[1] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[392] | 6 | ! |
---|
[98] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
| 10 | ! $Id: prognostic_equations.f90 392 2009-09-24 10:39:14Z franke $ |
---|
| 11 | ! |
---|
[392] | 12 | ! 388 2009-09-23 09:40:33Z raasch |
---|
| 13 | ! prho is used instead of rho in diffusion_e, |
---|
| 14 | ! external pressure gradient |
---|
| 15 | ! |
---|
[198] | 16 | ! 153 2008-03-19 09:41:30Z steinfeld |
---|
| 17 | ! add call of plant_canopy_model in the prognostic equation for |
---|
| 18 | ! the potential temperature and for the passive scalar |
---|
| 19 | ! |
---|
[139] | 20 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 21 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
| 22 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
| 23 | ! |
---|
[110] | 24 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 25 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
| 26 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
| 27 | ! for non-cyclic boundary conditions) |
---|
| 28 | ! |
---|
[98] | 29 | ! 97 2007-06-21 08:23:15Z raasch |
---|
[96] | 30 | ! prognostic equation for salinity, density is calculated from equation of |
---|
[97] | 31 | ! state for seawater and is used for calculation of buoyancy, |
---|
| 32 | ! +eqn_state_seawater_mod |
---|
| 33 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
| 34 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
| 35 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
[96] | 36 | ! calc_mean_profile |
---|
[1] | 37 | ! |
---|
[77] | 38 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 39 | ! checking for negative q and limiting for positive values, |
---|
| 40 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
| 41 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
| 42 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
| 43 | ! _vector-version |
---|
| 44 | ! |
---|
[39] | 45 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 46 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
| 47 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
| 48 | ! |
---|
[3] | 49 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 50 | ! |
---|
[1] | 51 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
| 52 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
| 53 | ! regardless of the timestep scheme used for the other quantities, |
---|
| 54 | ! new argument diss in call of diffusion_e |
---|
| 55 | ! |
---|
| 56 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 57 | ! Initial revision |
---|
| 58 | ! |
---|
| 59 | ! |
---|
| 60 | ! Description: |
---|
| 61 | ! ------------ |
---|
[19] | 62 | ! Solving the prognostic equations. |
---|
[1] | 63 | !------------------------------------------------------------------------------! |
---|
| 64 | |
---|
| 65 | USE arrays_3d |
---|
| 66 | USE control_parameters |
---|
| 67 | USE cpulog |
---|
[96] | 68 | USE eqn_state_seawater_mod |
---|
[1] | 69 | USE grid_variables |
---|
| 70 | USE indices |
---|
| 71 | USE interfaces |
---|
| 72 | USE pegrid |
---|
| 73 | USE pointer_interfaces |
---|
| 74 | USE statistics |
---|
| 75 | |
---|
| 76 | USE advec_s_pw_mod |
---|
| 77 | USE advec_s_up_mod |
---|
| 78 | USE advec_u_pw_mod |
---|
| 79 | USE advec_u_up_mod |
---|
| 80 | USE advec_v_pw_mod |
---|
| 81 | USE advec_v_up_mod |
---|
| 82 | USE advec_w_pw_mod |
---|
| 83 | USE advec_w_up_mod |
---|
| 84 | USE buoyancy_mod |
---|
| 85 | USE calc_precipitation_mod |
---|
| 86 | USE calc_radiation_mod |
---|
| 87 | USE coriolis_mod |
---|
| 88 | USE diffusion_e_mod |
---|
| 89 | USE diffusion_s_mod |
---|
| 90 | USE diffusion_u_mod |
---|
| 91 | USE diffusion_v_mod |
---|
| 92 | USE diffusion_w_mod |
---|
| 93 | USE impact_of_latent_heat_mod |
---|
[138] | 94 | USE plant_canopy_model_mod |
---|
[1] | 95 | USE production_e_mod |
---|
| 96 | USE user_actions_mod |
---|
| 97 | |
---|
| 98 | |
---|
| 99 | PRIVATE |
---|
[63] | 100 | PUBLIC prognostic_equations_noopt, prognostic_equations_cache, & |
---|
| 101 | prognostic_equations_vector |
---|
[1] | 102 | |
---|
[63] | 103 | INTERFACE prognostic_equations_noopt |
---|
| 104 | MODULE PROCEDURE prognostic_equations_noopt |
---|
| 105 | END INTERFACE prognostic_equations_noopt |
---|
[1] | 106 | |
---|
[63] | 107 | INTERFACE prognostic_equations_cache |
---|
| 108 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 109 | END INTERFACE prognostic_equations_cache |
---|
[1] | 110 | |
---|
[63] | 111 | INTERFACE prognostic_equations_vector |
---|
| 112 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 113 | END INTERFACE prognostic_equations_vector |
---|
[1] | 114 | |
---|
| 115 | |
---|
| 116 | CONTAINS |
---|
| 117 | |
---|
| 118 | |
---|
[63] | 119 | SUBROUTINE prognostic_equations_noopt |
---|
[1] | 120 | |
---|
| 121 | !------------------------------------------------------------------------------! |
---|
| 122 | ! Version with single loop optimization |
---|
| 123 | ! |
---|
| 124 | ! (Optimized over each single prognostic equation.) |
---|
| 125 | !------------------------------------------------------------------------------! |
---|
| 126 | |
---|
| 127 | IMPLICIT NONE |
---|
| 128 | |
---|
| 129 | CHARACTER (LEN=9) :: time_to_string |
---|
| 130 | INTEGER :: i, j, k |
---|
| 131 | REAL :: sat, sbt |
---|
| 132 | |
---|
| 133 | ! |
---|
| 134 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 135 | !-- global communication |
---|
[96] | 136 | CALL calc_mean_profile( pt, 4 ) |
---|
| 137 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 138 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 139 | |
---|
| 140 | ! |
---|
| 141 | !-- u-velocity component |
---|
| 142 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 143 | |
---|
| 144 | ! |
---|
| 145 | !-- u-tendency terms with communication |
---|
| 146 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 147 | tend = 0.0 |
---|
| 148 | CALL advec_u_ups |
---|
| 149 | ENDIF |
---|
| 150 | |
---|
| 151 | ! |
---|
| 152 | !-- u-tendency terms with no communication |
---|
[106] | 153 | DO i = nxlu, nxr |
---|
[1] | 154 | DO j = nys, nyn |
---|
| 155 | ! |
---|
| 156 | !-- Tendency terms |
---|
| 157 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 158 | tend(:,j,i) = 0.0 |
---|
| 159 | CALL advec_u_pw( i, j ) |
---|
| 160 | ELSE |
---|
| 161 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 162 | tend(:,j,i) = 0.0 |
---|
| 163 | CALL advec_u_up( i, j ) |
---|
| 164 | ENDIF |
---|
| 165 | ENDIF |
---|
| 166 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 167 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
[102] | 168 | usws_m, uswst_m, v_m, w_m ) |
---|
[1] | 169 | ELSE |
---|
| 170 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
[102] | 171 | uswst, v, w ) |
---|
[1] | 172 | ENDIF |
---|
| 173 | CALL coriolis( i, j, 1 ) |
---|
[97] | 174 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, 4 ) |
---|
[138] | 175 | |
---|
| 176 | ! |
---|
| 177 | !-- Drag by plant canopy |
---|
