[1] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[73] | 6 | ! checking for negative q and limiting for positive values, |
---|
[75] | 7 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
| 8 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
| 9 | ! moisture renamed humidity |
---|
[1] | 10 | ! |
---|
| 11 | ! Former revisions: |
---|
| 12 | ! ----------------- |
---|
[3] | 13 | ! $Id: prognostic_equations.f90 75 2007-03-22 09:54:05Z raasch $ |
---|
[39] | 14 | ! |
---|
| 15 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 16 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
| 17 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
| 18 | ! |
---|
[3] | 19 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 20 | ! |
---|
[1] | 21 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
| 22 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
| 23 | ! regardless of the timestep scheme used for the other quantities, |
---|
| 24 | ! new argument diss in call of diffusion_e |
---|
| 25 | ! |
---|
| 26 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 27 | ! Initial revision |
---|
| 28 | ! |
---|
| 29 | ! |
---|
| 30 | ! Description: |
---|
| 31 | ! ------------ |
---|
[19] | 32 | ! Solving the prognostic equations. |
---|
[1] | 33 | !------------------------------------------------------------------------------! |
---|
| 34 | |
---|
| 35 | USE arrays_3d |
---|
| 36 | USE control_parameters |
---|
| 37 | USE cpulog |
---|
| 38 | USE grid_variables |
---|
| 39 | USE indices |
---|
| 40 | USE interfaces |
---|
| 41 | USE pegrid |
---|
| 42 | USE pointer_interfaces |
---|
| 43 | USE statistics |
---|
| 44 | |
---|
| 45 | USE advec_s_pw_mod |
---|
| 46 | USE advec_s_up_mod |
---|
| 47 | USE advec_u_pw_mod |
---|
| 48 | USE advec_u_up_mod |
---|
| 49 | USE advec_v_pw_mod |
---|
| 50 | USE advec_v_up_mod |
---|
| 51 | USE advec_w_pw_mod |
---|
| 52 | USE advec_w_up_mod |
---|
| 53 | USE buoyancy_mod |
---|
| 54 | USE calc_precipitation_mod |
---|
| 55 | USE calc_radiation_mod |
---|
| 56 | USE coriolis_mod |
---|
| 57 | USE diffusion_e_mod |
---|
| 58 | USE diffusion_s_mod |
---|
| 59 | USE diffusion_u_mod |
---|
| 60 | USE diffusion_v_mod |
---|
| 61 | USE diffusion_w_mod |
---|
| 62 | USE impact_of_latent_heat_mod |
---|
| 63 | USE production_e_mod |
---|
| 64 | USE user_actions_mod |
---|
| 65 | |
---|
| 66 | |
---|
| 67 | PRIVATE |
---|
[63] | 68 | PUBLIC prognostic_equations_noopt, prognostic_equations_cache, & |
---|
| 69 | prognostic_equations_vector |
---|
[1] | 70 | |
---|
[63] | 71 | INTERFACE prognostic_equations_noopt |
---|
| 72 | MODULE PROCEDURE prognostic_equations_noopt |
---|
| 73 | END INTERFACE prognostic_equations_noopt |
---|
[1] | 74 | |
---|
[63] | 75 | INTERFACE prognostic_equations_cache |
---|
| 76 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 77 | END INTERFACE prognostic_equations_cache |
---|
[1] | 78 | |
---|
[63] | 79 | INTERFACE prognostic_equations_vector |
---|
| 80 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 81 | END INTERFACE prognostic_equations_vector |
---|
[1] | 82 | |
---|
| 83 | |
---|
| 84 | CONTAINS |
---|
| 85 | |
---|
| 86 | |
---|
[63] | 87 | SUBROUTINE prognostic_equations_noopt |
---|
[1] | 88 | |
---|
| 89 | !------------------------------------------------------------------------------! |
---|
| 90 | ! Version with single loop optimization |
---|
| 91 | ! |
---|
| 92 | ! (Optimized over each single prognostic equation.) |
---|
| 93 | !------------------------------------------------------------------------------! |
---|
| 94 | |
---|
| 95 | IMPLICIT NONE |
---|
| 96 | |
---|
| 97 | CHARACTER (LEN=9) :: time_to_string |
---|
| 98 | INTEGER :: i, j, k |
---|
| 99 | REAL :: sat, sbt |
---|
| 100 | |
---|
| 101 | ! |
---|
| 102 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 103 | !-- global communication |
---|
| 104 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
[75] | 105 | IF ( humidity ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
[1] | 106 | |
---|
| 107 | ! |
---|
| 108 | !-- u-velocity component |
---|
| 109 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 110 | |
---|
| 111 | ! |
---|
| 112 | !-- u-tendency terms with communication |
---|
| 113 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 114 | tend = 0.0 |
---|
| 115 | CALL advec_u_ups |
---|
| 116 | ENDIF |
---|
| 117 | |
---|
| 118 | ! |
---|
| 119 | !-- u-tendency terms with no communication |
---|
[75] | 120 | DO i = nxl, nxr |
---|
[1] | 121 | DO j = nys, nyn |
---|
| 122 | ! |
---|
| 123 | !-- Tendency terms |
---|
| 124 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 125 | tend(:,j,i) = 0.0 |
---|
| 126 | CALL advec_u_pw( i, j ) |
---|
| 127 | ELSE |
---|
| 128 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 129 | tend(:,j,i) = 0.0 |
---|
| 130 | CALL advec_u_up( i, j ) |
---|
| 131 | ENDIF |
---|
| 132 | ENDIF |
---|
| 133 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 134 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
[57] | 135 | usws_m, v_m, w_m ) |
---|
[1] | 136 | ELSE |
---|
| 137 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
[57] | 138 | v, w ) |
---|
[1] | 139 | ENDIF |
---|
| 140 | CALL coriolis( i, j, 1 ) |
---|
| 141 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, 1, 4 ) |
---|
| 142 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 143 | |
---|
| 144 | ! |
---|
| 145 | !-- Prognostic equation for u-velocity component |
---|
| 146 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 147 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 148 | dt_3d * ( & |
---|
| 149 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 150 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 151 | ) - & |
---|
| 152 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 153 | ENDDO |
---|
| 154 | |
---|
| 155 | ! |
---|
| 156 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 157 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 158 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 159 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 160 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 161 | ENDDO |
---|
| 162 | ELSEIF ( intermediate_timestep_count < & |
---|
| 163 | intermediate_timestep_count_max ) THEN |
---|
| 164 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 165 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 166 | ENDDO |
---|
| 167 | ENDIF |
---|
| 168 | ENDIF |
---|
| 169 | |
---|
| 170 | ENDDO |
---|
| 171 | ENDDO |
---|
| 172 | |
---|
| 173 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 174 | |
---|
| 175 | ! |
---|
| 176 | !-- v-velocity component |
---|
| 177 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 178 | |
---|
| 179 | ! |
---|
| 180 | !-- v-tendency terms with communication |
---|
| 181 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 182 | tend = 0.0 |
---|
| 183 | CALL advec_v_ups |
---|
| 184 | ENDIF |
---|
| 185 | |
---|
| 186 | ! |
---|
| 187 | !-- v-tendency terms with no communication |
---|
| 188 | DO i = nxl, nxr |
---|
[75] | 189 | DO j = nys, nyn |
---|
[1] | 190 | ! |
---|
| 191 | !-- Tendency terms |
---|
| 192 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 193 | tend(:,j,i) = 0.0 |
---|
| 194 | CALL advec_v_pw( i, j ) |
---|
| 195 | ELSE |
---|
| 196 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 197 | tend(:,j,i) = 0.0 |
---|
| 198 | CALL advec_v_up( i, j ) |
---|
| 199 | ENDIF |
---|
| 200 | ENDIF |
---|
