[1] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
[98] | 6 | ! |
---|
[532] | 7 | ! |
---|
[98] | 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
| 10 | ! $Id: prognostic_equations.f90 532 2010-04-21 13:33:38Z helmke $ |
---|
| 11 | ! |
---|
[532] | 12 | ! 531 2010-04-21 06:47:21Z heinze |
---|
| 13 | ! add call of subsidence in the equation for humidity / passive scalar |
---|
| 14 | ! |
---|
[482] | 15 | ! 411 2009-12-11 14:15:58Z heinze |
---|
| 16 | ! add call of subsidence in the equation for potential temperature |
---|
| 17 | ! |
---|
[392] | 18 | ! 388 2009-09-23 09:40:33Z raasch |
---|
| 19 | ! prho is used instead of rho in diffusion_e, |
---|
| 20 | ! external pressure gradient |
---|
| 21 | ! |
---|
[198] | 22 | ! 153 2008-03-19 09:41:30Z steinfeld |
---|
| 23 | ! add call of plant_canopy_model in the prognostic equation for |
---|
| 24 | ! the potential temperature and for the passive scalar |
---|
| 25 | ! |
---|
[139] | 26 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 27 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
| 28 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
| 29 | ! |
---|
[110] | 30 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 31 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
| 32 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
| 33 | ! for non-cyclic boundary conditions) |
---|
| 34 | ! |
---|
[98] | 35 | ! 97 2007-06-21 08:23:15Z raasch |
---|
[96] | 36 | ! prognostic equation for salinity, density is calculated from equation of |
---|
[97] | 37 | ! state for seawater and is used for calculation of buoyancy, |
---|
| 38 | ! +eqn_state_seawater_mod |
---|
| 39 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
| 40 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
| 41 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
[96] | 42 | ! calc_mean_profile |
---|
[1] | 43 | ! |
---|
[77] | 44 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 45 | ! checking for negative q and limiting for positive values, |
---|
| 46 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
| 47 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
| 48 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
| 49 | ! _vector-version |
---|
| 50 | ! |
---|
[39] | 51 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 52 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
| 53 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
| 54 | ! |
---|
[3] | 55 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 56 | ! |
---|
[1] | 57 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
| 58 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
| 59 | ! regardless of the timestep scheme used for the other quantities, |
---|
| 60 | ! new argument diss in call of diffusion_e |
---|
| 61 | ! |
---|
| 62 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 63 | ! Initial revision |
---|
| 64 | ! |
---|
| 65 | ! |
---|
| 66 | ! Description: |
---|
| 67 | ! ------------ |
---|
[19] | 68 | ! Solving the prognostic equations. |
---|
[1] | 69 | !------------------------------------------------------------------------------! |
---|
| 70 | |
---|
| 71 | USE arrays_3d |
---|
| 72 | USE control_parameters |
---|
| 73 | USE cpulog |
---|
[96] | 74 | USE eqn_state_seawater_mod |
---|
[1] | 75 | USE grid_variables |
---|
| 76 | USE indices |
---|
| 77 | USE interfaces |
---|
| 78 | USE pegrid |
---|
| 79 | USE pointer_interfaces |
---|
| 80 | USE statistics |
---|
| 81 | |
---|
| 82 | USE advec_s_pw_mod |
---|
| 83 | USE advec_s_up_mod |
---|
| 84 | USE advec_u_pw_mod |
---|
| 85 | USE advec_u_up_mod |
---|
| 86 | USE advec_v_pw_mod |
---|
| 87 | USE advec_v_up_mod |
---|
| 88 | USE advec_w_pw_mod |
---|
| 89 | USE advec_w_up_mod |
---|
| 90 | USE buoyancy_mod |
---|
| 91 | USE calc_precipitation_mod |
---|
| 92 | USE calc_radiation_mod |
---|
| 93 | USE coriolis_mod |
---|
| 94 | USE diffusion_e_mod |
---|
| 95 | USE diffusion_s_mod |
---|
| 96 | USE diffusion_u_mod |
---|
| 97 | USE diffusion_v_mod |
---|
| 98 | USE diffusion_w_mod |
---|
| 99 | USE impact_of_latent_heat_mod |
---|
[138] | 100 | USE plant_canopy_model_mod |
---|
[1] | 101 | USE production_e_mod |
---|
[411] | 102 | USE subsidence_mod |
---|
[1] | 103 | USE user_actions_mod |
---|
| 104 | |
---|
| 105 | |
---|
| 106 | PRIVATE |
---|
[63] | 107 | PUBLIC prognostic_equations_noopt, prognostic_equations_cache, & |
---|
| 108 | prognostic_equations_vector |
---|
[1] | 109 | |
---|
[63] | 110 | INTERFACE prognostic_equations_noopt |
---|
| 111 | MODULE PROCEDURE prognostic_equations_noopt |
---|
| 112 | END INTERFACE prognostic_equations_noopt |
---|
[1] | 113 | |
---|
[63] | 114 | INTERFACE prognostic_equations_cache |
---|
| 115 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 116 | END INTERFACE prognostic_equations_cache |
---|
[1] | 117 | |
---|
[63] | 118 | INTERFACE prognostic_equations_vector |
---|
| 119 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 120 | END INTERFACE prognostic_equations_vector |
---|
[1] | 121 | |
---|
| 122 | |
---|
| 123 | CONTAINS |
---|
| 124 | |
---|
| 125 | |
---|
[63] | 126 | SUBROUTINE prognostic_equations_noopt |
---|
[1] | 127 | |
---|
| 128 | !------------------------------------------------------------------------------! |
---|
| 129 | ! Version with single loop optimization |
---|
| 130 | ! |
---|
| 131 | ! (Optimized over each single prognostic equation.) |
---|
| 132 | !------------------------------------------------------------------------------! |
---|
| 133 | |
---|
| 134 | IMPLICIT NONE |
---|
| 135 | |
---|
| 136 | CHARACTER (LEN=9) :: time_to_string |
---|
| 137 | INTEGER :: i, j, k |
---|
| 138 | REAL :: sat, sbt |
---|
| 139 | |
---|
| 140 | ! |
---|
| 141 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 142 | !-- global communication |
---|
[96] | 143 | CALL calc_mean_profile( pt, 4 ) |
---|
| 144 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 145 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 146 | |
---|
| 147 | ! |
---|
| 148 | !-- u-velocity component |
---|
| 149 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 150 | |
---|
| 151 | ! |
---|
| 152 | !-- u-tendency terms with communication |
---|
| 153 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 154 | tend = 0.0 |
---|
| 155 | CALL advec_u_ups |
---|
| 156 | ENDIF |
---|
| 157 | |
---|
| 158 | ! |
---|
| 159 | !-- u-tendency terms with no communication |
---|
[106] | 160 | DO i = nxlu, nxr |
---|
[1] | 161 | DO j = nys, nyn |
---|
| 162 | ! |
---|
| 163 | !-- Tendency terms |
---|
| 164 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 165 | tend(:,j,i) = 0.0 |
---|
| 166 | CALL advec_u_pw( i, j ) |
---|
| 167 | ELSE |
---|
| 168 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 169 | tend(:,j,i) = 0.0 |
---|
| 170 | CALL advec_u_up( i, j ) |
---|
| 171 | ENDIF |
---|
| 172 | ENDIF |
---|
| 173 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 174 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
[102] | 175 | usws_m, uswst_m, v_m, w_m ) |
---|
[1] | 176 | ELSE |
---|
| 177 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
[102] | 178 | uswst, v, w ) |
---|
[1] | 179 | ENDIF |
---|
| 180 | CALL coriolis( i, j, 1 ) |
---|
[97] | 181 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, 4 ) |
---|
[138] | 182 | |
---|
| 183 | ! |
---|
| 184 | !-- Drag by plant canopy |
---|
| 185 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
[240] | 186 | |
---|
| 187 | ! |
---|
| 188 | !-- External pressure gradient |
---|
| 189 | IF ( dp_external ) THEN |
---|
| 190 | DO k = dp_level_ind_b+1, nzt |
---|
| 191 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 192 | ENDDO |
---|
| 193 | ENDIF |
---|
| 194 | |
---|
[1] | 195 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 196 | |
---|
| 197 | ! |
---|
| 198 | !-- Prognostic equation for u-velocity component |
---|
| 199 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 200 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 201 | dt_3d * ( & |
---|
| 202 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 203 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 204 | ) - & |
---|
| 205 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 206 | ENDDO |
---|
| 207 | |
---|
| 208 | ! |
---|
| 209 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 210 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 211 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 212 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 213 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 214 | ENDDO |
---|
| 215 | ELSEIF ( intermediate_timestep_count < & |
---|
| 216 | intermediate_timestep_count_max ) THEN |
---|
| 217 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 218 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 219 | ENDDO |
---|
| 220 | ENDIF |
---|
| 221 | ENDIF |
---|
| 222 | |
---|
| 223 | ENDDO |
---|
| 224 | ENDDO |
---|
| 225 | |
---|
| 226 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 227 | |
---|
| 228 | ! |
---|
| 229 | !-- v-velocity component |
---|
| 230 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 231 | |
---|
| 232 | ! |
---|
| 233 | !-- v-tendency terms with communication |
---|
| 234 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 235 | tend = 0.0 |
---|
| 236 | CALL advec_v_ups |
---|
| 237 | ENDIF |
---|
| 238 | |
---|
| 239 | ! |
---|
| 240 | !-- v-tendency terms with no communication |
---|
| 241 | DO i = nxl, nxr |
---|
[106] | 242 | DO j = nysv, nyn |
---|
[1] | 243 | ! |
---|
| 244 | !-- Tendency terms |
---|
| 245 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 246 | tend(:,j,i) = 0.0 |
---|
| 247 | CALL advec_v_pw( i, j ) |
---|
| 248 | ELSE |
---|
| 249 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 250 | tend(:,j,i) = 0.0 |
---|
| 251 | CALL advec_v_up( i, j ) |
---|
| 252 | ENDIF |
---|
| 253 | ENDIF |
---|
| 254 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 255 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
[102] | 256 | v_m, vsws_m, vswst_m, w_m ) |
---|