| 178 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
[240] | 179 | |
---|
| 180 | ! |
---|
| 181 | !-- External pressure gradient |
---|
| 182 | IF ( dp_external ) THEN |
---|
| 183 | DO k = dp_level_ind_b+1, nzt |
---|
| 184 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 185 | ENDDO |
---|
| 186 | ENDIF |
---|
| 187 | |
---|
[1] | 188 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 189 | |
---|
| 190 | ! |
---|
| 191 | !-- Prognostic equation for u-velocity component |
---|
| 192 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 193 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 194 | dt_3d * ( & |
---|
| 195 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 196 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 197 | ) - & |
---|
| 198 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 199 | ENDDO |
---|
| 200 | |
---|
| 201 | ! |
---|
| 202 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 203 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 204 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 205 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 206 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 207 | ENDDO |
---|
| 208 | ELSEIF ( intermediate_timestep_count < & |
---|
| 209 | intermediate_timestep_count_max ) THEN |
---|
| 210 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 211 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 212 | ENDDO |
---|
| 213 | ENDIF |
---|
| 214 | ENDIF |
---|
| 215 | |
---|
| 216 | ENDDO |
---|
| 217 | ENDDO |
---|
| 218 | |
---|
| 219 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 220 | |
---|
| 221 | ! |
---|
| 222 | !-- v-velocity component |
---|
| 223 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 224 | |
---|
| 225 | ! |
---|
| 226 | !-- v-tendency terms with communication |
---|
| 227 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 228 | tend = 0.0 |
---|
| 229 | CALL advec_v_ups |
---|
| 230 | ENDIF |
---|
| 231 | |
---|
| 232 | ! |
---|
| 233 | !-- v-tendency terms with no communication |
---|
| 234 | DO i = nxl, nxr |
---|
[106] | 235 | DO j = nysv, nyn |
---|
[1] | 236 | ! |
---|
| 237 | !-- Tendency terms |
---|
| 238 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 239 | tend(:,j,i) = 0.0 |
---|
| 240 | CALL advec_v_pw( i, j ) |
---|
| 241 | ELSE |
---|
| 242 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 243 | tend(:,j,i) = 0.0 |
---|
| 244 | CALL advec_v_up( i, j ) |
---|
| 245 | ENDIF |
---|
| 246 | ENDIF |
---|
| 247 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 248 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
[102] | 249 | v_m, vsws_m, vswst_m, w_m ) |
---|
[1] | 250 | ELSE |
---|
| 251 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[102] | 252 | vsws, vswst, w ) |
---|
[1] | 253 | ENDIF |
---|
| 254 | CALL coriolis( i, j, 2 ) |
---|
[138] | 255 | |
---|
| 256 | ! |
---|
| 257 | !-- Drag by plant canopy |
---|
| 258 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 259 | |
---|
[240] | 260 | ! |
---|
| 261 | !-- External pressure gradient |
---|
| 262 | IF ( dp_external ) THEN |
---|
| 263 | DO k = dp_level_ind_b+1, nzt |
---|
| 264 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 265 | ENDDO |
---|
| 266 | ENDIF |
---|
| 267 | |
---|
[1] | 268 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 269 | |
---|
| 270 | ! |
---|
| 271 | !-- Prognostic equation for v-velocity component |
---|
| 272 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 273 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 274 | dt_3d * ( & |
---|
| 275 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 276 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 277 | ) - & |
---|
| 278 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 279 | ENDDO |
---|
| 280 | |
---|
| 281 | ! |
---|
| 282 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 283 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 284 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 285 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 286 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 287 | ENDDO |
---|
| 288 | ELSEIF ( intermediate_timestep_count < & |
---|
| 289 | intermediate_timestep_count_max ) THEN |
---|
| 290 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 291 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 292 | ENDDO |
---|
| 293 | ENDIF |
---|
| 294 | ENDIF |
---|
| 295 | |
---|
| 296 | ENDDO |
---|
| 297 | ENDDO |
---|
| 298 | |
---|
| 299 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 300 | |
---|
| 301 | ! |
---|
| 302 | !-- w-velocity component |
---|
| 303 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 304 | |
---|
| 305 | ! |
---|
| 306 | !-- w-tendency terms with communication |
---|
| 307 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 308 | tend = 0.0 |
---|
| 309 | CALL advec_w_ups |
---|
| 310 | ENDIF |
---|
| 311 | |
---|
| 312 | ! |
---|
| 313 | !-- w-tendency terms with no communication |
---|
| 314 | DO i = nxl, nxr |
---|
| 315 | DO j = nys, nyn |
---|
| 316 | ! |
---|
| 317 | !-- Tendency terms |
---|
| 318 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 319 | tend(:,j,i) = 0.0 |
---|
| 320 | CALL advec_w_pw( i, j ) |
---|
| 321 | ELSE |
---|
| 322 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 323 | tend(:,j,i) = 0.0 |
---|
| 324 | CALL advec_w_up( i, j ) |
---|
| 325 | ENDIF |
---|
| 326 | ENDIF |
---|
| 327 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 328 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
[57] | 329 | tend, u_m, v_m, w_m ) |
---|
[1] | 330 | ELSE |
---|
| 331 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
[57] | 332 | tend, u, v, w ) |
---|
[1] | 333 | ENDIF |
---|
| 334 | CALL coriolis( i, j, 3 ) |
---|
[97] | 335 | IF ( ocean ) THEN |
---|
[388] | 336 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
[1] | 337 | ELSE |
---|
[97] | 338 | IF ( .NOT. humidity ) THEN |
---|
| 339 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
| 340 | ELSE |
---|
| 341 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
| 342 | ENDIF |
---|
[1] | 343 | ENDIF |
---|
[138] | 344 | |
---|
| 345 | ! |
---|
| 346 | !-- Drag by plant canopy |
---|
| 347 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 348 | |
---|
[1] | 349 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 350 | |
---|
| 351 | ! |
---|
| 352 | !-- Prognostic equation for w-velocity component |
---|
| 353 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 354 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 355 | dt_3d * ( & |
---|
| 356 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 357 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 358 | ) - & |
---|
| 359 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 360 | ENDDO |
---|
| 361 | |
---|
| 362 | ! |
---|
| 363 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 364 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 365 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 366 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 367 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 368 | ENDDO |
