
| 33 | ! prho is used instead of rho in diffusion_e, |
---|
| 34 | ! external pressure gradient |
---|
| 35 | ! |
---|
| 36 | ! 153 2008-03-19 09:41:30Z steinfeld |
---|
| 37 | ! add call of plant_canopy_model in the prognostic equation for |
---|
| 38 | ! the potential temperature and for the passive scalar |
---|
| 39 | ! |
---|
| 40 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 41 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
| 42 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
| 43 | ! |
---|
| 44 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 45 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
| 46 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
| 47 | ! for non-cyclic boundary conditions) |
---|
| 48 | ! |
---|
| 49 | ! 97 2007-06-21 08:23:15Z raasch |
---|
| 50 | ! prognostic equation for salinity, density is calculated from equation of |
---|
| 51 | ! state for seawater and is used for calculation of buoyancy, |
---|
| 52 | ! +eqn_state_seawater_mod |
---|
| 53 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
| 54 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
| 55 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
| 56 | ! calc_mean_profile |
---|
| 57 | ! |
---|
| 58 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 59 | ! checking for negative q and limiting for positive values, |
---|
| 60 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
| 61 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
| 62 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
| 63 | ! _vector-version |
---|
| 64 | ! |
---|
| 65 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 66 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
| 67 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
| 68 | ! |
---|
| 69 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 70 | ! |
---|
| 71 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
| 72 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
| 73 | ! regardless of the timestep scheme used for the other quantities, |
---|
| 74 | ! new argument diss in call of diffusion_e |
---|
| 75 | ! |
---|
| 76 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 77 | ! Initial revision |
---|
| 78 | ! |
---|
| 79 | ! |
---|
| 80 | ! Description: |
---|
| 81 | ! ------------ |
---|
| 82 | ! Solving the prognostic equations. |
---|
| 83 | !------------------------------------------------------------------------------! |
---|
| 84 | |
---|
| 85 | USE arrays_3d |
---|
| 86 | USE control_parameters |
---|
| 87 | USE cpulog |
---|
| 88 | USE eqn_state_seawater_mod |
---|
| 89 | USE grid_variables |
---|
| 90 | USE indices |
---|
| 91 | USE interfaces |
---|
| 92 | USE pegrid |
---|
| 93 | USE pointer_interfaces |
---|
| 94 | USE statistics |
---|
| 95 | USE advec_ws |
---|
| 96 | USE advec_s_pw_mod |
---|
| 97 | USE advec_s_up_mod |
---|
| 98 | USE advec_u_pw_mod |
---|
| 99 | USE advec_u_up_mod |
---|
| 100 | USE advec_v_pw_mod |
---|
| 101 | USE advec_v_up_mod |
---|
| 102 | USE advec_w_pw_mod |
---|
| 103 | USE advec_w_up_mod |
---|
| 104 | USE buoyancy_mod |
---|
| 105 | USE calc_precipitation_mod |
---|
| 106 | USE calc_radiation_mod |
---|
| 107 | USE coriolis_mod |
---|
| 108 | USE diffusion_e_mod |
---|
| 109 | USE diffusion_s_mod |
---|
| 110 | USE diffusion_u_mod |
---|
| 111 | USE diffusion_v_mod |
---|
| 112 | USE diffusion_w_mod |
---|
| 113 | USE impact_of_latent_heat_mod |
---|
| 114 | USE plant_canopy_model_mod |
---|
| 115 | USE production_e_mod |
---|
| 116 | USE subsidence_mod |
---|
| 117 | USE user_actions_mod |
---|
| 118 | |
---|
| 119 | |
---|
| 120 | PRIVATE |
---|
| 121 | PUBLIC prognostic_equations_noopt, prognostic_equations_cache, & |
---|
| 122 | prognostic_equations_vector |
---|
| 123 | |
---|
| 124 | INTERFACE prognostic_equations_noopt |
---|
| 125 | MODULE PROCEDURE prognostic_equations_noopt |
---|
| 126 | END INTERFACE prognostic_equations_noopt |
---|
| 127 | |
---|
| 128 | INTERFACE prognostic_equations_cache |
---|
| 129 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 130 | END INTERFACE prognostic_equations_cache |
---|
| 131 | |
---|
| 132 | INTERFACE prognostic_equations_vector |
---|
| 133 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 134 | END INTERFACE prognostic_equations_vector |
---|
| 135 | |
---|
| 136 | |
---|
| 137 | CONTAINS |
---|
| 138 | |
---|
| 139 | |
---|
| 140 | SUBROUTINE prognostic_equations_noopt |
---|
| 141 | |
---|
| 142 | !------------------------------------------------------------------------------! |
---|
| 143 | ! Version with single loop optimization |
---|
| 144 | ! |
---|
| 145 | ! (Optimized over each single prognostic equation.) |
---|
| 146 | !------------------------------------------------------------------------------! |
---|
| 147 | |
---|
| 148 | IMPLICIT NONE |
---|
| 149 | |
---|
| 150 | CHARACTER (LEN=9) :: time_to_string |
---|
| 151 | INTEGER :: i, i_omp_start, j, k, tn = 0 |
---|
| 152 | REAL :: sat, sbt |
---|
| 153 | |
---|
| 154 | ! |
---|
| 155 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 156 | !-- global communication |
---|
| 157 | CALL calc_mean_profile( pt, 4 ) |
---|
| 158 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 159 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
| 160 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
| 161 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
| 162 | |
---|
| 163 | ! |
---|
| 164 | !-- u-velocity component |
---|
| 165 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 166 | |
---|
| 167 | ! |
---|
| 168 | !-- u-tendency terms with communication |
---|
| 169 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 170 | tend = 0.0 |
---|
| 171 | CALL advec_u_ups |
---|
| 172 | ENDIF |
---|
| 173 | |
---|
| 174 | ! |
---|
| 175 | !-- u-tendency terms with no communication |
---|
| 176 | i_omp_start = nxlu |
---|
| 177 | DO i = nxlu, nxr |
---|
| 178 | DO j = nys, nyn |
---|
| 179 | ! |
---|
| 180 | !-- Tendency terms |
---|
| 181 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 182 | tend(:,j,i) = 0.0 |
---|
| 183 | IF ( ws_scheme_mom ) THEN |
---|
| 184 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
| 185 | ELSE |
---|
| 186 | CALL advec_u_pw( i, j ) |
---|
| 187 | ENDIF |
---|
| 188 | |
---|
| 189 | ELSE |
---|
| 190 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 191 | tend(:,j,i) = 0.0 |
---|
| 192 | CALL advec_u_up( i, j ) |
---|
| 193 | ENDIF |
---|
| 194 | ENDIF |
---|
| 195 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 196 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
| 197 | usws_m, uswst_m, v_m, w_m ) |
---|
| 198 | ELSE |
---|
| 199 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
| 200 | uswst, v, w ) |
---|
| 201 | ENDIF |
---|
| 202 | CALL coriolis( i, j, 1 ) |
---|
| 203 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, 4 ) |
---|
| 204 | |
---|
| 205 | ! |
---|
| 206 | !-- Drag by plant canopy |
---|
| 207 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 208 | |
---|
| 209 | ! |
---|
| 210 | !-- External pressure gradient |
---|
| 211 | IF ( dp_external ) THEN |
---|
| 212 | DO k = dp_level_ind_b+1, nzt |
---|
| 213 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 214 | ENDDO |
---|
| 215 | ENDIF |
---|
| 216 | |
---|
| 217 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 218 | |
---|
| 219 | ! |
---|
| 220 | !-- Prognostic equation for u-velocity component |
---|
| 221 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 222 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 223 | dt_3d * ( & |
---|
| 224 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 225 | ) - & |
---|
| 226 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 227 | ENDDO |
---|
| 228 | |
---|
| 229 | ! |
---|
| 230 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 231 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 232 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 233 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 234 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 235 | ENDDO |
---|
| 236 | ELSEIF ( intermediate_timestep_count < & |
---|
| 237 | intermediate_timestep_count_max ) THEN |
---|
| 238 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 239 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 240 | ENDDO |
---|
| 241 | ENDIF |
---|
| 242 | ENDIF |
---|
| 243 | |
---|
| 244 | ENDDO |
---|
| 245 | ENDDO |
---|
| 246 | |
---|
| 247 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 248 | |
---|
| 249 | ! |
---|
| 250 | !-- v-velocity component |
---|
| 251 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 252 | |
---|
| 253 | ! |
---|
| 254 | !-- v-tendency terms with communication |
---|
| 255 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 256 | tend = 0.0 |
---|
| 257 | CALL advec_v_ups |
---|
| 258 | ENDIF |
---|
| 259 | |
---|
| 260 | ! |
---|
| 261 | !-- v-tendency terms with no communication |
---|
| 262 | i_omp_start = nxl |
---|
| 263 | DO i = nxl, nxr |
---|
| 264 | DO j = nysv, nyn |
---|
| 265 | ! |
---|
| 266 | !-- Tendency terms |
---|
| 267 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 268 | tend(:,j,i) = 0.0 |
---|
| 269 | IF ( ws_scheme_mom ) THEN |
---|
| 270 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 271 | ELSE |
---|
| 272 | CALL advec_v_pw( i, j ) |
---|
| 273 | ENDIF |
---|
| 274 | |
---|
| 275 | ELSE |
---|
| 276 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 277 | tend(:,j,i) = 0.0 |
---|
| 278 | CALL advec_v_up( i, j ) |
---|
| 279 | ENDIF |
---|
| 280 | ENDIF |
---|
| 281 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 282 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
| 283 | v_m, vsws_m, vswst_m, w_m ) |
---|
| 284 | ELSE |
---|
| 285 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
| 286 | vsws, vswst, w ) |
---|
| 287 | ENDIF |
---|
| 288 | CALL coriolis( i, j, 2 ) |
---|
| 289 | |
---|
| 290 | ! |
---|
| 291 | !-- Drag by plant canopy |
---|
| 292 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 293 | |
---|
| 294 | ! |
---|
| 295 | !-- External pressure gradient |
---|
| 296 | IF ( dp_external ) THEN |
---|
| 297 | DO k = dp_level_ind_b+1, nzt |
---|
| 298 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 299 | ENDDO |
---|
| 300 | ENDIF |
---|
| 301 | |
---|
