[1] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
[392] | 6 | ! |
---|
[98] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
| 10 | ! $Id: prognostic_equations.f90 484 2010-02-05 07:36:54Z heinze $ |
---|
| 11 | ! |
---|
[482] | 12 | ! 411 2009-12-11 14:15:58Z heinze |
---|
| 13 | ! add call of subsidence in the equation for potential temperature |
---|
| 14 | ! |
---|
[392] | 15 | ! 388 2009-09-23 09:40:33Z raasch |
---|
| 16 | ! prho is used instead of rho in diffusion_e, |
---|
| 17 | ! external pressure gradient |
---|
| 18 | ! |
---|
[198] | 19 | ! 153 2008-03-19 09:41:30Z steinfeld |
---|
| 20 | ! add call of plant_canopy_model in the prognostic equation for |
---|
| 21 | ! the potential temperature and for the passive scalar |
---|
| 22 | ! |
---|
[139] | 23 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 24 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
| 25 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
| 26 | ! |
---|
[110] | 27 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 28 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
| 29 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
| 30 | ! for non-cyclic boundary conditions) |
---|
| 31 | ! |
---|
[98] | 32 | ! 97 2007-06-21 08:23:15Z raasch |
---|
[96] | 33 | ! prognostic equation for salinity, density is calculated from equation of |
---|
[97] | 34 | ! state for seawater and is used for calculation of buoyancy, |
---|
| 35 | ! +eqn_state_seawater_mod |
---|
| 36 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
| 37 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
| 38 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
[96] | 39 | ! calc_mean_profile |
---|
[1] | 40 | ! |
---|
[77] | 41 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 42 | ! checking for negative q and limiting for positive values, |
---|
| 43 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
| 44 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
| 45 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
| 46 | ! _vector-version |
---|
| 47 | ! |
---|
[39] | 48 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 49 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
| 50 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
| 51 | ! |
---|
[3] | 52 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 53 | ! |
---|
[1] | 54 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
| 55 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
| 56 | ! regardless of the timestep scheme used for the other quantities, |
---|
| 57 | ! new argument diss in call of diffusion_e |
---|
| 58 | ! |
---|
| 59 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 60 | ! Initial revision |
---|
| 61 | ! |
---|
| 62 | ! |
---|
| 63 | ! Description: |
---|
| 64 | ! ------------ |
---|
[19] | 65 | ! Solving the prognostic equations. |
---|
[1] | 66 | !------------------------------------------------------------------------------! |
---|
| 67 | |
---|
| 68 | USE arrays_3d |
---|
| 69 | USE control_parameters |
---|
| 70 | USE cpulog |
---|
[96] | 71 | USE eqn_state_seawater_mod |
---|
[1] | 72 | USE grid_variables |
---|
| 73 | USE indices |
---|
| 74 | USE interfaces |
---|
| 75 | USE pegrid |
---|
| 76 | USE pointer_interfaces |
---|
| 77 | USE statistics |
---|
| 78 | |
---|
| 79 | USE advec_s_pw_mod |
---|
| 80 | USE advec_s_up_mod |
---|
| 81 | USE advec_u_pw_mod |
---|
| 82 | USE advec_u_up_mod |
---|
| 83 | USE advec_v_pw_mod |
---|
| 84 | USE advec_v_up_mod |
---|
| 85 | USE advec_w_pw_mod |
---|
| 86 | USE advec_w_up_mod |
---|
| 87 | USE buoyancy_mod |
---|
| 88 | USE calc_precipitation_mod |
---|
| 89 | USE calc_radiation_mod |
---|
| 90 | USE coriolis_mod |
---|
| 91 | USE diffusion_e_mod |
---|
| 92 | USE diffusion_s_mod |
---|
| 93 | USE diffusion_u_mod |
---|
| 94 | USE diffusion_v_mod |
---|
| 95 | USE diffusion_w_mod |
---|
| 96 | USE impact_of_latent_heat_mod |
---|
[138] | 97 | USE plant_canopy_model_mod |
---|
[1] | 98 | USE production_e_mod |
---|
[411] | 99 | USE subsidence_mod |
---|
[1] | 100 | USE user_actions_mod |
---|
| 101 | |
---|
| 102 | |
---|
| 103 | PRIVATE |
---|
[63] | 104 | PUBLIC prognostic_equations_noopt, prognostic_equations_cache, & |
---|
| 105 | prognostic_equations_vector |
---|
[1] | 106 | |
---|
[63] | 107 | INTERFACE prognostic_equations_noopt |
---|
| 108 | MODULE PROCEDURE prognostic_equations_noopt |
---|
| 109 | END INTERFACE prognostic_equations_noopt |
---|
[1] | 110 | |
---|
[63] | 111 | INTERFACE prognostic_equations_cache |
---|
| 112 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 113 | END INTERFACE prognostic_equations_cache |
---|
[1] | 114 | |
---|
[63] | 115 | INTERFACE prognostic_equations_vector |
---|
| 116 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 117 | END INTERFACE prognostic_equations_vector |
---|
[1] | 118 | |
---|
| 119 | |
---|
| 120 | CONTAINS |
---|
| 121 | |
---|
| 122 | |
---|
[63] | 123 | SUBROUTINE prognostic_equations_noopt |
---|
[1] | 124 | |
---|
| 125 | !------------------------------------------------------------------------------! |
---|
| 126 | ! Version with single loop optimization |
---|
| 127 | ! |
---|
| 128 | ! (Optimized over each single prognostic equation.) |
---|
| 129 | !------------------------------------------------------------------------------! |
---|
| 130 | |
---|
| 131 | IMPLICIT NONE |
---|
| 132 | |
---|
| 133 | CHARACTER (LEN=9) :: time_to_string |
---|
| 134 | INTEGER :: i, j, k |
---|
| 135 | REAL :: sat, sbt |
---|
| 136 | |
---|
| 137 | ! |
---|
| 138 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 139 | !-- global communication |
---|
[96] | 140 | CALL calc_mean_profile( pt, 4 ) |
---|
| 141 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 142 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 143 | |
---|
| 144 | ! |
---|
| 145 | !-- u-velocity component |
---|
| 146 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 147 | |
---|
| 148 | ! |
---|
| 149 | !-- u-tendency terms with communication |
---|
| 150 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 151 | tend = 0.0 |
---|
| 152 | CALL advec_u_ups |
---|
| 153 | ENDIF |
---|
| 154 | |
---|
| 155 | ! |
---|
| 156 | !-- u-tendency terms with no communication |
---|
[106] | 157 | DO i = nxlu, nxr |
---|
[1] | 158 | DO j = nys, nyn |
---|
| 159 | ! |
---|
| 160 | !-- Tendency terms |
---|
| 161 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 162 | tend(:,j,i) = 0.0 |
---|
| 163 | CALL advec_u_pw( i, j ) |
---|
| 164 | ELSE |
---|
| 165 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 166 | tend(:,j,i) = 0.0 |
---|
| 167 | CALL advec_u_up( i, j ) |
---|
| 168 | ENDIF |
---|
| 169 | ENDIF |
---|
| 170 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 171 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
[102] | 172 | usws_m, uswst_m, v_m, w_m ) |
---|
[1] | 173 | ELSE |
---|
| 174 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
[102] | 175 | uswst, v, w ) |
---|
[1] | 176 | ENDIF |
---|
| 177 | CALL coriolis( i, j, 1 ) |
---|
[97] | 178 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, 4 ) |
---|
[138] | 179 | |
---|
| 180 | ! |
---|
| 181 | !-- Drag by plant canopy |
---|
| 182 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
[240] | 183 | |
---|
| 184 | ! |
---|
| 185 | !-- External pressure gradient |
---|
| 186 | IF ( dp_external ) THEN |
---|
| 187 | DO k = dp_level_ind_b+1, nzt |
---|
| 188 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 189 | ENDDO |
---|
| 190 | ENDIF |
---|
| 191 | |
---|
[1] | 192 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 193 | |
---|
| 194 | ! |
---|
| 195 | !-- Prognostic equation for u-velocity component |
---|
| 196 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 197 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 198 | dt_3d * ( & |
---|
| 199 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 200 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 201 | ) - & |
---|
| 202 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 203 | ENDDO |
---|
| 204 | |
---|
| 205 | ! |
---|
| 206 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 207 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 208 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 209 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 210 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 211 | ENDDO |
---|
| 212 | ELSEIF ( intermediate_timestep_count < & |
---|
| 213 | intermediate_timestep_count_max ) THEN |
---|
| 214 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 215 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 216 | ENDDO |
---|
| 217 | ENDIF |
---|
| 218 | ENDIF |
---|
| 219 | |
---|
| 220 | ENDDO |
---|
| 221 | ENDDO |
---|
| 222 | |
---|
| 223 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 224 | |
---|
| 225 | ! |
---|
| 226 | !-- v-velocity component |
---|
| 227 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 228 | |
---|
| 229 | ! |
---|
| 230 | !-- v-tendency terms with communication |
---|
| 231 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 232 | tend = 0.0 |
---|
| 233 | CALL advec_v_ups |
---|
| 234 | ENDIF |
---|
| 235 | |
---|
| 236 | ! |
---|
| 237 | !-- v-tendency terms with no communication |
---|
| 238 | DO i = nxl, nxr |
---|
[106] | 239 | DO j = nysv, nyn |
---|
[1] | 240 | ! |
---|
| 241 | !-- Tendency terms |
---|
| 242 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 243 | tend(:,j,i) = 0.0 |
---|
| 244 | CALL advec_v_pw( i, j ) |
---|
| 245 | ELSE |
---|
| 246 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 247 | tend(:,j,i) = 0.0 |
---|
| 248 | CALL advec_v_up( i, j ) |
---|
| 249 | ENDIF |
---|
| 250 | ENDIF |
---|
| 251 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 252 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
[102] | 253 | v_m, vsws_m, vswst_m, w_m ) |
---|
[1] | 254 | ELSE |
---|
| 255 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[102] | 256 | vsws, vswst, w ) |