---|
| 369 | ELSEIF ( intermediate_timestep_count < & |
---|
| 370 | intermediate_timestep_count_max ) THEN |
---|
| 371 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 372 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 373 | ENDDO |
---|
| 374 | ENDIF |
---|
| 375 | ENDIF |
---|
| 376 | |
---|
| 377 | ENDDO |
---|
| 378 | ENDDO |
---|
| 379 | |
---|
| 380 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 381 | |
---|
| 382 | ! |
---|
| 383 | !-- potential temperature |
---|
| 384 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 385 | |
---|
| 386 | ! |
---|
| 387 | !-- pt-tendency terms with communication |
---|
[70] | 388 | sat = tsc(1) |
---|
| 389 | sbt = tsc(2) |
---|
[1] | 390 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 391 | |
---|
| 392 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 393 | ! |
---|
[70] | 394 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 395 | !-- switched on. Thus: |
---|
| 396 | sat = 1.0 |
---|
| 397 | sbt = 1.0 |
---|
| 398 | ENDIF |
---|
[1] | 399 | tend = 0.0 |
---|
| 400 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 401 | ELSE |
---|
| 402 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 403 | tend = 0.0 |
---|
| 404 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 405 | ENDIF |
---|
| 406 | ENDIF |
---|
| 407 | |
---|
| 408 | ! |
---|
| 409 | !-- pt-tendency terms with no communication |
---|
| 410 | DO i = nxl, nxr |
---|
| 411 | DO j = nys, nyn |
---|
| 412 | ! |
---|
| 413 | !-- Tendency terms |
---|
| 414 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 415 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 416 | wall_heatflux, tend ) |
---|
[1] | 417 | ELSE |
---|
| 418 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 419 | tend(:,j,i) = 0.0 |
---|
| 420 | CALL advec_s_pw( i, j, pt ) |
---|
| 421 | ELSE |
---|
| 422 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 423 | tend(:,j,i) = 0.0 |
---|
| 424 | CALL advec_s_up( i, j, pt ) |
---|
| 425 | ENDIF |
---|
| 426 | ENDIF |
---|
| 427 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 428 | THEN |
---|
[19] | 429 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
[129] | 430 | tswst_m, wall_heatflux, tend ) |
---|
[1] | 431 | ELSE |
---|
[129] | 432 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 433 | wall_heatflux, tend ) |
---|
[1] | 434 | ENDIF |
---|
| 435 | ENDIF |
---|
| 436 | |
---|
| 437 | ! |
---|
| 438 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 439 | !-- processes |
---|
| 440 | IF ( radiation ) THEN |
---|
| 441 | CALL calc_radiation( i, j ) |
---|
| 442 | ENDIF |
---|
| 443 | |
---|
| 444 | ! |
---|
| 445 | !-- If required compute impact of latent heat due to precipitation |
---|
| 446 | IF ( precipitation ) THEN |
---|
| 447 | CALL impact_of_latent_heat( i, j ) |
---|
| 448 | ENDIF |
---|
[153] | 449 | |
---|
| 450 | ! |
---|
| 451 | !-- Consideration of heat sources within the plant canopy |
---|
| 452 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 453 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 454 | ENDIF |
---|
| 455 | |
---|
[1] | 456 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 457 | |
---|
| 458 | ! |
---|
| 459 | !-- Prognostic equation for potential temperature |
---|
[19] | 460 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 461 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 462 | dt_3d * ( & |
---|
| 463 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 464 | ) - & |
---|
| 465 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 466 | ENDDO |
---|
| 467 | |
---|
| 468 | ! |
---|
| 469 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 470 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 471 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 472 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 473 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 474 | ENDDO |
---|
| 475 | ELSEIF ( intermediate_timestep_count < & |
---|
| 476 | intermediate_timestep_count_max ) THEN |
---|
[19] | 477 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 478 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 479 | ENDDO |
---|
| 480 | ENDIF |
---|
| 481 | ENDIF |
---|
| 482 | |
---|
| 483 | ENDDO |
---|
| 484 | ENDDO |
---|
| 485 | |
---|
| 486 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 487 | |
---|
| 488 | ! |
---|
[95] | 489 | !-- If required, compute prognostic equation for salinity |
---|
| 490 | IF ( ocean ) THEN |
---|
| 491 | |
---|
| 492 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 493 | |
---|
| 494 | ! |
---|
| 495 | !-- sa-tendency terms with communication |
---|
| 496 | sat = tsc(1) |
---|
| 497 | sbt = tsc(2) |
---|
| 498 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 499 | |
---|
| 500 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 501 | ! |
---|
| 502 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 503 | !-- switched on. Thus: |
---|
| 504 | sat = 1.0 |
---|
| 505 | sbt = 1.0 |
---|
| 506 | ENDIF |
---|
| 507 | tend = 0.0 |
---|
| 508 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 509 | ELSE |
---|
| 510 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 511 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 512 | tend = 0.0 |
---|
| 513 | CALL advec_s_ups( sa, 'sa' ) |
---|
| 514 | ENDIF |
---|
| 515 | ENDIF |
---|
| 516 | ENDIF |
---|
| 517 | |
---|
| 518 | ! |
---|
| 519 | !-- sa terms with no communication |
---|
| 520 | DO i = nxl, nxr |
---|
| 521 | DO j = nys, nyn |
---|
| 522 | ! |
---|
| 523 | !-- Tendency-terms |
---|
| 524 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 525 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
[129] | 526 | wall_salinityflux, tend ) |
---|
[95] | 527 | ELSE |
---|
| 528 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 529 | tend(:,j,i) = 0.0 |
---|
| 530 | CALL advec_s_pw( i, j, sa ) |
---|
| 531 | ELSE |
---|
| 532 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 533 | tend(:,j,i) = 0.0 |
---|
| 534 | CALL advec_s_up( i, j, sa ) |
---|
| 535 | ENDIF |
---|
| 536 | ENDIF |
---|
| 537 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
[129] | 538 | wall_salinityflux, tend ) |
---|
[95] | 539 | ENDIF |
---|
| 540 | |
---|
| 541 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 542 | |
---|
| 543 | ! |
---|
| 544 | !-- Prognostic equation for salinity |
---|
| 545 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 546 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
| 547 | dt_3d * ( & |
---|
| 548 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 549 | ) - & |
---|
| 550 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 551 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 552 | ENDDO |
---|
| 553 | |
---|
| 554 | ! |
---|