| 201 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 202 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
[57] | 203 | v_m, vsws_m, w_m ) |
---|
[1] | 204 | ELSE |
---|
| 205 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[57] | 206 | vsws, w ) |
---|
[1] | 207 | ENDIF |
---|
| 208 | CALL coriolis( i, j, 2 ) |
---|
| 209 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 210 | |
---|
| 211 | ! |
---|
| 212 | !-- Prognostic equation for v-velocity component |
---|
| 213 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 214 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 215 | dt_3d * ( & |
---|
| 216 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 217 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 218 | ) - & |
---|
| 219 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 220 | ENDDO |
---|
| 221 | |
---|
| 222 | ! |
---|
| 223 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 224 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 225 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 226 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 227 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 228 | ENDDO |
---|
| 229 | ELSEIF ( intermediate_timestep_count < & |
---|
| 230 | intermediate_timestep_count_max ) THEN |
---|
| 231 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 232 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 233 | ENDDO |
---|
| 234 | ENDIF |
---|
| 235 | ENDIF |
---|
| 236 | |
---|
| 237 | ENDDO |
---|
| 238 | ENDDO |
---|
| 239 | |
---|
| 240 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 241 | |
---|
| 242 | ! |
---|
| 243 | !-- w-velocity component |
---|
| 244 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 245 | |
---|
| 246 | ! |
---|
| 247 | !-- w-tendency terms with communication |
---|
| 248 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 249 | tend = 0.0 |
---|
| 250 | CALL advec_w_ups |
---|
| 251 | ENDIF |
---|
| 252 | |
---|
| 253 | ! |
---|
| 254 | !-- w-tendency terms with no communication |
---|
| 255 | DO i = nxl, nxr |
---|
| 256 | DO j = nys, nyn |
---|
| 257 | ! |
---|
| 258 | !-- Tendency terms |
---|
| 259 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 260 | tend(:,j,i) = 0.0 |
---|
| 261 | CALL advec_w_pw( i, j ) |
---|
| 262 | ELSE |
---|
| 263 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 264 | tend(:,j,i) = 0.0 |
---|
| 265 | CALL advec_w_up( i, j ) |
---|
| 266 | ENDIF |
---|
| 267 | ENDIF |
---|
| 268 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 269 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
[57] | 270 | tend, u_m, v_m, w_m ) |
---|
[1] | 271 | ELSE |
---|
| 272 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
[57] | 273 | tend, u, v, w ) |
---|
[1] | 274 | ENDIF |
---|
| 275 | CALL coriolis( i, j, 3 ) |
---|
[75] | 276 | IF ( .NOT. humidity ) THEN |
---|
[1] | 277 | CALL buoyancy( i, j, pt, 3, 4 ) |
---|
| 278 | ELSE |
---|
| 279 | CALL buoyancy( i, j, vpt, 3, 44 ) |
---|
| 280 | ENDIF |
---|
| 281 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 282 | |
---|
| 283 | ! |
---|
| 284 | !-- Prognostic equation for w-velocity component |
---|
| 285 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 286 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 287 | dt_3d * ( & |
---|
| 288 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 289 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 290 | ) - & |
---|
| 291 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 292 | ENDDO |
---|
| 293 | |
---|
| 294 | ! |
---|
| 295 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 296 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 297 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 298 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 299 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 300 | ENDDO |
---|
| 301 | ELSEIF ( intermediate_timestep_count < & |
---|
| 302 | intermediate_timestep_count_max ) THEN |
---|
| 303 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 304 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 305 | ENDDO |
---|
| 306 | ENDIF |
---|
| 307 | ENDIF |
---|
| 308 | |
---|
| 309 | ENDDO |
---|
| 310 | ENDDO |
---|
| 311 | |
---|
| 312 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 313 | |
---|
| 314 | ! |
---|
| 315 | !-- potential temperature |
---|
| 316 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 317 | |
---|
| 318 | ! |
---|
| 319 | !-- pt-tendency terms with communication |
---|
[70] | 320 | sat = tsc(1) |
---|
| 321 | sbt = tsc(2) |
---|
[1] | 322 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 323 | |
---|
| 324 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 325 | ! |
---|
[70] | 326 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 327 | !-- switched on. Thus: |
---|
| 328 | sat = 1.0 |
---|
| 329 | sbt = 1.0 |
---|
| 330 | ENDIF |
---|
[1] | 331 | tend = 0.0 |
---|
| 332 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 333 | ELSE |
---|
| 334 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 335 | tend = 0.0 |
---|
| 336 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 337 | ENDIF |
---|
| 338 | ENDIF |
---|
| 339 | |
---|
| 340 | ! |
---|
| 341 | !-- pt-tendency terms with no communication |
---|
| 342 | DO i = nxl, nxr |
---|
| 343 | DO j = nys, nyn |
---|
| 344 | ! |
---|
| 345 | !-- Tendency terms |
---|
| 346 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 347 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 348 | ELSE |
---|
| 349 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 350 | tend(:,j,i) = 0.0 |
---|
| 351 | CALL advec_s_pw( i, j, pt ) |
---|
| 352 | ELSE |
---|
| 353 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 354 | tend(:,j,i) = 0.0 |
---|
| 355 | CALL advec_s_up( i, j, pt ) |
---|
| 356 | ENDIF |
---|
| 357 | ENDIF |
---|
| 358 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 359 | THEN |
---|
[19] | 360 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
| 361 | tswst_m, tend ) |
---|
[1] | 362 | ELSE |
---|
[19] | 363 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 364 | ENDIF |
---|
| 365 | ENDIF |
---|
| 366 | |
---|
| 367 | ! |
---|
| 368 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 369 | !-- processes |
---|
| 370 | IF ( radiation ) THEN |
---|
| 371 | CALL calc_radiation( i, j ) |
---|
| 372 | ENDIF |
---|
| 373 | |
---|
| 374 | ! |
---|
| 375 | !-- If required compute impact of latent heat due to precipitation |
---|
| 376 | IF ( precipitation ) THEN |
---|
| 377 | CALL impact_of_latent_heat( i, j ) |
---|
| 378 | ENDIF |
---|
| 379 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 380 | |
---|
| 381 | ! |
---|
| 382 | !-- Prognostic equation for potential temperature |
---|
[19] | 383 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 384 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 385 | dt_3d * ( & |
---|
| 386 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 387 | ) - & |
---|
| 388 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 389 | ENDDO |
---|
| 390 | |
---|
| 391 | ! |
---|
| 392 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 393 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 394 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 395 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 396 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 397 | ENDDO |
---|
| 398 | ELSEIF ( intermediate_timestep_count < & |
---|