| 302 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 303 | |
---|
| 304 | ! |
---|
| 305 | !-- Prognostic equation for v-velocity component |
---|
| 306 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 307 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 308 | dt_3d * ( & |
---|
| 309 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 310 | ) - & |
---|
| 311 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 312 | ENDDO |
---|
| 313 | |
---|
| 314 | ! |
---|
| 315 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 316 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 317 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 318 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 319 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 320 | ENDDO |
---|
| 321 | ELSEIF ( intermediate_timestep_count < & |
---|
| 322 | intermediate_timestep_count_max ) THEN |
---|
| 323 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 324 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 325 | ENDDO |
---|
| 326 | ENDIF |
---|
| 327 | ENDIF |
---|
| 328 | |
---|
| 329 | ENDDO |
---|
| 330 | ENDDO |
---|
| 331 | |
---|
| 332 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 333 | |
---|
| 334 | ! |
---|
| 335 | !-- w-velocity component |
---|
| 336 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 337 | |
---|
| 338 | ! |
---|
| 339 | !-- w-tendency terms with communication |
---|
| 340 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 341 | tend = 0.0 |
---|
| 342 | CALL advec_w_ups |
---|
| 343 | ENDIF |
---|
| 344 | |
---|
| 345 | ! |
---|
| 346 | !-- w-tendency terms with no communication |
---|
| 347 | DO i = nxl, nxr |
---|
| 348 | DO j = nys, nyn |
---|
| 349 | ! |
---|
| 350 | !-- Tendency terms |
---|
| 351 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 352 | tend(:,j,i) = 0.0 |
---|
| 353 | IF ( ws_scheme_mom ) THEN |
---|
| 354 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 355 | ELSE |
---|
| 356 | CALL advec_w_pw( i, j ) |
---|
| 357 | ENDIF |
---|
| 358 | |
---|
| 359 | ELSE |
---|
| 360 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 361 | tend(:,j,i) = 0.0 |
---|
| 362 | CALL advec_w_up( i, j ) |
---|
| 363 | ENDIF |
---|
| 364 | ENDIF |
---|
| 365 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 366 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
| 367 | tend, u_m, v_m, w_m ) |
---|
| 368 | ELSE |
---|
| 369 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
| 370 | tend, u, v, w ) |
---|
| 371 | ENDIF |
---|
| 372 | CALL coriolis( i, j, 3 ) |
---|
| 373 | IF ( ocean ) THEN |
---|
| 374 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
| 375 | ELSE |
---|
| 376 | IF ( .NOT. humidity ) THEN |
---|
| 377 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
| 378 | ELSE |
---|
| 379 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
| 380 | ENDIF |
---|
| 381 | ENDIF |
---|
| 382 | |
---|
| 383 | ! |
---|
| 384 | !-- Drag by plant canopy |
---|
| 385 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 386 | |
---|
| 387 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 388 | |
---|
| 389 | ! |
---|
| 390 | !-- Prognostic equation for w-velocity component |
---|
| 391 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 392 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 393 | dt_3d * ( & |
---|
| 394 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 395 | ) - & |
---|
| 396 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 397 | ENDDO |
---|
| 398 | |
---|
| 399 | ! |
---|
| 400 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 401 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 402 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 403 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 404 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 405 | ENDDO |
---|
| 406 | ELSEIF ( intermediate_timestep_count < & |
---|
| 407 | intermediate_timestep_count_max ) THEN |
---|
| 408 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 409 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 410 | ENDDO |
---|
| 411 | ENDIF |
---|
| 412 | ENDIF |
---|
| 413 | |
---|
| 414 | ENDDO |
---|
| 415 | ENDDO |
---|
| 416 | |
---|
| 417 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 418 | |
---|
| 419 | ! |
---|
| 420 | !-- potential temperature |
---|
| 421 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 422 | |
---|
| 423 | ! |
---|
| 424 | !-- pt-tendency terms with communication |
---|
| 425 | sat = tsc(1) |
---|
| 426 | sbt = tsc(2) |
---|
| 427 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 428 | |
---|
| 429 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 430 | ! |
---|
| 431 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 432 | !-- switched on. Thus: |
---|
| 433 | sat = 1.0 |
---|
| 434 | sbt = 1.0 |
---|
| 435 | ENDIF |
---|
| 436 | tend = 0.0 |
---|
| 437 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 438 | ELSE |
---|
| 439 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 440 | tend = 0.0 |
---|
| 441 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 442 | ENDIF |
---|
| 443 | ENDIF |
---|
| 444 | |
---|
| 445 | ! |
---|
| 446 | !-- pt-tendency terms with no communication |
---|
| 447 | DO i = nxl, nxr |
---|
| 448 | DO j = nys, nyn |
---|
| 449 | ! |
---|
| 450 | !-- Tendency terms |
---|
| 451 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 452 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 453 | wall_heatflux, tend ) |
---|
| 454 | ELSE |
---|
| 455 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 456 | tend(:,j,i) = 0.0 |
---|
| 457 | IF ( ws_scheme_sca ) THEN |
---|
| 458 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, & |
---|
| 459 | diss_s_pt, flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 460 | ELSE |
---|
| 461 | CALL advec_s_pw( i, j, pt ) |
---|
| 462 | ENDIF |
---|
| 463 | ELSE |
---|
| 464 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 465 | tend(:,j,i) = 0.0 |
---|
| 466 | CALL advec_s_up( i, j, pt ) |
---|
| 467 | ENDIF |
---|
| 468 | ENDIF |
---|
| 469 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 470 | THEN |
---|
| 471 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
| 472 | tswst_m, wall_heatflux, tend ) |
---|
| 473 | ELSE |
---|
| 474 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 475 | wall_heatflux, tend ) |
---|
| 476 | ENDIF |
---|
| 477 | ENDIF |
---|
| 478 | |
---|
| 479 | ! |
---|
| 480 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 481 | !-- processes |
---|
| 482 | IF ( radiation ) THEN |
---|
| 483 | CALL calc_radiation( i, j ) |
---|
| 484 | ENDIF |
---|
| 485 | |
---|
| 486 | ! |
---|
| 487 | !-- If required compute impact of latent heat due to precipitation |
---|
| 488 | IF ( precipitation ) THEN |
---|
| 489 | CALL impact_of_latent_heat( i, j ) |
---|
| 490 | ENDIF |
---|
| 491 | |
---|
| 492 | ! |
---|
| 493 | !-- Consideration of heat sources within the plant canopy |
---|
| 494 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 495 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 496 | ENDIF |
---|
| 497 | |
---|
| 498 | ! |
---|
| 499 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 500 | IF ( large_scale_subsidence ) THEN |
---|
| 501 | CALL subsidence ( i, j, tend, pt, pt_init ) |
---|
| 502 | ENDIF |
---|
| 503 | |
---|
| 504 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 505 | |
---|
| 506 | ! |
---|
| 507 | !-- Prognostic equation for potential temperature |
---|
| 508 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 509 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 510 | dt_3d * ( & |
---|
| 511 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 512 | ) - & |
---|
| 513 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 514 | ENDDO |
---|
| 515 | |
---|
| 516 | ! |
---|
| 517 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 518 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 519 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 520 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 521 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 522 | ENDDO |
---|
| 523 | ELSEIF ( intermediate_timestep_count < & |
---|
| 524 | intermediate_timestep_count_max ) THEN |
---|
| 525 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 526 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 527 | ENDDO |
---|
| 528 | ENDIF |
---|
| 529 | ENDIF |
---|
| 530 | |
---|
| 531 | ENDDO |
---|
| 532 | ENDDO |
---|
| 533 | |
---|
| 534 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 535 | |
---|
| 536 | ! |
---|
| 537 | !-- If required, compute prognostic equation for salinity |
---|
| 538 | IF ( ocean ) THEN |
---|
| 539 | |
---|
| 540 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 541 | |
---|
| 542 | ! |
---|
| 543 | !-- sa-tendency terms with communication |
---|
| 544 | sat = tsc(1) |
---|
| 545 | sbt = tsc(2) |
---|
| 546 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 547 | |
---|
| 548 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 549 | ! |
---|
| 550 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 551 | !-- switched on. Thus: |
---|
| 552 | sat = 1.0 |
---|
| 553 | sbt = 1.0 |
---|
| 554 | ENDIF |
---|
| 555 | tend = 0.0 |
---|
| 556 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 557 | ELSE |
---|
| 558 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 559 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 560 | tend = 0.0 |
---|
| 561 | CALL advec_s_ups( sa, 'sa' ) |
---|
| 562 | ENDIF |
---|
| 563 | ENDIF |
---|
| 564 | ENDIF |
---|
| 565 | |
---|
| 566 | ! |
---|
| 567 | !-- sa terms with no communication |
---|
| 568 | DO i = nxl, nxr |
---|
| 569 | DO j = nys, nyn |
---|
| 570 | ! |
---|
| 571 | !-- Tendency-terms |
---|
| 572 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 573 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 574 | wall_salinityflux, tend ) |
---|
| 575 | ELSE |
---|
| 576 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 577 | tend(:,j,i) = 0.0 |
---|
| 578 | IF ( ws_scheme_sca ) THEN |
---|
| 579 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 580 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 581 | ELSE |
---|
| 582 | CALL advec_s_pw( i, j, sa ) |
---|
| 583 | ENDIF |
---|
| 584 | |
---|
| 585 | ELSE |
---|