---|
[1] | 257 | ENDIF |
---|
| 258 | CALL coriolis( i, j, 2 ) |
---|
[138] | 259 | |
---|
| 260 | ! |
---|
| 261 | !-- Drag by plant canopy |
---|
| 262 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 263 | |
---|
[240] | 264 | ! |
---|
| 265 | !-- External pressure gradient |
---|
| 266 | IF ( dp_external ) THEN |
---|
| 267 | DO k = dp_level_ind_b+1, nzt |
---|
| 268 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 269 | ENDDO |
---|
| 270 | ENDIF |
---|
| 271 | |
---|
[1] | 272 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 273 | |
---|
| 274 | ! |
---|
| 275 | !-- Prognostic equation for v-velocity component |
---|
| 276 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 277 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 278 | dt_3d * ( & |
---|
| 279 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 280 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 281 | ) - & |
---|
| 282 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 283 | ENDDO |
---|
| 284 | |
---|
| 285 | ! |
---|
| 286 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 287 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 288 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 289 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 290 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 291 | ENDDO |
---|
| 292 | ELSEIF ( intermediate_timestep_count < & |
---|
| 293 | intermediate_timestep_count_max ) THEN |
---|
| 294 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 295 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 296 | ENDDO |
---|
| 297 | ENDIF |
---|
| 298 | ENDIF |
---|
| 299 | |
---|
| 300 | ENDDO |
---|
| 301 | ENDDO |
---|
| 302 | |
---|
| 303 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 304 | |
---|
| 305 | ! |
---|
| 306 | !-- w-velocity component |
---|
| 307 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 308 | |
---|
| 309 | ! |
---|
| 310 | !-- w-tendency terms with communication |
---|
| 311 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 312 | tend = 0.0 |
---|
| 313 | CALL advec_w_ups |
---|
| 314 | ENDIF |
---|
| 315 | |
---|
| 316 | ! |
---|
| 317 | !-- w-tendency terms with no communication |
---|
| 318 | DO i = nxl, nxr |
---|
| 319 | DO j = nys, nyn |
---|
| 320 | ! |
---|
| 321 | !-- Tendency terms |
---|
| 322 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 323 | tend(:,j,i) = 0.0 |
---|
| 324 | CALL advec_w_pw( i, j ) |
---|
| 325 | ELSE |
---|
| 326 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 327 | tend(:,j,i) = 0.0 |
---|
| 328 | CALL advec_w_up( i, j ) |
---|
| 329 | ENDIF |
---|
| 330 | ENDIF |
---|
| 331 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 332 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
[57] | 333 | tend, u_m, v_m, w_m ) |
---|
[1] | 334 | ELSE |
---|
| 335 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
[57] | 336 | tend, u, v, w ) |
---|
[1] | 337 | ENDIF |
---|
| 338 | CALL coriolis( i, j, 3 ) |
---|
[97] | 339 | IF ( ocean ) THEN |
---|
[388] | 340 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
[1] | 341 | ELSE |
---|
[97] | 342 | IF ( .NOT. humidity ) THEN |
---|
| 343 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
| 344 | ELSE |
---|
| 345 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
| 346 | ENDIF |
---|
[1] | 347 | ENDIF |
---|
[138] | 348 | |
---|
| 349 | ! |
---|
| 350 | !-- Drag by plant canopy |
---|
| 351 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 352 | |
---|
[1] | 353 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 354 | |
---|
| 355 | ! |
---|
| 356 | !-- Prognostic equation for w-velocity component |
---|
| 357 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 358 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 359 | dt_3d * ( & |
---|
| 360 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 361 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 362 | ) - & |
---|
| 363 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 364 | ENDDO |
---|
| 365 | |
---|
| 366 | ! |
---|
| 367 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 368 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 369 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 370 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 371 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 372 | ENDDO |
---|
| 373 | ELSEIF ( intermediate_timestep_count < & |
---|
| 374 | intermediate_timestep_count_max ) THEN |
---|
| 375 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 376 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 377 | ENDDO |
---|
| 378 | ENDIF |
---|
| 379 | ENDIF |
---|
| 380 | |
---|
| 381 | ENDDO |
---|
| 382 | ENDDO |
---|
| 383 | |
---|
| 384 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 385 | |
---|
| 386 | ! |
---|
| 387 | !-- potential temperature |
---|
| 388 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 389 | |
---|
| 390 | ! |
---|
| 391 | !-- pt-tendency terms with communication |
---|
[70] | 392 | sat = tsc(1) |
---|
| 393 | sbt = tsc(2) |
---|
[1] | 394 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 395 | |
---|
| 396 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 397 | ! |
---|
[70] | 398 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 399 | !-- switched on. Thus: |
---|
| 400 | sat = 1.0 |
---|
| 401 | sbt = 1.0 |
---|
| 402 | ENDIF |
---|
[1] | 403 | tend = 0.0 |
---|
| 404 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 405 | ELSE |
---|
| 406 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 407 | tend = 0.0 |
---|
| 408 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 409 | ENDIF |
---|
| 410 | ENDIF |
---|
[407] | 411 | |
---|
[1] | 412 | ! |
---|
| 413 | !-- pt-tendency terms with no communication |
---|
| 414 | DO i = nxl, nxr |
---|
| 415 | DO j = nys, nyn |
---|
| 416 | ! |
---|
| 417 | !-- Tendency terms |
---|
| 418 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 419 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 420 | wall_heatflux, tend ) |
---|
[1] | 421 | ELSE |
---|
| 422 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 423 | tend(:,j,i) = 0.0 |
---|
| 424 | CALL advec_s_pw( i, j, pt ) |
---|
| 425 | ELSE |
---|
| 426 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 427 | tend(:,j,i) = 0.0 |
---|
| 428 | CALL advec_s_up( i, j, pt ) |
---|
| 429 | ENDIF |
---|
| 430 | ENDIF |
---|
| 431 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 432 | THEN |
---|
[19] | 433 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
[129] | 434 | tswst_m, wall_heatflux, tend ) |
---|
[1] | 435 | ELSE |
---|
[129] | 436 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 437 | wall_heatflux, tend ) |
---|
[1] | 438 | ENDIF |
---|
| 439 | ENDIF |
---|
| 440 | |
---|
| 441 | ! |
---|
| 442 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 443 | !-- processes |
---|
| 444 | IF ( radiation ) THEN |
---|
| 445 | CALL calc_radiation( i, j ) |
---|
| 446 | ENDIF |
---|
| 447 | |
---|
| 448 | ! |
---|
| 449 | !-- If required compute impact of latent heat due to precipitation |
---|
| 450 | IF ( precipitation ) THEN |
---|
| 451 | CALL impact_of_latent_heat( i, j ) |
---|
| 452 | ENDIF |
---|
[153] | 453 | |
---|
| 454 | ! |
---|
| 455 | !-- Consideration of heat sources within the plant canopy |
---|
| 456 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 457 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 458 | ENDIF |
---|
| 459 | |
---|
[411] | 460 | ! |
---|
| 461 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 462 | IF ( large_scale_subsidence ) THEN |
---|
| 463 | CALL subsidence ( i, j, tend, pt, pt_init ) |
---|
| 464 | ENDIF |
---|
| 465 | |
---|
[1] | 466 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 467 | |
---|
| 468 | ! |
---|
| 469 | !-- Prognostic equation for potential temperature |
---|
[19] | 470 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 471 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 472 | dt_3d * ( & |
---|
| 473 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 474 | ) - & |
---|
| 475 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 476 | ENDDO |
---|
| 477 | |
---|
| 478 | ! |
---|
| 479 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 480 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 481 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 482 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 483 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 484 | ENDDO |
---|
| 485 | ELSEIF ( intermediate_timestep_count < & |
---|
| 486 | intermediate_timestep_count_max ) THEN |
---|
[19] | 487 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 488 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 489 | ENDDO |
---|
| 490 | ENDIF |
---|
| 491 | ENDIF |
---|
| 492 | |
---|
| 493 | ENDDO |
---|
| 494 | ENDDO |
---|
| 495 | |
---|
| 496 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 497 | |
---|
| 498 | ! |
---|
[95] | 499 | !-- If required, compute prognostic equation for salinity |
---|
| 500 | IF ( ocean ) THEN |
---|
| 501 | |
---|
| 502 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 503 | |
---|
| 504 | ! |
---|
| 505 | !-- sa-tendency terms with communication |
---|
| 506 | sat = tsc(1) |
---|
| 507 | sbt = tsc(2) |
---|
| 508 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 509 | |
---|
| 510 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 511 | ! |
---|
| 512 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 513 | !-- switched on. Thus: |
---|
| 514 | sat = 1.0 |
---|
| 515 | sbt = 1.0 |
---|
| 516 | ENDIF |
---|
| 517 | tend = 0.0 |
---|
| 518 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 519 | ELSE |
---|
| 520 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 521 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 522 | tend = 0.0 |
---|
| 523 | CALL advec_s_ups( sa, 'sa' ) |
---|
| 524 | ENDIF |
---|
| 525 | ENDIF |