| 399 | intermediate_timestep_count_max ) THEN |
---|
[19] | 400 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 401 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 402 | ENDDO |
---|
| 403 | ENDIF |
---|
| 404 | ENDIF |
---|
| 405 | |
---|
| 406 | ENDDO |
---|
| 407 | ENDDO |
---|
| 408 | |
---|
| 409 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 410 | |
---|
| 411 | ! |
---|
| 412 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 413 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 414 | |
---|
| 415 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 416 | |
---|
| 417 | ! |
---|
| 418 | !-- Scalar/q-tendency terms with communication |
---|
[70] | 419 | sat = tsc(1) |
---|
| 420 | sbt = tsc(2) |
---|
[1] | 421 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 422 | |
---|
| 423 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 424 | ! |
---|
[70] | 425 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 426 | !-- switched on. Thus: |
---|
| 427 | sat = 1.0 |
---|
| 428 | sbt = 1.0 |
---|
| 429 | ENDIF |
---|
[1] | 430 | tend = 0.0 |
---|
| 431 | CALL advec_s_bc( q, 'q' ) |
---|
| 432 | ELSE |
---|
| 433 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 434 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 435 | tend = 0.0 |
---|
| 436 | CALL advec_s_ups( q, 'q' ) |
---|
| 437 | ENDIF |
---|
| 438 | ENDIF |
---|
| 439 | ENDIF |
---|
| 440 | |
---|
| 441 | ! |
---|
| 442 | !-- Scalar/q-tendency terms with no communication |
---|
| 443 | DO i = nxl, nxr |
---|
| 444 | DO j = nys, nyn |
---|
| 445 | ! |
---|
| 446 | !-- Tendency-terms |
---|
| 447 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 448 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, tend ) |
---|
[1] | 449 | ELSE |
---|
| 450 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 451 | tend(:,j,i) = 0.0 |
---|
| 452 | CALL advec_s_pw( i, j, q ) |
---|
| 453 | ELSE |
---|
| 454 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 455 | tend(:,j,i) = 0.0 |
---|
| 456 | CALL advec_s_up( i, j, q ) |
---|
| 457 | ENDIF |
---|
| 458 | ENDIF |
---|
| 459 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 460 | THEN |
---|
| 461 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
[19] | 462 | qswst_m, tend ) |
---|
| 463 | ELSE |
---|
| 464 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
[1] | 465 | tend ) |
---|
| 466 | ENDIF |
---|
| 467 | ENDIF |
---|
| 468 | |
---|
| 469 | ! |
---|
| 470 | !-- If required compute decrease of total water content due to |
---|
| 471 | !-- precipitation |
---|
| 472 | IF ( precipitation ) THEN |
---|
| 473 | CALL calc_precipitation( i, j ) |
---|
| 474 | ENDIF |
---|
| 475 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 476 | |
---|
| 477 | ! |
---|
| 478 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 479 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 480 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 481 | dt_3d * ( & |
---|
| 482 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 483 | ) - & |
---|
| 484 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 485 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 486 | ENDDO |
---|
| 487 | |
---|
| 488 | ! |
---|
| 489 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 490 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 491 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 492 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 493 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 494 | ENDDO |
---|
| 495 | ELSEIF ( intermediate_timestep_count < & |
---|
| 496 | intermediate_timestep_count_max ) THEN |
---|
[19] | 497 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 498 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 499 | ENDDO |
---|
| 500 | ENDIF |
---|
| 501 | ENDIF |
---|
| 502 | |
---|
| 503 | ENDDO |
---|
| 504 | ENDDO |
---|
| 505 | |
---|
| 506 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 507 | |
---|
| 508 | ENDIF |
---|
| 509 | |
---|
| 510 | ! |
---|
| 511 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 512 | !-- energy (TKE) |
---|
| 513 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 514 | |
---|
| 515 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 516 | |
---|
| 517 | ! |
---|
| 518 | !-- TKE-tendency terms with communication |
---|
| 519 | CALL production_e_init |
---|
[70] | 520 | |
---|
| 521 | sat = tsc(1) |
---|
| 522 | sbt = tsc(2) |
---|
[1] | 523 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 524 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 525 | |
---|
| 526 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 527 | ! |
---|
[70] | 528 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 529 | !-- switched on. Thus: |
---|
| 530 | sat = 1.0 |
---|
| 531 | sbt = 1.0 |
---|
| 532 | ENDIF |
---|
[1] | 533 | tend = 0.0 |
---|
| 534 | CALL advec_s_bc( e, 'e' ) |
---|
| 535 | ELSE |
---|
| 536 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 537 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 538 | tend = 0.0 |
---|
| 539 | CALL advec_s_ups( e, 'e' ) |
---|
| 540 | ENDIF |
---|
| 541 | ENDIF |
---|
| 542 | ENDIF |
---|
| 543 | ENDIF |
---|
| 544 | |
---|
| 545 | ! |
---|
| 546 | !-- TKE-tendency terms with no communication |
---|
| 547 | DO i = nxl, nxr |
---|
| 548 | DO j = nys, nyn |
---|
| 549 | ! |
---|
| 550 | !-- Tendency-terms |
---|
| 551 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
| 552 | .NOT. use_upstream_for_tke ) THEN |
---|
[75] | 553 | IF ( .NOT. humidity ) THEN |
---|
[1] | 554 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 555 | l_grid, pt, rif, tend, zu ) |
---|
| 556 | ELSE |
---|
| 557 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 558 | l_grid, vpt, rif, tend, zu ) |
---|
| 559 | ENDIF |
---|
| 560 | ELSE |
---|
| 561 | IF ( use_upstream_for_tke ) THEN |
---|
| 562 | tend(:,j,i) = 0.0 |
---|
| 563 | CALL advec_s_up( i, j, e ) |
---|
| 564 | ELSE |
---|
| 565 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 566 | THEN |
---|
| 567 | tend(:,j,i) = 0.0 |
---|
| 568 | CALL advec_s_pw( i, j, e ) |
---|
| 569 | ELSE |
---|
| 570 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 571 | tend(:,j,i) = 0.0 |
---|
| 572 | CALL advec_s_up( i, j, e ) |
---|
| 573 | ENDIF |
---|
| 574 | ENDIF |
---|
| 575 | ENDIF |
---|
| 576 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 577 | THEN |
---|
[75] | 578 | IF ( .NOT. humidity ) THEN |
---|
[1] | 579 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 580 | km_m, l_grid, pt_m, rif_m, tend, zu ) |
---|
| 581 | ELSE |
---|
| 582 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 583 | km_m, l_grid, vpt_m, rif_m, tend, zu ) |
---|
| 584 | ENDIF |
---|
| 585 | ELSE |
---|
[75] | 586 | IF ( .NOT. humidity ) THEN |
---|
[1] | 587 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 588 | l_grid, pt, rif, tend, zu ) |
---|
| 589 | ELSE |
---|
| 590 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 591 | l_grid, vpt, rif, tend, zu ) |
---|
| 592 | ENDIF |
---|
| 593 | ENDIF |
---|
| 594 | ENDIF |
---|
| 595 | CALL production_e( i, j ) |
---|
| 596 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 597 | |
---|
| 598 | ! |
---|
| 599 | !-- Prognostic equation for TKE. |
---|
| 600 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 601 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 602 | !-- value is reduced by 90%. |
---|