[1] | 257 | ELSE |
---|
| 258 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[102] | 259 | vsws, vswst, w ) |
---|
[1] | 260 | ENDIF |
---|
| 261 | CALL coriolis( i, j, 2 ) |
---|
[138] | 262 | |
---|
| 263 | ! |
---|
| 264 | !-- Drag by plant canopy |
---|
| 265 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 266 | |
---|
[240] | 267 | ! |
---|
| 268 | !-- External pressure gradient |
---|
| 269 | IF ( dp_external ) THEN |
---|
| 270 | DO k = dp_level_ind_b+1, nzt |
---|
| 271 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 272 | ENDDO |
---|
| 273 | ENDIF |
---|
| 274 | |
---|
[1] | 275 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 276 | |
---|
| 277 | ! |
---|
| 278 | !-- Prognostic equation for v-velocity component |
---|
| 279 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 280 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 281 | dt_3d * ( & |
---|
| 282 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 283 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 284 | ) - & |
---|
| 285 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 286 | ENDDO |
---|
| 287 | |
---|
| 288 | ! |
---|
| 289 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 290 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 291 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 292 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 293 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 294 | ENDDO |
---|
| 295 | ELSEIF ( intermediate_timestep_count < & |
---|
| 296 | intermediate_timestep_count_max ) THEN |
---|
| 297 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 298 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 299 | ENDDO |
---|
| 300 | ENDIF |
---|
| 301 | ENDIF |
---|
| 302 | |
---|
| 303 | ENDDO |
---|
| 304 | ENDDO |
---|
| 305 | |
---|
| 306 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 307 | |
---|
| 308 | ! |
---|
| 309 | !-- w-velocity component |
---|
| 310 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 311 | |
---|
| 312 | ! |
---|
| 313 | !-- w-tendency terms with communication |
---|
| 314 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 315 | tend = 0.0 |
---|
| 316 | CALL advec_w_ups |
---|
| 317 | ENDIF |
---|
| 318 | |
---|
| 319 | ! |
---|
| 320 | !-- w-tendency terms with no communication |
---|
| 321 | DO i = nxl, nxr |
---|
| 322 | DO j = nys, nyn |
---|
| 323 | ! |
---|
| 324 | !-- Tendency terms |
---|
| 325 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 326 | tend(:,j,i) = 0.0 |
---|
| 327 | CALL advec_w_pw( i, j ) |
---|
| 328 | ELSE |
---|
| 329 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 330 | tend(:,j,i) = 0.0 |
---|
| 331 | CALL advec_w_up( i, j ) |
---|
| 332 | ENDIF |
---|
| 333 | ENDIF |
---|
| 334 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 335 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
[57] | 336 | tend, u_m, v_m, w_m ) |
---|
[1] | 337 | ELSE |
---|
| 338 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
[57] | 339 | tend, u, v, w ) |
---|
[1] | 340 | ENDIF |
---|
| 341 | CALL coriolis( i, j, 3 ) |
---|
[97] | 342 | IF ( ocean ) THEN |
---|
[388] | 343 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
[1] | 344 | ELSE |
---|
[97] | 345 | IF ( .NOT. humidity ) THEN |
---|
| 346 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
| 347 | ELSE |
---|
| 348 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
| 349 | ENDIF |
---|
[1] | 350 | ENDIF |
---|
[138] | 351 | |
---|
| 352 | ! |
---|
| 353 | !-- Drag by plant canopy |
---|
| 354 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 355 | |
---|
[1] | 356 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 357 | |
---|
| 358 | ! |
---|
| 359 | !-- Prognostic equation for w-velocity component |
---|
| 360 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 361 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 362 | dt_3d * ( & |
---|
| 363 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 364 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 365 | ) - & |
---|
| 366 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 367 | ENDDO |
---|
| 368 | |
---|
| 369 | ! |
---|
| 370 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 371 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 372 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 373 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 374 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 375 | ENDDO |
---|
| 376 | ELSEIF ( intermediate_timestep_count < & |
---|
| 377 | intermediate_timestep_count_max ) THEN |
---|
| 378 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 379 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 380 | ENDDO |
---|
| 381 | ENDIF |
---|
| 382 | ENDIF |
---|
| 383 | |
---|
| 384 | ENDDO |
---|
| 385 | ENDDO |
---|
| 386 | |
---|
| 387 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 388 | |
---|
| 389 | ! |
---|
| 390 | !-- potential temperature |
---|
| 391 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 392 | |
---|
| 393 | ! |
---|
| 394 | !-- pt-tendency terms with communication |
---|
[70] | 395 | sat = tsc(1) |
---|
| 396 | sbt = tsc(2) |
---|
[1] | 397 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 398 | |
---|
| 399 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 400 | ! |
---|
[70] | 401 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 402 | !-- switched on. Thus: |
---|
| 403 | sat = 1.0 |
---|
| 404 | sbt = 1.0 |
---|
| 405 | ENDIF |
---|
[1] | 406 | tend = 0.0 |
---|
| 407 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 408 | ELSE |
---|
| 409 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 410 | tend = 0.0 |
---|
| 411 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 412 | ENDIF |
---|
| 413 | ENDIF |
---|
[407] | 414 | |
---|
[1] | 415 | ! |
---|
| 416 | !-- pt-tendency terms with no communication |
---|
| 417 | DO i = nxl, nxr |
---|
| 418 | DO j = nys, nyn |
---|
| 419 | ! |
---|
| 420 | !-- Tendency terms |
---|
| 421 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 422 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 423 | wall_heatflux, tend ) |
---|
[1] | 424 | ELSE |
---|
| 425 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 426 | tend(:,j,i) = 0.0 |
---|
| 427 | CALL advec_s_pw( i, j, pt ) |
---|
| 428 | ELSE |
---|
| 429 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 430 | tend(:,j,i) = 0.0 |
---|
| 431 | CALL advec_s_up( i, j, pt ) |
---|
| 432 | ENDIF |
---|
| 433 | ENDIF |
---|
| 434 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 435 | THEN |
---|
[19] | 436 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
[129] | 437 | tswst_m, wall_heatflux, tend ) |
---|
[1] | 438 | ELSE |
---|
[129] | 439 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 440 | wall_heatflux, tend ) |
---|
[1] | 441 | ENDIF |
---|
| 442 | ENDIF |
---|
| 443 | |
---|
| 444 | ! |
---|
| 445 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 446 | !-- processes |
---|
| 447 | IF ( radiation ) THEN |
---|
| 448 | CALL calc_radiation( i, j ) |
---|
| 449 | ENDIF |
---|
| 450 | |
---|
| 451 | ! |
---|
| 452 | !-- If required compute impact of latent heat due to precipitation |
---|
| 453 | IF ( precipitation ) THEN |
---|
| 454 | CALL impact_of_latent_heat( i, j ) |
---|
| 455 | ENDIF |
---|
[153] | 456 | |
---|
| 457 | ! |
---|
| 458 | !-- Consideration of heat sources within the plant canopy |
---|
| 459 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 460 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 461 | ENDIF |
---|
| 462 | |
---|
[411] | 463 | ! |
---|
| 464 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 465 | IF ( large_scale_subsidence ) THEN |
---|
| 466 | CALL subsidence ( i, j, tend, pt, pt_init ) |
---|
| 467 | ENDIF |
---|
| 468 | |
---|
[1] | 469 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 470 | |
---|
| 471 | ! |
---|
| 472 | !-- Prognostic equation for potential temperature |
---|
[19] | 473 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 474 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 475 | dt_3d * ( & |
---|
| 476 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 477 | ) - & |
---|
| 478 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 479 | ENDDO |
---|
| 480 | |
---|
| 481 | ! |
---|
| 482 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 483 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 484 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 485 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 486 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 487 | ENDDO |
---|
| 488 | ELSEIF ( intermediate_timestep_count < & |
---|
| 489 | intermediate_timestep_count_max ) THEN |
---|
[19] | 490 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 491 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 492 | ENDDO |
---|
| 493 | ENDIF |
---|
| 494 | ENDIF |
---|
| 495 | |
---|
| 496 | ENDDO |
---|
| 497 | ENDDO |
---|
| 498 | |
---|
| 499 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 500 | |
---|
| 501 | ! |
---|
[95] | 502 | !-- If required, compute prognostic equation for salinity |
---|
| 503 | IF ( ocean ) THEN |
---|
| 504 | |
---|
| 505 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 506 | |
---|
| 507 | ! |
---|
| 508 | !-- sa-tendency terms with communication |
---|
| 509 | sat = tsc(1) |
---|
| 510 | sbt = tsc(2) |
---|
| 511 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 512 | |
---|
| 513 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 514 | ! |
---|
| 515 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 516 | !-- switched on. Thus: |
---|
| 517 | sat = 1.0 |
---|
| 518 | sbt = 1.0 |
---|
| 519 | ENDIF |
---|
| 520 | tend = 0.0 |
---|
| 521 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 522 | ELSE |
---|
| 523 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 524 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 525 | tend = 0.0 |
---|
| 526 | CALL advec_s_ups( sa, 'sa' ) |
---|
| 527 | ENDIF |
---|
| 528 | ENDIF |
---|
| 529 | ENDIF |
---|