---|
| 526 | ENDIF |
---|
| 527 | |
---|
| 528 | ! |
---|
| 529 | !-- sa terms with no communication |
---|
| 530 | DO i = nxl, nxr |
---|
| 531 | DO j = nys, nyn |
---|
| 532 | ! |
---|
| 533 | !-- Tendency-terms |
---|
| 534 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 535 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
[129] | 536 | wall_salinityflux, tend ) |
---|
[95] | 537 | ELSE |
---|
| 538 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 539 | tend(:,j,i) = 0.0 |
---|
| 540 | CALL advec_s_pw( i, j, sa ) |
---|
| 541 | ELSE |
---|
| 542 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 543 | tend(:,j,i) = 0.0 |
---|
| 544 | CALL advec_s_up( i, j, sa ) |
---|
| 545 | ENDIF |
---|
| 546 | ENDIF |
---|
| 547 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
[129] | 548 | wall_salinityflux, tend ) |
---|
[95] | 549 | ENDIF |
---|
| 550 | |
---|
| 551 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 552 | |
---|
| 553 | ! |
---|
| 554 | !-- Prognostic equation for salinity |
---|
| 555 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 556 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
| 557 | dt_3d * ( & |
---|
| 558 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 559 | ) - & |
---|
| 560 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 561 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 562 | ENDDO |
---|
| 563 | |
---|
| 564 | ! |
---|
| 565 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 566 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 567 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 568 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 569 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 570 | ENDDO |
---|
| 571 | ELSEIF ( intermediate_timestep_count < & |
---|
| 572 | intermediate_timestep_count_max ) THEN |
---|
| 573 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 574 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 575 | 5.3125 * tsa_m(k,j,i) |
---|
| 576 | ENDDO |
---|
| 577 | ENDIF |
---|
| 578 | ENDIF |
---|
| 579 | |
---|
[96] | 580 | ! |
---|
| 581 | !-- Calculate density by the equation of state for seawater |
---|
| 582 | CALL eqn_state_seawater( i, j ) |
---|
| 583 | |
---|
[95] | 584 | ENDDO |
---|
| 585 | ENDDO |
---|
| 586 | |
---|
| 587 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 588 | |
---|
| 589 | ENDIF |
---|
| 590 | |
---|
| 591 | ! |
---|
[1] | 592 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 593 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 594 | |
---|
| 595 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 596 | |
---|
| 597 | ! |
---|
| 598 | !-- Scalar/q-tendency terms with communication |
---|
[70] | 599 | sat = tsc(1) |
---|
| 600 | sbt = tsc(2) |
---|
[1] | 601 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 602 | |
---|
| 603 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 604 | ! |
---|
[70] | 605 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 606 | !-- switched on. Thus: |
---|
| 607 | sat = 1.0 |
---|
| 608 | sbt = 1.0 |
---|
| 609 | ENDIF |
---|
[1] | 610 | tend = 0.0 |
---|
| 611 | CALL advec_s_bc( q, 'q' ) |
---|
| 612 | ELSE |
---|
| 613 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 614 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 615 | tend = 0.0 |
---|
| 616 | CALL advec_s_ups( q, 'q' ) |
---|
| 617 | ENDIF |
---|
| 618 | ENDIF |
---|
| 619 | ENDIF |
---|
| 620 | |
---|
| 621 | ! |
---|
| 622 | !-- Scalar/q-tendency terms with no communication |
---|
| 623 | DO i = nxl, nxr |
---|
| 624 | DO j = nys, nyn |
---|
| 625 | ! |
---|
| 626 | !-- Tendency-terms |
---|
| 627 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 628 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 629 | wall_qflux, tend ) |
---|
[1] | 630 | ELSE |
---|
| 631 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 632 | tend(:,j,i) = 0.0 |
---|
| 633 | CALL advec_s_pw( i, j, q ) |
---|
| 634 | ELSE |
---|
| 635 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 636 | tend(:,j,i) = 0.0 |
---|
| 637 | CALL advec_s_up( i, j, q ) |
---|
| 638 | ENDIF |
---|
| 639 | ENDIF |
---|
| 640 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 641 | THEN |
---|
| 642 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
[129] | 643 | qswst_m, wall_qflux, tend ) |
---|
[19] | 644 | ELSE |
---|
| 645 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
[129] | 646 | wall_qflux, tend ) |
---|
[1] | 647 | ENDIF |
---|
| 648 | ENDIF |
---|
| 649 | |
---|
| 650 | ! |
---|
| 651 | !-- If required compute decrease of total water content due to |
---|
| 652 | !-- precipitation |
---|
| 653 | IF ( precipitation ) THEN |
---|
| 654 | CALL calc_precipitation( i, j ) |
---|
| 655 | ENDIF |
---|
[153] | 656 | |
---|
| 657 | ! |
---|
| 658 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 659 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
| 660 | |
---|
[1] | 661 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 662 | |
---|
| 663 | ! |
---|
| 664 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 665 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 666 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 667 | dt_3d * ( & |
---|
| 668 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 669 | ) - & |
---|
| 670 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 671 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 672 | ENDDO |
---|
| 673 | |
---|
| 674 | ! |
---|
| 675 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 676 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 677 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 678 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 679 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 680 | ENDDO |
---|
| 681 | ELSEIF ( intermediate_timestep_count < & |
---|
| 682 | intermediate_timestep_count_max ) THEN |
---|
[19] | 683 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 684 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 685 | ENDDO |
---|
| 686 | ENDIF |
---|
| 687 | ENDIF |
---|
| 688 | |
---|
| 689 | ENDDO |
---|
| 690 | ENDDO |
---|
| 691 | |
---|
| 692 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 693 | |
---|
| 694 | ENDIF |
---|
| 695 | |
---|
| 696 | ! |
---|
| 697 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 698 | !-- energy (TKE) |
---|
| 699 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 700 | |
---|
| 701 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 702 | |
---|
| 703 | ! |
---|
| 704 | !-- TKE-tendency terms with communication |
---|
| 705 | CALL production_e_init |
---|
[70] | 706 | |
---|
| 707 | sat = tsc(1) |
---|
| 708 | sbt = tsc(2) |
---|
[1] | 709 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 710 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 711 | |
---|
| 712 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 713 | ! |
---|
[70] | 714 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 715 | !-- switched on. Thus: |
---|
| 716 | sat = 1.0 |
---|
| 717 | sbt = 1.0 |
---|
| 718 | ENDIF |
---|
[1] | 719 | tend = 0.0 |
---|
| 720 | CALL advec_s_bc( e, 'e' ) |
---|
| 721 | ELSE |
---|
| 722 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 723 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 724 | tend = 0.0 |
---|
| 725 | CALL advec_s_ups( e, 'e' ) |
---|
| 726 | ENDIF |
---|
| 727 | ENDIF |
---|
| 728 | ENDIF |
---|
| 729 | ENDIF |
---|
| 730 | |
---|
| 731 | ! |
---|
| 732 | !-- TKE-tendency terms with no communication |
---|
| 733 | DO i = nxl, nxr |
---|
| 734 | DO j = nys, nyn |
---|
| 735 | ! |
---|
| 736 | !-- Tendency-terms |
---|
| 737 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
| 738 | .NOT. use_upstream_for_tke ) THEN |
---|
[75] | 739 | IF ( .NOT. humidity ) THEN |
---|
[97] | 740 | IF ( ocean ) THEN |
---|
[388] | 741 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 742 | l_grid, prho, prho_reference, rif, & |
---|
| 743 | tend, zu, zw ) |
---|
[97] | 744 | ELSE |
---|
[388] | 745 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 746 | l_grid, pt, pt_reference, rif, tend, & |
---|
[97] | 747 | zu, zw ) |
---|
| 748 | ENDIF |
---|
[1] | 749 | ELSE |
---|
[97] | 750 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 751 | l_grid, vpt, pt_reference, rif, tend, zu, & |
---|
| 752 | zw ) |
---|
[1] | 753 | ENDIF |
---|
| 754 | ELSE |
---|
| 755 | IF ( use_upstream_for_tke ) THEN |
---|
| 756 | tend(:,j,i) = 0.0 |
---|
| 757 | CALL advec_s_up( i, j, e ) |
---|
| 758 | ELSE |
---|
| 759 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 760 | THEN |
---|
| 761 | tend(:,j,i) = 0.0 |
---|
| 762 | CALL advec_s_pw( i, j, e ) |
---|
| 763 | ELSE |
---|
| 764 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 765 | tend(:,j,i) = 0.0 |
---|
| 766 | CALL advec_s_up( i, j, e ) |
---|
| 767 | ENDIF |
---|
| 768 | ENDIF |
---|
| 769 | ENDIF |
---|
| 770 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 771 | THEN |
---|
[75] | 772 | IF ( .NOT. humidity ) THEN |
---|
[1] | 773 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
[97] | 774 | km_m, l_grid, pt_m, pt_reference, & |
---|
| 775 | rif_m, tend, zu, zw ) |
---|
[1] | 776 | ELSE |
---|
| 777 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
[97] | 778 | km_m, l_grid, vpt_m, pt_reference, & |
---|
| 779 | rif_m, tend, zu, zw ) |
---|
[1] | 780 | ENDIF |
---|
| 781 | ELSE |
---|
[75] | 782 | IF ( .NOT. humidity ) THEN |
---|
[97] | 783 | IF ( ocean ) THEN |
---|
| 784 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
[388] | 785 | km, l_grid, prho, prho_reference, & |
---|
[97] | 786 | rif, tend, zu, zw ) |
---|
| 787 | ELSE |
---|
| 788 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 789 | km, l_grid, pt, pt_reference, rif, & |
---|
| 790 | tend, zu, zw ) |
---|
| 791 | ENDIF |
---|
[1] | 792 | ELSE |
---|
| 793 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
[97] | 794 | l_grid, vpt, pt_reference, rif, tend, & |
---|