[19] | 603 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 604 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 605 | dt_3d * ( & |
---|
| 606 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 607 | ) |
---|
| 608 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 609 | ENDDO |
---|
| 610 | |
---|
| 611 | ! |
---|
| 612 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 613 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 614 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 615 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 616 | te_m(k,j,i) = tend(k,j,i) |
---|
| 617 | ENDDO |
---|
| 618 | ELSEIF ( intermediate_timestep_count < & |
---|
| 619 | intermediate_timestep_count_max ) THEN |
---|
[19] | 620 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 621 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 622 | ENDDO |
---|
| 623 | ENDIF |
---|
| 624 | ENDIF |
---|
| 625 | |
---|
| 626 | ENDDO |
---|
| 627 | ENDDO |
---|
| 628 | |
---|
| 629 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 630 | |
---|
| 631 | ENDIF |
---|
| 632 | |
---|
| 633 | |
---|
[63] | 634 | END SUBROUTINE prognostic_equations_noopt |
---|
[1] | 635 | |
---|
| 636 | |
---|
[63] | 637 | SUBROUTINE prognostic_equations_cache |
---|
[1] | 638 | |
---|
| 639 | !------------------------------------------------------------------------------! |
---|
| 640 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 641 | ! be called for the standard Piascek-Williams advection scheme. |
---|
| 642 | ! |
---|
| 643 | ! The call of this subroutine is embedded in two DO loops over i and j, thus |
---|
| 644 | ! communication between CPUs is not allowed in this subroutine. |
---|
| 645 | ! |
---|
| 646 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 647 | !------------------------------------------------------------------------------! |
---|
| 648 | |
---|
| 649 | IMPLICIT NONE |
---|
| 650 | |
---|
| 651 | CHARACTER (LEN=9) :: time_to_string |
---|
| 652 | INTEGER :: i, j, k |
---|
| 653 | |
---|
| 654 | |
---|
| 655 | ! |
---|
| 656 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 657 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 658 | |
---|
| 659 | |
---|
| 660 | ! |
---|
| 661 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 662 | !-- global communication |
---|
| 663 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
[75] | 664 | IF ( humidity ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
[1] | 665 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
| 666 | |
---|
| 667 | |
---|
| 668 | ! |
---|
| 669 | !-- Loop over all prognostic equations |
---|
| 670 | !$OMP PARALLEL private (i,j,k) |
---|
| 671 | !$OMP DO |
---|
[75] | 672 | DO i = nxl, nxr |
---|
| 673 | DO j = nys, nyn |
---|
[1] | 674 | ! |
---|
| 675 | !-- Tendency terms for u-velocity component |
---|
| 676 | IF ( j < nyn+1 ) THEN |
---|
| 677 | |
---|
| 678 | tend(:,j,i) = 0.0 |
---|
| 679 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 680 | CALL advec_u_pw( i, j ) |
---|
| 681 | ELSE |
---|
| 682 | CALL advec_u_up( i, j ) |
---|
| 683 | ENDIF |
---|
| 684 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 685 | THEN |
---|
| 686 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
[57] | 687 | u_m, usws_m, v_m, w_m ) |
---|
[1] | 688 | ELSE |
---|
| 689 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
[57] | 690 | usws, v, w ) |
---|
[1] | 691 | ENDIF |
---|
| 692 | CALL coriolis( i, j, 1 ) |
---|
| 693 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, 1, 4 ) |
---|
| 694 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 695 | |
---|
| 696 | ! |
---|
| 697 | !-- Prognostic equation for u-velocity component |
---|
| 698 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 699 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 700 | dt_3d * ( & |
---|
| 701 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 702 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 703 | ) - & |
---|
| 704 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 705 | ENDDO |
---|
| 706 | |
---|
| 707 | ! |
---|
| 708 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 709 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 710 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 711 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 712 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 713 | ENDDO |
---|
| 714 | ELSEIF ( intermediate_timestep_count < & |
---|
| 715 | intermediate_timestep_count_max ) THEN |
---|
| 716 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 717 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 718 | ENDDO |
---|
| 719 | ENDIF |
---|
| 720 | ENDIF |
---|
| 721 | |
---|
| 722 | ENDIF |
---|
| 723 | |
---|
| 724 | ! |
---|
| 725 | !-- Tendency terms for v-velocity component |
---|
| 726 | IF ( i < nxr+1 ) THEN |
---|
| 727 | |
---|
| 728 | tend(:,j,i) = 0.0 |
---|
| 729 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 730 | CALL advec_v_pw( i, j ) |
---|
| 731 | ELSE |
---|
| 732 | CALL advec_v_up( i, j ) |
---|
| 733 | ENDIF |
---|
| 734 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 735 | THEN |
---|
| 736 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
[57] | 737 | u_m, v_m, vsws_m, w_m ) |
---|
[1] | 738 | ELSE |
---|
| 739 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[57] | 740 | vsws, w ) |
---|
[1] | 741 | ENDIF |
---|
| 742 | CALL coriolis( i, j, 2 ) |
---|
| 743 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 744 | |
---|
| 745 | ! |
---|
| 746 | !-- Prognostic equation for v-velocity component |
---|
| 747 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 748 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 749 | dt_3d * ( & |
---|
| 750 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 751 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 752 | ) - & |
---|
| 753 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 754 | ENDDO |
---|
| 755 | |
---|
| 756 | ! |
---|
| 757 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 758 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 759 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 760 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 761 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 762 | ENDDO |
---|
| 763 | ELSEIF ( intermediate_timestep_count < & |
---|
| 764 | intermediate_timestep_count_max ) THEN |
---|
| 765 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 766 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 767 | ENDDO |
---|
| 768 | ENDIF |
---|
| 769 | ENDIF |
---|
| 770 | |
---|
| 771 | ENDIF |
---|
| 772 | |
---|
| 773 | ! |
---|
| 774 | !-- Tendency terms for w-velocity component |
---|
| 775 | IF ( i < nxr+1 .AND. j < nyn+1 ) THEN |
---|
| 776 | |
---|
| 777 | tend(:,j,i) = 0.0 |
---|
| 778 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 779 | CALL advec_w_pw( i, j ) |
---|
| 780 | ELSE |
---|
| 781 | CALL advec_w_up( i, j ) |
---|
| 782 | ENDIF |
---|
| 783 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 784 | THEN |
---|
| 785 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
[57] | 786 | km_damp_y, tend, u_m, v_m, w_m ) |
---|
[1] | 787 | ELSE |
---|
| 788 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
[57] | 789 | tend, u, v, w ) |
---|
[1] | 790 | ENDIF |
---|
| 791 | CALL coriolis( i, j, 3 ) |
---|
[75] | 792 | IF ( .NOT. humidity ) THEN |
---|
[1] | 793 | CALL buoyancy( i, j, pt, 3, 4 ) |
---|
| 794 | ELSE |
---|
| 795 | CALL buoyancy( i, j, vpt, 3, 44 ) |