| 530 | |
---|
| 531 | ! |
---|
| 532 | !-- sa terms with no communication |
---|
| 533 | DO i = nxl, nxr |
---|
| 534 | DO j = nys, nyn |
---|
| 535 | ! |
---|
| 536 | !-- Tendency-terms |
---|
| 537 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 538 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
[129] | 539 | wall_salinityflux, tend ) |
---|
[95] | 540 | ELSE |
---|
| 541 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 542 | tend(:,j,i) = 0.0 |
---|
| 543 | CALL advec_s_pw( i, j, sa ) |
---|
| 544 | ELSE |
---|
| 545 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 546 | tend(:,j,i) = 0.0 |
---|
| 547 | CALL advec_s_up( i, j, sa ) |
---|
| 548 | ENDIF |
---|
| 549 | ENDIF |
---|
| 550 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
[129] | 551 | wall_salinityflux, tend ) |
---|
[95] | 552 | ENDIF |
---|
| 553 | |
---|
| 554 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 555 | |
---|
| 556 | ! |
---|
| 557 | !-- Prognostic equation for salinity |
---|
| 558 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 559 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
| 560 | dt_3d * ( & |
---|
| 561 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 562 | ) - & |
---|
| 563 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 564 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 565 | ENDDO |
---|
| 566 | |
---|
| 567 | ! |
---|
| 568 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 569 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 570 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 571 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 572 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 573 | ENDDO |
---|
| 574 | ELSEIF ( intermediate_timestep_count < & |
---|
| 575 | intermediate_timestep_count_max ) THEN |
---|
| 576 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 577 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 578 | 5.3125 * tsa_m(k,j,i) |
---|
| 579 | ENDDO |
---|
| 580 | ENDIF |
---|
| 581 | ENDIF |
---|
| 582 | |
---|
[96] | 583 | ! |
---|
| 584 | !-- Calculate density by the equation of state for seawater |
---|
| 585 | CALL eqn_state_seawater( i, j ) |
---|
| 586 | |
---|
[95] | 587 | ENDDO |
---|
| 588 | ENDDO |
---|
| 589 | |
---|
| 590 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 591 | |
---|
| 592 | ENDIF |
---|
| 593 | |
---|
| 594 | ! |
---|
[1] | 595 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 596 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 597 | |
---|
| 598 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 599 | |
---|
| 600 | ! |
---|
| 601 | !-- Scalar/q-tendency terms with communication |
---|
[70] | 602 | sat = tsc(1) |
---|
| 603 | sbt = tsc(2) |
---|
[1] | 604 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 605 | |
---|
| 606 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 607 | ! |
---|
[70] | 608 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 609 | !-- switched on. Thus: |
---|
| 610 | sat = 1.0 |
---|
| 611 | sbt = 1.0 |
---|
| 612 | ENDIF |
---|
[1] | 613 | tend = 0.0 |
---|
| 614 | CALL advec_s_bc( q, 'q' ) |
---|
| 615 | ELSE |
---|
| 616 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 617 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 618 | tend = 0.0 |
---|
| 619 | CALL advec_s_ups( q, 'q' ) |
---|
| 620 | ENDIF |
---|
| 621 | ENDIF |
---|
| 622 | ENDIF |
---|
| 623 | |
---|
| 624 | ! |
---|
| 625 | !-- Scalar/q-tendency terms with no communication |
---|
| 626 | DO i = nxl, nxr |
---|
| 627 | DO j = nys, nyn |
---|
| 628 | ! |
---|
| 629 | !-- Tendency-terms |
---|
| 630 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 631 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 632 | wall_qflux, tend ) |
---|
[1] | 633 | ELSE |
---|
| 634 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 635 | tend(:,j,i) = 0.0 |
---|
| 636 | CALL advec_s_pw( i, j, q ) |
---|
| 637 | ELSE |
---|
| 638 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 639 | tend(:,j,i) = 0.0 |
---|
| 640 | CALL advec_s_up( i, j, q ) |
---|
| 641 | ENDIF |
---|
| 642 | ENDIF |
---|
| 643 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 644 | THEN |
---|
| 645 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
[129] | 646 | qswst_m, wall_qflux, tend ) |
---|
[19] | 647 | ELSE |
---|
| 648 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
[129] | 649 | wall_qflux, tend ) |
---|
[1] | 650 | ENDIF |
---|
| 651 | ENDIF |
---|
| 652 | |
---|
| 653 | ! |
---|
| 654 | !-- If required compute decrease of total water content due to |
---|
| 655 | !-- precipitation |
---|
| 656 | IF ( precipitation ) THEN |
---|
| 657 | CALL calc_precipitation( i, j ) |
---|
| 658 | ENDIF |
---|
[153] | 659 | |
---|
| 660 | ! |
---|
| 661 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 662 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
| 663 | |
---|
[531] | 664 | ! |
---|
| 665 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 666 | IF ( large_scale_subsidence ) THEN |
---|
| 667 | CALL subsidence ( i, j, tend, q, q_init ) |
---|
| 668 | ENDIF |
---|
| 669 | |
---|
[1] | 670 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 671 | |
---|
| 672 | ! |
---|
| 673 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 674 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 675 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 676 | dt_3d * ( & |
---|
| 677 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 678 | ) - & |
---|
| 679 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 680 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 681 | ENDDO |
---|
| 682 | |
---|
| 683 | ! |
---|
| 684 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 685 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 686 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 687 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 688 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 689 | ENDDO |
---|
| 690 | ELSEIF ( intermediate_timestep_count < & |
---|
| 691 | intermediate_timestep_count_max ) THEN |
---|
[19] | 692 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 693 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 694 | ENDDO |
---|
| 695 | ENDIF |
---|
| 696 | ENDIF |
---|
| 697 | |
---|
| 698 | ENDDO |
---|
| 699 | ENDDO |
---|
| 700 | |
---|
| 701 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 702 | |
---|
| 703 | ENDIF |
---|
| 704 | |
---|
| 705 | ! |
---|
| 706 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 707 | !-- energy (TKE) |
---|
| 708 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 709 | |
---|
| 710 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 711 | |
---|
| 712 | ! |
---|
| 713 | !-- TKE-tendency terms with communication |
---|
| 714 | CALL production_e_init |
---|
[70] | 715 | |
---|
| 716 | sat = tsc(1) |
---|
| 717 | sbt = tsc(2) |
---|
[1] | 718 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 719 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 720 | |
---|
| 721 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 722 | ! |
---|
[70] | 723 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 724 | !-- switched on. Thus: |
---|
| 725 | sat = 1.0 |
---|
| 726 | sbt = 1.0 |
---|
| 727 | ENDIF |
---|
[1] | 728 | tend = 0.0 |
---|
| 729 | CALL advec_s_bc( e, 'e' ) |
---|
| 730 | ELSE |
---|
| 731 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 732 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 733 | tend = 0.0 |
---|
| 734 | CALL advec_s_ups( e, 'e' ) |
---|
| 735 | ENDIF |
---|
| 736 | ENDIF |
---|
| 737 | ENDIF |
---|
| 738 | ENDIF |
---|
| 739 | |
---|
| 740 | ! |
---|
| 741 | !-- TKE-tendency terms with no communication |
---|
| 742 | DO i = nxl, nxr |
---|
| 743 | DO j = nys, nyn |
---|
| 744 | ! |
---|
| 745 | !-- Tendency-terms |
---|
| 746 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
| 747 | .NOT. use_upstream_for_tke ) THEN |
---|
[75] | 748 | IF ( .NOT. humidity ) THEN |
---|
[97] | 749 | IF ( ocean ) THEN |
---|
[388] | 750 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 751 | l_grid, prho, prho_reference, rif, & |
---|
| 752 | tend, zu, zw ) |
---|
[97] | 753 | ELSE |
---|
[388] | 754 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 755 | l_grid, pt, pt_reference, rif, tend, & |
---|
[97] | 756 | zu, zw ) |
---|
| 757 | ENDIF |
---|
[1] | 758 | ELSE |
---|
[97] | 759 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 760 | l_grid, vpt, pt_reference, rif, tend, zu, & |
---|
| 761 | zw ) |
---|
[1] | 762 | ENDIF |
---|
| 763 | ELSE |
---|
| 764 | IF ( use_upstream_for_tke ) THEN |
---|
| 765 | tend(:,j,i) = 0.0 |
---|
| 766 | CALL advec_s_up( i, j, e ) |
---|
| 767 | ELSE |
---|
| 768 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 769 | THEN |
---|
| 770 | tend(:,j,i) = 0.0 |
---|
| 771 | CALL advec_s_pw( i, j, e ) |
---|
| 772 | ELSE |
---|
| 773 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 774 | tend(:,j,i) = 0.0 |
---|
| 775 | CALL advec_s_up( i, j, e ) |
---|
| 776 | ENDIF |
---|
| 777 | ENDIF |
---|
| 778 | ENDIF |
---|
| 779 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 780 | THEN |
---|
[75] | 781 | IF ( .NOT. humidity ) THEN |
---|
[1] | 782 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
[97] | 783 | km_m, l_grid, pt_m, pt_reference, & |
---|
| 784 | rif_m, tend, zu, zw ) |
---|
[1] | 785 | ELSE |
---|
| 786 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
[97] | 787 | km_m, l_grid, vpt_m, pt_reference, & |
---|
| 788 | rif_m, tend, zu, zw ) |
---|
[1] | 789 | ENDIF |
---|
| 790 | ELSE |
---|
[75] | 791 | IF ( .NOT. humidity ) THEN |
---|
[97] | 792 | IF ( ocean ) THEN |
---|
| 793 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
[388] | 794 | km, l_grid, prho, prho_reference, & |
---|
[97] | 795 | rif, tend, zu, zw ) |
---|
| 796 | ELSE |
---|
| 797 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 798 | km, l_grid, pt, pt_reference, rif, & |
---|
| 799 | tend, zu, zw ) |
---|
| 800 | ENDIF |
---|
[1] | 801 | ELSE |
---|
| 802 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