| 795 | zu, zw ) |
---|
[1] | 796 | ENDIF |
---|
| 797 | ENDIF |
---|
| 798 | ENDIF |
---|
| 799 | CALL production_e( i, j ) |
---|
[138] | 800 | |
---|
| 801 | ! |
---|
| 802 | !-- Additional sink term for flows through plant canopies |
---|
[153] | 803 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
[138] | 804 | |
---|
[1] | 805 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 806 | |
---|
| 807 | ! |
---|
| 808 | !-- Prognostic equation for TKE. |
---|
| 809 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 810 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 811 | !-- value is reduced by 90%. |
---|
[19] | 812 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 813 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 814 | dt_3d * ( & |
---|
| 815 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 816 | ) |
---|
| 817 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 818 | ENDDO |
---|
| 819 | |
---|
| 820 | ! |
---|
| 821 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 822 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 823 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 824 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 825 | te_m(k,j,i) = tend(k,j,i) |
---|
| 826 | ENDDO |
---|
| 827 | ELSEIF ( intermediate_timestep_count < & |
---|
| 828 | intermediate_timestep_count_max ) THEN |
---|
[19] | 829 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 830 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 831 | ENDDO |
---|
| 832 | ENDIF |
---|
| 833 | ENDIF |
---|
| 834 | |
---|
| 835 | ENDDO |
---|
| 836 | ENDDO |
---|
| 837 | |
---|
| 838 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 839 | |
---|
| 840 | ENDIF |
---|
| 841 | |
---|
| 842 | |
---|
[63] | 843 | END SUBROUTINE prognostic_equations_noopt |
---|
[1] | 844 | |
---|
| 845 | |
---|
[63] | 846 | SUBROUTINE prognostic_equations_cache |
---|
[1] | 847 | |
---|
| 848 | !------------------------------------------------------------------------------! |
---|
| 849 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 850 | ! be called for the standard Piascek-Williams advection scheme. |
---|
| 851 | ! |
---|
[95] | 852 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 853 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 854 | ! these loops. |
---|
[1] | 855 | ! |
---|
| 856 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 857 | !------------------------------------------------------------------------------! |
---|
| 858 | |
---|
| 859 | IMPLICIT NONE |
---|
| 860 | |
---|
| 861 | CHARACTER (LEN=9) :: time_to_string |
---|
| 862 | INTEGER :: i, j, k |
---|
| 863 | |
---|
| 864 | |
---|
| 865 | ! |
---|
| 866 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 867 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 868 | |
---|
| 869 | |
---|
| 870 | ! |
---|
| 871 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 872 | !-- global communication |
---|
[96] | 873 | CALL calc_mean_profile( pt, 4 ) |
---|
| 874 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 875 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 876 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
| 877 | |
---|
| 878 | |
---|
| 879 | ! |
---|
| 880 | !-- Loop over all prognostic equations |
---|
| 881 | !$OMP PARALLEL private (i,j,k) |
---|
| 882 | !$OMP DO |
---|
[75] | 883 | DO i = nxl, nxr |
---|
| 884 | DO j = nys, nyn |
---|
[1] | 885 | ! |
---|
| 886 | !-- Tendency terms for u-velocity component |
---|
[106] | 887 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
[1] | 888 | |
---|
| 889 | tend(:,j,i) = 0.0 |
---|
| 890 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 891 | CALL advec_u_pw( i, j ) |
---|
| 892 | ELSE |
---|
| 893 | CALL advec_u_up( i, j ) |
---|
| 894 | ENDIF |
---|
| 895 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 896 | THEN |
---|
| 897 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
[102] | 898 | u_m, usws_m, uswst_m, v_m, w_m ) |
---|
[1] | 899 | ELSE |
---|
| 900 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
[102] | 901 | usws, uswst, v, w ) |
---|
[1] | 902 | ENDIF |
---|
| 903 | CALL coriolis( i, j, 1 ) |
---|
[97] | 904 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, & |
---|
| 905 | 4 ) |
---|
[138] | 906 | |
---|
| 907 | ! |
---|
| 908 | !-- Drag by plant canopy |
---|
| 909 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 910 | |
---|
[240] | 911 | ! |
---|
| 912 | !-- External pressure gradient |
---|
| 913 | IF ( dp_external ) THEN |
---|
| 914 | DO k = dp_level_ind_b+1, nzt |
---|
| 915 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 916 | ENDDO |
---|
| 917 | ENDIF |
---|
| 918 | |
---|
[1] | 919 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 920 | |
---|
| 921 | ! |
---|
| 922 | !-- Prognostic equation for u-velocity component |
---|
| 923 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 924 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 925 | dt_3d * ( & |
---|
| 926 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 927 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 928 | ) - & |
---|
| 929 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 930 | ENDDO |
---|
| 931 | |
---|
| 932 | ! |
---|
| 933 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 934 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 935 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 936 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 937 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 938 | ENDDO |
---|
| 939 | ELSEIF ( intermediate_timestep_count < & |
---|
| 940 | intermediate_timestep_count_max ) THEN |
---|
| 941 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 942 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 943 | ENDDO |
---|
| 944 | ENDIF |
---|
| 945 | ENDIF |
---|
| 946 | |
---|
| 947 | ENDIF |
---|
| 948 | |
---|
| 949 | ! |
---|
| 950 | !-- Tendency terms for v-velocity component |
---|
[106] | 951 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
[1] | 952 | |
---|
| 953 | tend(:,j,i) = 0.0 |
---|
| 954 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 955 | CALL advec_v_pw( i, j ) |
---|
| 956 | ELSE |
---|
| 957 | CALL advec_v_up( i, j ) |
---|
| 958 | ENDIF |
---|
| 959 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 960 | THEN |
---|
| 961 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
[102] | 962 | u_m, v_m, vsws_m, vswst_m, w_m ) |
---|
[1] | 963 | ELSE |
---|
| 964 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[102] | 965 | vsws, vswst, w ) |
---|
[1] | 966 | ENDIF |
---|
| 967 | CALL coriolis( i, j, 2 ) |
---|
[138] | 968 | |
---|
| 969 | ! |
---|
| 970 | !-- Drag by plant canopy |
---|
| 971 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 972 | |
---|
[240] | 973 | ! |
---|
| 974 | !-- External pressure gradient |
---|
| 975 | IF ( dp_external ) THEN |
---|
| 976 | DO k = dp_level_ind_b+1, nzt |
---|
| 977 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 978 | ENDDO |
---|
| 979 | ENDIF |
---|
| 980 | |
---|
[1] | 981 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 982 | |
---|
| 983 | ! |
---|
| 984 | !-- Prognostic equation for v-velocity component |
---|
| 985 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 986 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 987 | dt_3d * ( & |
---|
| 988 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 989 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 990 | ) - & |
---|
| 991 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 992 | ENDDO |
---|
| 993 | |
---|
| 994 | ! |
---|
| 995 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 996 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 997 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 998 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 999 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1000 | ENDDO |
---|
| 1001 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1002 | intermediate_timestep_count_max ) THEN |
---|
| 1003 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1004 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1005 | ENDDO |
---|
| 1006 | ENDIF |
---|
| 1007 | ENDIF |
---|
| 1008 | |
---|
| 1009 | ENDIF |
---|
| 1010 | |
---|
| 1011 | ! |
---|
| 1012 | !-- Tendency terms for w-velocity component |
---|
[106] | 1013 | tend(:,j,i) = 0.0 |
---|
| 1014 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1015 | CALL advec_w_pw( i, j ) |
---|
| 1016 | ELSE |
---|
| 1017 | CALL advec_w_up( i, j ) |
---|
| 1018 | ENDIF |
---|
| 1019 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 1020 | THEN |
---|
| 1021 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
| 1022 | km_damp_y, tend, u_m, v_m, w_m ) |
---|
| 1023 | ELSE |
---|
| 1024 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
| 1025 | tend, u, v, w ) |
---|
| 1026 | ENDIF |
---|
| 1027 | CALL coriolis( i, j, 3 ) |
---|
| 1028 | IF ( ocean ) THEN |
---|
[388] | 1029 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
[106] | 1030 | ELSE |
---|
| 1031 | IF ( .NOT. humidity ) THEN |
---|
| 1032 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
| 1033 | ELSE |
---|
| 1034 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
| 1035 | ENDIF |
---|
| 1036 | ENDIF |
---|
[138] | 1037 | |
---|
| 1038 | ! |
---|
| 1039 | !-- Drag by plant canopy |
---|
| 1040 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 1041 | |
---|
[106] | 1042 | CALL user_actions( i, j, 'w-tendency' ) |
---|
[1] | 1043 | |
---|
[106] | 1044 | ! |
---|
| 1045 | !-- Prognostic equation for w-velocity component |
---|
| 1046 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1047 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 1048 | dt_3d * ( & |
---|
| 1049 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 1050 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 1051 | ) - & |
---|
| 1052 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1053 | ENDDO |
---|