| 555 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 556 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 557 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 558 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 559 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 560 | ENDDO |
---|
| 561 | ELSEIF ( intermediate_timestep_count < & |
---|
| 562 | intermediate_timestep_count_max ) THEN |
---|
| 563 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 564 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 565 | 5.3125 * tsa_m(k,j,i) |
---|
| 566 | ENDDO |
---|
| 567 | ENDIF |
---|
| 568 | ENDIF |
---|
| 569 | |
---|
[96] | 570 | ! |
---|
| 571 | !-- Calculate density by the equation of state for seawater |
---|
| 572 | CALL eqn_state_seawater( i, j ) |
---|
| 573 | |
---|
[95] | 574 | ENDDO |
---|
| 575 | ENDDO |
---|
| 576 | |
---|
| 577 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 578 | |
---|
| 579 | ENDIF |
---|
| 580 | |
---|
| 581 | ! |
---|
[1] | 582 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 583 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 584 | |
---|
| 585 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 586 | |
---|
| 587 | ! |
---|
| 588 | !-- Scalar/q-tendency terms with communication |
---|
[70] | 589 | sat = tsc(1) |
---|
| 590 | sbt = tsc(2) |
---|
[1] | 591 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 592 | |
---|
| 593 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 594 | ! |
---|
[70] | 595 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 596 | !-- switched on. Thus: |
---|
| 597 | sat = 1.0 |
---|
| 598 | sbt = 1.0 |
---|
| 599 | ENDIF |
---|
[1] | 600 | tend = 0.0 |
---|
| 601 | CALL advec_s_bc( q, 'q' ) |
---|
| 602 | ELSE |
---|
| 603 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 604 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 605 | tend = 0.0 |
---|
| 606 | CALL advec_s_ups( q, 'q' ) |
---|
| 607 | ENDIF |
---|
| 608 | ENDIF |
---|
| 609 | ENDIF |
---|
| 610 | |
---|
| 611 | ! |
---|
| 612 | !-- Scalar/q-tendency terms with no communication |
---|
| 613 | DO i = nxl, nxr |
---|
| 614 | DO j = nys, nyn |
---|
| 615 | ! |
---|
| 616 | !-- Tendency-terms |
---|
| 617 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 618 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 619 | wall_qflux, tend ) |
---|
[1] | 620 | ELSE |
---|
| 621 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 622 | tend(:,j,i) = 0.0 |
---|
| 623 | CALL advec_s_pw( i, j, q ) |
---|
| 624 | ELSE |
---|
| 625 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 626 | tend(:,j,i) = 0.0 |
---|
| 627 | CALL advec_s_up( i, j, q ) |
---|
| 628 | ENDIF |
---|
| 629 | ENDIF |
---|
| 630 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 631 | THEN |
---|
| 632 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
[129] | 633 | qswst_m, wall_qflux, tend ) |
---|
[19] | 634 | ELSE |
---|
| 635 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
[129] | 636 | wall_qflux, tend ) |
---|
[1] | 637 | ENDIF |
---|
| 638 | ENDIF |
---|
| 639 | |
---|
| 640 | ! |
---|
| 641 | !-- If required compute decrease of total water content due to |
---|
| 642 | !-- precipitation |
---|
| 643 | IF ( precipitation ) THEN |
---|
| 644 | CALL calc_precipitation( i, j ) |
---|
| 645 | ENDIF |
---|
[153] | 646 | |
---|
| 647 | ! |
---|
| 648 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 649 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
| 650 | |
---|
[1] | 651 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 652 | |
---|
| 653 | ! |
---|
| 654 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 655 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 656 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 657 | dt_3d * ( & |
---|
| 658 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 659 | ) - & |
---|
| 660 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 661 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 662 | ENDDO |
---|
| 663 | |
---|
| 664 | ! |
---|
| 665 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 666 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 667 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 668 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 669 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 670 | ENDDO |
---|
| 671 | ELSEIF ( intermediate_timestep_count < & |
---|
| 672 | intermediate_timestep_count_max ) THEN |
---|
[19] | 673 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 674 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 675 | ENDDO |
---|
| 676 | ENDIF |
---|
| 677 | ENDIF |
---|
| 678 | |
---|
| 679 | ENDDO |
---|
| 680 | ENDDO |
---|
| 681 | |
---|
| 682 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 683 | |
---|
| 684 | ENDIF |
---|
| 685 | |
---|
| 686 | ! |
---|
| 687 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 688 | !-- energy (TKE) |
---|
| 689 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 690 | |
---|
| 691 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 692 | |
---|
| 693 | ! |
---|
| 694 | !-- TKE-tendency terms with communication |
---|
| 695 | CALL production_e_init |
---|
[70] | 696 | |
---|
| 697 | sat = tsc(1) |
---|
| 698 | sbt = tsc(2) |
---|
[1] | 699 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 700 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 701 | |
---|
| 702 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 703 | ! |
---|
[70] | 704 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 705 | !-- switched on. Thus: |
---|
| 706 | sat = 1.0 |
---|
| 707 | sbt = 1.0 |
---|
| 708 | ENDIF |
---|
[1] | 709 | tend = 0.0 |
---|
| 710 | CALL advec_s_bc( e, 'e' ) |
---|
| 711 | ELSE |
---|
| 712 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 713 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 714 | tend = 0.0 |
---|
| 715 | CALL advec_s_ups( e, 'e' ) |
---|
| 716 | ENDIF |
---|
| 717 | ENDIF |
---|
| 718 | ENDIF |
---|
| 719 | ENDIF |
---|
| 720 | |
---|
| 721 | ! |
---|
| 722 | !-- TKE-tendency terms with no communication |
---|
| 723 | DO i = nxl, nxr |
---|
| 724 | DO j = nys, nyn |
---|
| 725 | ! |
---|
| 726 | !-- Tendency-terms |
---|
| 727 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
| 728 | .NOT. use_upstream_for_tke ) THEN |
---|
[75] | 729 | IF ( .NOT. humidity ) THEN |
---|
[97] | 730 | IF ( ocean ) THEN |
---|
[388] | 731 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 732 | l_grid, prho, prho_reference, rif, & |
---|
| 733 | tend, zu, zw ) |
---|
[97] | 734 | ELSE |
---|
[388] | 735 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 736 | l_grid, pt, pt_reference, rif, tend, & |
---|
[97] | 737 | zu, zw ) |
---|
| 738 | ENDIF |
---|
[1] | 739 | ELSE |
---|
[97] | 740 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 741 | l_grid, vpt, pt_reference, rif, tend, zu, & |
---|
| 742 | zw ) |
---|
[1] | 743 | ENDIF |
---|
| 744 | ELSE |
---|
| 745 | IF ( use_upstream_for_tke ) THEN |
---|
| 746 | tend(:,j,i) = 0.0 |
---|
| 747 | CALL advec_s_up( i, j, e ) |
---|
| 748 | ELSE |
---|
| 749 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 750 | THEN |