[97] | 803 | l_grid, vpt, pt_reference, rif, tend, & |
---|
| 804 | zu, zw ) |
---|
[1] | 805 | ENDIF |
---|
| 806 | ENDIF |
---|
| 807 | ENDIF |
---|
| 808 | CALL production_e( i, j ) |
---|
[138] | 809 | |
---|
| 810 | ! |
---|
| 811 | !-- Additional sink term for flows through plant canopies |
---|
[153] | 812 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
[138] | 813 | |
---|
[1] | 814 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 815 | |
---|
| 816 | ! |
---|
| 817 | !-- Prognostic equation for TKE. |
---|
| 818 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 819 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 820 | !-- value is reduced by 90%. |
---|
[19] | 821 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 822 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 823 | dt_3d * ( & |
---|
| 824 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 825 | ) |
---|
| 826 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 827 | ENDDO |
---|
| 828 | |
---|
| 829 | ! |
---|
| 830 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 831 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 832 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 833 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 834 | te_m(k,j,i) = tend(k,j,i) |
---|
| 835 | ENDDO |
---|
| 836 | ELSEIF ( intermediate_timestep_count < & |
---|
| 837 | intermediate_timestep_count_max ) THEN |
---|
[19] | 838 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 839 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 840 | ENDDO |
---|
| 841 | ENDIF |
---|
| 842 | ENDIF |
---|
| 843 | |
---|
| 844 | ENDDO |
---|
| 845 | ENDDO |
---|
| 846 | |
---|
| 847 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 848 | |
---|
| 849 | ENDIF |
---|
| 850 | |
---|
| 851 | |
---|
[63] | 852 | END SUBROUTINE prognostic_equations_noopt |
---|
[1] | 853 | |
---|
| 854 | |
---|
[63] | 855 | SUBROUTINE prognostic_equations_cache |
---|
[1] | 856 | |
---|
| 857 | !------------------------------------------------------------------------------! |
---|
| 858 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 859 | ! be called for the standard Piascek-Williams advection scheme. |
---|
| 860 | ! |
---|
[95] | 861 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 862 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 863 | ! these loops. |
---|
[1] | 864 | ! |
---|
| 865 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 866 | !------------------------------------------------------------------------------! |
---|
| 867 | |
---|
| 868 | IMPLICIT NONE |
---|
| 869 | |
---|
| 870 | CHARACTER (LEN=9) :: time_to_string |
---|
| 871 | INTEGER :: i, j, k |
---|
| 872 | |
---|
| 873 | |
---|
| 874 | ! |
---|
| 875 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 876 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 877 | |
---|
| 878 | |
---|
| 879 | ! |
---|
| 880 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 881 | !-- global communication |
---|
[96] | 882 | CALL calc_mean_profile( pt, 4 ) |
---|
| 883 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 884 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 885 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
| 886 | |
---|
| 887 | |
---|
| 888 | ! |
---|
| 889 | !-- Loop over all prognostic equations |
---|
| 890 | !$OMP PARALLEL private (i,j,k) |
---|
| 891 | !$OMP DO |
---|
[75] | 892 | DO i = nxl, nxr |
---|
| 893 | DO j = nys, nyn |
---|
[1] | 894 | ! |
---|
| 895 | !-- Tendency terms for u-velocity component |
---|
[106] | 896 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
[1] | 897 | |
---|
| 898 | tend(:,j,i) = 0.0 |
---|
| 899 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 900 | CALL advec_u_pw( i, j ) |
---|
| 901 | ELSE |
---|
| 902 | CALL advec_u_up( i, j ) |
---|
| 903 | ENDIF |
---|
| 904 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 905 | THEN |
---|
| 906 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
[102] | 907 | u_m, usws_m, uswst_m, v_m, w_m ) |
---|
[1] | 908 | ELSE |
---|
| 909 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
[102] | 910 | usws, uswst, v, w ) |
---|
[1] | 911 | ENDIF |
---|
| 912 | CALL coriolis( i, j, 1 ) |
---|
[97] | 913 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, & |
---|
| 914 | 4 ) |
---|
[138] | 915 | |
---|
| 916 | ! |
---|
| 917 | !-- Drag by plant canopy |
---|
| 918 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 919 | |
---|
[240] | 920 | ! |
---|
| 921 | !-- External pressure gradient |
---|
| 922 | IF ( dp_external ) THEN |
---|
| 923 | DO k = dp_level_ind_b+1, nzt |
---|
| 924 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 925 | ENDDO |
---|
| 926 | ENDIF |
---|
| 927 | |
---|
[1] | 928 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 929 | |
---|
| 930 | ! |
---|
| 931 | !-- Prognostic equation for u-velocity component |
---|
| 932 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 933 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 934 | dt_3d * ( & |
---|
| 935 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 936 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 937 | ) - & |
---|
| 938 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 939 | ENDDO |
---|
| 940 | |
---|
| 941 | ! |
---|
| 942 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 943 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 944 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 945 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 946 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 947 | ENDDO |
---|
| 948 | ELSEIF ( intermediate_timestep_count < & |
---|
| 949 | intermediate_timestep_count_max ) THEN |
---|
| 950 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 951 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 952 | ENDDO |
---|
| 953 | ENDIF |
---|
| 954 | ENDIF |
---|
| 955 | |
---|
| 956 | ENDIF |
---|
| 957 | |
---|
| 958 | ! |
---|
| 959 | !-- Tendency terms for v-velocity component |
---|
[106] | 960 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
[1] | 961 | |
---|
| 962 | tend(:,j,i) = 0.0 |
---|
| 963 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 964 | CALL advec_v_pw( i, j ) |
---|
| 965 | ELSE |
---|
| 966 | CALL advec_v_up( i, j ) |
---|
| 967 | ENDIF |
---|
| 968 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 969 | THEN |
---|
| 970 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
[102] | 971 | u_m, v_m, vsws_m, vswst_m, w_m ) |
---|
[1] | 972 | ELSE |
---|
| 973 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[102] | 974 | vsws, vswst, w ) |
---|
[1] | 975 | ENDIF |
---|
| 976 | CALL coriolis( i, j, 2 ) |
---|
[138] | 977 | |
---|
| 978 | ! |
---|
| 979 | !-- Drag by plant canopy |
---|
| 980 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 981 | |
---|
[240] | 982 | ! |
---|
| 983 | !-- External pressure gradient |
---|
| 984 | IF ( dp_external ) THEN |
---|
| 985 | DO k = dp_level_ind_b+1, nzt |
---|
| 986 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 987 | ENDDO |
---|
| 988 | ENDIF |
---|
| 989 | |
---|
[1] | 990 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 991 | |
---|
| 992 | ! |
---|
| 993 | !-- Prognostic equation for v-velocity component |
---|
| 994 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 995 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 996 | dt_3d * ( & |
---|
| 997 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 998 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 999 | ) - & |
---|
| 1000 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1001 | ENDDO |
---|
| 1002 | |
---|
| 1003 | ! |
---|
| 1004 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1005 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1006 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1007 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1008 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1009 | ENDDO |
---|
| 1010 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1011 | intermediate_timestep_count_max ) THEN |
---|
| 1012 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1013 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1014 | ENDDO |
---|
| 1015 | ENDIF |
---|
| 1016 | ENDIF |
---|
| 1017 | |
---|
| 1018 | ENDIF |
---|
| 1019 | |
---|
| 1020 | ! |
---|
| 1021 | !-- Tendency terms for w-velocity component |
---|
[106] | 1022 | tend(:,j,i) = 0.0 |
---|
| 1023 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1024 | CALL advec_w_pw( i, j ) |
---|
| 1025 | ELSE |
---|
| 1026 | CALL advec_w_up( i, j ) |
---|
| 1027 | ENDIF |
---|
| 1028 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 1029 | THEN |
---|
| 1030 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
| 1031 | km_damp_y, tend, u_m, v_m, w_m ) |
---|
| 1032 | ELSE |
---|
| 1033 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
| 1034 | tend, u, v, w ) |
---|
| 1035 | ENDIF |
---|
| 1036 | CALL coriolis( i, j, 3 ) |
---|
| 1037 | IF ( ocean ) THEN |
---|
[388] | 1038 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
[106] | 1039 | ELSE |
---|
| 1040 | IF ( .NOT. humidity ) THEN |
---|
| 1041 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
| 1042 | ELSE |
---|
| 1043 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
| 1044 | ENDIF |
---|
| 1045 | ENDIF |
---|
[138] | 1046 | |
---|
| 1047 | ! |
---|
| 1048 | !-- Drag by plant canopy |
---|
| 1049 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 1050 | |
---|
[106] | 1051 | CALL user_actions( i, j, 'w-tendency' ) |
---|
[1] | 1052 | |
---|
[106] | 1053 | ! |
---|
| 1054 | !-- Prognostic equation for w-velocity component |
---|
| 1055 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1056 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 1057 | dt_3d * ( & |
---|
| 1058 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 1059 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 1060 | ) - & |
---|
| 1061 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1062 | ENDDO |
---|
| 1063 | |