| 1054 | |
---|
| 1055 | ! |
---|
| 1056 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1057 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1058 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1059 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1060 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1061 | ENDDO |
---|
| 1062 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1063 | intermediate_timestep_count_max ) THEN |
---|
| 1064 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1065 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1066 | ENDDO |
---|
| 1067 | ENDIF |
---|
| 1068 | ENDIF |
---|
| 1069 | |
---|
| 1070 | ! |
---|
| 1071 | !-- Tendency terms for potential temperature |
---|
| 1072 | tend(:,j,i) = 0.0 |
---|
| 1073 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1074 | CALL advec_s_pw( i, j, pt ) |
---|
| 1075 | ELSE |
---|
| 1076 | CALL advec_s_up( i, j, pt ) |
---|
| 1077 | ENDIF |
---|
| 1078 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 1079 | THEN |
---|
| 1080 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
[129] | 1081 | tswst_m, wall_heatflux, tend ) |
---|
[106] | 1082 | ELSE |
---|
[129] | 1083 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 1084 | wall_heatflux, tend ) |
---|
[106] | 1085 | ENDIF |
---|
| 1086 | |
---|
| 1087 | ! |
---|
| 1088 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 1089 | !-- processes |
---|
| 1090 | IF ( radiation ) THEN |
---|
| 1091 | CALL calc_radiation( i, j ) |
---|
| 1092 | ENDIF |
---|
| 1093 | |
---|
| 1094 | ! |
---|
| 1095 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1096 | IF ( precipitation ) THEN |
---|
| 1097 | CALL impact_of_latent_heat( i, j ) |
---|
| 1098 | ENDIF |
---|
[153] | 1099 | |
---|
| 1100 | ! |
---|
| 1101 | !-- Consideration of heat sources within the plant canopy |
---|
| 1102 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1103 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 1104 | ENDIF |
---|
| 1105 | |
---|
[411] | 1106 | |
---|
| 1107 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1108 | IF ( large_scale_subsidence ) THEN |
---|
| 1109 | CALL subsidence ( i, j, tend, pt, pt_init ) |
---|
| 1110 | ENDIF |
---|
| 1111 | |
---|
| 1112 | |
---|
[106] | 1113 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 1114 | |
---|
| 1115 | ! |
---|
| 1116 | !-- Prognostic equation for potential temperature |
---|
| 1117 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1118 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
| 1119 | dt_3d * ( & |
---|
| 1120 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1121 | ) - & |
---|
| 1122 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1123 | ENDDO |
---|
| 1124 | |
---|
| 1125 | ! |
---|
| 1126 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1127 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1128 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1129 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1130 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1131 | ENDDO |
---|
| 1132 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1133 | intermediate_timestep_count_max ) THEN |
---|
| 1134 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1135 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1136 | 5.3125 * tpt_m(k,j,i) |
---|
| 1137 | ENDDO |
---|
| 1138 | ENDIF |
---|
| 1139 | ENDIF |
---|
| 1140 | |
---|
| 1141 | ! |
---|
| 1142 | !-- If required, compute prognostic equation for salinity |
---|
| 1143 | IF ( ocean ) THEN |
---|
| 1144 | |
---|
| 1145 | ! |
---|
| 1146 | !-- Tendency-terms for salinity |
---|
[1] | 1147 | tend(:,j,i) = 0.0 |
---|
[106] | 1148 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
[1] | 1149 | THEN |
---|
[106] | 1150 | CALL advec_s_pw( i, j, sa ) |
---|
[1] | 1151 | ELSE |
---|
[106] | 1152 | CALL advec_s_up( i, j, sa ) |
---|
[1] | 1153 | ENDIF |
---|
[106] | 1154 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
[129] | 1155 | wall_salinityflux, tend ) |
---|
[1] | 1156 | |
---|
[106] | 1157 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 1158 | |
---|
[1] | 1159 | ! |
---|
[106] | 1160 | !-- Prognostic equation for salinity |
---|
| 1161 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1162 | sa_p(k,j,i) = tsc(1) * sa(k,j,i) + & |
---|
| 1163 | dt_3d * ( & |
---|
| 1164 | tsc(2) * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 1165 | ) - & |
---|
| 1166 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 1167 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
[1] | 1168 | ENDDO |
---|
| 1169 | |
---|
| 1170 | ! |
---|
| 1171 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1172 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1173 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[106] | 1174 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1175 | tsa_m(k,j,i) = tend(k,j,i) |
---|
[1] | 1176 | ENDDO |
---|
| 1177 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1178 | intermediate_timestep_count_max ) THEN |
---|
[106] | 1179 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1180 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1181 | 5.3125 * tsa_m(k,j,i) |
---|
[1] | 1182 | ENDDO |
---|
| 1183 | ENDIF |
---|
| 1184 | ENDIF |
---|
| 1185 | |
---|
| 1186 | ! |
---|
[106] | 1187 | !-- Calculate density by the equation of state for seawater |
---|
| 1188 | CALL eqn_state_seawater( i, j ) |
---|
| 1189 | |
---|
| 1190 | ENDIF |
---|
| 1191 | |
---|
| 1192 | ! |
---|
| 1193 | !-- If required, compute prognostic equation for total water content / |
---|
| 1194 | !-- scalar |
---|
| 1195 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1196 | |
---|
| 1197 | ! |
---|
| 1198 | !-- Tendency-terms for total water content / scalar |
---|
[1] | 1199 | tend(:,j,i) = 0.0 |
---|
[106] | 1200 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 1201 | THEN |
---|
| 1202 | CALL advec_s_pw( i, j, q ) |
---|
[1] | 1203 | ELSE |
---|
[106] | 1204 | CALL advec_s_up( i, j, q ) |
---|
[1] | 1205 | ENDIF |
---|
[106] | 1206 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
[1] | 1207 | THEN |
---|
[106] | 1208 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
[129] | 1209 | qswst_m, wall_qflux, tend ) |
---|
[1] | 1210 | ELSE |
---|
[106] | 1211 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
[129] | 1212 | wall_qflux, tend ) |
---|
[1] | 1213 | ENDIF |
---|
[106] | 1214 | |
---|
[1] | 1215 | ! |
---|
[106] | 1216 | !-- If required compute decrease of total water content due to |
---|
| 1217 | !-- precipitation |
---|
[1] | 1218 | IF ( precipitation ) THEN |
---|
[106] | 1219 | CALL calc_precipitation( i, j ) |
---|
[1] | 1220 | ENDIF |
---|
[153] | 1221 | |
---|
| 1222 | ! |
---|
| 1223 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1224 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
| 1225 | |
---|
| 1226 | |
---|
[106] | 1227 | CALL user_actions( i, j, 'q-tendency' ) |
---|
[1] | 1228 | |
---|
| 1229 | ! |
---|
[106] | 1230 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 1231 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1232 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
| 1233 | dt_3d * ( & |
---|
| 1234 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1235 | ) - & |
---|
| 1236 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
| 1237 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 1238 | ENDDO |
---|
| 1239 | |
---|
| 1240 | ! |
---|
| 1241 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1242 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1243 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 1244 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1245 | tq_m(k,j,i) = tend(k,j,i) |
---|
[1] | 1246 | ENDDO |
---|
| 1247 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1248 | intermediate_timestep_count_max ) THEN |
---|
[19] | 1249 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1250 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1251 | 5.3125 * tq_m(k,j,i) |
---|
[1] | 1252 | ENDDO |
---|
| 1253 | ENDIF |
---|
| 1254 | ENDIF |
---|
| 1255 | |
---|
[106] | 1256 | ENDIF |
---|
[95] | 1257 | |
---|
| 1258 | ! |
---|
[106] | 1259 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1260 | !-- energy (TKE) |
---|
| 1261 | IF ( .NOT. constant_diffusion ) THEN |
---|
[95] | 1262 | |
---|
| 1263 | ! |
---|
[106] | 1264 | !-- Tendency-terms for TKE |
---|
| 1265 | tend(:,j,i) = 0.0 |
---|
| 1266 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 1267 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
| 1268 | CALL advec_s_pw( i, j, e ) |
---|
| 1269 | ELSE |
---|
| 1270 | CALL advec_s_up( i, j, e ) |
---|
[95] | 1271 | ENDIF |
---|
[106] | 1272 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 1273 | THEN |
---|
| 1274 | IF ( .NOT. humidity ) THEN |
---|
| 1275 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 1276 | km_m, l_grid, pt_m, pt_reference, & |
---|
| 1277 | rif_m, tend, zu, zw ) |
---|
[1] | 1278 | ELSE |
---|
[106] | 1279 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 1280 | km_m, l_grid, vpt_m, pt_reference, & |
---|
| 1281 | rif_m, tend, zu, zw ) |
---|
[1] | 1282 | ENDIF |
---|
[106] | 1283 | ELSE |
---|
| 1284 | IF ( .NOT. humidity ) THEN |
---|
| 1285 | IF ( ocean ) THEN |
---|
[388] | 1286 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 1287 | km, l_grid, prho, prho_reference, & |
---|
[106] | 1288 | rif, tend, zu, zw ) |
---|
[1] | 1289 | ELSE |
---|
[106] | 1290 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 1291 | km, l_grid, pt, pt_reference, rif, & |
---|
| 1292 | tend, zu, zw ) |
---|
[1] | 1293 | ENDIF |
---|
| 1294 | ELSE |
---|
[106] | 1295 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 1296 | l_grid, vpt, pt_reference, rif, tend, & |
---|
| 1297 | zu, zw ) |
---|
[1] | 1298 | ENDIF |
---|
[106] | 1299 | ENDIF |
---|
| 1300 | CALL production_e( i, j ) |
---|
[138] | 1301 | |
---|
| 1302 | ! |
---|