| 586 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 587 | tend(:,j,i) = 0.0 |
---|
| 588 | CALL advec_s_up( i, j, sa ) |
---|
| 589 | ENDIF |
---|
| 590 | ENDIF |
---|
| 591 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 592 | wall_salinityflux, tend ) |
---|
| 593 | ENDIF |
---|
| 594 | |
---|
| 595 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 596 | |
---|
| 597 | ! |
---|
| 598 | !-- Prognostic equation for salinity |
---|
| 599 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 600 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
| 601 | dt_3d * ( & |
---|
| 602 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 603 | ) - & |
---|
| 604 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 605 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 606 | ENDDO |
---|
| 607 | |
---|
| 608 | ! |
---|
| 609 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 610 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 611 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 612 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 613 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 614 | ENDDO |
---|
| 615 | ELSEIF ( intermediate_timestep_count < & |
---|
| 616 | intermediate_timestep_count_max ) THEN |
---|
| 617 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 618 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 619 | 5.3125 * tsa_m(k,j,i) |
---|
| 620 | ENDDO |
---|
| 621 | ENDIF |
---|
| 622 | ENDIF |
---|
| 623 | |
---|
| 624 | ! |
---|
| 625 | !-- Calculate density by the equation of state for seawater |
---|
| 626 | CALL eqn_state_seawater( i, j ) |
---|
| 627 | |
---|
| 628 | ENDDO |
---|
| 629 | ENDDO |
---|
| 630 | |
---|
| 631 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 632 | |
---|
| 633 | ENDIF |
---|
| 634 | |
---|
| 635 | ! |
---|
| 636 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 637 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 638 | |
---|
| 639 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 640 | |
---|
| 641 | ! |
---|
| 642 | !-- Scalar/q-tendency terms with communication |
---|
| 643 | sat = tsc(1) |
---|
| 644 | sbt = tsc(2) |
---|
| 645 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 646 | |
---|
| 647 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 648 | ! |
---|
| 649 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 650 | !-- switched on. Thus: |
---|
| 651 | sat = 1.0 |
---|
| 652 | sbt = 1.0 |
---|
| 653 | ENDIF |
---|
| 654 | tend = 0.0 |
---|
| 655 | CALL advec_s_bc( q, 'q' ) |
---|
| 656 | ELSE |
---|
| 657 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 658 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 659 | tend = 0.0 |
---|
| 660 | CALL advec_s_ups( q, 'q' ) |
---|
| 661 | ENDIF |
---|
| 662 | ENDIF |
---|
| 663 | ENDIF |
---|
| 664 | |
---|
| 665 | ! |
---|
| 666 | !-- Scalar/q-tendency terms with no communication |
---|
| 667 | DO i = nxl, nxr |
---|
| 668 | DO j = nys, nyn |
---|
| 669 | ! |
---|
| 670 | !-- Tendency-terms |
---|
| 671 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 672 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 673 | wall_qflux, tend ) |
---|
| 674 | ELSE |
---|
| 675 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 676 | tend(:,j,i) = 0.0 |
---|
| 677 | IF ( ws_scheme_sca ) THEN |
---|
| 678 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 679 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 680 | ELSE |
---|
| 681 | CALL advec_s_pw( i, j, q ) |
---|
| 682 | ENDIF |
---|
| 683 | ELSE |
---|
| 684 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 685 | tend(:,j,i) = 0.0 |
---|
| 686 | CALL advec_s_up( i, j, q ) |
---|
| 687 | ENDIF |
---|
| 688 | ENDIF |
---|
| 689 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 690 | THEN |
---|
| 691 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
| 692 | qswst_m, wall_qflux, tend ) |
---|
| 693 | ELSE |
---|
| 694 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 695 | wall_qflux, tend ) |
---|
| 696 | ENDIF |
---|
| 697 | ENDIF |
---|
| 698 | |
---|
| 699 | ! |
---|
| 700 | !-- If required compute decrease of total water content due to |
---|
| 701 | !-- precipitation |
---|
| 702 | IF ( precipitation ) THEN |
---|
| 703 | CALL calc_precipitation( i, j ) |
---|
| 704 | ENDIF |
---|
| 705 | |
---|
| 706 | ! |
---|
| 707 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 708 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
| 709 | |
---|
| 710 | ! |
---|
| 711 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 712 | IF ( large_scale_subsidence ) THEN |
---|
| 713 | CALL subsidence ( i, j, tend, q, q_init ) |
---|
| 714 | ENDIF |
---|
| 715 | |
---|
| 716 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 717 | |
---|
| 718 | ! |
---|
| 719 | !-- Prognostic equation for total water content / scalar |
---|
| 720 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 721 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 722 | dt_3d * ( & |
---|
| 723 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 724 | ) - & |
---|
| 725 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
| 726 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 727 | ENDDO |
---|
| 728 | |
---|
| 729 | ! |
---|
| 730 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 731 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 732 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 733 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 734 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 735 | ENDDO |
---|
| 736 | ELSEIF ( intermediate_timestep_count < & |
---|
| 737 | intermediate_timestep_count_max ) THEN |
---|
| 738 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 739 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 740 | ENDDO |
---|
| 741 | ENDIF |
---|
| 742 | ENDIF |
---|
| 743 | |
---|
| 744 | ENDDO |
---|
| 745 | ENDDO |
---|
| 746 | |
---|
| 747 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 748 | |
---|
| 749 | ENDIF |
---|
| 750 | |
---|
| 751 | ! |
---|
| 752 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 753 | !-- energy (TKE) |
---|
| 754 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 755 | |
---|
| 756 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 757 | |
---|
| 758 | ! |
---|
| 759 | !-- TKE-tendency terms with communication |
---|
| 760 | CALL production_e_init |
---|
| 761 | |
---|
| 762 | sat = tsc(1) |
---|
| 763 | sbt = tsc(2) |
---|
| 764 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 765 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 766 | |
---|
| 767 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 768 | ! |
---|
| 769 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 770 | !-- switched on. Thus: |
---|
| 771 | sat = 1.0 |
---|
| 772 | sbt = 1.0 |
---|
| 773 | ENDIF |
---|
| 774 | tend = 0.0 |
---|
| 775 | CALL advec_s_bc( e, 'e' ) |
---|
| 776 | ELSE |
---|
| 777 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 778 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 779 | tend = 0.0 |
---|
| 780 | CALL advec_s_ups( e, 'e' ) |
---|
| 781 | ENDIF |
---|
| 782 | ENDIF |
---|
| 783 | ENDIF |
---|
| 784 | ENDIF |
---|
| 785 | |
---|
| 786 | ! |
---|
| 787 | !-- TKE-tendency terms with no communication |
---|
| 788 | DO i = nxl, nxr |
---|
| 789 | DO j = nys, nyn |
---|
| 790 | ! |
---|
| 791 | !-- Tendency-terms |
---|
| 792 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
| 793 | .NOT. use_upstream_for_tke ) THEN |
---|
| 794 | IF ( .NOT. humidity ) THEN |
---|
| 795 | IF ( ocean ) THEN |
---|
| 796 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 797 | l_grid, prho, prho_reference, rif, & |
---|
| 798 | tend, zu, zw ) |
---|
| 799 | ELSE |
---|
| 800 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 801 | l_grid, pt, pt_reference, rif, tend, & |
---|
| 802 | zu, zw ) |
---|
| 803 | ENDIF |
---|
| 804 | ELSE |
---|
| 805 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 806 | l_grid, vpt, pt_reference, rif, tend, zu, & |
---|
| 807 | zw ) |
---|
| 808 | ENDIF |
---|
| 809 | ELSE |
---|
| 810 | IF ( use_upstream_for_tke ) THEN |
---|
| 811 | tend(:,j,i) = 0.0 |
---|
| 812 | CALL advec_s_up( i, j, e ) |
---|
| 813 | ELSE |
---|
| 814 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 815 | THEN |
---|
| 816 | tend(:,j,i) = 0.0 |
---|
| 817 | IF ( ws_scheme_sca ) THEN |
---|
| 818 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, & |
---|
| 819 | diss_s_e, flux_l_e, diss_l_e, i_omp_start, tn ) |
---|
| 820 | ELSE |
---|
| 821 | CALL advec_s_pw( i, j, e ) |
---|
| 822 | ENDIF |
---|
| 823 | ELSE |
---|
| 824 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 825 | tend(:,j,i) = 0.0 |
---|
| 826 | CALL advec_s_up( i, j, e ) |
---|
| 827 | ENDIF |
---|
| 828 | ENDIF |
---|
| 829 | ENDIF |
---|
| 830 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 831 | THEN |
---|
| 832 | IF ( .NOT. humidity ) THEN |
---|
| 833 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 834 | km_m, l_grid, pt_m, pt_reference, & |
---|
| 835 | rif_m, tend, zu, zw ) |
---|
| 836 | ELSE |
---|
| 837 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 838 | km_m, l_grid, vpt_m, pt_reference, & |
---|
| 839 | rif_m, tend, zu, zw ) |
---|
| 840 | ENDIF |
---|
| 841 | ELSE |
---|
| 842 | IF ( .NOT. humidity ) THEN |
---|
| 843 | IF ( ocean ) THEN |
---|
| 844 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 845 | km, l_grid, prho, prho_reference, & |
---|
| 846 | rif, tend, zu, zw ) |
---|
| 847 | ELSE |
---|
| 848 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 849 | km, l_grid, pt, pt_reference, rif, & |
---|
| 850 | tend, zu, zw ) |
---|
| 851 | ENDIF |
---|
| 852 | ELSE |
---|
| 853 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 854 | l_grid, vpt, pt_reference, rif, tend, & |
---|
| 855 | zu, zw ) |
---|
| 856 | ENDIF |
---|
| 857 | ENDIF |
---|
| 858 | ENDIF |
---|
| 859 | CALL production_e( i, j ) |
---|
| 860 | |
---|
| 861 | ! |
---|
| 862 | !-- Additional sink term for flows through plant canopies |
---|
| 863 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 864 | |
---|
| 865 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 866 | |
---|
| 867 | ! |
---|
| 868 | !-- Prognostic equation for TKE. |
---|