---|
| 1064 | ! |
---|
| 1065 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1066 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1067 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1068 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1069 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1070 | ENDDO |
---|
| 1071 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1072 | intermediate_timestep_count_max ) THEN |
---|
| 1073 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1074 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1075 | ENDDO |
---|
| 1076 | ENDIF |
---|
| 1077 | ENDIF |
---|
| 1078 | |
---|
| 1079 | ! |
---|
| 1080 | !-- Tendency terms for potential temperature |
---|
| 1081 | tend(:,j,i) = 0.0 |
---|
| 1082 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1083 | CALL advec_s_pw( i, j, pt ) |
---|
| 1084 | ELSE |
---|
| 1085 | CALL advec_s_up( i, j, pt ) |
---|
| 1086 | ENDIF |
---|
| 1087 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 1088 | THEN |
---|
| 1089 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
[129] | 1090 | tswst_m, wall_heatflux, tend ) |
---|
[106] | 1091 | ELSE |
---|
[129] | 1092 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 1093 | wall_heatflux, tend ) |
---|
[106] | 1094 | ENDIF |
---|
| 1095 | |
---|
| 1096 | ! |
---|
| 1097 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 1098 | !-- processes |
---|
| 1099 | IF ( radiation ) THEN |
---|
| 1100 | CALL calc_radiation( i, j ) |
---|
| 1101 | ENDIF |
---|
| 1102 | |
---|
| 1103 | ! |
---|
| 1104 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1105 | IF ( precipitation ) THEN |
---|
| 1106 | CALL impact_of_latent_heat( i, j ) |
---|
| 1107 | ENDIF |
---|
[153] | 1108 | |
---|
| 1109 | ! |
---|
| 1110 | !-- Consideration of heat sources within the plant canopy |
---|
| 1111 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1112 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 1113 | ENDIF |
---|
| 1114 | |
---|
[411] | 1115 | |
---|
| 1116 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1117 | IF ( large_scale_subsidence ) THEN |
---|
| 1118 | CALL subsidence ( i, j, tend, pt, pt_init ) |
---|
| 1119 | ENDIF |
---|
| 1120 | |
---|
[106] | 1121 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 1122 | |
---|
| 1123 | ! |
---|
| 1124 | !-- Prognostic equation for potential temperature |
---|
| 1125 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1126 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
| 1127 | dt_3d * ( & |
---|
| 1128 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1129 | ) - & |
---|
| 1130 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1131 | ENDDO |
---|
| 1132 | |
---|
| 1133 | ! |
---|
| 1134 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1135 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1136 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1137 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1138 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1139 | ENDDO |
---|
| 1140 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1141 | intermediate_timestep_count_max ) THEN |
---|
| 1142 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1143 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1144 | 5.3125 * tpt_m(k,j,i) |
---|
| 1145 | ENDDO |
---|
| 1146 | ENDIF |
---|
| 1147 | ENDIF |
---|
| 1148 | |
---|
| 1149 | ! |
---|
| 1150 | !-- If required, compute prognostic equation for salinity |
---|
| 1151 | IF ( ocean ) THEN |
---|
| 1152 | |
---|
| 1153 | ! |
---|
| 1154 | !-- Tendency-terms for salinity |
---|
[1] | 1155 | tend(:,j,i) = 0.0 |
---|
[106] | 1156 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
[1] | 1157 | THEN |
---|
[106] | 1158 | CALL advec_s_pw( i, j, sa ) |
---|
[1] | 1159 | ELSE |
---|
[106] | 1160 | CALL advec_s_up( i, j, sa ) |
---|
[1] | 1161 | ENDIF |
---|
[106] | 1162 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
[129] | 1163 | wall_salinityflux, tend ) |
---|
[1] | 1164 | |
---|
[106] | 1165 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 1166 | |
---|
[1] | 1167 | ! |
---|
[106] | 1168 | !-- Prognostic equation for salinity |
---|
| 1169 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1170 | sa_p(k,j,i) = tsc(1) * sa(k,j,i) + & |
---|
| 1171 | dt_3d * ( & |
---|
| 1172 | tsc(2) * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 1173 | ) - & |
---|
| 1174 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 1175 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
[1] | 1176 | ENDDO |
---|
| 1177 | |
---|
| 1178 | ! |
---|
| 1179 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1180 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1181 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[106] | 1182 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1183 | tsa_m(k,j,i) = tend(k,j,i) |
---|
[1] | 1184 | ENDDO |
---|
| 1185 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1186 | intermediate_timestep_count_max ) THEN |
---|
[106] | 1187 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1188 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1189 | 5.3125 * tsa_m(k,j,i) |
---|
[1] | 1190 | ENDDO |
---|
| 1191 | ENDIF |
---|
| 1192 | ENDIF |
---|
| 1193 | |
---|
| 1194 | ! |
---|
[106] | 1195 | !-- Calculate density by the equation of state for seawater |
---|
| 1196 | CALL eqn_state_seawater( i, j ) |
---|
| 1197 | |
---|
| 1198 | ENDIF |
---|
| 1199 | |
---|
| 1200 | ! |
---|
| 1201 | !-- If required, compute prognostic equation for total water content / |
---|
| 1202 | !-- scalar |
---|
| 1203 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1204 | |
---|
| 1205 | ! |
---|
| 1206 | !-- Tendency-terms for total water content / scalar |
---|
[1] | 1207 | tend(:,j,i) = 0.0 |
---|
[106] | 1208 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 1209 | THEN |
---|
| 1210 | CALL advec_s_pw( i, j, q ) |
---|
[1] | 1211 | ELSE |
---|
[106] | 1212 | CALL advec_s_up( i, j, q ) |
---|
[1] | 1213 | ENDIF |
---|
[106] | 1214 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
[1] | 1215 | THEN |
---|
[106] | 1216 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
[129] | 1217 | qswst_m, wall_qflux, tend ) |
---|
[1] | 1218 | ELSE |
---|
[106] | 1219 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
[129] | 1220 | wall_qflux, tend ) |
---|
[1] | 1221 | ENDIF |
---|
[106] | 1222 | |
---|
[1] | 1223 | ! |
---|
[106] | 1224 | !-- If required compute decrease of total water content due to |
---|
| 1225 | !-- precipitation |
---|
[1] | 1226 | IF ( precipitation ) THEN |
---|
[106] | 1227 | CALL calc_precipitation( i, j ) |
---|
[1] | 1228 | ENDIF |
---|
[153] | 1229 | |
---|
| 1230 | ! |
---|
| 1231 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1232 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
| 1233 | |
---|
| 1234 | |
---|
[531] | 1235 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1236 | IF ( large_scale_subsidence ) THEN |
---|
| 1237 | CALL subsidence ( i, j, tend, q, q_init ) |
---|
| 1238 | ENDIF |
---|
| 1239 | |
---|
| 1240 | |
---|
[106] | 1241 | CALL user_actions( i, j, 'q-tendency' ) |
---|
[1] | 1242 | |
---|
| 1243 | ! |
---|
[106] | 1244 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 1245 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1246 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
| 1247 | dt_3d * ( & |
---|
| 1248 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1249 | ) - & |
---|
| 1250 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
| 1251 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 1252 | ENDDO |
---|
| 1253 | |
---|
| 1254 | ! |
---|
| 1255 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1256 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1257 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 1258 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1259 | tq_m(k,j,i) = tend(k,j,i) |
---|
[1] | 1260 | ENDDO |
---|
| 1261 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1262 | intermediate_timestep_count_max ) THEN |
---|
[19] | 1263 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1264 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1265 | 5.3125 * tq_m(k,j,i) |
---|
[1] | 1266 | ENDDO |
---|
| 1267 | ENDIF |
---|
| 1268 | ENDIF |
---|
| 1269 | |
---|
[106] | 1270 | ENDIF |
---|
[95] | 1271 | |
---|
| 1272 | ! |
---|
[106] | 1273 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1274 | !-- energy (TKE) |
---|
| 1275 | IF ( .NOT. constant_diffusion ) THEN |
---|
[95] | 1276 | |
---|
| 1277 | ! |
---|
[106] | 1278 | !-- Tendency-terms for TKE |
---|
| 1279 | tend(:,j,i) = 0.0 |
---|
| 1280 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 1281 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
| 1282 | CALL advec_s_pw( i, j, e ) |
---|
| 1283 | ELSE |
---|
| 1284 | CALL advec_s_up( i, j, e ) |
---|
[95] | 1285 | ENDIF |
---|
[106] | 1286 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 1287 | THEN |
---|
| 1288 | IF ( .NOT. humidity ) THEN |
---|
| 1289 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 1290 | km_m, l_grid, pt_m, pt_reference, & |
---|
| 1291 | rif_m, tend, zu, zw ) |
---|
[1] | 1292 | ELSE |
---|
[106] | 1293 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 1294 | km_m, l_grid, vpt_m, pt_reference, & |
---|
| 1295 | rif_m, tend, zu, zw ) |
---|
[1] | 1296 | ENDIF |
---|
[106] | 1297 | ELSE |
---|
| 1298 | IF ( .NOT. humidity ) THEN |
---|
| 1299 | IF ( ocean ) THEN |
---|
[388] | 1300 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 1301 | km, l_grid, prho, prho_reference, & |
---|
[106] | 1302 | rif, tend, zu, zw ) |
---|
[1] | 1303 | ELSE |
---|
[106] | 1304 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 1305 | km, l_grid, pt, pt_reference, rif, & |
---|
| 1306 | tend, zu, zw ) |
---|
[1] | 1307 | ENDIF |
---|
| 1308 | ELSE |
---|
[106] | 1309 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 1310 | l_grid, vpt, pt_reference, rif, tend, & |
---|
| 1311 | zu, zw ) |
---|
[1] | 1312 | ENDIF |
---|
[106] | 1313 | ENDIF |