---|
| 751 | tend(:,j,i) = 0.0 |
---|
| 752 | CALL advec_s_pw( i, j, e ) |
---|
| 753 | ELSE |
---|
| 754 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 755 | tend(:,j,i) = 0.0 |
---|
| 756 | CALL advec_s_up( i, j, e ) |
---|
| 757 | ENDIF |
---|
| 758 | ENDIF |
---|
| 759 | ENDIF |
---|
| 760 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 761 | THEN |
---|
[75] | 762 | IF ( .NOT. humidity ) THEN |
---|
[1] | 763 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
[97] | 764 | km_m, l_grid, pt_m, pt_reference, & |
---|
| 765 | rif_m, tend, zu, zw ) |
---|
[1] | 766 | ELSE |
---|
| 767 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
[97] | 768 | km_m, l_grid, vpt_m, pt_reference, & |
---|
| 769 | rif_m, tend, zu, zw ) |
---|
[1] | 770 | ENDIF |
---|
| 771 | ELSE |
---|
[75] | 772 | IF ( .NOT. humidity ) THEN |
---|
[97] | 773 | IF ( ocean ) THEN |
---|
| 774 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
[388] | 775 | km, l_grid, prho, prho_reference, & |
---|
[97] | 776 | rif, tend, zu, zw ) |
---|
| 777 | ELSE |
---|
| 778 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 779 | km, l_grid, pt, pt_reference, rif, & |
---|
| 780 | tend, zu, zw ) |
---|
| 781 | ENDIF |
---|
[1] | 782 | ELSE |
---|
| 783 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
[97] | 784 | l_grid, vpt, pt_reference, rif, tend, & |
---|
| 785 | zu, zw ) |
---|
[1] | 786 | ENDIF |
---|
| 787 | ENDIF |
---|
| 788 | ENDIF |
---|
| 789 | CALL production_e( i, j ) |
---|
[138] | 790 | |
---|
| 791 | ! |
---|
| 792 | !-- Additional sink term for flows through plant canopies |
---|
[153] | 793 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
[138] | 794 | |
---|
[1] | 795 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 796 | |
---|
| 797 | ! |
---|
| 798 | !-- Prognostic equation for TKE. |
---|
| 799 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 800 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 801 | !-- value is reduced by 90%. |
---|
[19] | 802 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 803 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 804 | dt_3d * ( & |
---|
| 805 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 806 | ) |
---|
| 807 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 808 | ENDDO |
---|
| 809 | |
---|
| 810 | ! |
---|
| 811 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 812 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 813 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 814 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 815 | te_m(k,j,i) = tend(k,j,i) |
---|
| 816 | ENDDO |
---|
| 817 | ELSEIF ( intermediate_timestep_count < & |
---|
| 818 | intermediate_timestep_count_max ) THEN |
---|
[19] | 819 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 820 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 821 | ENDDO |
---|
| 822 | ENDIF |
---|
| 823 | ENDIF |
---|
| 824 | |
---|
| 825 | ENDDO |
---|
| 826 | ENDDO |
---|
| 827 | |
---|
| 828 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 829 | |
---|
| 830 | ENDIF |
---|
| 831 | |
---|
| 832 | |
---|
[63] | 833 | END SUBROUTINE prognostic_equations_noopt |
---|
[1] | 834 | |
---|
| 835 | |
---|
[63] | 836 | SUBROUTINE prognostic_equations_cache |
---|
[1] | 837 | |
---|
| 838 | !------------------------------------------------------------------------------! |
---|
| 839 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 840 | ! be called for the standard Piascek-Williams advection scheme. |
---|
| 841 | ! |
---|
[95] | 842 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 843 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 844 | ! these loops. |
---|
[1] | 845 | ! |
---|
| 846 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 847 | !------------------------------------------------------------------------------! |
---|
| 848 | |
---|
| 849 | IMPLICIT NONE |
---|
| 850 | |
---|
| 851 | CHARACTER (LEN=9) :: time_to_string |
---|
| 852 | INTEGER :: i, j, k |
---|
| 853 | |
---|
| 854 | |
---|
| 855 | ! |
---|
| 856 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 857 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 858 | |
---|
| 859 | |
---|
| 860 | ! |
---|
| 861 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 862 | !-- global communication |
---|
[96] | 863 | CALL calc_mean_profile( pt, 4 ) |
---|
| 864 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 865 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 866 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
| 867 | |
---|
| 868 | |
---|
| 869 | ! |
---|
| 870 | !-- Loop over all prognostic equations |
---|
| 871 | !$OMP PARALLEL private (i,j,k) |
---|
| 872 | !$OMP DO |
---|
[75] | 873 | DO i = nxl, nxr |
---|
| 874 | DO j = nys, nyn |
---|
[1] | 875 | ! |
---|
| 876 | !-- Tendency terms for u-velocity component |
---|
[106] | 877 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
[1] | 878 | |
---|
| 879 | tend(:,j,i) = 0.0 |
---|
| 880 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 881 | CALL advec_u_pw( i, j ) |
---|
| 882 | ELSE |
---|
| 883 | CALL advec_u_up( i, j ) |
---|
| 884 | ENDIF |
---|
| 885 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 886 | THEN |
---|
| 887 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
[102] | 888 | u_m, usws_m, uswst_m, v_m, w_m ) |
---|
[1] | 889 | ELSE |
---|
| 890 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
[102] | 891 | usws, uswst, v, w ) |
---|
[1] | 892 | ENDIF |
---|
| 893 | CALL coriolis( i, j, 1 ) |
---|
[97] | 894 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, & |
---|
| 895 | 4 ) |
---|
[138] | 896 | |
---|
| 897 | ! |
---|
| 898 | !-- Drag by plant canopy |
---|
| 899 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 900 | |
---|
[240] | 901 | ! |
---|
| 902 | !-- External pressure gradient |
---|
| 903 | IF ( dp_external ) THEN |
---|
| 904 | DO k = dp_level_ind_b+1, nzt |
---|
| 905 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 906 | ENDDO |
---|
| 907 | ENDIF |
---|
| 908 | |
---|
[1] | 909 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 910 | |
---|
| 911 | ! |
---|
| 912 | !-- Prognostic equation for u-velocity component |
---|
| 913 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 914 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 915 | dt_3d * ( & |
---|
| 916 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 917 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 918 | ) - & |
---|
| 919 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 920 | ENDDO |
---|
| 921 | |
---|
| 922 | ! |
---|
| 923 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 924 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 925 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 926 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 927 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 928 | ENDDO |
---|
| 929 | ELSEIF ( intermediate_timestep_count < & |
---|
| 930 | intermediate_timestep_count_max ) THEN |