---|
| 796 | ENDIF |
---|
| 797 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 798 | |
---|
| 799 | ! |
---|
| 800 | !-- Prognostic equation for w-velocity component |
---|
| 801 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 802 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 803 | dt_3d * ( & |
---|
| 804 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 805 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 806 | ) - & |
---|
| 807 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 808 | ENDDO |
---|
| 809 | |
---|
| 810 | ! |
---|
| 811 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 812 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 813 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 814 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 815 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 816 | ENDDO |
---|
| 817 | ELSEIF ( intermediate_timestep_count < & |
---|
| 818 | intermediate_timestep_count_max ) THEN |
---|
| 819 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 820 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 821 | ENDDO |
---|
| 822 | ENDIF |
---|
| 823 | ENDIF |
---|
| 824 | |
---|
| 825 | ! |
---|
| 826 | !-- Tendency terms for potential temperature |
---|
| 827 | tend(:,j,i) = 0.0 |
---|
| 828 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 829 | CALL advec_s_pw( i, j, pt ) |
---|
| 830 | ELSE |
---|
| 831 | CALL advec_s_up( i, j, pt ) |
---|
| 832 | ENDIF |
---|
| 833 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 834 | THEN |
---|
[19] | 835 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
| 836 | tswst_m, tend ) |
---|
[1] | 837 | ELSE |
---|
[19] | 838 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 839 | ENDIF |
---|
| 840 | |
---|
| 841 | ! |
---|
| 842 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 843 | !-- processes |
---|
| 844 | IF ( radiation ) THEN |
---|
| 845 | CALL calc_radiation( i, j ) |
---|
| 846 | ENDIF |
---|
| 847 | |
---|
| 848 | ! |
---|
| 849 | !-- If required compute impact of latent heat due to precipitation |
---|
| 850 | IF ( precipitation ) THEN |
---|
| 851 | CALL impact_of_latent_heat( i, j ) |
---|
| 852 | ENDIF |
---|
| 853 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 854 | |
---|
| 855 | ! |
---|
| 856 | !-- Prognostic equation for potential temperature |
---|
[19] | 857 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 858 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
| 859 | dt_3d * ( & |
---|
| 860 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 861 | ) - & |
---|
| 862 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 863 | ENDDO |
---|
| 864 | |
---|
| 865 | ! |
---|
| 866 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 867 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 868 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 869 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 870 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 871 | ENDDO |
---|
| 872 | ELSEIF ( intermediate_timestep_count < & |
---|
| 873 | intermediate_timestep_count_max ) THEN |
---|
[19] | 874 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 875 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 876 | 5.3125 * tpt_m(k,j,i) |
---|
| 877 | ENDDO |
---|
| 878 | ENDIF |
---|
| 879 | ENDIF |
---|
| 880 | |
---|
| 881 | ! |
---|
| 882 | !-- If required, compute prognostic equation for total water content / |
---|
| 883 | !-- scalar |
---|
[75] | 884 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 885 | |
---|
| 886 | ! |
---|
| 887 | !-- Tendency-terms for total water content / scalar |
---|
| 888 | tend(:,j,i) = 0.0 |
---|
| 889 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 890 | THEN |
---|
| 891 | CALL advec_s_pw( i, j, q ) |
---|
| 892 | ELSE |
---|
| 893 | CALL advec_s_up( i, j, q ) |
---|
| 894 | ENDIF |
---|
| 895 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 896 | THEN |
---|
[19] | 897 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
| 898 | qswst_m, tend ) |
---|
[1] | 899 | ELSE |
---|
[19] | 900 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 901 | tend ) |
---|
[1] | 902 | ENDIF |
---|
| 903 | |
---|
| 904 | ! |
---|
| 905 | !-- If required compute decrease of total water content due to |
---|
| 906 | !-- precipitation |
---|
| 907 | IF ( precipitation ) THEN |
---|
| 908 | CALL calc_precipitation( i, j ) |
---|
| 909 | ENDIF |
---|
| 910 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 911 | |
---|
| 912 | ! |
---|
| 913 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 914 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 915 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
| 916 | dt_3d * ( & |
---|
| 917 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 918 | ) - & |
---|
| 919 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 920 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 921 | ENDDO |
---|
| 922 | |
---|
| 923 | ! |
---|
| 924 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 925 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 926 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 927 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 928 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 929 | ENDDO |
---|
| 930 | ELSEIF ( intermediate_timestep_count < & |
---|
| 931 | intermediate_timestep_count_max ) THEN |
---|
[19] | 932 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 933 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 934 | 5.3125 * tq_m(k,j,i) |
---|
| 935 | ENDDO |
---|
| 936 | ENDIF |
---|
| 937 | ENDIF |
---|
| 938 | |
---|
| 939 | ENDIF |
---|
| 940 | |
---|
| 941 | ! |
---|
| 942 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 943 | !-- energy (TKE) |
---|
| 944 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 945 | |
---|
| 946 | ! |
---|
| 947 | !-- Tendency-terms for TKE |
---|
| 948 | tend(:,j,i) = 0.0 |
---|
| 949 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 950 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
| 951 | CALL advec_s_pw( i, j, e ) |
---|
| 952 | ELSE |
---|
| 953 | CALL advec_s_up( i, j, e ) |
---|
| 954 | ENDIF |
---|
| 955 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 956 | THEN |
---|
[75] | 957 | IF ( .NOT. humidity ) THEN |
---|
[1] | 958 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 959 | km_m, l_grid, pt_m, rif_m, tend, zu ) |
---|
| 960 | ELSE |
---|
| 961 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 962 | km_m, l_grid, vpt_m, rif_m, tend, zu ) |
---|
| 963 | ENDIF |
---|
| 964 | ELSE |
---|
[75] | 965 | IF ( .NOT. humidity ) THEN |
---|
[1] | 966 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 967 | l_grid, pt, rif, tend, zu ) |
---|
| 968 | ELSE |
---|
| 969 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 970 | l_grid, vpt, rif, tend, zu ) |
---|
| 971 | ENDIF |
---|
| 972 | ENDIF |
---|
| 973 | CALL production_e( i, j ) |
---|
| 974 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 975 | |
---|
| 976 | ! |
---|
| 977 | !-- Prognostic equation for TKE. |
---|
| 978 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 979 | !-- reasons in the course of the integration. In such cases the old |
---|
| 980 | !-- TKE value is reduced by 90%. |
---|
[19] | 981 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 982 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
| 983 | dt_3d * ( & |
---|