---|
| 1314 | CALL production_e( i, j ) |
---|
[138] | 1315 | |
---|
| 1316 | ! |
---|
| 1317 | !-- Additional sink term for flows through plant canopies |
---|
[153] | 1318 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
[138] | 1319 | |
---|
[106] | 1320 | CALL user_actions( i, j, 'e-tendency' ) |
---|
[1] | 1321 | |
---|
| 1322 | ! |
---|
[106] | 1323 | !-- Prognostic equation for TKE. |
---|
| 1324 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1325 | !-- reasons in the course of the integration. In such cases the old |
---|
| 1326 | !-- TKE value is reduced by 90%. |
---|
| 1327 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1328 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
| 1329 | dt_3d * ( & |
---|
| 1330 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 1331 | ) |
---|
| 1332 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1333 | ENDDO |
---|
[1] | 1334 | |
---|
| 1335 | ! |
---|
[106] | 1336 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1337 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1338 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1339 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1340 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1341 | ENDDO |
---|
| 1342 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1343 | intermediate_timestep_count_max ) THEN |
---|
| 1344 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1345 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1346 | 5.3125 * te_m(k,j,i) |
---|
| 1347 | ENDDO |
---|
[1] | 1348 | ENDIF |
---|
[106] | 1349 | ENDIF |
---|
[1] | 1350 | |
---|
[106] | 1351 | ENDIF ! TKE equation |
---|
[1] | 1352 | |
---|
| 1353 | ENDDO |
---|
| 1354 | ENDDO |
---|
| 1355 | !$OMP END PARALLEL |
---|
| 1356 | |
---|
| 1357 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 1358 | |
---|
| 1359 | |
---|
[63] | 1360 | END SUBROUTINE prognostic_equations_cache |
---|
[1] | 1361 | |
---|
| 1362 | |
---|
[63] | 1363 | SUBROUTINE prognostic_equations_vector |
---|
[1] | 1364 | |
---|
| 1365 | !------------------------------------------------------------------------------! |
---|
| 1366 | ! Version for vector machines |
---|
| 1367 | !------------------------------------------------------------------------------! |
---|
| 1368 | |
---|
| 1369 | IMPLICIT NONE |
---|
| 1370 | |
---|
| 1371 | CHARACTER (LEN=9) :: time_to_string |
---|
| 1372 | INTEGER :: i, j, k |
---|
| 1373 | REAL :: sat, sbt |
---|
| 1374 | |
---|
| 1375 | ! |
---|
| 1376 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 1377 | !-- global communication |
---|
[96] | 1378 | CALL calc_mean_profile( pt, 4 ) |
---|
| 1379 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 1380 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 1381 | |
---|
| 1382 | ! |
---|
| 1383 | !-- u-velocity component |
---|
| 1384 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1385 | |
---|
| 1386 | ! |
---|
| 1387 | !-- u-tendency terms with communication |
---|
| 1388 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1389 | tend = 0.0 |
---|
| 1390 | CALL advec_u_ups |
---|
| 1391 | ENDIF |
---|
| 1392 | |
---|
| 1393 | ! |
---|
| 1394 | !-- u-tendency terms with no communication |
---|
| 1395 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1396 | tend = 0.0 |
---|
| 1397 | CALL advec_u_pw |
---|
| 1398 | ELSE |
---|
| 1399 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1400 | tend = 0.0 |
---|
| 1401 | CALL advec_u_up |
---|
| 1402 | ENDIF |
---|
| 1403 | ENDIF |
---|
| 1404 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[102] | 1405 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, & |
---|
| 1406 | uswst_m, v_m, w_m ) |
---|
[1] | 1407 | ELSE |
---|
[102] | 1408 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, uswst, v, w ) |
---|
[1] | 1409 | ENDIF |
---|
| 1410 | CALL coriolis( 1 ) |
---|
[97] | 1411 | IF ( sloping_surface ) CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
[138] | 1412 | |
---|
| 1413 | ! |
---|
| 1414 | !-- Drag by plant canopy |
---|
| 1415 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1416 | |
---|
[240] | 1417 | ! |
---|
| 1418 | !-- External pressure gradient |
---|
| 1419 | IF ( dp_external ) THEN |
---|
| 1420 | DO i = nxlu, nxr |
---|
| 1421 | DO j = nys, nyn |
---|
| 1422 | DO k = dp_level_ind_b+1, nzt |
---|
| 1423 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1424 | ENDDO |
---|
| 1425 | ENDDO |
---|
| 1426 | ENDDO |
---|
| 1427 | ENDIF |
---|
| 1428 | |
---|
[1] | 1429 | CALL user_actions( 'u-tendency' ) |
---|
| 1430 | |
---|
| 1431 | ! |
---|
| 1432 | !-- Prognostic equation for u-velocity component |
---|
[106] | 1433 | DO i = nxlu, nxr |
---|
[1] | 1434 | DO j = nys, nyn |
---|
| 1435 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1436 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 1437 | dt_3d * ( & |
---|
| 1438 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 1439 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 1440 | ) - & |
---|
| 1441 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1442 | ENDDO |
---|
| 1443 | ENDDO |
---|
| 1444 | ENDDO |
---|
| 1445 | |
---|
| 1446 | ! |
---|
| 1447 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1448 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1449 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[106] | 1450 | DO i = nxlu, nxr |
---|
[1] | 1451 | DO j = nys, nyn |
---|
| 1452 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1453 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1454 | ENDDO |
---|
| 1455 | ENDDO |
---|
| 1456 | ENDDO |
---|
| 1457 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1458 | intermediate_timestep_count_max ) THEN |
---|
[106] | 1459 | DO i = nxlu, nxr |
---|
[1] | 1460 | DO j = nys, nyn |
---|
| 1461 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1462 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 1463 | ENDDO |
---|
| 1464 | ENDDO |
---|
| 1465 | ENDDO |
---|
| 1466 | ENDIF |
---|
| 1467 | ENDIF |
---|
| 1468 | |
---|
| 1469 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1470 | |
---|
| 1471 | ! |
---|
| 1472 | !-- v-velocity component |
---|
| 1473 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1474 | |
---|
| 1475 | ! |
---|
| 1476 | !-- v-tendency terms with communication |
---|
| 1477 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1478 | tend = 0.0 |
---|
| 1479 | CALL advec_v_ups |
---|
| 1480 | ENDIF |
---|
| 1481 | |
---|
| 1482 | ! |
---|
| 1483 | !-- v-tendency terms with no communication |
---|
| 1484 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1485 | tend = 0.0 |
---|
| 1486 | CALL advec_v_pw |
---|
| 1487 | ELSE |
---|
| 1488 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1489 | tend = 0.0 |
---|
| 1490 | CALL advec_v_up |
---|
| 1491 | ENDIF |
---|
| 1492 | ENDIF |
---|
| 1493 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1494 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
[102] | 1495 | vswst_m, w_m ) |
---|
[1] | 1496 | ELSE |
---|
[102] | 1497 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, vswst, w ) |
---|
[1] | 1498 | ENDIF |
---|
| 1499 | CALL coriolis( 2 ) |
---|
[138] | 1500 | |
---|
| 1501 | ! |
---|
| 1502 | !-- Drag by plant canopy |
---|
| 1503 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
[240] | 1504 | |
---|
| 1505 | ! |
---|
| 1506 | !-- External pressure gradient |
---|
| 1507 | IF ( dp_external ) THEN |
---|
| 1508 | DO i = nxl, nxr |
---|
| 1509 | DO j = nysv, nyn |
---|
| 1510 | DO k = dp_level_ind_b+1, nzt |
---|
| 1511 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1512 | ENDDO |
---|
| 1513 | ENDDO |
---|
| 1514 | ENDDO |
---|
| 1515 | ENDIF |
---|
| 1516 | |
---|
[1] | 1517 | CALL user_actions( 'v-tendency' ) |
---|
| 1518 | |
---|
| 1519 | ! |
---|
| 1520 | !-- Prognostic equation for v-velocity component |
---|
| 1521 | DO i = nxl, nxr |
---|
[106] | 1522 | DO j = nysv, nyn |
---|
[1] | 1523 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1524 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 1525 | dt_3d * ( & |
---|
| 1526 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 1527 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 1528 | ) - & |
---|
| 1529 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1530 | ENDDO |
---|
| 1531 | ENDDO |
---|
| 1532 | ENDDO |
---|
| 1533 | |
---|
| 1534 | ! |
---|
| 1535 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1536 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1537 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1538 | DO i = nxl, nxr |
---|
[106] | 1539 | DO j = nysv, nyn |
---|
[1] | 1540 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1541 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1542 | ENDDO |
---|
| 1543 | ENDDO |
---|
| 1544 | ENDDO |
---|
| 1545 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1546 | intermediate_timestep_count_max ) THEN |
---|
| 1547 | DO i = nxl, nxr |
---|
[106] | 1548 | DO j = nysv, nyn |
---|
[1] | 1549 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1550 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1551 | ENDDO |
---|
| 1552 | ENDDO |
---|
| 1553 | ENDDO |
---|
| 1554 | ENDIF |
---|
| 1555 | ENDIF |
---|
| 1556 | |
---|
| 1557 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1558 | |
---|
| 1559 | ! |
---|
| 1560 | !-- w-velocity component |
---|
| 1561 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1562 | |
---|
| 1563 | ! |
---|
| 1564 | !-- w-tendency terms with communication |
---|
| 1565 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1566 | tend = 0.0 |
---|
| 1567 | CALL advec_w_ups |
---|
| 1568 | ENDIF |
---|
| 1569 | |
---|
| 1570 | ! |
---|
| 1571 | !-- w-tendency terms with no communication |
---|
| 1572 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1573 | tend = 0.0 |
---|
| 1574 | CALL advec_w_pw |
---|
| 1575 | ELSE |
---|
| 1576 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1577 | tend = 0.0 |
---|
| 1578 | CALL advec_w_up |
---|
| 1579 | ENDIF |
---|
| 1580 | ENDIF |
---|