---|
| 931 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 932 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 933 | ENDDO |
---|
| 934 | ENDIF |
---|
| 935 | ENDIF |
---|
| 936 | |
---|
| 937 | ENDIF |
---|
| 938 | |
---|
| 939 | ! |
---|
| 940 | !-- Tendency terms for v-velocity component |
---|
[106] | 941 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
[1] | 942 | |
---|
| 943 | tend(:,j,i) = 0.0 |
---|
| 944 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 945 | CALL advec_v_pw( i, j ) |
---|
| 946 | ELSE |
---|
| 947 | CALL advec_v_up( i, j ) |
---|
| 948 | ENDIF |
---|
| 949 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 950 | THEN |
---|
| 951 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
[102] | 952 | u_m, v_m, vsws_m, vswst_m, w_m ) |
---|
[1] | 953 | ELSE |
---|
| 954 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[102] | 955 | vsws, vswst, w ) |
---|
[1] | 956 | ENDIF |
---|
| 957 | CALL coriolis( i, j, 2 ) |
---|
[138] | 958 | |
---|
| 959 | ! |
---|
| 960 | !-- Drag by plant canopy |
---|
| 961 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 962 | |
---|
[240] | 963 | ! |
---|
| 964 | !-- External pressure gradient |
---|
| 965 | IF ( dp_external ) THEN |
---|
| 966 | DO k = dp_level_ind_b+1, nzt |
---|
| 967 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 968 | ENDDO |
---|
| 969 | ENDIF |
---|
| 970 | |
---|
[1] | 971 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 972 | |
---|
| 973 | ! |
---|
| 974 | !-- Prognostic equation for v-velocity component |
---|
| 975 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 976 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 977 | dt_3d * ( & |
---|
| 978 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 979 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 980 | ) - & |
---|
| 981 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 982 | ENDDO |
---|
| 983 | |
---|
| 984 | ! |
---|
| 985 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 986 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 987 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 988 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 989 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 990 | ENDDO |
---|
| 991 | ELSEIF ( intermediate_timestep_count < & |
---|
| 992 | intermediate_timestep_count_max ) THEN |
---|
| 993 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 994 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 995 | ENDDO |
---|
| 996 | ENDIF |
---|
| 997 | ENDIF |
---|
| 998 | |
---|
| 999 | ENDIF |
---|
| 1000 | |
---|
| 1001 | ! |
---|
| 1002 | !-- Tendency terms for w-velocity component |
---|
[106] | 1003 | tend(:,j,i) = 0.0 |
---|
| 1004 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1005 | CALL advec_w_pw( i, j ) |
---|
| 1006 | ELSE |
---|
| 1007 | CALL advec_w_up( i, j ) |
---|
| 1008 | ENDIF |
---|
| 1009 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 1010 | THEN |
---|
| 1011 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
| 1012 | km_damp_y, tend, u_m, v_m, w_m ) |
---|
| 1013 | ELSE |
---|
| 1014 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
| 1015 | tend, u, v, w ) |
---|
| 1016 | ENDIF |
---|
| 1017 | CALL coriolis( i, j, 3 ) |
---|
| 1018 | IF ( ocean ) THEN |
---|
[388] | 1019 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
[106] | 1020 | ELSE |
---|
| 1021 | IF ( .NOT. humidity ) THEN |
---|
| 1022 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
| 1023 | ELSE |
---|
| 1024 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
| 1025 | ENDIF |
---|
| 1026 | ENDIF |
---|
[138] | 1027 | |
---|
| 1028 | ! |
---|
| 1029 | !-- Drag by plant canopy |
---|
| 1030 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 1031 | |
---|
[106] | 1032 | CALL user_actions( i, j, 'w-tendency' ) |
---|
[1] | 1033 | |
---|
[106] | 1034 | ! |
---|
| 1035 | !-- Prognostic equation for w-velocity component |
---|
| 1036 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1037 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 1038 | dt_3d * ( & |
---|
| 1039 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 1040 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 1041 | ) - & |
---|
| 1042 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1043 | ENDDO |
---|
| 1044 | |
---|
| 1045 | ! |
---|
| 1046 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1047 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1048 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1049 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1050 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1051 | ENDDO |
---|
| 1052 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1053 | intermediate_timestep_count_max ) THEN |
---|
| 1054 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1055 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1056 | ENDDO |
---|
| 1057 | ENDIF |
---|
| 1058 | ENDIF |
---|
| 1059 | |
---|
| 1060 | ! |
---|
| 1061 | !-- Tendency terms for potential temperature |
---|
| 1062 | tend(:,j,i) = 0.0 |
---|
| 1063 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1064 | CALL advec_s_pw( i, j, pt ) |
---|
| 1065 | ELSE |
---|
| 1066 | CALL advec_s_up( i, j, pt ) |
---|
| 1067 | ENDIF |
---|
| 1068 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 1069 | THEN |
---|
| 1070 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
[129] | 1071 | tswst_m, wall_heatflux, tend ) |
---|
[106] | 1072 | ELSE |
---|
[129] | 1073 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 1074 | wall_heatflux, tend ) |
---|
[106] | 1075 | ENDIF |
---|
| 1076 | |
---|
| 1077 | ! |
---|
| 1078 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 1079 | !-- processes |
---|
| 1080 | IF ( radiation ) THEN |
---|
| 1081 | CALL calc_radiation( i, j ) |
---|
| 1082 | ENDIF |
---|
| 1083 | |
---|
| 1084 | ! |
---|
| 1085 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1086 | IF ( precipitation ) THEN |
---|
| 1087 | CALL impact_of_latent_heat( i, j ) |
---|
| 1088 | ENDIF |
---|
[153] | 1089 | |
---|
| 1090 | ! |
---|
| 1091 | !-- Consideration of heat sources within the plant canopy |
---|
| 1092 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1093 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 1094 | ENDIF |
---|
| 1095 | |
---|
[106] | 1096 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 1097 | |
---|
| 1098 | ! |
---|
| 1099 | !-- Prognostic equation for potential temperature |
---|
| 1100 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1101 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
| 1102 | dt_3d * ( & |
---|
| 1103 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1104 | ) - & |
---|
| 1105 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1106 | ENDDO |
---|
| 1107 | |
---|
| 1108 | ! |
---|
| 1109 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1110 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1111 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1112 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1113 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1114 | ENDDO |