| 1303 | !-- Additional sink term for flows through plant canopies |
---|
[153] | 1304 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
[138] | 1305 | |
---|
[106] | 1306 | CALL user_actions( i, j, 'e-tendency' ) |
---|
[1] | 1307 | |
---|
| 1308 | ! |
---|
[106] | 1309 | !-- Prognostic equation for TKE. |
---|
| 1310 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1311 | !-- reasons in the course of the integration. In such cases the old |
---|
| 1312 | !-- TKE value is reduced by 90%. |
---|
| 1313 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1314 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
| 1315 | dt_3d * ( & |
---|
| 1316 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 1317 | ) |
---|
| 1318 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1319 | ENDDO |
---|
[1] | 1320 | |
---|
| 1321 | ! |
---|
[106] | 1322 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1323 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1324 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1325 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1326 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1327 | ENDDO |
---|
| 1328 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1329 | intermediate_timestep_count_max ) THEN |
---|
| 1330 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1331 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1332 | 5.3125 * te_m(k,j,i) |
---|
| 1333 | ENDDO |
---|
[1] | 1334 | ENDIF |
---|
[106] | 1335 | ENDIF |
---|
[1] | 1336 | |
---|
[106] | 1337 | ENDIF ! TKE equation |
---|
[1] | 1338 | |
---|
| 1339 | ENDDO |
---|
| 1340 | ENDDO |
---|
| 1341 | !$OMP END PARALLEL |
---|
| 1342 | |
---|
| 1343 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 1344 | |
---|
| 1345 | |
---|
[63] | 1346 | END SUBROUTINE prognostic_equations_cache |
---|
[1] | 1347 | |
---|
| 1348 | |
---|
[63] | 1349 | SUBROUTINE prognostic_equations_vector |
---|
[1] | 1350 | |
---|
| 1351 | !------------------------------------------------------------------------------! |
---|
| 1352 | ! Version for vector machines |
---|
| 1353 | !------------------------------------------------------------------------------! |
---|
| 1354 | |
---|
| 1355 | IMPLICIT NONE |
---|
| 1356 | |
---|
| 1357 | CHARACTER (LEN=9) :: time_to_string |
---|
| 1358 | INTEGER :: i, j, k |
---|
| 1359 | REAL :: sat, sbt |
---|
| 1360 | |
---|
| 1361 | ! |
---|
| 1362 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 1363 | !-- global communication |
---|
[96] | 1364 | CALL calc_mean_profile( pt, 4 ) |
---|
| 1365 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 1366 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 1367 | |
---|
| 1368 | ! |
---|
| 1369 | !-- u-velocity component |
---|
| 1370 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1371 | |
---|
| 1372 | ! |
---|
| 1373 | !-- u-tendency terms with communication |
---|
| 1374 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1375 | tend = 0.0 |
---|
| 1376 | CALL advec_u_ups |
---|
| 1377 | ENDIF |
---|
| 1378 | |
---|
| 1379 | ! |
---|
| 1380 | !-- u-tendency terms with no communication |
---|
| 1381 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1382 | tend = 0.0 |
---|
| 1383 | CALL advec_u_pw |
---|
| 1384 | ELSE |
---|
| 1385 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1386 | tend = 0.0 |
---|
| 1387 | CALL advec_u_up |
---|
| 1388 | ENDIF |
---|
| 1389 | ENDIF |
---|
| 1390 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[102] | 1391 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, & |
---|
| 1392 | uswst_m, v_m, w_m ) |
---|
[1] | 1393 | ELSE |
---|
[102] | 1394 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, uswst, v, w ) |
---|
[1] | 1395 | ENDIF |
---|
| 1396 | CALL coriolis( 1 ) |
---|
[97] | 1397 | IF ( sloping_surface ) CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
[138] | 1398 | |
---|
| 1399 | ! |
---|
| 1400 | !-- Drag by plant canopy |
---|
| 1401 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1402 | |
---|
[240] | 1403 | ! |
---|
| 1404 | !-- External pressure gradient |
---|
| 1405 | IF ( dp_external ) THEN |
---|
| 1406 | DO i = nxlu, nxr |
---|
| 1407 | DO j = nys, nyn |
---|
| 1408 | DO k = dp_level_ind_b+1, nzt |
---|
| 1409 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1410 | ENDDO |
---|
| 1411 | ENDDO |
---|
| 1412 | ENDDO |
---|
| 1413 | ENDIF |
---|
| 1414 | |
---|
[1] | 1415 | CALL user_actions( 'u-tendency' ) |
---|
| 1416 | |
---|
| 1417 | ! |
---|
| 1418 | !-- Prognostic equation for u-velocity component |
---|
[106] | 1419 | DO i = nxlu, nxr |
---|
[1] | 1420 | DO j = nys, nyn |
---|
| 1421 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1422 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 1423 | dt_3d * ( & |
---|
| 1424 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 1425 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 1426 | ) - & |
---|
| 1427 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1428 | ENDDO |
---|
| 1429 | ENDDO |
---|
| 1430 | ENDDO |
---|
| 1431 | |
---|
| 1432 | ! |
---|
| 1433 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1434 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1435 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[106] | 1436 | DO i = nxlu, nxr |
---|
[1] | 1437 | DO j = nys, nyn |
---|
| 1438 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1439 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1440 | ENDDO |
---|
| 1441 | ENDDO |
---|
| 1442 | ENDDO |
---|
| 1443 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1444 | intermediate_timestep_count_max ) THEN |
---|
[106] | 1445 | DO i = nxlu, nxr |
---|
[1] | 1446 | DO j = nys, nyn |
---|
| 1447 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1448 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 1449 | ENDDO |
---|
| 1450 | ENDDO |
---|
| 1451 | ENDDO |
---|
| 1452 | ENDIF |
---|
| 1453 | ENDIF |
---|
| 1454 | |
---|
| 1455 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1456 | |
---|
| 1457 | ! |
---|
| 1458 | !-- v-velocity component |
---|
| 1459 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1460 | |
---|
| 1461 | ! |
---|
| 1462 | !-- v-tendency terms with communication |
---|
| 1463 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1464 | tend = 0.0 |
---|
| 1465 | CALL advec_v_ups |
---|
| 1466 | ENDIF |
---|
| 1467 | |
---|
| 1468 | ! |
---|
| 1469 | !-- v-tendency terms with no communication |
---|
| 1470 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1471 | tend = 0.0 |
---|
| 1472 | CALL advec_v_pw |
---|
| 1473 | ELSE |
---|
| 1474 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1475 | tend = 0.0 |
---|
| 1476 | CALL advec_v_up |
---|
| 1477 | ENDIF |
---|
| 1478 | ENDIF |
---|
| 1479 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1480 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
[102] | 1481 | vswst_m, w_m ) |
---|
[1] | 1482 | ELSE |
---|
[102] | 1483 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, vswst, w ) |
---|
[1] | 1484 | ENDIF |
---|
| 1485 | CALL coriolis( 2 ) |
---|
[138] | 1486 | |
---|
| 1487 | ! |
---|
| 1488 | !-- Drag by plant canopy |
---|
| 1489 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
[240] | 1490 | |
---|
| 1491 | ! |
---|
| 1492 | !-- External pressure gradient |
---|
| 1493 | IF ( dp_external ) THEN |
---|
| 1494 | DO i = nxl, nxr |
---|
| 1495 | DO j = nysv, nyn |
---|
| 1496 | DO k = dp_level_ind_b+1, nzt |
---|
| 1497 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1498 | ENDDO |
---|
| 1499 | ENDDO |
---|
| 1500 | ENDDO |
---|
| 1501 | ENDIF |
---|
| 1502 | |
---|
[1] | 1503 | CALL user_actions( 'v-tendency' ) |
---|
| 1504 | |
---|
| 1505 | ! |
---|
| 1506 | !-- Prognostic equation for v-velocity component |
---|
| 1507 | DO i = nxl, nxr |
---|
[106] | 1508 | DO j = nysv, nyn |
---|
[1] | 1509 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1510 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 1511 | dt_3d * ( & |
---|
| 1512 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 1513 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 1514 | ) - & |
---|
| 1515 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1516 | ENDDO |
---|
| 1517 | ENDDO |
---|
| 1518 | ENDDO |
---|
| 1519 | |
---|
| 1520 | ! |
---|
| 1521 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1522 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1523 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1524 | DO i = nxl, nxr |
---|
[106] | 1525 | DO j = nysv, nyn |
---|
[1] | 1526 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1527 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1528 | ENDDO |
---|
| 1529 | ENDDO |
---|
| 1530 | ENDDO |
---|
| 1531 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1532 | intermediate_timestep_count_max ) THEN |
---|
| 1533 | DO i = nxl, nxr |
---|
[106] | 1534 | DO j = nysv, nyn |
---|
[1] | 1535 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1536 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1537 | ENDDO |
---|
| 1538 | ENDDO |
---|
| 1539 | ENDDO |
---|
| 1540 | ENDIF |
---|
| 1541 | ENDIF |
---|
| 1542 | |
---|
| 1543 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1544 | |
---|
| 1545 | ! |
---|
| 1546 | !-- w-velocity component |
---|
| 1547 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1548 | |
---|
| 1549 | ! |
---|
| 1550 | !-- w-tendency terms with communication |
---|
| 1551 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1552 | tend = 0.0 |
---|
| 1553 | CALL advec_w_ups |
---|
| 1554 | ENDIF |
---|
| 1555 | |
---|
| 1556 | ! |
---|
| 1557 | !-- w-tendency terms with no communication |
---|
| 1558 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1559 | tend = 0.0 |
---|
| 1560 | CALL advec_w_pw |
---|
| 1561 | ELSE |
---|
| 1562 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1563 | tend = 0.0 |
---|
| 1564 | CALL advec_w_up |
---|
| 1565 | ENDIF |
---|
| 1566 | ENDIF |