| 869 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 870 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 871 | !-- value is reduced by 90%. |
---|
| 872 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 873 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 874 | dt_3d * ( & |
---|
| 875 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 876 | ) |
---|
| 877 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 878 | ENDDO |
---|
| 879 | |
---|
| 880 | ! |
---|
| 881 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 882 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 883 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 884 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 885 | te_m(k,j,i) = tend(k,j,i) |
---|
| 886 | ENDDO |
---|
| 887 | ELSEIF ( intermediate_timestep_count < & |
---|
| 888 | intermediate_timestep_count_max ) THEN |
---|
| 889 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 890 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 891 | ENDDO |
---|
| 892 | ENDIF |
---|
| 893 | ENDIF |
---|
| 894 | |
---|
| 895 | ENDDO |
---|
| 896 | ENDDO |
---|
| 897 | |
---|
| 898 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 899 | |
---|
| 900 | ENDIF |
---|
| 901 | |
---|
| 902 | |
---|
| 903 | END SUBROUTINE prognostic_equations_noopt |
---|
| 904 | |
---|
| 905 | |
---|
| 906 | SUBROUTINE prognostic_equations_cache |
---|
| 907 | |
---|
| 908 | !------------------------------------------------------------------------------! |
---|
| 909 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 910 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 911 | ! |
---|
| 912 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 913 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 914 | ! these loops. |
---|
| 915 | ! |
---|
| 916 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 917 | !------------------------------------------------------------------------------! |
---|
| 918 | |
---|
| 919 | IMPLICIT NONE |
---|
| 920 | |
---|
| 921 | CHARACTER (LEN=9) :: time_to_string |
---|
| 922 | INTEGER :: i, i_omp_start, j, k, omp_get_thread_num, tn = 0 |
---|
| 923 | LOGICAL :: loop_start |
---|
| 924 | |
---|
| 925 | |
---|
| 926 | ! |
---|
| 927 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 928 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 929 | |
---|
| 930 | |
---|
| 931 | ! |
---|
| 932 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 933 | !-- global communication |
---|
| 934 | CALL calc_mean_profile( pt, 4 ) |
---|
| 935 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 936 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
| 937 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
| 938 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
| 939 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
| 940 | |
---|
| 941 | ! |
---|
| 942 | !-- Loop over all prognostic equations |
---|
| 943 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 944 | |
---|
| 945 | !$ tn = omp_get_thread_num() |
---|
| 946 | loop_start = .TRUE. |
---|
| 947 | !$OMP DO |
---|
| 948 | DO i = nxl, nxr |
---|
| 949 | |
---|
| 950 | ! |
---|
| 951 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 952 | !-- later in advec_ws |
---|
| 953 | IF ( loop_start ) THEN |
---|
| 954 | loop_start = .FALSE. |
---|
| 955 | i_omp_start = i |
---|
| 956 | ENDIF |
---|
| 957 | |
---|
| 958 | DO j = nys, nyn |
---|
| 959 | ! |
---|
| 960 | !-- Tendency terms for u-velocity component |
---|
| 961 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 962 | |
---|
| 963 | tend(:,j,i) = 0.0 |
---|
| 964 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 965 | IF ( ws_scheme_mom ) THEN |
---|
| 966 | IF ( outflow_l .AND. i_omp_start == nxl ) THEN |
---|
| 967 | ! CALL local_diss( i, j, u) ! dissipation control |
---|
| 968 | CALL advec_u_ws( i, j, i_omp_start + 1, tn ) |
---|
| 969 | ELSE |
---|
| 970 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
| 971 | ENDIF |
---|
| 972 | ELSE |
---|
| 973 | CALL advec_u_pw( i, j ) |
---|
| 974 | ENDIF |
---|
| 975 | ELSE |
---|
| 976 | CALL advec_u_up( i, j ) |
---|
| 977 | ENDIF |
---|
| 978 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 979 | THEN |
---|
| 980 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
| 981 | u_m, usws_m, uswst_m, v_m, w_m ) |
---|
| 982 | ELSE |
---|
| 983 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
| 984 | usws, uswst, v, w ) |
---|
| 985 | ENDIF |
---|
| 986 | CALL coriolis( i, j, 1 ) |
---|
| 987 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, & |
---|
| 988 | 4 ) |
---|
| 989 | |
---|
| 990 | ! |
---|
| 991 | !-- Drag by plant canopy |
---|
| 992 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 993 | |
---|
| 994 | ! |
---|
| 995 | !-- External pressure gradient |
---|
| 996 | IF ( dp_external ) THEN |
---|
| 997 | DO k = dp_level_ind_b+1, nzt |
---|
| 998 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 999 | ENDDO |
---|
| 1000 | ENDIF |
---|
| 1001 | |
---|
| 1002 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 1003 | |
---|
| 1004 | ! |
---|
| 1005 | !-- Prognostic equation for u-velocity component |
---|
| 1006 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1007 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 1008 | dt_3d * ( & |
---|
| 1009 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 1010 | ) - & |
---|
| 1011 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1012 | ENDDO |
---|
| 1013 | |
---|
| 1014 | ! |
---|
| 1015 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1016 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1017 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1018 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1019 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1020 | ENDDO |
---|
| 1021 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1022 | intermediate_timestep_count_max ) THEN |
---|
| 1023 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1024 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 1025 | ENDDO |
---|
| 1026 | ENDIF |
---|
| 1027 | ENDIF |
---|
| 1028 | |
---|
| 1029 | ENDIF |
---|
| 1030 | |
---|
| 1031 | ! |
---|
| 1032 | !-- Tendency terms for v-velocity component |
---|
| 1033 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 1034 | |
---|
| 1035 | tend(:,j,i) = 0.0 |
---|
| 1036 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1037 | IF ( ws_scheme_mom ) THEN |
---|
| 1038 | ! CALL local_diss( i, j, v) |
---|
| 1039 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 1040 | ELSE |
---|
| 1041 | CALL advec_v_pw( i, j ) |
---|
| 1042 | ENDIF |
---|
| 1043 | ELSE |
---|
| 1044 | CALL advec_v_up( i, j ) |
---|
| 1045 | ENDIF |
---|
| 1046 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 1047 | THEN |
---|
| 1048 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
| 1049 | u_m, v_m, vsws_m, vswst_m, w_m ) |
---|
| 1050 | ELSE |
---|
| 1051 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
| 1052 | vsws, vswst, w ) |
---|
| 1053 | ENDIF |
---|
| 1054 | CALL coriolis( i, j, 2 ) |
---|
| 1055 | |
---|
| 1056 | ! |
---|
| 1057 | !-- Drag by plant canopy |
---|
| 1058 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 1059 | |
---|
| 1060 | ! |
---|
| 1061 | !-- External pressure gradient |
---|
| 1062 | IF ( dp_external ) THEN |
---|
| 1063 | DO k = dp_level_ind_b+1, nzt |
---|
| 1064 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1065 | ENDDO |
---|
| 1066 | ENDIF |
---|
| 1067 | |
---|
| 1068 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 1069 | |
---|
| 1070 | ! |
---|
| 1071 | !-- Prognostic equation for v-velocity component |
---|
| 1072 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1073 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 1074 | dt_3d * ( & |
---|
| 1075 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 1076 | ) - & |
---|
| 1077 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1078 | ENDDO |
---|
| 1079 | |
---|
| 1080 | ! |
---|
| 1081 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1082 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1083 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1084 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1085 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1086 | ENDDO |
---|
| 1087 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1088 | intermediate_timestep_count_max ) THEN |
---|
| 1089 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1090 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1091 | ENDDO |
---|
| 1092 | ENDIF |
---|
| 1093 | ENDIF |
---|
| 1094 | |
---|
| 1095 | ENDIF |
---|
| 1096 | |
---|
| 1097 | ! |
---|
| 1098 | !-- Tendency terms for w-velocity component |
---|
| 1099 | tend(:,j,i) = 0.0 |
---|
| 1100 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1101 | IF ( ws_scheme_mom ) THEN |
---|
| 1102 | ! CALL local_diss( i, j, w) |
---|
| 1103 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 1104 | ELSE |
---|
| 1105 | CALL advec_w_pw( i, j ) |
---|
| 1106 | END IF |
---|
| 1107 | ELSE |
---|
| 1108 | CALL advec_w_up( i, j ) |
---|
| 1109 | ENDIF |
---|
| 1110 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 1111 | THEN |
---|
| 1112 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
| 1113 | km_damp_y, tend, u_m, v_m, w_m ) |
---|
| 1114 | ELSE |
---|
| 1115 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
| 1116 | tend, u, v, w ) |
---|
| 1117 | ENDIF |
---|
| 1118 | CALL coriolis( i, j, 3 ) |
---|
| 1119 | IF ( ocean ) THEN |
---|
| 1120 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
| 1121 | ELSE |
---|
| 1122 | IF ( .NOT. humidity ) THEN |
---|
| 1123 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
| 1124 | ELSE |
---|
| 1125 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
| 1126 | ENDIF |
---|
| 1127 | ENDIF |
---|
| 1128 | |
---|
| 1129 | ! |
---|
| 1130 | !-- Drag by plant canopy |
---|
| 1131 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 1132 | |
---|
| 1133 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 1134 | |
---|
| 1135 | ! |
---|
| 1136 | !-- Prognostic equation for w-velocity component |
---|
| 1137 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1138 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 1139 | dt_3d * ( & |
---|
| 1140 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 1141 | ) - & |