| 984 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 985 | ) |
---|
| 986 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 987 | ENDDO |
---|
| 988 | |
---|
| 989 | ! |
---|
| 990 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 991 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 992 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 993 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 994 | te_m(k,j,i) = tend(k,j,i) |
---|
| 995 | ENDDO |
---|
| 996 | ELSEIF ( intermediate_timestep_count < & |
---|
| 997 | intermediate_timestep_count_max ) THEN |
---|
[19] | 998 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 999 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1000 | 5.3125 * te_m(k,j,i) |
---|
| 1001 | ENDDO |
---|
| 1002 | ENDIF |
---|
| 1003 | ENDIF |
---|
| 1004 | |
---|
| 1005 | ENDIF ! TKE equation |
---|
| 1006 | |
---|
| 1007 | ENDIF ! Gridpoints excluding the non-cyclic wall |
---|
| 1008 | |
---|
| 1009 | ENDDO |
---|
| 1010 | ENDDO |
---|
| 1011 | !$OMP END PARALLEL |
---|
| 1012 | |
---|
| 1013 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 1014 | |
---|
| 1015 | |
---|
[63] | 1016 | END SUBROUTINE prognostic_equations_cache |
---|
[1] | 1017 | |
---|
| 1018 | |
---|
[63] | 1019 | SUBROUTINE prognostic_equations_vector |
---|
[1] | 1020 | |
---|
| 1021 | !------------------------------------------------------------------------------! |
---|
| 1022 | ! Version for vector machines |
---|
| 1023 | !------------------------------------------------------------------------------! |
---|
| 1024 | |
---|
| 1025 | IMPLICIT NONE |
---|
| 1026 | |
---|
| 1027 | CHARACTER (LEN=9) :: time_to_string |
---|
| 1028 | INTEGER :: i, j, k |
---|
| 1029 | REAL :: sat, sbt |
---|
| 1030 | |
---|
| 1031 | ! |
---|
| 1032 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 1033 | !-- global communication |
---|
| 1034 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
[75] | 1035 | IF ( humidity ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
[1] | 1036 | |
---|
| 1037 | ! |
---|
| 1038 | !-- u-velocity component |
---|
| 1039 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1040 | |
---|
| 1041 | ! |
---|
| 1042 | !-- u-tendency terms with communication |
---|
| 1043 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1044 | tend = 0.0 |
---|
| 1045 | CALL advec_u_ups |
---|
| 1046 | ENDIF |
---|
| 1047 | |
---|
| 1048 | ! |
---|
| 1049 | !-- u-tendency terms with no communication |
---|
| 1050 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1051 | tend = 0.0 |
---|
| 1052 | CALL advec_u_pw |
---|
| 1053 | ELSE |
---|
| 1054 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1055 | tend = 0.0 |
---|
| 1056 | CALL advec_u_up |
---|
| 1057 | ENDIF |
---|
| 1058 | ENDIF |
---|
| 1059 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1060 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, v_m, & |
---|
[57] | 1061 | w_m ) |
---|
[1] | 1062 | ELSE |
---|
[57] | 1063 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, v, w ) |
---|
[1] | 1064 | ENDIF |
---|
| 1065 | CALL coriolis( 1 ) |
---|
| 1066 | IF ( sloping_surface ) CALL buoyancy( pt, 1, 4 ) |
---|
| 1067 | CALL user_actions( 'u-tendency' ) |
---|
| 1068 | |
---|
| 1069 | ! |
---|
| 1070 | !-- Prognostic equation for u-velocity component |
---|
[75] | 1071 | DO i = nxl, nxr |
---|
[1] | 1072 | DO j = nys, nyn |
---|
| 1073 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1074 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 1075 | dt_3d * ( & |
---|
| 1076 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 1077 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 1078 | ) - & |
---|
| 1079 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1080 | ENDDO |
---|
| 1081 | ENDDO |
---|
| 1082 | ENDDO |
---|
| 1083 | |
---|
| 1084 | ! |
---|
| 1085 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1086 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1087 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[75] | 1088 | DO i = nxl, nxr |
---|
[1] | 1089 | DO j = nys, nyn |
---|
| 1090 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1091 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1092 | ENDDO |
---|
| 1093 | ENDDO |
---|
| 1094 | ENDDO |
---|
| 1095 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1096 | intermediate_timestep_count_max ) THEN |
---|
[75] | 1097 | DO i = nxl, nxr |
---|
[1] | 1098 | DO j = nys, nyn |
---|
| 1099 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1100 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 1101 | ENDDO |
---|
| 1102 | ENDDO |
---|
| 1103 | ENDDO |
---|
| 1104 | ENDIF |
---|
| 1105 | ENDIF |
---|
| 1106 | |
---|
| 1107 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1108 | |
---|
| 1109 | ! |
---|
| 1110 | !-- v-velocity component |
---|
| 1111 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1112 | |
---|
| 1113 | ! |
---|
| 1114 | !-- v-tendency terms with communication |
---|
| 1115 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1116 | tend = 0.0 |
---|
| 1117 | CALL advec_v_ups |
---|
| 1118 | ENDIF |
---|
| 1119 | |
---|
| 1120 | ! |
---|
| 1121 | !-- v-tendency terms with no communication |
---|
| 1122 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1123 | tend = 0.0 |
---|
| 1124 | CALL advec_v_pw |
---|
| 1125 | ELSE |
---|
| 1126 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1127 | tend = 0.0 |
---|
| 1128 | CALL advec_v_up |
---|
| 1129 | ENDIF |
---|
| 1130 | ENDIF |
---|
| 1131 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1132 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
[57] | 1133 | w_m ) |
---|
[1] | 1134 | ELSE |
---|
[57] | 1135 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, w ) |
---|
[1] | 1136 | ENDIF |
---|
| 1137 | CALL coriolis( 2 ) |
---|
| 1138 | CALL user_actions( 'v-tendency' ) |
---|
| 1139 | |
---|
| 1140 | ! |
---|
| 1141 | !-- Prognostic equation for v-velocity component |
---|
| 1142 | DO i = nxl, nxr |
---|
[75] | 1143 | DO j = nys, nyn |
---|
[1] | 1144 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1145 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 1146 | dt_3d * ( & |
---|
| 1147 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 1148 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 1149 | ) - & |
---|
| 1150 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1151 | ENDDO |
---|
| 1152 | ENDDO |
---|
| 1153 | ENDDO |
---|
| 1154 | |
---|
| 1155 | ! |
---|
| 1156 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1157 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1158 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1159 | DO i = nxl, nxr |
---|
[75] | 1160 | DO j = nys, nyn |
---|
[1] | 1161 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1162 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1163 | ENDDO |
---|
| 1164 | ENDDO |
---|
| 1165 | ENDDO |
---|
| 1166 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1167 | intermediate_timestep_count_max ) THEN |
---|
| 1168 | DO i = nxl, nxr |
---|
[75] | 1169 | DO j = nys, nyn |
---|
[1] | 1170 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1171 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1172 | ENDDO |
---|
| 1173 | ENDDO |
---|
| 1174 | ENDDO |
---|
| 1175 | ENDIF |
---|
| 1176 | ENDIF |
---|
| 1177 | |
---|
| 1178 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1179 | |
---|
| 1180 | ! |
---|
| 1181 | !-- w-velocity component |
---|