| 1581 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1582 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
[57] | 1583 | v_m, w_m ) |
---|
[1] | 1584 | ELSE |
---|
[57] | 1585 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w ) |
---|
[1] | 1586 | ENDIF |
---|
| 1587 | CALL coriolis( 3 ) |
---|
[97] | 1588 | IF ( ocean ) THEN |
---|
[388] | 1589 | CALL buoyancy( rho, rho_reference, 3, 64 ) |
---|
[1] | 1590 | ELSE |
---|
[97] | 1591 | IF ( .NOT. humidity ) THEN |
---|
| 1592 | CALL buoyancy( pt, pt_reference, 3, 4 ) |
---|
| 1593 | ELSE |
---|
| 1594 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
| 1595 | ENDIF |
---|
[1] | 1596 | ENDIF |
---|
[138] | 1597 | |
---|
| 1598 | ! |
---|
| 1599 | !-- Drag by plant canopy |
---|
| 1600 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1601 | |
---|
[1] | 1602 | CALL user_actions( 'w-tendency' ) |
---|
| 1603 | |
---|
| 1604 | ! |
---|
| 1605 | !-- Prognostic equation for w-velocity component |
---|
| 1606 | DO i = nxl, nxr |
---|
| 1607 | DO j = nys, nyn |
---|
| 1608 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1609 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 1610 | dt_3d * ( & |
---|
| 1611 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 1612 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 1613 | ) - & |
---|
| 1614 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1615 | ENDDO |
---|
| 1616 | ENDDO |
---|
| 1617 | ENDDO |
---|
| 1618 | |
---|
| 1619 | ! |
---|
| 1620 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1621 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1622 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1623 | DO i = nxl, nxr |
---|
| 1624 | DO j = nys, nyn |
---|
| 1625 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1626 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1627 | ENDDO |
---|
| 1628 | ENDDO |
---|
| 1629 | ENDDO |
---|
| 1630 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1631 | intermediate_timestep_count_max ) THEN |
---|
| 1632 | DO i = nxl, nxr |
---|
| 1633 | DO j = nys, nyn |
---|
| 1634 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1635 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1636 | ENDDO |
---|
| 1637 | ENDDO |
---|
| 1638 | ENDDO |
---|
| 1639 | ENDIF |
---|
| 1640 | ENDIF |
---|
| 1641 | |
---|
| 1642 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1643 | |
---|
| 1644 | ! |
---|
| 1645 | !-- potential temperature |
---|
| 1646 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1647 | |
---|
| 1648 | ! |
---|
| 1649 | !-- pt-tendency terms with communication |
---|
[63] | 1650 | sat = tsc(1) |
---|
| 1651 | sbt = tsc(2) |
---|
[1] | 1652 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1653 | |
---|
| 1654 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1655 | ! |
---|
[63] | 1656 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1657 | !-- switched on. Thus: |
---|
| 1658 | sat = 1.0 |
---|
| 1659 | sbt = 1.0 |
---|
| 1660 | ENDIF |
---|
[1] | 1661 | tend = 0.0 |
---|
| 1662 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1663 | ELSE |
---|
| 1664 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 1665 | tend = 0.0 |
---|
| 1666 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 1667 | ENDIF |
---|
| 1668 | ENDIF |
---|
| 1669 | |
---|
| 1670 | ! |
---|
| 1671 | !-- pt-tendency terms with no communication |
---|
| 1672 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 1673 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
| 1674 | tend ) |
---|
[1] | 1675 | ELSE |
---|
| 1676 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1677 | tend = 0.0 |
---|
| 1678 | CALL advec_s_pw( pt ) |
---|
| 1679 | ELSE |
---|
| 1680 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1681 | tend = 0.0 |
---|
| 1682 | CALL advec_s_up( pt ) |
---|
| 1683 | ENDIF |
---|
| 1684 | ENDIF |
---|
| 1685 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[129] | 1686 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tswst_m, & |
---|
| 1687 | wall_heatflux, tend ) |
---|
[1] | 1688 | ELSE |
---|
[129] | 1689 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
| 1690 | tend ) |
---|
[1] | 1691 | ENDIF |
---|
| 1692 | ENDIF |
---|
| 1693 | |
---|
| 1694 | ! |
---|
| 1695 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 1696 | !-- processes |
---|
| 1697 | IF ( radiation ) THEN |
---|
| 1698 | CALL calc_radiation |
---|
| 1699 | ENDIF |
---|
| 1700 | |
---|
| 1701 | ! |
---|
| 1702 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1703 | IF ( precipitation ) THEN |
---|
| 1704 | CALL impact_of_latent_heat |
---|
| 1705 | ENDIF |
---|
[153] | 1706 | |
---|
| 1707 | ! |
---|
| 1708 | !-- Consideration of heat sources within the plant canopy |
---|
| 1709 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1710 | CALL plant_canopy_model( 4 ) |
---|
| 1711 | ENDIF |
---|
| 1712 | |
---|
[411] | 1713 | !--If required compute influence of large-scale subsidence/ascent |
---|
| 1714 | IF ( large_scale_subsidence ) THEN |
---|
| 1715 | CALL subsidence ( tend, pt, pt_init ) |
---|
| 1716 | ENDIF |
---|
[153] | 1717 | |
---|
[1] | 1718 | CALL user_actions( 'pt-tendency' ) |
---|
| 1719 | |
---|
| 1720 | ! |
---|
| 1721 | !-- Prognostic equation for potential temperature |
---|
| 1722 | DO i = nxl, nxr |
---|
| 1723 | DO j = nys, nyn |
---|
[19] | 1724 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1725 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 1726 | dt_3d * ( & |
---|
| 1727 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1728 | ) - & |
---|
| 1729 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1730 | ENDDO |
---|
| 1731 | ENDDO |
---|
| 1732 | ENDDO |
---|
| 1733 | |
---|
| 1734 | ! |
---|
| 1735 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1736 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1737 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1738 | DO i = nxl, nxr |
---|
| 1739 | DO j = nys, nyn |
---|
[19] | 1740 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1741 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1742 | ENDDO |
---|
| 1743 | ENDDO |
---|
| 1744 | ENDDO |
---|
| 1745 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1746 | intermediate_timestep_count_max ) THEN |
---|
| 1747 | DO i = nxl, nxr |
---|
| 1748 | DO j = nys, nyn |
---|
[19] | 1749 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1750 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 1751 | ENDDO |
---|
| 1752 | ENDDO |
---|
| 1753 | ENDDO |
---|
| 1754 | ENDIF |
---|
| 1755 | ENDIF |
---|
| 1756 | |
---|
| 1757 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1758 | |
---|
| 1759 | ! |
---|
[95] | 1760 | !-- If required, compute prognostic equation for salinity |
---|
| 1761 | IF ( ocean ) THEN |
---|
| 1762 | |
---|
| 1763 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1764 | |
---|
| 1765 | ! |
---|
| 1766 | !-- sa-tendency terms with communication |
---|
| 1767 | sat = tsc(1) |
---|
| 1768 | sbt = tsc(2) |
---|
| 1769 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1770 | |
---|
| 1771 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1772 | ! |
---|
| 1773 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1774 | !-- switched on. Thus: |
---|
| 1775 | sat = 1.0 |
---|
| 1776 | sbt = 1.0 |
---|
| 1777 | ENDIF |
---|
| 1778 | tend = 0.0 |
---|
| 1779 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 1780 | ELSE |
---|
| 1781 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1782 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1783 | tend = 0.0 |
---|
| 1784 | CALL advec_s_ups( sa, 'sa' ) |
---|
| 1785 | ENDIF |
---|
| 1786 | ENDIF |
---|
| 1787 | ENDIF |
---|
| 1788 | |
---|
| 1789 | ! |
---|
[129] | 1790 | !-- sa-tendency terms with no communication |
---|
[95] | 1791 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 1792 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 1793 | wall_salinityflux, tend ) |
---|
[95] | 1794 | ELSE |
---|
| 1795 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1796 | tend = 0.0 |
---|
| 1797 | CALL advec_s_pw( sa ) |
---|
| 1798 | ELSE |
---|
| 1799 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1800 | tend = 0.0 |
---|
| 1801 | CALL advec_s_up( sa ) |
---|
| 1802 | ENDIF |
---|
| 1803 | ENDIF |
---|
[129] | 1804 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 1805 | wall_salinityflux, tend ) |
---|
[95] | 1806 | ENDIF |
---|
| 1807 | |
---|
| 1808 | CALL user_actions( 'sa-tendency' ) |
---|
| 1809 | |
---|
| 1810 | ! |
---|
| 1811 | !-- Prognostic equation for salinity |
---|
| 1812 | DO i = nxl, nxr |
---|
| 1813 | DO j = nys, nyn |
---|
| 1814 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1815 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
| 1816 | dt_3d * ( & |
---|
| 1817 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 1818 | ) - & |
---|
| 1819 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 1820 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1821 | ENDDO |
---|
| 1822 | ENDDO |
---|
| 1823 | ENDDO |
---|
| 1824 | |
---|
| 1825 | ! |
---|
| 1826 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1827 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1828 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1829 | DO i = nxl, nxr |
---|
| 1830 | DO j = nys, nyn |
---|
| 1831 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1832 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1833 | ENDDO |
---|
| 1834 | ENDDO |
---|
| 1835 | ENDDO |
---|
| 1836 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1837 | intermediate_timestep_count_max ) THEN |
---|
| 1838 | DO i = nxl, nxr |
---|
| 1839 | DO j = nys, nyn |
---|
| 1840 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1841 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1842 | 5.3125 * tsa_m(k,j,i) |
---|
| 1843 | ENDDO |
---|
| 1844 | ENDDO |
---|
| 1845 | ENDDO |
---|
| 1846 | ENDIF |
---|
| 1847 | ENDIF |
---|
| 1848 | |
---|
| 1849 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1850 | |
---|
[96] | 1851 | ! |
---|