---|
| 1142 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1143 | ENDDO |
---|
| 1144 | |
---|
| 1145 | ! |
---|
| 1146 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1147 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1148 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1149 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1150 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1151 | ENDDO |
---|
| 1152 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1153 | intermediate_timestep_count_max ) THEN |
---|
| 1154 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1155 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1156 | ENDDO |
---|
| 1157 | ENDIF |
---|
| 1158 | ENDIF |
---|
| 1159 | |
---|
| 1160 | ! |
---|
| 1161 | !-- Tendency terms for potential temperature |
---|
| 1162 | tend(:,j,i) = 0.0 |
---|
| 1163 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1164 | IF ( ws_scheme_sca ) THEN |
---|
| 1165 | ! CALL local_diss( i, j, pt ) |
---|
| 1166 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, & |
---|
| 1167 | diss_s_pt, flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 1168 | ELSE |
---|
| 1169 | CALL advec_s_pw( i, j, pt ) |
---|
| 1170 | ENDIF |
---|
| 1171 | ELSE |
---|
| 1172 | CALL advec_s_up( i, j, pt ) |
---|
| 1173 | ENDIF |
---|
| 1174 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 1175 | THEN |
---|
| 1176 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
| 1177 | tswst_m, wall_heatflux, tend ) |
---|
| 1178 | ELSE |
---|
| 1179 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 1180 | wall_heatflux, tend ) |
---|
| 1181 | ENDIF |
---|
| 1182 | |
---|
| 1183 | ! |
---|
| 1184 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 1185 | !-- processes |
---|
| 1186 | IF ( radiation ) THEN |
---|
| 1187 | CALL calc_radiation( i, j ) |
---|
| 1188 | ENDIF |
---|
| 1189 | |
---|
| 1190 | ! |
---|
| 1191 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1192 | IF ( precipitation ) THEN |
---|
| 1193 | CALL impact_of_latent_heat( i, j ) |
---|
| 1194 | ENDIF |
---|
| 1195 | |
---|
| 1196 | ! |
---|
| 1197 | !-- Consideration of heat sources within the plant canopy |
---|
| 1198 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1199 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 1200 | ENDIF |
---|
| 1201 | |
---|
| 1202 | |
---|
| 1203 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1204 | IF ( large_scale_subsidence ) THEN |
---|
| 1205 | CALL subsidence ( i, j, tend, pt, pt_init ) |
---|
| 1206 | ENDIF |
---|
| 1207 | |
---|
| 1208 | |
---|
| 1209 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 1210 | |
---|
| 1211 | ! |
---|
| 1212 | !-- Prognostic equation for potential temperature |
---|
| 1213 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1214 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
| 1215 | dt_3d * ( & |
---|
| 1216 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1217 | ) - & |
---|
| 1218 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1219 | ENDDO |
---|
| 1220 | |
---|
| 1221 | ! |
---|
| 1222 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1223 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1224 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1225 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1226 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1227 | ENDDO |
---|
| 1228 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1229 | intermediate_timestep_count_max ) THEN |
---|
| 1230 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1231 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1232 | 5.3125 * tpt_m(k,j,i) |
---|
| 1233 | ENDDO |
---|
| 1234 | ENDIF |
---|
| 1235 | ENDIF |
---|
| 1236 | |
---|
| 1237 | ! |
---|
| 1238 | !-- If required, compute prognostic equation for salinity |
---|
| 1239 | IF ( ocean ) THEN |
---|
| 1240 | |
---|
| 1241 | ! |
---|
| 1242 | !-- Tendency-terms for salinity |
---|
| 1243 | tend(:,j,i) = 0.0 |
---|
| 1244 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 1245 | THEN |
---|
| 1246 | IF ( ws_scheme_sca ) THEN |
---|
| 1247 | ! CALL local_diss( i, j, sa ) |
---|
| 1248 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 1249 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 1250 | ELSE |
---|
| 1251 | CALL advec_s_pw( i, j, sa ) |
---|
| 1252 | ENDIF |
---|
| 1253 | ELSE |
---|
| 1254 | CALL advec_s_up( i, j, sa ) |
---|
| 1255 | ENDIF |
---|
| 1256 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 1257 | wall_salinityflux, tend ) |
---|
| 1258 | |
---|
| 1259 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 1260 | |
---|
| 1261 | ! |
---|
| 1262 | !-- Prognostic equation for salinity |
---|
| 1263 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1264 | sa_p(k,j,i) = tsc(1) * sa(k,j,i) + & |
---|
| 1265 | dt_3d * ( & |
---|
| 1266 | tsc(2) * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 1267 | ) - & |
---|
| 1268 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 1269 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1270 | ENDDO |
---|
| 1271 | |
---|
| 1272 | ! |
---|
| 1273 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1274 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1275 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1276 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1277 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1278 | ENDDO |
---|
| 1279 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1280 | intermediate_timestep_count_max ) THEN |
---|
| 1281 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1282 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1283 | 5.3125 * tsa_m(k,j,i) |
---|
| 1284 | ENDDO |
---|
| 1285 | ENDIF |
---|
| 1286 | ENDIF |
---|
| 1287 | |
---|
| 1288 | ! |
---|
| 1289 | !-- Calculate density by the equation of state for seawater |
---|
| 1290 | CALL eqn_state_seawater( i, j ) |
---|
| 1291 | |
---|
| 1292 | ENDIF |
---|
| 1293 | |
---|
| 1294 | ! |
---|
| 1295 | !-- If required, compute prognostic equation for total water content / |
---|
| 1296 | !-- scalar |
---|
| 1297 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1298 | |
---|
| 1299 | ! |
---|
| 1300 | !-- Tendency-terms for total water content / scalar |
---|
| 1301 | tend(:,j,i) = 0.0 |
---|
| 1302 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 1303 | THEN |
---|
| 1304 | IF ( ws_scheme_sca ) THEN |
---|
| 1305 | ! CALL local_diss( i, j, q ) |
---|
| 1306 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 1307 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 1308 | ELSE |
---|
| 1309 | CALL advec_s_pw( i, j, q ) |
---|
| 1310 | ENDIF |
---|
| 1311 | ELSE |
---|
| 1312 | CALL advec_s_up( i, j, q ) |
---|
| 1313 | ENDIF |
---|
| 1314 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 1315 | THEN |
---|
| 1316 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
| 1317 | qswst_m, wall_qflux, tend ) |
---|
| 1318 | ELSE |
---|
| 1319 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 1320 | wall_qflux, tend ) |
---|
| 1321 | ENDIF |
---|
| 1322 | |
---|
| 1323 | ! |
---|
| 1324 | !-- If required compute decrease of total water content due to |
---|
| 1325 | !-- precipitation |
---|
| 1326 | IF ( precipitation ) THEN |
---|
| 1327 | CALL calc_precipitation( i, j ) |
---|
| 1328 | ENDIF |
---|
| 1329 | |
---|
| 1330 | ! |
---|
| 1331 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1332 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
| 1333 | |
---|
| 1334 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1335 | IF ( large_scale_subsidence ) THEN |
---|
| 1336 | CALL subsidence ( i, j, tend, q, q_init ) |
---|
| 1337 | ENDIF |
---|
| 1338 | |
---|
| 1339 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 1340 | |
---|
| 1341 | ! |
---|
| 1342 | !-- Prognostic equation for total water content / scalar |
---|
| 1343 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1344 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
| 1345 | dt_3d * ( & |
---|
| 1346 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1347 | ) - & |
---|
| 1348 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
| 1349 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 1350 | ENDDO |
---|
| 1351 | |
---|
| 1352 | ! |
---|
| 1353 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1354 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1355 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1356 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1357 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1358 | ENDDO |
---|
| 1359 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1360 | intermediate_timestep_count_max ) THEN |
---|
| 1361 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1362 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1363 | 5.3125 * tq_m(k,j,i) |
---|
| 1364 | ENDDO |
---|
| 1365 | ENDIF |
---|
| 1366 | ENDIF |
---|
| 1367 | |
---|
| 1368 | ENDIF |
---|
| 1369 | |
---|
| 1370 | ! |
---|
| 1371 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1372 | !-- energy (TKE) |
---|
| 1373 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1374 | |
---|
| 1375 | ! |
---|
| 1376 | !-- Tendency-terms for TKE |
---|
| 1377 | tend(:,j,i) = 0.0 |
---|
| 1378 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 1379 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
| 1380 | IF ( ws_scheme_sca ) THEN |
---|
| 1381 | ! CALL local_diss( i, j, e ) |
---|
| 1382 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, & |
---|
| 1383 | diss_s_e, flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
| 1384 | ELSE |
---|
| 1385 | CALL advec_s_pw( i, j, e ) |
---|
| 1386 | ENDIF |
---|
| 1387 | ELSE |
---|
| 1388 | CALL advec_s_up( i, j, e ) |
---|
| 1389 | ENDIF |
---|
| 1390 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 1391 | THEN |
---|
| 1392 | IF ( .NOT. humidity ) THEN |
---|
| 1393 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 1394 | km_m, l_grid, pt_m, pt_reference, & |
---|
| 1395 | rif_m, tend, zu, zw ) |
---|
| 1396 | ELSE |
---|
| 1397 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 1398 | km_m, l_grid, vpt_m, pt_reference, & |
---|
| 1399 | rif_m, tend, zu, zw ) |
---|
| 1400 | ENDIF |
---|
| 1401 | ELSE |
---|
| 1402 | IF ( .NOT. humidity ) THEN |
---|