---|
| 1115 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1116 | intermediate_timestep_count_max ) THEN |
---|
| 1117 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1118 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1119 | 5.3125 * tpt_m(k,j,i) |
---|
| 1120 | ENDDO |
---|
| 1121 | ENDIF |
---|
| 1122 | ENDIF |
---|
| 1123 | |
---|
| 1124 | ! |
---|
| 1125 | !-- If required, compute prognostic equation for salinity |
---|
| 1126 | IF ( ocean ) THEN |
---|
| 1127 | |
---|
| 1128 | ! |
---|
| 1129 | !-- Tendency-terms for salinity |
---|
[1] | 1130 | tend(:,j,i) = 0.0 |
---|
[106] | 1131 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
[1] | 1132 | THEN |
---|
[106] | 1133 | CALL advec_s_pw( i, j, sa ) |
---|
[1] | 1134 | ELSE |
---|
[106] | 1135 | CALL advec_s_up( i, j, sa ) |
---|
[1] | 1136 | ENDIF |
---|
[106] | 1137 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
[129] | 1138 | wall_salinityflux, tend ) |
---|
[1] | 1139 | |
---|
[106] | 1140 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 1141 | |
---|
[1] | 1142 | ! |
---|
[106] | 1143 | !-- Prognostic equation for salinity |
---|
| 1144 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1145 | sa_p(k,j,i) = tsc(1) * sa(k,j,i) + & |
---|
| 1146 | dt_3d * ( & |
---|
| 1147 | tsc(2) * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 1148 | ) - & |
---|
| 1149 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 1150 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
[1] | 1151 | ENDDO |
---|
| 1152 | |
---|
| 1153 | ! |
---|
| 1154 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1155 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1156 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[106] | 1157 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1158 | tsa_m(k,j,i) = tend(k,j,i) |
---|
[1] | 1159 | ENDDO |
---|
| 1160 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1161 | intermediate_timestep_count_max ) THEN |
---|
[106] | 1162 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1163 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1164 | 5.3125 * tsa_m(k,j,i) |
---|
[1] | 1165 | ENDDO |
---|
| 1166 | ENDIF |
---|
| 1167 | ENDIF |
---|
| 1168 | |
---|
| 1169 | ! |
---|
[106] | 1170 | !-- Calculate density by the equation of state for seawater |
---|
| 1171 | CALL eqn_state_seawater( i, j ) |
---|
| 1172 | |
---|
| 1173 | ENDIF |
---|
| 1174 | |
---|
| 1175 | ! |
---|
| 1176 | !-- If required, compute prognostic equation for total water content / |
---|
| 1177 | !-- scalar |
---|
| 1178 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1179 | |
---|
| 1180 | ! |
---|
| 1181 | !-- Tendency-terms for total water content / scalar |
---|
[1] | 1182 | tend(:,j,i) = 0.0 |
---|
[106] | 1183 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 1184 | THEN |
---|
| 1185 | CALL advec_s_pw( i, j, q ) |
---|
[1] | 1186 | ELSE |
---|
[106] | 1187 | CALL advec_s_up( i, j, q ) |
---|
[1] | 1188 | ENDIF |
---|
[106] | 1189 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
[1] | 1190 | THEN |
---|
[106] | 1191 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
[129] | 1192 | qswst_m, wall_qflux, tend ) |
---|
[1] | 1193 | ELSE |
---|
[106] | 1194 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
[129] | 1195 | wall_qflux, tend ) |
---|
[1] | 1196 | ENDIF |
---|
[106] | 1197 | |
---|
[1] | 1198 | ! |
---|
[106] | 1199 | !-- If required compute decrease of total water content due to |
---|
| 1200 | !-- precipitation |
---|
[1] | 1201 | IF ( precipitation ) THEN |
---|
[106] | 1202 | CALL calc_precipitation( i, j ) |
---|
[1] | 1203 | ENDIF |
---|
[153] | 1204 | |
---|
| 1205 | ! |
---|
| 1206 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1207 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
| 1208 | |
---|
| 1209 | |
---|
[106] | 1210 | CALL user_actions( i, j, 'q-tendency' ) |
---|
[1] | 1211 | |
---|
| 1212 | ! |
---|
[106] | 1213 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 1214 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1215 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
| 1216 | dt_3d * ( & |
---|
| 1217 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1218 | ) - & |
---|
| 1219 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
| 1220 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 1221 | ENDDO |
---|
| 1222 | |
---|
| 1223 | ! |
---|
| 1224 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1225 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1226 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 1227 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1228 | tq_m(k,j,i) = tend(k,j,i) |
---|
[1] | 1229 | ENDDO |
---|
| 1230 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1231 | intermediate_timestep_count_max ) THEN |
---|
[19] | 1232 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1233 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1234 | 5.3125 * tq_m(k,j,i) |
---|
[1] | 1235 | ENDDO |
---|
| 1236 | ENDIF |
---|
| 1237 | ENDIF |
---|
| 1238 | |
---|
[106] | 1239 | ENDIF |
---|
[95] | 1240 | |
---|
| 1241 | ! |
---|
[106] | 1242 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1243 | !-- energy (TKE) |
---|
| 1244 | IF ( .NOT. constant_diffusion ) THEN |
---|
[95] | 1245 | |
---|
| 1246 | ! |
---|
[106] | 1247 | !-- Tendency-terms for TKE |
---|
| 1248 | tend(:,j,i) = 0.0 |
---|
| 1249 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 1250 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
| 1251 | CALL advec_s_pw( i, j, e ) |
---|
| 1252 | ELSE |
---|
| 1253 | CALL advec_s_up( i, j, e ) |
---|
[95] | 1254 | ENDIF |
---|
[106] | 1255 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 1256 | THEN |
---|
| 1257 | IF ( .NOT. humidity ) THEN |
---|
| 1258 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 1259 | km_m, l_grid, pt_m, pt_reference, & |
---|
| 1260 | rif_m, tend, zu, zw ) |
---|
[1] | 1261 | ELSE |
---|
[106] | 1262 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 1263 | km_m, l_grid, vpt_m, pt_reference, & |
---|
| 1264 | rif_m, tend, zu, zw ) |
---|
[1] | 1265 | ENDIF |
---|
[106] | 1266 | ELSE |
---|
| 1267 | IF ( .NOT. humidity ) THEN |
---|
| 1268 | IF ( ocean ) THEN |
---|
[388] | 1269 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 1270 | km, l_grid, prho, prho_reference, & |
---|
[106] | 1271 | rif, tend, zu, zw ) |
---|
[1] | 1272 | ELSE |
---|
[106] | 1273 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 1274 | km, l_grid, pt, pt_reference, rif, & |
---|
| 1275 | tend, zu, zw ) |
---|
[1] | 1276 | ENDIF |
---|
| 1277 | ELSE |
---|
[106] | 1278 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 1279 | l_grid, vpt, pt_reference, rif, tend, & |
---|
| 1280 | zu, zw ) |
---|
[1] | 1281 | ENDIF |
---|
[106] | 1282 | ENDIF |
---|
| 1283 | CALL production_e( i, j ) |
---|
[138] | 1284 | |
---|
| 1285 | ! |
---|