| 1182 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1183 | |
---|
| 1184 | ! |
---|
| 1185 | !-- w-tendency terms with communication |
---|
| 1186 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1187 | tend = 0.0 |
---|
| 1188 | CALL advec_w_ups |
---|
| 1189 | ENDIF |
---|
| 1190 | |
---|
| 1191 | ! |
---|
| 1192 | !-- w-tendency terms with no communication |
---|
| 1193 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1194 | tend = 0.0 |
---|
| 1195 | CALL advec_w_pw |
---|
| 1196 | ELSE |
---|
| 1197 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1198 | tend = 0.0 |
---|
| 1199 | CALL advec_w_up |
---|
| 1200 | ENDIF |
---|
| 1201 | ENDIF |
---|
| 1202 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1203 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
[57] | 1204 | v_m, w_m ) |
---|
[1] | 1205 | ELSE |
---|
[57] | 1206 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w ) |
---|
[1] | 1207 | ENDIF |
---|
| 1208 | CALL coriolis( 3 ) |
---|
[75] | 1209 | IF ( .NOT. humidity ) THEN |
---|
[1] | 1210 | CALL buoyancy( pt, 3, 4 ) |
---|
| 1211 | ELSE |
---|
| 1212 | CALL buoyancy( vpt, 3, 44 ) |
---|
| 1213 | ENDIF |
---|
| 1214 | CALL user_actions( 'w-tendency' ) |
---|
| 1215 | |
---|
| 1216 | ! |
---|
| 1217 | !-- Prognostic equation for w-velocity component |
---|
| 1218 | DO i = nxl, nxr |
---|
| 1219 | DO j = nys, nyn |
---|
| 1220 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1221 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 1222 | dt_3d * ( & |
---|
| 1223 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 1224 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 1225 | ) - & |
---|
| 1226 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1227 | ENDDO |
---|
| 1228 | ENDDO |
---|
| 1229 | ENDDO |
---|
| 1230 | |
---|
| 1231 | ! |
---|
| 1232 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1233 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1234 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1235 | DO i = nxl, nxr |
---|
| 1236 | DO j = nys, nyn |
---|
| 1237 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1238 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1239 | ENDDO |
---|
| 1240 | ENDDO |
---|
| 1241 | ENDDO |
---|
| 1242 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1243 | intermediate_timestep_count_max ) THEN |
---|
| 1244 | DO i = nxl, nxr |
---|
| 1245 | DO j = nys, nyn |
---|
| 1246 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1247 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1248 | ENDDO |
---|
| 1249 | ENDDO |
---|
| 1250 | ENDDO |
---|
| 1251 | ENDIF |
---|
| 1252 | ENDIF |
---|
| 1253 | |
---|
| 1254 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1255 | |
---|
| 1256 | ! |
---|
| 1257 | !-- potential temperature |
---|
| 1258 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1259 | |
---|
| 1260 | ! |
---|
| 1261 | !-- pt-tendency terms with communication |
---|
[63] | 1262 | sat = tsc(1) |
---|
| 1263 | sbt = tsc(2) |
---|
[1] | 1264 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1265 | |
---|
| 1266 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1267 | ! |
---|
[63] | 1268 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1269 | !-- switched on. Thus: |
---|
| 1270 | sat = 1.0 |
---|
| 1271 | sbt = 1.0 |
---|
| 1272 | ENDIF |
---|
[1] | 1273 | tend = 0.0 |
---|
| 1274 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1275 | ELSE |
---|
| 1276 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 1277 | tend = 0.0 |
---|
| 1278 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 1279 | ENDIF |
---|
| 1280 | ENDIF |
---|
| 1281 | |
---|
| 1282 | ! |
---|
| 1283 | !-- pt-tendency terms with no communication |
---|
| 1284 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 1285 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 1286 | ELSE |
---|
| 1287 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1288 | tend = 0.0 |
---|
| 1289 | CALL advec_s_pw( pt ) |
---|
| 1290 | ELSE |
---|
| 1291 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1292 | tend = 0.0 |
---|
| 1293 | CALL advec_s_up( pt ) |
---|
| 1294 | ENDIF |
---|
| 1295 | ENDIF |
---|
| 1296 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[19] | 1297 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tswst_m, tend ) |
---|
[1] | 1298 | ELSE |
---|
[19] | 1299 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 1300 | ENDIF |
---|
| 1301 | ENDIF |
---|
| 1302 | |
---|
| 1303 | ! |
---|
| 1304 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 1305 | !-- processes |
---|
| 1306 | IF ( radiation ) THEN |
---|
| 1307 | CALL calc_radiation |
---|
| 1308 | ENDIF |
---|
| 1309 | |
---|
| 1310 | ! |
---|
| 1311 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1312 | IF ( precipitation ) THEN |
---|
| 1313 | CALL impact_of_latent_heat |
---|
| 1314 | ENDIF |
---|
| 1315 | CALL user_actions( 'pt-tendency' ) |
---|
| 1316 | |
---|
| 1317 | ! |
---|
| 1318 | !-- Prognostic equation for potential temperature |
---|
| 1319 | DO i = nxl, nxr |
---|
| 1320 | DO j = nys, nyn |
---|
[19] | 1321 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1322 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 1323 | dt_3d * ( & |
---|
| 1324 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1325 | ) - & |
---|
| 1326 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1327 | ENDDO |
---|
| 1328 | ENDDO |
---|
| 1329 | ENDDO |
---|
| 1330 | |
---|
| 1331 | ! |
---|
| 1332 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1333 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1334 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1335 | DO i = nxl, nxr |
---|
| 1336 | DO j = nys, nyn |
---|
[19] | 1337 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1338 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1339 | ENDDO |
---|
| 1340 | ENDDO |
---|
| 1341 | ENDDO |
---|
| 1342 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1343 | intermediate_timestep_count_max ) THEN |
---|
| 1344 | DO i = nxl, nxr |
---|
| 1345 | DO j = nys, nyn |
---|
[19] | 1346 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1347 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 1348 | ENDDO |
---|
| 1349 | ENDDO |
---|
| 1350 | ENDDO |
---|
| 1351 | ENDIF |
---|
| 1352 | ENDIF |
---|
| 1353 | |
---|
| 1354 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1355 | |
---|
| 1356 | ! |
---|
| 1357 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 1358 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 1359 | |
---|
| 1360 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1361 | |
---|
| 1362 | ! |
---|
| 1363 | !-- Scalar/q-tendency terms with communication |
---|
[63] | 1364 | sat = tsc(1) |
---|
| 1365 | sbt = tsc(2) |
---|
[1] | 1366 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1367 | |
---|
| 1368 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1369 | ! |
---|
[63] | 1370 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1371 | !-- switched on. Thus: |
---|
| 1372 | sat = 1.0 |
---|
| 1373 | sbt = 1.0 |
---|
| 1374 | ENDIF |
---|
[1] | 1375 | tend = 0.0 |
---|
| 1376 | CALL advec_s_bc( q, 'q' ) |
---|
| 1377 | ELSE |
---|
| 1378 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1379 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1380 | tend = 0.0 |
---|
| 1381 | CALL advec_s_ups( q, 'q' ) |
---|
| 1382 | ENDIF |
---|
| 1383 | ENDIF |
---|
| 1384 | ENDIF |
---|
| 1385 | |
---|
| 1386 | ! |
---|