| 1403 | IF ( ocean ) THEN |
---|
| 1404 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 1405 | km, l_grid, prho, prho_reference, & |
---|
| 1406 | rif, tend, zu, zw ) |
---|
| 1407 | ELSE |
---|
| 1408 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 1409 | km, l_grid, pt, pt_reference, rif, & |
---|
| 1410 | tend, zu, zw ) |
---|
| 1411 | ENDIF |
---|
| 1412 | ELSE |
---|
| 1413 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 1414 | l_grid, vpt, pt_reference, rif, tend, & |
---|
| 1415 | zu, zw ) |
---|
| 1416 | ENDIF |
---|
| 1417 | ENDIF |
---|
| 1418 | CALL production_e( i, j ) |
---|
| 1419 | |
---|
| 1420 | ! |
---|
| 1421 | !-- Additional sink term for flows through plant canopies |
---|
| 1422 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 1423 | |
---|
| 1424 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 1425 | |
---|
| 1426 | ! |
---|
| 1427 | !-- Prognostic equation for TKE. |
---|
| 1428 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1429 | !-- reasons in the course of the integration. In such cases the old |
---|
| 1430 | !-- TKE value is reduced by 90%. |
---|
| 1431 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1432 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
| 1433 | dt_3d * ( & |
---|
| 1434 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 1435 | ) |
---|
| 1436 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1437 | ENDDO |
---|
| 1438 | |
---|
| 1439 | ! |
---|
| 1440 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1441 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1442 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1443 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1444 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1445 | ENDDO |
---|
| 1446 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1447 | intermediate_timestep_count_max ) THEN |
---|
| 1448 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1449 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1450 | 5.3125 * te_m(k,j,i) |
---|
| 1451 | ENDDO |
---|
| 1452 | ENDIF |
---|
| 1453 | ENDIF |
---|
| 1454 | |
---|
| 1455 | ENDIF ! TKE equation |
---|
| 1456 | |
---|
| 1457 | ENDDO |
---|
| 1458 | ENDDO |
---|
| 1459 | !$OMP END PARALLEL |
---|
| 1460 | |
---|
| 1461 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 1462 | |
---|
| 1463 | |
---|
| 1464 | END SUBROUTINE prognostic_equations_cache |
---|
| 1465 | |
---|
| 1466 | |
---|
| 1467 | SUBROUTINE prognostic_equations_vector |
---|
| 1468 | |
---|
| 1469 | !------------------------------------------------------------------------------! |
---|
| 1470 | ! Version for vector machines |
---|
| 1471 | !------------------------------------------------------------------------------! |
---|
| 1472 | |
---|
| 1473 | IMPLICIT NONE |
---|
| 1474 | |
---|
| 1475 | CHARACTER (LEN=9) :: time_to_string |
---|
| 1476 | INTEGER :: i, j, k |
---|
| 1477 | REAL :: sat, sbt |
---|
| 1478 | |
---|
| 1479 | ! |
---|
| 1480 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 1481 | !-- global communication |
---|
| 1482 | CALL calc_mean_profile( pt, 4 ) |
---|
| 1483 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 1484 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
| 1485 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
| 1486 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
| 1487 | |
---|
| 1488 | ! |
---|
| 1489 | !-- u-velocity component |
---|
| 1490 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1491 | |
---|
| 1492 | ! |
---|
| 1493 | !-- u-tendency terms with communication |
---|
| 1494 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1495 | tend = 0.0 |
---|
| 1496 | CALL advec_u_ups |
---|
| 1497 | ENDIF |
---|
| 1498 | |
---|
| 1499 | ! |
---|
| 1500 | !-- u-tendency terms with no communication |
---|
| 1501 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1502 | tend = 0.0 |
---|
| 1503 | IF ( ws_scheme_mom ) THEN |
---|
| 1504 | CALL advec_u_ws |
---|
| 1505 | ELSE |
---|
| 1506 | CALL advec_u_pw |
---|
| 1507 | ENDIF |
---|
| 1508 | ELSE |
---|
| 1509 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1510 | tend = 0.0 |
---|
| 1511 | CALL advec_u_up |
---|
| 1512 | ENDIF |
---|
| 1513 | ENDIF |
---|
| 1514 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1515 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, & |
---|
| 1516 | uswst_m, v_m, w_m ) |
---|
| 1517 | ELSE |
---|
| 1518 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, uswst, v, w ) |
---|
| 1519 | ENDIF |
---|
| 1520 | CALL coriolis( 1 ) |
---|
| 1521 | IF ( sloping_surface ) CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
| 1522 | |
---|
| 1523 | ! |
---|
| 1524 | !-- Drag by plant canopy |
---|
| 1525 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1526 | |
---|
| 1527 | ! |
---|
| 1528 | !-- External pressure gradient |
---|
| 1529 | IF ( dp_external ) THEN |
---|
| 1530 | DO i = nxlu, nxr |
---|
| 1531 | DO j = nys, nyn |
---|
| 1532 | DO k = dp_level_ind_b+1, nzt |
---|
| 1533 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1534 | ENDDO |
---|
| 1535 | ENDDO |
---|
| 1536 | ENDDO |
---|
| 1537 | ENDIF |
---|
| 1538 | |
---|
| 1539 | CALL user_actions( 'u-tendency' ) |
---|
| 1540 | |
---|
| 1541 | ! |
---|
| 1542 | !-- Prognostic equation for u-velocity component |
---|
| 1543 | DO i = nxlu, nxr |
---|
| 1544 | DO j = nys, nyn |
---|
| 1545 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1546 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 1547 | dt_3d * ( & |
---|
| 1548 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 1549 | ) - & |
---|
| 1550 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1551 | ENDDO |
---|
| 1552 | ENDDO |
---|
| 1553 | ENDDO |
---|
| 1554 | |
---|
| 1555 | ! |
---|
| 1556 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1557 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1558 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1559 | DO i = nxlu, nxr |
---|
| 1560 | DO j = nys, nyn |
---|
| 1561 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1562 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1563 | ENDDO |
---|
| 1564 | ENDDO |
---|
| 1565 | ENDDO |
---|
| 1566 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1567 | intermediate_timestep_count_max ) THEN |
---|
| 1568 | DO i = nxlu, nxr |
---|
| 1569 | DO j = nys, nyn |
---|
| 1570 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1571 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 1572 | ENDDO |
---|
| 1573 | ENDDO |
---|
| 1574 | ENDDO |
---|
| 1575 | ENDIF |
---|
| 1576 | ENDIF |
---|
| 1577 | |
---|
| 1578 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1579 | |
---|
| 1580 | ! |
---|
| 1581 | !-- v-velocity component |
---|
| 1582 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1583 | |
---|
| 1584 | ! |
---|
| 1585 | !-- v-tendency terms with communication |
---|
| 1586 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1587 | tend = 0.0 |
---|
| 1588 | CALL advec_v_ups |
---|
| 1589 | ENDIF |
---|
| 1590 | |
---|
| 1591 | ! |
---|
| 1592 | !-- v-tendency terms with no communication |
---|
| 1593 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1594 | tend = 0.0 |
---|
| 1595 | IF ( ws_scheme_mom ) THEN |
---|
| 1596 | CALL advec_v_ws |
---|
| 1597 | ELSE |
---|
| 1598 | CALL advec_v_pw |
---|
| 1599 | END IF |
---|
| 1600 | ELSE |
---|
| 1601 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1602 | tend = 0.0 |
---|
| 1603 | CALL advec_v_up |
---|
| 1604 | ENDIF |
---|
| 1605 | ENDIF |
---|
| 1606 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1607 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
| 1608 | vswst_m, w_m ) |
---|
| 1609 | ELSE |
---|
| 1610 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, vswst, w ) |
---|
| 1611 | ENDIF |
---|
| 1612 | CALL coriolis( 2 ) |
---|
| 1613 | |
---|
| 1614 | ! |
---|
| 1615 | !-- Drag by plant canopy |
---|
| 1616 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1617 | |
---|
| 1618 | ! |
---|
| 1619 | !-- External pressure gradient |
---|
| 1620 | IF ( dp_external ) THEN |
---|
| 1621 | DO i = nxl, nxr |
---|
| 1622 | DO j = nysv, nyn |
---|
| 1623 | DO k = dp_level_ind_b+1, nzt |
---|
| 1624 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1625 | ENDDO |
---|
| 1626 | ENDDO |
---|
| 1627 | ENDDO |
---|
| 1628 | ENDIF |
---|
| 1629 | |
---|
| 1630 | CALL user_actions( 'v-tendency' ) |
---|
| 1631 | |
---|
| 1632 | ! |
---|
| 1633 | !-- Prognostic equation for v-velocity component |
---|
| 1634 | DO i = nxl, nxr |
---|
| 1635 | DO j = nysv, nyn |
---|
| 1636 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1637 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 1638 | dt_3d * ( & |
---|
| 1639 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 1640 | ) - & |
---|
| 1641 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1642 | ENDDO |
---|
| 1643 | ENDDO |
---|
| 1644 | ENDDO |
---|
| 1645 | |
---|
| 1646 | ! |
---|
| 1647 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1648 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1649 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1650 | DO i = nxl, nxr |
---|
| 1651 | DO j = nysv, nyn |
---|
| 1652 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1653 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1654 | ENDDO |
---|
| 1655 | ENDDO |
---|
| 1656 | ENDDO |
---|
| 1657 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1658 | intermediate_timestep_count_max ) THEN |
---|
| 1659 | DO i = nxl, nxr |
---|
| 1660 | DO j = nysv, nyn |
---|
| 1661 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1662 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1663 | ENDDO |
---|
| 1664 | ENDDO |
---|
| 1665 | ENDDO |
---|
| 1666 | ENDIF |
---|
| 1667 | ENDIF |
---|
| 1668 | |
---|
| 1669 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1670 | |
---|
| 1671 | ! |
---|
| 1672 | !-- w-velocity component |
---|
| 1673 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1674 | |
---|
| 1675 | ! |
---|
| 1676 | !-- w-tendency terms with communication |
---|
| 1677 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1678 | tend = 0.0 |
---|
| 1679 | CALL advec_w_ups |
---|
| 1680 | ENDIF |
---|
| 1681 | |
---|
| 1682 | ! |
---|
| 1683 | !-- w-tendency terms with no communication |
---|