| 1852 | !-- Calculate density by the equation of state for seawater |
---|
| 1853 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1854 | CALL eqn_state_seawater |
---|
| 1855 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1856 | |
---|
[95] | 1857 | ENDIF |
---|
| 1858 | |
---|
| 1859 | ! |
---|
[1] | 1860 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 1861 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 1862 | |
---|
| 1863 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1864 | |
---|
| 1865 | ! |
---|
| 1866 | !-- Scalar/q-tendency terms with communication |
---|
[63] | 1867 | sat = tsc(1) |
---|
| 1868 | sbt = tsc(2) |
---|
[1] | 1869 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1870 | |
---|
| 1871 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1872 | ! |
---|
[63] | 1873 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1874 | !-- switched on. Thus: |
---|
| 1875 | sat = 1.0 |
---|
| 1876 | sbt = 1.0 |
---|
| 1877 | ENDIF |
---|
[1] | 1878 | tend = 0.0 |
---|
| 1879 | CALL advec_s_bc( q, 'q' ) |
---|
| 1880 | ELSE |
---|
| 1881 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1882 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1883 | tend = 0.0 |
---|
| 1884 | CALL advec_s_ups( q, 'q' ) |
---|
| 1885 | ENDIF |
---|
| 1886 | ENDIF |
---|
| 1887 | ENDIF |
---|
| 1888 | |
---|
| 1889 | ! |
---|
| 1890 | !-- Scalar/q-tendency terms with no communication |
---|
| 1891 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 1892 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, wall_qflux, tend ) |
---|
[1] | 1893 | ELSE |
---|
| 1894 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1895 | tend = 0.0 |
---|
| 1896 | CALL advec_s_pw( q ) |
---|
| 1897 | ELSE |
---|
| 1898 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1899 | tend = 0.0 |
---|
| 1900 | CALL advec_s_up( q ) |
---|
| 1901 | ENDIF |
---|
| 1902 | ENDIF |
---|
| 1903 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[129] | 1904 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, qswst_m, & |
---|
| 1905 | wall_qflux, tend ) |
---|
[1] | 1906 | ELSE |
---|
[129] | 1907 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 1908 | wall_qflux, tend ) |
---|
[1] | 1909 | ENDIF |
---|
| 1910 | ENDIF |
---|
| 1911 | |
---|
| 1912 | ! |
---|
| 1913 | !-- If required compute decrease of total water content due to |
---|
| 1914 | !-- precipitation |
---|
| 1915 | IF ( precipitation ) THEN |
---|
| 1916 | CALL calc_precipitation |
---|
| 1917 | ENDIF |
---|
[153] | 1918 | |
---|
| 1919 | ! |
---|
| 1920 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1921 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1922 | |
---|
[531] | 1923 | ! |
---|
| 1924 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1925 | IF ( large_scale_subsidence ) THEN |
---|
| 1926 | CALL subsidence ( tend, q, q_init ) |
---|
| 1927 | ENDIF |
---|
| 1928 | |
---|
[1] | 1929 | CALL user_actions( 'q-tendency' ) |
---|
| 1930 | |
---|
| 1931 | ! |
---|
| 1932 | !-- Prognostic equation for total water content / scalar |
---|
| 1933 | DO i = nxl, nxr |
---|
| 1934 | DO j = nys, nyn |
---|
[19] | 1935 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1936 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 1937 | dt_3d * ( & |
---|
| 1938 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1939 | ) - & |
---|
| 1940 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 1941 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 1942 | ENDDO |
---|
| 1943 | ENDDO |
---|
| 1944 | ENDDO |
---|
| 1945 | |
---|
| 1946 | ! |
---|
| 1947 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1948 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1949 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1950 | DO i = nxl, nxr |
---|
| 1951 | DO j = nys, nyn |
---|
[19] | 1952 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1953 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1954 | ENDDO |
---|
| 1955 | ENDDO |
---|
| 1956 | ENDDO |
---|
| 1957 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1958 | intermediate_timestep_count_max ) THEN |
---|
| 1959 | DO i = nxl, nxr |
---|
| 1960 | DO j = nys, nyn |
---|
[19] | 1961 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1962 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1963 | ENDDO |
---|
| 1964 | ENDDO |
---|
| 1965 | ENDDO |
---|
| 1966 | ENDIF |
---|
| 1967 | ENDIF |
---|
| 1968 | |
---|
| 1969 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1970 | |
---|
| 1971 | ENDIF |
---|
| 1972 | |
---|
| 1973 | ! |
---|
| 1974 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1975 | !-- energy (TKE) |
---|
| 1976 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1977 | |
---|
| 1978 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1979 | |
---|
| 1980 | ! |
---|
| 1981 | !-- TKE-tendency terms with communication |
---|
| 1982 | CALL production_e_init |
---|
[63] | 1983 | |
---|
| 1984 | sat = tsc(1) |
---|
| 1985 | sbt = tsc(2) |
---|
[1] | 1986 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1987 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1988 | |
---|
| 1989 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1990 | ! |
---|
[63] | 1991 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1992 | !-- switched on. Thus: |
---|
| 1993 | sat = 1.0 |
---|
| 1994 | sbt = 1.0 |
---|
| 1995 | ENDIF |
---|
[1] | 1996 | tend = 0.0 |
---|
| 1997 | CALL advec_s_bc( e, 'e' ) |
---|
| 1998 | ELSE |
---|
| 1999 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 2000 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 2001 | tend = 0.0 |
---|
| 2002 | CALL advec_s_ups( e, 'e' ) |
---|
| 2003 | ENDIF |
---|
| 2004 | ENDIF |
---|
| 2005 | ENDIF |
---|
| 2006 | ENDIF |
---|
| 2007 | |
---|
| 2008 | ! |
---|
| 2009 | !-- TKE-tendency terms with no communication |
---|
| 2010 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
| 2011 | THEN |
---|
[75] | 2012 | IF ( .NOT. humidity ) THEN |
---|
[97] | 2013 | IF ( ocean ) THEN |
---|
[388] | 2014 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
| 2015 | prho, prho_reference, rif, tend, zu, zw ) |
---|
[97] | 2016 | ELSE |
---|
| 2017 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
| 2018 | pt_reference, rif, tend, zu, zw ) |
---|
| 2019 | ENDIF |
---|
[1] | 2020 | ELSE |
---|
| 2021 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
[97] | 2022 | pt_reference, rif, tend, zu, zw ) |
---|
[1] | 2023 | ENDIF |
---|
| 2024 | ELSE |
---|
| 2025 | IF ( use_upstream_for_tke ) THEN |
---|
| 2026 | tend = 0.0 |
---|
| 2027 | CALL advec_s_up( e ) |
---|
| 2028 | ELSE |
---|
| 2029 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2030 | tend = 0.0 |
---|
| 2031 | CALL advec_s_pw( e ) |
---|
| 2032 | ELSE |
---|
| 2033 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 2034 | tend = 0.0 |
---|
| 2035 | CALL advec_s_up( e ) |
---|
| 2036 | ENDIF |
---|
| 2037 | ENDIF |
---|
| 2038 | ENDIF |
---|
| 2039 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[75] | 2040 | IF ( .NOT. humidity ) THEN |
---|
[1] | 2041 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
[97] | 2042 | pt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
[1] | 2043 | ELSE |
---|
| 2044 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
[97] | 2045 | vpt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
[1] | 2046 | ENDIF |
---|
| 2047 | ELSE |
---|
[75] | 2048 | IF ( .NOT. humidity ) THEN |
---|
[97] | 2049 | IF ( ocean ) THEN |
---|
| 2050 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
[388] | 2051 | prho, prho_reference, rif, tend, zu, zw ) |
---|
[97] | 2052 | ELSE |
---|
| 2053 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
| 2054 | pt, pt_reference, rif, tend, zu, zw ) |
---|
| 2055 | ENDIF |
---|
[1] | 2056 | ELSE |
---|
| 2057 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
[97] | 2058 | pt_reference, rif, tend, zu, zw ) |
---|
[1] | 2059 | ENDIF |
---|
| 2060 | ENDIF |
---|
| 2061 | ENDIF |
---|
| 2062 | CALL production_e |
---|
[138] | 2063 | |
---|
| 2064 | ! |
---|
| 2065 | !-- Additional sink term for flows through plant canopies |
---|
[153] | 2066 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
[1] | 2067 | CALL user_actions( 'e-tendency' ) |
---|
| 2068 | |
---|
| 2069 | ! |
---|
| 2070 | !-- Prognostic equation for TKE. |
---|
| 2071 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2072 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2073 | !-- value is reduced by 90%. |
---|
| 2074 | DO i = nxl, nxr |
---|
| 2075 | DO j = nys, nyn |
---|
[19] | 2076 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 2077 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 2078 | dt_3d * ( & |
---|
| 2079 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 2080 | ) |
---|
| 2081 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 2082 | ENDDO |
---|
| 2083 | ENDDO |
---|
| 2084 | ENDDO |
---|
| 2085 | |
---|
| 2086 | ! |
---|
| 2087 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 2088 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2089 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 2090 | DO i = nxl, nxr |
---|
| 2091 | DO j = nys, nyn |
---|
[19] | 2092 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 2093 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2094 | ENDDO |
---|
| 2095 | ENDDO |
---|
| 2096 | ENDDO |
---|
| 2097 | ELSEIF ( intermediate_timestep_count < & |
---|
| 2098 | intermediate_timestep_count_max ) THEN |
---|
| 2099 | DO i = nxl, nxr |
---|
| 2100 | DO j = nys, nyn |
---|
[19] | 2101 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 2102 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 2103 | ENDDO |
---|
| 2104 | ENDDO |
---|
| 2105 | ENDDO |
---|
| 2106 | ENDIF |
---|
| 2107 | ENDIF |
---|
| 2108 | |
---|
| 2109 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2110 | |
---|
| 2111 | ENDIF |
---|
| 2112 | |
---|
| 2113 | |
---|
[63] | 2114 | END SUBROUTINE prognostic_equations_vector |
---|
[1] | 2115 | |
---|
| 2116 | |
---|
| 2117 | END MODULE prognostic_equations_mod |
---|