| 1387 | !-- Scalar/q-tendency terms with no communication |
---|
| 1388 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 1389 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, tend ) |
---|
[1] | 1390 | ELSE |
---|
| 1391 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1392 | tend = 0.0 |
---|
| 1393 | CALL advec_s_pw( q ) |
---|
| 1394 | ELSE |
---|
| 1395 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1396 | tend = 0.0 |
---|
| 1397 | CALL advec_s_up( q ) |
---|
| 1398 | ENDIF |
---|
| 1399 | ENDIF |
---|
| 1400 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[19] | 1401 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, qswst_m, tend ) |
---|
[1] | 1402 | ELSE |
---|
[19] | 1403 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, tend ) |
---|
[1] | 1404 | ENDIF |
---|
| 1405 | ENDIF |
---|
| 1406 | |
---|
| 1407 | ! |
---|
| 1408 | !-- If required compute decrease of total water content due to |
---|
| 1409 | !-- precipitation |
---|
| 1410 | IF ( precipitation ) THEN |
---|
| 1411 | CALL calc_precipitation |
---|
| 1412 | ENDIF |
---|
| 1413 | CALL user_actions( 'q-tendency' ) |
---|
| 1414 | |
---|
| 1415 | ! |
---|
| 1416 | !-- Prognostic equation for total water content / scalar |
---|
| 1417 | DO i = nxl, nxr |
---|
| 1418 | DO j = nys, nyn |
---|
[19] | 1419 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1420 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 1421 | dt_3d * ( & |
---|
| 1422 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1423 | ) - & |
---|
| 1424 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 1425 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 1426 | ENDDO |
---|
| 1427 | ENDDO |
---|
| 1428 | ENDDO |
---|
| 1429 | |
---|
| 1430 | ! |
---|
| 1431 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1432 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1433 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1434 | DO i = nxl, nxr |
---|
| 1435 | DO j = nys, nyn |
---|
[19] | 1436 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1437 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1438 | ENDDO |
---|
| 1439 | ENDDO |
---|
| 1440 | ENDDO |
---|
| 1441 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1442 | intermediate_timestep_count_max ) THEN |
---|
| 1443 | DO i = nxl, nxr |
---|
| 1444 | DO j = nys, nyn |
---|
[19] | 1445 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1446 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1447 | ENDDO |
---|
| 1448 | ENDDO |
---|
| 1449 | ENDDO |
---|
| 1450 | ENDIF |
---|
| 1451 | ENDIF |
---|
| 1452 | |
---|
| 1453 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1454 | |
---|
| 1455 | ENDIF |
---|
| 1456 | |
---|
| 1457 | ! |
---|
| 1458 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1459 | !-- energy (TKE) |
---|
| 1460 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1461 | |
---|
| 1462 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1463 | |
---|
| 1464 | ! |
---|
| 1465 | !-- TKE-tendency terms with communication |
---|
| 1466 | CALL production_e_init |
---|
[63] | 1467 | |
---|
| 1468 | sat = tsc(1) |
---|
| 1469 | sbt = tsc(2) |
---|
[1] | 1470 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1471 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1472 | |
---|
| 1473 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1474 | ! |
---|
[63] | 1475 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1476 | !-- switched on. Thus: |
---|
| 1477 | sat = 1.0 |
---|
| 1478 | sbt = 1.0 |
---|
| 1479 | ENDIF |
---|
[1] | 1480 | tend = 0.0 |
---|
| 1481 | CALL advec_s_bc( e, 'e' ) |
---|
| 1482 | ELSE |
---|
| 1483 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1484 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1485 | tend = 0.0 |
---|
| 1486 | CALL advec_s_ups( e, 'e' ) |
---|
| 1487 | ENDIF |
---|
| 1488 | ENDIF |
---|
| 1489 | ENDIF |
---|
| 1490 | ENDIF |
---|
| 1491 | |
---|
| 1492 | ! |
---|
| 1493 | !-- TKE-tendency terms with no communication |
---|
| 1494 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
| 1495 | THEN |
---|
[75] | 1496 | IF ( .NOT. humidity ) THEN |
---|
[1] | 1497 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
| 1498 | rif, tend, zu ) |
---|
| 1499 | ELSE |
---|
| 1500 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
| 1501 | rif, tend, zu ) |
---|
| 1502 | ENDIF |
---|
| 1503 | ELSE |
---|
| 1504 | IF ( use_upstream_for_tke ) THEN |
---|
| 1505 | tend = 0.0 |
---|
| 1506 | CALL advec_s_up( e ) |
---|
| 1507 | ELSE |
---|
| 1508 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1509 | tend = 0.0 |
---|
| 1510 | CALL advec_s_pw( e ) |
---|
| 1511 | ELSE |
---|
| 1512 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1513 | tend = 0.0 |
---|
| 1514 | CALL advec_s_up( e ) |
---|
| 1515 | ENDIF |
---|
| 1516 | ENDIF |
---|
| 1517 | ENDIF |
---|
| 1518 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[75] | 1519 | IF ( .NOT. humidity ) THEN |
---|
[1] | 1520 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
| 1521 | pt_m, rif_m, tend, zu ) |
---|
| 1522 | ELSE |
---|
| 1523 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
| 1524 | vpt_m, rif_m, tend, zu ) |
---|
| 1525 | ENDIF |
---|
| 1526 | ELSE |
---|
[75] | 1527 | IF ( .NOT. humidity ) THEN |
---|
[1] | 1528 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
| 1529 | rif, tend, zu ) |
---|
| 1530 | ELSE |
---|
| 1531 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
| 1532 | rif, tend, zu ) |
---|
| 1533 | ENDIF |
---|
| 1534 | ENDIF |
---|
| 1535 | ENDIF |
---|
| 1536 | CALL production_e |
---|
| 1537 | CALL user_actions( 'e-tendency' ) |
---|
| 1538 | |
---|
| 1539 | ! |
---|
| 1540 | !-- Prognostic equation for TKE. |
---|
| 1541 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1542 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1543 | !-- value is reduced by 90%. |
---|
| 1544 | DO i = nxl, nxr |
---|
| 1545 | DO j = nys, nyn |
---|
[19] | 1546 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1547 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 1548 | dt_3d * ( & |
---|
| 1549 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 1550 | ) |
---|
| 1551 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1552 | ENDDO |
---|
| 1553 | ENDDO |
---|
| 1554 | ENDDO |
---|
| 1555 | |
---|
| 1556 | ! |
---|
| 1557 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1558 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1559 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1560 | DO i = nxl, nxr |
---|
| 1561 | DO j = nys, nyn |
---|
[19] | 1562 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1563 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1564 | ENDDO |
---|
| 1565 | ENDDO |
---|
| 1566 | ENDDO |
---|
| 1567 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1568 | intermediate_timestep_count_max ) THEN |
---|
| 1569 | DO i = nxl, nxr |
---|
| 1570 | DO j = nys, nyn |
---|
[19] | 1571 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1572 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 1573 | ENDDO |
---|
| 1574 | ENDDO |
---|
| 1575 | ENDDO |
---|
| 1576 | ENDIF |
---|
| 1577 | ENDIF |
---|
| 1578 | |
---|
| 1579 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1580 | |
---|
| 1581 | ENDIF |
---|
| 1582 | |
---|
| 1583 | |
---|
[63] | 1584 | END SUBROUTINE prognostic_equations_vector |
---|
[1] | 1585 | |
---|
| 1586 | |
---|
| 1587 | END MODULE prognostic_equations_mod |
---|