| 1684 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1685 | tend = 0.0 |
---|
| 1686 | IF ( ws_scheme_mom ) THEN |
---|
| 1687 | CALL advec_w_ws |
---|
| 1688 | ELSE |
---|
| 1689 | CALL advec_w_pw |
---|
| 1690 | ENDIF |
---|
| 1691 | ELSE |
---|
| 1692 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1693 | tend = 0.0 |
---|
| 1694 | CALL advec_w_up |
---|
| 1695 | ENDIF |
---|
| 1696 | ENDIF |
---|
| 1697 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1698 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
| 1699 | v_m, w_m ) |
---|
| 1700 | ELSE |
---|
| 1701 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w ) |
---|
| 1702 | ENDIF |
---|
| 1703 | CALL coriolis( 3 ) |
---|
| 1704 | IF ( ocean ) THEN |
---|
| 1705 | CALL buoyancy( rho, rho_reference, 3, 64 ) |
---|
| 1706 | ELSE |
---|
| 1707 | IF ( .NOT. humidity ) THEN |
---|
| 1708 | CALL buoyancy( pt, pt_reference, 3, 4 ) |
---|
| 1709 | ELSE |
---|
| 1710 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
| 1711 | ENDIF |
---|
| 1712 | ENDIF |
---|
| 1713 | |
---|
| 1714 | ! |
---|
| 1715 | !-- Drag by plant canopy |
---|
| 1716 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1717 | |
---|
| 1718 | CALL user_actions( 'w-tendency' ) |
---|
| 1719 | |
---|
| 1720 | ! |
---|
| 1721 | !-- Prognostic equation for w-velocity component |
---|
| 1722 | DO i = nxl, nxr |
---|
| 1723 | DO j = nys, nyn |
---|
| 1724 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1725 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 1726 | dt_3d * ( & |
---|
| 1727 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 1728 | ) - & |
---|
| 1729 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1730 | ENDDO |
---|
| 1731 | ENDDO |
---|
| 1732 | ENDDO |
---|
| 1733 | |
---|
| 1734 | ! |
---|
| 1735 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1736 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1737 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1738 | DO i = nxl, nxr |
---|
| 1739 | DO j = nys, nyn |
---|
| 1740 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1741 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1742 | ENDDO |
---|
| 1743 | ENDDO |
---|
| 1744 | ENDDO |
---|
| 1745 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1746 | intermediate_timestep_count_max ) THEN |
---|
| 1747 | DO i = nxl, nxr |
---|
| 1748 | DO j = nys, nyn |
---|
| 1749 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1750 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1751 | ENDDO |
---|
| 1752 | ENDDO |
---|
| 1753 | ENDDO |
---|
| 1754 | ENDIF |
---|
| 1755 | ENDIF |
---|
| 1756 | |
---|
| 1757 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1758 | |
---|
| 1759 | ! |
---|
| 1760 | !-- potential temperature |
---|
| 1761 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1762 | |
---|
| 1763 | ! |
---|
| 1764 | !-- pt-tendency terms with communication |
---|
| 1765 | sat = tsc(1) |
---|
| 1766 | sbt = tsc(2) |
---|
| 1767 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1768 | |
---|
| 1769 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1770 | ! |
---|
| 1771 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1772 | !-- switched on. Thus: |
---|
| 1773 | sat = 1.0 |
---|
| 1774 | sbt = 1.0 |
---|
| 1775 | ENDIF |
---|
| 1776 | tend = 0.0 |
---|
| 1777 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1778 | ELSE |
---|
| 1779 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 1780 | tend = 0.0 |
---|
| 1781 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 1782 | ENDIF |
---|
| 1783 | ENDIF |
---|
| 1784 | |
---|
| 1785 | ! |
---|
| 1786 | !-- pt-tendency terms with no communication |
---|
| 1787 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1788 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
| 1789 | tend ) |
---|
| 1790 | ELSE |
---|
| 1791 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1792 | tend = 0.0 |
---|
| 1793 | IF ( ws_scheme_sca ) THEN |
---|
| 1794 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1795 | ELSE |
---|
| 1796 | CALL advec_s_pw( pt ) |
---|
| 1797 | ENDIF |
---|
| 1798 | ELSE |
---|
| 1799 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1800 | tend = 0.0 |
---|
| 1801 | CALL advec_s_up( pt ) |
---|
| 1802 | ENDIF |
---|
| 1803 | ENDIF |
---|
| 1804 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1805 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tswst_m, & |
---|
| 1806 | wall_heatflux, tend ) |
---|
| 1807 | ELSE |
---|
| 1808 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
| 1809 | tend ) |
---|
| 1810 | ENDIF |
---|
| 1811 | ENDIF |
---|
| 1812 | |
---|
| 1813 | ! |
---|
| 1814 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 1815 | !-- processes |
---|
| 1816 | IF ( radiation ) THEN |
---|
| 1817 | CALL calc_radiation |
---|
| 1818 | ENDIF |
---|
| 1819 | |
---|
| 1820 | ! |
---|
| 1821 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1822 | IF ( precipitation ) THEN |
---|
| 1823 | CALL impact_of_latent_heat |
---|
| 1824 | ENDIF |
---|
| 1825 | |
---|
| 1826 | ! |
---|
| 1827 | !-- Consideration of heat sources within the plant canopy |
---|
| 1828 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1829 | CALL plant_canopy_model( 4 ) |
---|
| 1830 | ENDIF |
---|
| 1831 | |
---|
| 1832 | !--If required compute influence of large-scale subsidence/ascent |
---|
| 1833 | IF ( large_scale_subsidence ) THEN |
---|
| 1834 | CALL subsidence ( tend, pt, pt_init ) |
---|
| 1835 | ENDIF |
---|
| 1836 | |
---|
| 1837 | CALL user_actions( 'pt-tendency' ) |
---|
| 1838 | |
---|
| 1839 | ! |
---|
| 1840 | !-- Prognostic equation for potential temperature |
---|
| 1841 | DO i = nxl, nxr |
---|
| 1842 | DO j = nys, nyn |
---|
| 1843 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1844 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 1845 | dt_3d * ( & |
---|
| 1846 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1847 | ) - & |
---|
| 1848 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1849 | ENDDO |
---|
| 1850 | ENDDO |
---|
| 1851 | ENDDO |
---|
| 1852 | |
---|
| 1853 | ! |
---|
| 1854 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1855 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1856 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1857 | DO i = nxl, nxr |
---|
| 1858 | DO j = nys, nyn |
---|
| 1859 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1860 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1861 | ENDDO |
---|
| 1862 | ENDDO |
---|
| 1863 | ENDDO |
---|
| 1864 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1865 | intermediate_timestep_count_max ) THEN |
---|
| 1866 | DO i = nxl, nxr |
---|
| 1867 | DO j = nys, nyn |
---|
| 1868 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1869 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 1870 | ENDDO |
---|
| 1871 | ENDDO |
---|
| 1872 | ENDDO |
---|
| 1873 | ENDIF |
---|
| 1874 | ENDIF |
---|
| 1875 | |
---|
| 1876 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1877 | |
---|
| 1878 | ! |
---|
| 1879 | !-- If required, compute prognostic equation for salinity |
---|
| 1880 | IF ( ocean ) THEN |
---|
| 1881 | |
---|
| 1882 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1883 | |
---|
| 1884 | ! |
---|
| 1885 | !-- sa-tendency terms with communication |
---|
| 1886 | sat = tsc(1) |
---|
| 1887 | sbt = tsc(2) |
---|
| 1888 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1889 | |
---|
| 1890 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1891 | ! |
---|
| 1892 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1893 | !-- switched on. Thus: |
---|
| 1894 | sat = 1.0 |
---|
| 1895 | sbt = 1.0 |
---|
| 1896 | ENDIF |
---|
| 1897 | tend = 0.0 |
---|
| 1898 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 1899 | ELSE |
---|
| 1900 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1901 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1902 | tend = 0.0 |
---|
| 1903 | CALL advec_s_ups( sa, 'sa' ) |
---|
| 1904 | ENDIF |
---|
| 1905 | ENDIF |
---|
| 1906 | ENDIF |
---|
| 1907 | |
---|
| 1908 | ! |
---|
| 1909 | !-- sa-tendency terms with no communication |
---|
| 1910 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1911 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 1912 | wall_salinityflux, tend ) |
---|
| 1913 | ELSE |
---|
| 1914 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1915 | tend = 0.0 |
---|
| 1916 | IF ( ws_scheme_sca ) THEN |
---|
| 1917 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1918 | ELSE |
---|
| 1919 | CALL advec_s_pw( sa ) |
---|
| 1920 | ENDIF |
---|
| 1921 | ELSE |
---|
| 1922 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1923 | tend = 0.0 |
---|
| 1924 | CALL advec_s_up( sa ) |
---|
| 1925 | ENDIF |
---|
| 1926 | ENDIF |
---|
| 1927 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 1928 | wall_salinityflux, tend ) |
---|
| 1929 | ENDIF |
---|
| 1930 | |
---|
| 1931 | CALL user_actions( 'sa-tendency' ) |
---|
| 1932 | |
---|
| 1933 | ! |
---|
| 1934 | !-- Prognostic equation for salinity |
---|
| 1935 | DO i = nxl, nxr |
---|
| 1936 | DO j = nys, nyn |
---|
| 1937 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1938 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
| 1939 | dt_3d * ( & |
---|
| 1940 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 1941 | ) - & |
---|
| 1942 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 1943 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1944 | ENDDO |
---|
| 1945 | ENDDO |
---|
| 1946 | ENDDO |
---|
| 1947 | |
---|
| 1948 | ! |
---|
| 1949 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1950 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1951 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1952 | DO i = nxl, nxr |
---|
| 1953 | DO j = nys, nyn |
---|
| 1954 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1955 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1956 | ENDDO |
---|
| 1957 | ENDDO |
---|
| 1958 | ENDDO |
---|
| 1959 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1960 | intermediate_timestep_count_max ) THEN |
---|
| 1961 | DO i = nxl, nxr |
---|
| 1962 | DO j = nys, nyn |
---|
| 1963 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1964 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1965 | 5.3125 * tsa_m(k,j,i) |
---|
| 1966 | ENDDO |