---|
| 1567 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1568 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
[57] | 1569 | v_m, w_m ) |
---|
[1] | 1570 | ELSE |
---|
[57] | 1571 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w ) |
---|
[1] | 1572 | ENDIF |
---|
| 1573 | CALL coriolis( 3 ) |
---|
[97] | 1574 | IF ( ocean ) THEN |
---|
[388] | 1575 | CALL buoyancy( rho, rho_reference, 3, 64 ) |
---|
[1] | 1576 | ELSE |
---|
[97] | 1577 | IF ( .NOT. humidity ) THEN |
---|
| 1578 | CALL buoyancy( pt, pt_reference, 3, 4 ) |
---|
| 1579 | ELSE |
---|
| 1580 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
| 1581 | ENDIF |
---|
[1] | 1582 | ENDIF |
---|
[138] | 1583 | |
---|
| 1584 | ! |
---|
| 1585 | !-- Drag by plant canopy |
---|
| 1586 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1587 | |
---|
[1] | 1588 | CALL user_actions( 'w-tendency' ) |
---|
| 1589 | |
---|
| 1590 | ! |
---|
| 1591 | !-- Prognostic equation for w-velocity component |
---|
| 1592 | DO i = nxl, nxr |
---|
| 1593 | DO j = nys, nyn |
---|
| 1594 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1595 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 1596 | dt_3d * ( & |
---|
| 1597 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 1598 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 1599 | ) - & |
---|
| 1600 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1601 | ENDDO |
---|
| 1602 | ENDDO |
---|
| 1603 | ENDDO |
---|
| 1604 | |
---|
| 1605 | ! |
---|
| 1606 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1607 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1608 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1609 | DO i = nxl, nxr |
---|
| 1610 | DO j = nys, nyn |
---|
| 1611 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1612 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1613 | ENDDO |
---|
| 1614 | ENDDO |
---|
| 1615 | ENDDO |
---|
| 1616 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1617 | intermediate_timestep_count_max ) THEN |
---|
| 1618 | DO i = nxl, nxr |
---|
| 1619 | DO j = nys, nyn |
---|
| 1620 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1621 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1622 | ENDDO |
---|
| 1623 | ENDDO |
---|
| 1624 | ENDDO |
---|
| 1625 | ENDIF |
---|
| 1626 | ENDIF |
---|
| 1627 | |
---|
| 1628 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1629 | |
---|
| 1630 | ! |
---|
| 1631 | !-- potential temperature |
---|
| 1632 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1633 | |
---|
| 1634 | ! |
---|
| 1635 | !-- pt-tendency terms with communication |
---|
[63] | 1636 | sat = tsc(1) |
---|
| 1637 | sbt = tsc(2) |
---|
[1] | 1638 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1639 | |
---|
| 1640 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1641 | ! |
---|
[63] | 1642 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1643 | !-- switched on. Thus: |
---|
| 1644 | sat = 1.0 |
---|
| 1645 | sbt = 1.0 |
---|
| 1646 | ENDIF |
---|
[1] | 1647 | tend = 0.0 |
---|
| 1648 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1649 | ELSE |
---|
| 1650 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 1651 | tend = 0.0 |
---|
| 1652 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 1653 | ENDIF |
---|
| 1654 | ENDIF |
---|
| 1655 | |
---|
| 1656 | ! |
---|
| 1657 | !-- pt-tendency terms with no communication |
---|
| 1658 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 1659 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
| 1660 | tend ) |
---|
[1] | 1661 | ELSE |
---|
| 1662 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1663 | tend = 0.0 |
---|
| 1664 | CALL advec_s_pw( pt ) |
---|
| 1665 | ELSE |
---|
| 1666 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1667 | tend = 0.0 |
---|
| 1668 | CALL advec_s_up( pt ) |
---|
| 1669 | ENDIF |
---|
| 1670 | ENDIF |
---|
| 1671 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[129] | 1672 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tswst_m, & |
---|
| 1673 | wall_heatflux, tend ) |
---|
[1] | 1674 | ELSE |
---|
[129] | 1675 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
| 1676 | tend ) |
---|
[1] | 1677 | ENDIF |
---|
| 1678 | ENDIF |
---|
| 1679 | |
---|
| 1680 | ! |
---|
| 1681 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 1682 | !-- processes |
---|
| 1683 | IF ( radiation ) THEN |
---|
| 1684 | CALL calc_radiation |
---|
| 1685 | ENDIF |
---|
| 1686 | |
---|
| 1687 | ! |
---|
| 1688 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1689 | IF ( precipitation ) THEN |
---|
| 1690 | CALL impact_of_latent_heat |
---|
| 1691 | ENDIF |
---|
[153] | 1692 | |
---|
| 1693 | ! |
---|
| 1694 | !-- Consideration of heat sources within the plant canopy |
---|
| 1695 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1696 | CALL plant_canopy_model( 4 ) |
---|
| 1697 | ENDIF |
---|
| 1698 | |
---|
[411] | 1699 | !--If required compute influence of large-scale subsidence/ascent |
---|
| 1700 | IF ( large_scale_subsidence ) THEN |
---|
| 1701 | CALL subsidence ( tend, pt, pt_init ) |
---|
| 1702 | ENDIF |
---|
[153] | 1703 | |
---|
[1] | 1704 | CALL user_actions( 'pt-tendency' ) |
---|
| 1705 | |
---|
| 1706 | ! |
---|
| 1707 | !-- Prognostic equation for potential temperature |
---|
| 1708 | DO i = nxl, nxr |
---|
| 1709 | DO j = nys, nyn |
---|
[19] | 1710 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1711 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 1712 | dt_3d * ( & |
---|
| 1713 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1714 | ) - & |
---|
| 1715 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1716 | ENDDO |
---|
| 1717 | ENDDO |
---|
| 1718 | ENDDO |
---|
| 1719 | |
---|
| 1720 | ! |
---|
| 1721 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1722 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1723 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1724 | DO i = nxl, nxr |
---|
| 1725 | DO j = nys, nyn |
---|
[19] | 1726 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1727 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1728 | ENDDO |
---|
| 1729 | ENDDO |
---|
| 1730 | ENDDO |
---|
| 1731 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1732 | intermediate_timestep_count_max ) THEN |
---|
| 1733 | DO i = nxl, nxr |
---|
| 1734 | DO j = nys, nyn |
---|
[19] | 1735 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1736 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 1737 | ENDDO |
---|
| 1738 | ENDDO |
---|
| 1739 | ENDDO |
---|
| 1740 | ENDIF |
---|
| 1741 | ENDIF |
---|
| 1742 | |
---|
| 1743 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1744 | |
---|
| 1745 | ! |
---|
[95] | 1746 | !-- If required, compute prognostic equation for salinity |
---|
| 1747 | IF ( ocean ) THEN |
---|
| 1748 | |
---|
| 1749 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1750 | |
---|
| 1751 | ! |
---|
| 1752 | !-- sa-tendency terms with communication |
---|
| 1753 | sat = tsc(1) |
---|
| 1754 | sbt = tsc(2) |
---|
| 1755 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1756 | |
---|
| 1757 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1758 | ! |
---|
| 1759 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1760 | !-- switched on. Thus: |
---|
| 1761 | sat = 1.0 |
---|
| 1762 | sbt = 1.0 |
---|
| 1763 | ENDIF |
---|
| 1764 | tend = 0.0 |
---|
| 1765 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 1766 | ELSE |
---|
| 1767 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1768 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1769 | tend = 0.0 |
---|
| 1770 | CALL advec_s_ups( sa, 'sa' ) |
---|
| 1771 | ENDIF |
---|
| 1772 | ENDIF |
---|
| 1773 | ENDIF |
---|
| 1774 | |
---|
| 1775 | ! |
---|
[129] | 1776 | !-- sa-tendency terms with no communication |
---|
[95] | 1777 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 1778 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 1779 | wall_salinityflux, tend ) |
---|
[95] | 1780 | ELSE |
---|
| 1781 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1782 | tend = 0.0 |
---|
| 1783 | CALL advec_s_pw( sa ) |
---|
| 1784 | ELSE |
---|
| 1785 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1786 | tend = 0.0 |
---|
| 1787 | CALL advec_s_up( sa ) |
---|
| 1788 | ENDIF |
---|
| 1789 | ENDIF |
---|
[129] | 1790 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 1791 | wall_salinityflux, tend ) |
---|
[95] | 1792 | ENDIF |
---|
| 1793 | |
---|
| 1794 | CALL user_actions( 'sa-tendency' ) |
---|
| 1795 | |
---|
| 1796 | ! |
---|
| 1797 | !-- Prognostic equation for salinity |
---|
| 1798 | DO i = nxl, nxr |
---|
| 1799 | DO j = nys, nyn |
---|
| 1800 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1801 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
| 1802 | dt_3d * ( & |
---|
| 1803 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 1804 | ) - & |
---|
| 1805 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 1806 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1807 | ENDDO |
---|
| 1808 | ENDDO |
---|
| 1809 | ENDDO |
---|
| 1810 | |
---|
| 1811 | ! |
---|
| 1812 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1813 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1814 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1815 | DO i = nxl, nxr |
---|
| 1816 | DO j = nys, nyn |
---|
| 1817 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1818 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1819 | ENDDO |
---|
| 1820 | ENDDO |
---|
| 1821 | ENDDO |
---|
| 1822 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1823 | intermediate_timestep_count_max ) THEN |
---|
| 1824 | DO i = nxl, nxr |
---|
| 1825 | DO j = nys, nyn |
---|
| 1826 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1827 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1828 | 5.3125 * tsa_m(k,j,i) |
---|
| 1829 | ENDDO |
---|
| 1830 | ENDDO |
---|
| 1831 | ENDDO |
---|
| 1832 | ENDIF |
---|
| 1833 | ENDIF |
---|
| 1834 | |