---|
| 1967 | ENDDO |
---|
| 1968 | ENDDO |
---|
| 1969 | ENDIF |
---|
| 1970 | ENDIF |
---|
| 1971 | |
---|
| 1972 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1973 | |
---|
| 1974 | ! |
---|
| 1975 | !-- Calculate density by the equation of state for seawater |
---|
| 1976 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1977 | CALL eqn_state_seawater |
---|
| 1978 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1979 | |
---|
| 1980 | ENDIF |
---|
| 1981 | |
---|
| 1982 | ! |
---|
| 1983 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1984 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1985 | |
---|
| 1986 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1987 | |
---|
| 1988 | ! |
---|
| 1989 | !-- Scalar/q-tendency terms with communication |
---|
| 1990 | sat = tsc(1) |
---|
| 1991 | sbt = tsc(2) |
---|
| 1992 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1993 | |
---|
| 1994 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1995 | ! |
---|
| 1996 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1997 | !-- switched on. Thus: |
---|
| 1998 | sat = 1.0 |
---|
| 1999 | sbt = 1.0 |
---|
| 2000 | ENDIF |
---|
| 2001 | tend = 0.0 |
---|
| 2002 | CALL advec_s_bc( q, 'q' ) |
---|
| 2003 | ELSE |
---|
| 2004 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 2005 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 2006 | tend = 0.0 |
---|
| 2007 | CALL advec_s_ups( q, 'q' ) |
---|
| 2008 | ENDIF |
---|
| 2009 | ENDIF |
---|
| 2010 | ENDIF |
---|
| 2011 | |
---|
| 2012 | ! |
---|
| 2013 | !-- Scalar/q-tendency terms with no communication |
---|
| 2014 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2015 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, wall_qflux, tend ) |
---|
| 2016 | ELSE |
---|
| 2017 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2018 | tend = 0.0 |
---|
| 2019 | IF ( ws_scheme_sca ) THEN |
---|
| 2020 | CALL advec_s_ws( q, 'q' ) |
---|
| 2021 | ELSE |
---|
| 2022 | CALL advec_s_pw( q ) |
---|
| 2023 | ENDIF |
---|
| 2024 | ELSE |
---|
| 2025 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 2026 | tend = 0.0 |
---|
| 2027 | CALL advec_s_up( q ) |
---|
| 2028 | ENDIF |
---|
| 2029 | ENDIF |
---|
| 2030 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 2031 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, qswst_m, & |
---|
| 2032 | wall_qflux, tend ) |
---|
| 2033 | ELSE |
---|
| 2034 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 2035 | wall_qflux, tend ) |
---|
| 2036 | ENDIF |
---|
| 2037 | ENDIF |
---|
| 2038 | |
---|
| 2039 | ! |
---|
| 2040 | !-- If required compute decrease of total water content due to |
---|
| 2041 | !-- precipitation |
---|
| 2042 | IF ( precipitation ) THEN |
---|
| 2043 | CALL calc_precipitation |
---|
| 2044 | ENDIF |
---|
| 2045 | |
---|
| 2046 | ! |
---|
| 2047 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 2048 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 2049 | |
---|
| 2050 | ! |
---|
| 2051 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 2052 | IF ( large_scale_subsidence ) THEN |
---|
| 2053 | CALL subsidence ( tend, q, q_init ) |
---|
| 2054 | ENDIF |
---|
| 2055 | |
---|
| 2056 | CALL user_actions( 'q-tendency' ) |
---|
| 2057 | |
---|
| 2058 | ! |
---|
| 2059 | !-- Prognostic equation for total water content / scalar |
---|
| 2060 | DO i = nxl, nxr |
---|
| 2061 | DO j = nys, nyn |
---|
| 2062 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2063 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 2064 | dt_3d * ( & |
---|
| 2065 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 2066 | ) - & |
---|
| 2067 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
| 2068 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 2069 | ENDDO |
---|
| 2070 | ENDDO |
---|
| 2071 | ENDDO |
---|
| 2072 | |
---|
| 2073 | ! |
---|
| 2074 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 2075 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2076 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 2077 | DO i = nxl, nxr |
---|
| 2078 | DO j = nys, nyn |
---|
| 2079 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2080 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 2081 | ENDDO |
---|
| 2082 | ENDDO |
---|
| 2083 | ENDDO |
---|
| 2084 | ELSEIF ( intermediate_timestep_count < & |
---|
| 2085 | intermediate_timestep_count_max ) THEN |
---|
| 2086 | DO i = nxl, nxr |
---|
| 2087 | DO j = nys, nyn |
---|
| 2088 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2089 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 2090 | ENDDO |
---|
| 2091 | ENDDO |
---|
| 2092 | ENDDO |
---|
| 2093 | ENDIF |
---|
| 2094 | ENDIF |
---|
| 2095 | |
---|
| 2096 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 2097 | |
---|
| 2098 | ENDIF |
---|
| 2099 | |
---|
| 2100 | ! |
---|
| 2101 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 2102 | !-- energy (TKE) |
---|
| 2103 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 2104 | |
---|
| 2105 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 2106 | |
---|
| 2107 | ! |
---|
| 2108 | !-- TKE-tendency terms with communication |
---|
| 2109 | CALL production_e_init |
---|
| 2110 | |
---|
| 2111 | sat = tsc(1) |
---|
| 2112 | sbt = tsc(2) |
---|
| 2113 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 2114 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2115 | |
---|
| 2116 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2117 | ! |
---|
| 2118 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 2119 | !-- switched on. Thus: |
---|
| 2120 | sat = 1.0 |
---|
| 2121 | sbt = 1.0 |
---|
| 2122 | ENDIF |
---|
| 2123 | tend = 0.0 |
---|
| 2124 | CALL advec_s_bc( e, 'e' ) |
---|
| 2125 | ELSE |
---|
| 2126 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 2127 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 2128 | tend = 0.0 |
---|
| 2129 | CALL advec_s_ups( e, 'e' ) |
---|
| 2130 | ENDIF |
---|
| 2131 | ENDIF |
---|
| 2132 | ENDIF |
---|
| 2133 | ENDIF |
---|
| 2134 | |
---|
| 2135 | ! |
---|
| 2136 | !-- TKE-tendency terms with no communication |
---|
| 2137 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
| 2138 | THEN |
---|
| 2139 | IF ( .NOT. humidity ) THEN |
---|
| 2140 | IF ( ocean ) THEN |
---|
| 2141 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
| 2142 | prho, prho_reference, rif, tend, zu, zw ) |
---|
| 2143 | ELSE |
---|
| 2144 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
| 2145 | pt_reference, rif, tend, zu, zw ) |
---|
| 2146 | ENDIF |
---|
| 2147 | ELSE |
---|
| 2148 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
| 2149 | pt_reference, rif, tend, zu, zw ) |
---|
| 2150 | ENDIF |
---|
| 2151 | ELSE |
---|
| 2152 | IF ( use_upstream_for_tke ) THEN |
---|
| 2153 | tend = 0.0 |
---|
| 2154 | CALL advec_s_up( e ) |
---|
| 2155 | ELSE |
---|
| 2156 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2157 | tend = 0.0 |
---|
| 2158 | IF ( ws_scheme_sca ) THEN |
---|
| 2159 | CALL advec_s_ws( e, 'e' ) |
---|
| 2160 | ELSE |
---|
| 2161 | CALL advec_s_pw( e ) |
---|
| 2162 | ENDIF |
---|
| 2163 | ELSE |
---|
| 2164 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 2165 | tend = 0.0 |
---|
| 2166 | CALL advec_s_up( e ) |
---|
| 2167 | ENDIF |
---|
| 2168 | ENDIF |
---|
| 2169 | ENDIF |
---|
| 2170 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 2171 | IF ( .NOT. humidity ) THEN |
---|
| 2172 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
| 2173 | pt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
| 2174 | ELSE |
---|
| 2175 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
| 2176 | vpt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
| 2177 | ENDIF |
---|
| 2178 | ELSE |
---|
| 2179 | IF ( .NOT. humidity ) THEN |
---|
| 2180 | IF ( ocean ) THEN |
---|
| 2181 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
| 2182 | prho, prho_reference, rif, tend, zu, zw ) |
---|
| 2183 | ELSE |
---|
| 2184 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
| 2185 | pt, pt_reference, rif, tend, zu, zw ) |
---|
| 2186 | ENDIF |
---|
| 2187 | ELSE |
---|
| 2188 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
| 2189 | pt_reference, rif, tend, zu, zw ) |
---|
| 2190 | ENDIF |
---|
| 2191 | ENDIF |
---|
| 2192 | ENDIF |
---|
| 2193 | CALL production_e |
---|
| 2194 | |
---|
| 2195 | ! |
---|
| 2196 | !-- Additional sink term for flows through plant canopies |
---|
| 2197 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 2198 | CALL user_actions( 'e-tendency' ) |
---|
| 2199 | |
---|
| 2200 | ! |
---|
| 2201 | !-- Prognostic equation for TKE. |
---|
| 2202 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2203 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2204 | !-- value is reduced by 90%. |
---|
| 2205 | DO i = nxl, nxr |
---|
| 2206 | DO j = nys, nyn |
---|
| 2207 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2208 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 2209 | dt_3d * ( & |
---|
| 2210 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 2211 | ) |
---|
| 2212 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 2213 | ENDDO |
---|
| 2214 | ENDDO |
---|
| 2215 | ENDDO |
---|
| 2216 | |
---|
| 2217 | ! |
---|
| 2218 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 2219 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2220 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 2221 | DO i = nxl, nxr |
---|
| 2222 | DO j = nys, nyn |
---|
| 2223 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2224 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2225 | ENDDO |
---|
| 2226 | ENDDO |
---|
| 2227 | ENDDO |
---|
| 2228 | ELSEIF ( intermediate_timestep_count < & |
---|
| 2229 | intermediate_timestep_count_max ) THEN |
---|
| 2230 | DO i = nxl, nxr |
---|
| 2231 | DO j = nys, nyn |
---|
| 2232 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2233 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 2234 | ENDDO |
---|
| 2235 | ENDDO |
---|
| 2236 | ENDDO |
---|
| 2237 | ENDIF |
---|
| 2238 | ENDIF |
---|
| 2239 | |
---|
| 2240 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2241 | |
---|
| 2242 | ENDIF |
---|
| 2243 | |
---|
| 2244 | |
---|
| 2245 | END SUBROUTINE prognostic_equations_vector |
---|
| 2246 | |
---|
| 2247 | |
---|
| 2248 | END MODULE prognostic_equations_mod |
---|