---|
| 1835 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1836 | |
---|
[96] | 1837 | ! |
---|
| 1838 | !-- Calculate density by the equation of state for seawater |
---|
| 1839 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1840 | CALL eqn_state_seawater |
---|
| 1841 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1842 | |
---|
[95] | 1843 | ENDIF |
---|
| 1844 | |
---|
| 1845 | ! |
---|
[1] | 1846 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 1847 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 1848 | |
---|
| 1849 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1850 | |
---|
| 1851 | ! |
---|
| 1852 | !-- Scalar/q-tendency terms with communication |
---|
[63] | 1853 | sat = tsc(1) |
---|
| 1854 | sbt = tsc(2) |
---|
[1] | 1855 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1856 | |
---|
| 1857 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1858 | ! |
---|
[63] | 1859 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1860 | !-- switched on. Thus: |
---|
| 1861 | sat = 1.0 |
---|
| 1862 | sbt = 1.0 |
---|
| 1863 | ENDIF |
---|
[1] | 1864 | tend = 0.0 |
---|
| 1865 | CALL advec_s_bc( q, 'q' ) |
---|
| 1866 | ELSE |
---|
| 1867 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1868 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1869 | tend = 0.0 |
---|
| 1870 | CALL advec_s_ups( q, 'q' ) |
---|
| 1871 | ENDIF |
---|
| 1872 | ENDIF |
---|
| 1873 | ENDIF |
---|
| 1874 | |
---|
| 1875 | ! |
---|
| 1876 | !-- Scalar/q-tendency terms with no communication |
---|
| 1877 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 1878 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, wall_qflux, tend ) |
---|
[1] | 1879 | ELSE |
---|
| 1880 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1881 | tend = 0.0 |
---|
| 1882 | CALL advec_s_pw( q ) |
---|
| 1883 | ELSE |
---|
| 1884 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1885 | tend = 0.0 |
---|
| 1886 | CALL advec_s_up( q ) |
---|
| 1887 | ENDIF |
---|
| 1888 | ENDIF |
---|
| 1889 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[129] | 1890 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, qswst_m, & |
---|
| 1891 | wall_qflux, tend ) |
---|
[1] | 1892 | ELSE |
---|
[129] | 1893 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 1894 | wall_qflux, tend ) |
---|
[1] | 1895 | ENDIF |
---|
| 1896 | ENDIF |
---|
| 1897 | |
---|
| 1898 | ! |
---|
| 1899 | !-- If required compute decrease of total water content due to |
---|
| 1900 | !-- precipitation |
---|
| 1901 | IF ( precipitation ) THEN |
---|
| 1902 | CALL calc_precipitation |
---|
| 1903 | ENDIF |
---|
[153] | 1904 | |
---|
| 1905 | ! |
---|
| 1906 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1907 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1908 | |
---|
[1] | 1909 | CALL user_actions( 'q-tendency' ) |
---|
| 1910 | |
---|
| 1911 | ! |
---|
| 1912 | !-- Prognostic equation for total water content / scalar |
---|
| 1913 | DO i = nxl, nxr |
---|
| 1914 | DO j = nys, nyn |
---|
[19] | 1915 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1916 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 1917 | dt_3d * ( & |
---|
| 1918 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1919 | ) - & |
---|
| 1920 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 1921 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 1922 | ENDDO |
---|
| 1923 | ENDDO |
---|
| 1924 | ENDDO |
---|
| 1925 | |
---|
| 1926 | ! |
---|
| 1927 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1928 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1929 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1930 | DO i = nxl, nxr |
---|
| 1931 | DO j = nys, nyn |
---|
[19] | 1932 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1933 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1934 | ENDDO |
---|
| 1935 | ENDDO |
---|
| 1936 | ENDDO |
---|
| 1937 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1938 | intermediate_timestep_count_max ) THEN |
---|
| 1939 | DO i = nxl, nxr |
---|
| 1940 | DO j = nys, nyn |
---|
[19] | 1941 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1942 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1943 | ENDDO |
---|
| 1944 | ENDDO |
---|
| 1945 | ENDDO |
---|
| 1946 | ENDIF |
---|
| 1947 | ENDIF |
---|
| 1948 | |
---|
| 1949 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1950 | |
---|
| 1951 | ENDIF |
---|
| 1952 | |
---|
| 1953 | ! |
---|
| 1954 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1955 | !-- energy (TKE) |
---|
| 1956 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1957 | |
---|
| 1958 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1959 | |
---|
| 1960 | ! |
---|
| 1961 | !-- TKE-tendency terms with communication |
---|
| 1962 | CALL production_e_init |
---|
[63] | 1963 | |
---|
| 1964 | sat = tsc(1) |
---|
| 1965 | sbt = tsc(2) |
---|
[1] | 1966 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1967 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1968 | |
---|
| 1969 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1970 | ! |
---|
[63] | 1971 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1972 | !-- switched on. Thus: |
---|
| 1973 | sat = 1.0 |
---|
| 1974 | sbt = 1.0 |
---|
| 1975 | ENDIF |
---|
[1] | 1976 | tend = 0.0 |
---|
| 1977 | CALL advec_s_bc( e, 'e' ) |
---|
| 1978 | ELSE |
---|
| 1979 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1980 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1981 | tend = 0.0 |
---|
| 1982 | CALL advec_s_ups( e, 'e' ) |
---|
| 1983 | ENDIF |
---|
| 1984 | ENDIF |
---|
| 1985 | ENDIF |
---|
| 1986 | ENDIF |
---|
| 1987 | |
---|
| 1988 | ! |
---|
| 1989 | !-- TKE-tendency terms with no communication |
---|
| 1990 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
| 1991 | THEN |
---|
[75] | 1992 | IF ( .NOT. humidity ) THEN |
---|
[97] | 1993 | IF ( ocean ) THEN |
---|
[388] | 1994 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
| 1995 | prho, prho_reference, rif, tend, zu, zw ) |
---|
[97] | 1996 | ELSE |
---|
| 1997 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
| 1998 | pt_reference, rif, tend, zu, zw ) |
---|
| 1999 | ENDIF |
---|
[1] | 2000 | ELSE |
---|
| 2001 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
[97] | 2002 | pt_reference, rif, tend, zu, zw ) |
---|
[1] | 2003 | ENDIF |
---|
| 2004 | ELSE |
---|
| 2005 | IF ( use_upstream_for_tke ) THEN |
---|
| 2006 | tend = 0.0 |
---|
| 2007 | CALL advec_s_up( e ) |
---|
| 2008 | ELSE |
---|
| 2009 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2010 | tend = 0.0 |
---|
| 2011 | CALL advec_s_pw( e ) |
---|
| 2012 | ELSE |
---|
| 2013 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 2014 | tend = 0.0 |
---|
| 2015 | CALL advec_s_up( e ) |
---|
| 2016 | ENDIF |
---|
| 2017 | ENDIF |
---|
| 2018 | ENDIF |
---|
| 2019 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[75] | 2020 | IF ( .NOT. humidity ) THEN |
---|
[1] | 2021 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
[97] | 2022 | pt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
[1] | 2023 | ELSE |
---|
| 2024 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
[97] | 2025 | vpt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
[1] | 2026 | ENDIF |
---|
| 2027 | ELSE |
---|
[75] | 2028 | IF ( .NOT. humidity ) THEN |
---|
[97] | 2029 | IF ( ocean ) THEN |
---|
| 2030 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
[388] | 2031 | prho, prho_reference, rif, tend, zu, zw ) |
---|
[97] | 2032 | ELSE |
---|
| 2033 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
| 2034 | pt, pt_reference, rif, tend, zu, zw ) |
---|
| 2035 | ENDIF |
---|
[1] | 2036 | ELSE |
---|
| 2037 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
[97] | 2038 | pt_reference, rif, tend, zu, zw ) |
---|
[1] | 2039 | ENDIF |
---|
| 2040 | ENDIF |
---|
| 2041 | ENDIF |
---|
| 2042 | CALL production_e |
---|
[138] | 2043 | |
---|
| 2044 | ! |
---|
| 2045 | !-- Additional sink term for flows through plant canopies |
---|
[153] | 2046 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
[1] | 2047 | CALL user_actions( 'e-tendency' ) |
---|
| 2048 | |
---|
| 2049 | ! |
---|
| 2050 | !-- Prognostic equation for TKE. |
---|
| 2051 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2052 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2053 | !-- value is reduced by 90%. |
---|
| 2054 | DO i = nxl, nxr |
---|
| 2055 | DO j = nys, nyn |
---|
[19] | 2056 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 2057 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 2058 | dt_3d * ( & |
---|
| 2059 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 2060 | ) |
---|
| 2061 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 2062 | ENDDO |
---|
| 2063 | ENDDO |
---|
| 2064 | ENDDO |
---|
| 2065 | |
---|
| 2066 | ! |
---|
| 2067 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 2068 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2069 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 2070 | DO i = nxl, nxr |
---|
| 2071 | DO j = nys, nyn |
---|
[19] | 2072 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 2073 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2074 | ENDDO |
---|
| 2075 | ENDDO |
---|
| 2076 | ENDDO |
---|
| 2077 | ELSEIF ( intermediate_timestep_count < & |
---|
| 2078 | intermediate_timestep_count_max ) THEN |
---|
| 2079 | DO i = nxl, nxr |
---|
| 2080 | DO j = nys, nyn |
---|
[19] | 2081 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 2082 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 2083 | ENDDO |
---|
| 2084 | ENDDO |
---|
| 2085 | ENDDO |
---|
| 2086 | ENDIF |
---|
| 2087 | ENDIF |
---|
| 2088 | |
---|
| 2089 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2090 | |
---|
| 2091 | ENDIF |
---|
| 2092 | |
---|
| 2093 | |
---|
[63] | 2094 | END SUBROUTINE prognostic_equations_vector |
---|
[1] | 2095 | |
---|
| 2096 | |
---|
| 2097 | END MODULE prognostic_equations_mod |
---|