| 1286 | !-- Additional sink term for flows through plant canopies |
---|
[153] | 1287 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
[138] | 1288 | |
---|
[106] | 1289 | CALL user_actions( i, j, 'e-tendency' ) |
---|
[1] | 1290 | |
---|
| 1291 | ! |
---|
[106] | 1292 | !-- Prognostic equation for TKE. |
---|
| 1293 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1294 | !-- reasons in the course of the integration. In such cases the old |
---|
| 1295 | !-- TKE value is reduced by 90%. |
---|
| 1296 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1297 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
| 1298 | dt_3d * ( & |
---|
| 1299 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 1300 | ) |
---|
| 1301 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1302 | ENDDO |
---|
[1] | 1303 | |
---|
| 1304 | ! |
---|
[106] | 1305 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1306 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1307 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1308 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1309 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1310 | ENDDO |
---|
| 1311 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1312 | intermediate_timestep_count_max ) THEN |
---|
| 1313 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1314 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1315 | 5.3125 * te_m(k,j,i) |
---|
| 1316 | ENDDO |
---|
[1] | 1317 | ENDIF |
---|
[106] | 1318 | ENDIF |
---|
[1] | 1319 | |
---|
[106] | 1320 | ENDIF ! TKE equation |
---|
[1] | 1321 | |
---|
| 1322 | ENDDO |
---|
| 1323 | ENDDO |
---|
| 1324 | !$OMP END PARALLEL |
---|
| 1325 | |
---|
| 1326 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 1327 | |
---|
| 1328 | |
---|
[63] | 1329 | END SUBROUTINE prognostic_equations_cache |
---|
[1] | 1330 | |
---|
| 1331 | |
---|
[63] | 1332 | SUBROUTINE prognostic_equations_vector |
---|
[1] | 1333 | |
---|
| 1334 | !------------------------------------------------------------------------------! |
---|
| 1335 | ! Version for vector machines |
---|
| 1336 | !------------------------------------------------------------------------------! |
---|
| 1337 | |
---|
| 1338 | IMPLICIT NONE |
---|
| 1339 | |
---|
| 1340 | CHARACTER (LEN=9) :: time_to_string |
---|
| 1341 | INTEGER :: i, j, k |
---|
| 1342 | REAL :: sat, sbt |
---|
| 1343 | |
---|
| 1344 | ! |
---|
| 1345 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 1346 | !-- global communication |
---|
[96] | 1347 | CALL calc_mean_profile( pt, 4 ) |
---|
| 1348 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 1349 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 1350 | |
---|
| 1351 | ! |
---|
| 1352 | !-- u-velocity component |
---|
| 1353 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1354 | |
---|
| 1355 | ! |
---|
| 1356 | !-- u-tendency terms with communication |
---|
| 1357 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1358 | tend = 0.0 |
---|
| 1359 | CALL advec_u_ups |
---|
| 1360 | ENDIF |
---|
| 1361 | |
---|
| 1362 | ! |
---|
| 1363 | !-- u-tendency terms with no communication |
---|
| 1364 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1365 | tend = 0.0 |
---|
| 1366 | CALL advec_u_pw |
---|
| 1367 | ELSE |
---|
| 1368 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1369 | tend = 0.0 |
---|
| 1370 | CALL advec_u_up |
---|
| 1371 | ENDIF |
---|
| 1372 | ENDIF |
---|
| 1373 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[102] | 1374 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, & |
---|
| 1375 | uswst_m, v_m, w_m ) |
---|
[1] | 1376 | ELSE |
---|
[102] | 1377 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, uswst, v, w ) |
---|
[1] | 1378 | ENDIF |
---|
| 1379 | CALL coriolis( 1 ) |
---|
[97] | 1380 | IF ( sloping_surface ) CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
[138] | 1381 | |
---|
| 1382 | ! |
---|
| 1383 | !-- Drag by plant canopy |
---|
| 1384 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1385 | |
---|
[240] | 1386 | ! |
---|
| 1387 | !-- External pressure gradient |
---|
| 1388 | IF ( dp_external ) THEN |
---|
| 1389 | DO i = nxlu, nxr |
---|
| 1390 | DO j = nys, nyn |
---|
| 1391 | DO k = dp_level_ind_b+1, nzt |
---|
| 1392 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1393 | ENDDO |
---|
| 1394 | ENDDO |
---|
| 1395 | ENDDO |
---|
| 1396 | ENDIF |
---|
| 1397 | |
---|
[1] | 1398 | CALL user_actions( 'u-tendency' ) |
---|
| 1399 | |
---|
| 1400 | ! |
---|
| 1401 | !-- Prognostic equation for u-velocity component |
---|
[106] | 1402 | DO i = nxlu, nxr |
---|
[1] | 1403 | DO j = nys, nyn |
---|
| 1404 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1405 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 1406 | dt_3d * ( & |
---|
| 1407 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 1408 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 1409 | ) - & |
---|
| 1410 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1411 | ENDDO |
---|
| 1412 | ENDDO |
---|
| 1413 | ENDDO |
---|
| 1414 | |
---|
| 1415 | ! |
---|
| 1416 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1417 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1418 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[106] | 1419 | DO i = nxlu, nxr |
---|
[1] | 1420 | DO j = nys, nyn |
---|
| 1421 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1422 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1423 | ENDDO |
---|
| 1424 | ENDDO |
---|
| 1425 | ENDDO |
---|
| 1426 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1427 | intermediate_timestep_count_max ) THEN |
---|
[106] | 1428 | DO i = nxlu, nxr |
---|
[1] | 1429 | DO j = nys, nyn |
---|
| 1430 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1431 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 1432 | ENDDO |
---|
| 1433 | ENDDO |
---|
| 1434 | ENDDO |
---|
| 1435 | ENDIF |
---|
| 1436 | ENDIF |
---|
| 1437 | |
---|
| 1438 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1439 | |
---|
| 1440 | ! |
---|
| 1441 | !-- v-velocity component |
---|
| 1442 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1443 | |
---|
| 1444 | ! |
---|
| 1445 | !-- v-tendency terms with communication |
---|
| 1446 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1447 | tend = 0.0 |
---|
| 1448 | CALL advec_v_ups |
---|
| 1449 | ENDIF |
---|
| 1450 | |
---|
| 1451 | ! |
---|
| 1452 | !-- v-tendency terms with no communication |
---|
| 1453 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1454 | tend = 0.0 |
---|
| 1455 | CALL advec_v_pw |
---|
| 1456 | ELSE |
---|
| 1457 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1458 | tend = 0.0 |
---|
| 1459 | CALL advec_v_up |
---|
| 1460 | ENDIF |
---|
| 1461 | ENDIF |
---|
| 1462 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1463 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
[102] | 1464 | vswst_m, w_m ) |
---|
[1] | 1465 | ELSE |
---|
[102] | 1466 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, vswst, w ) |
---|
[1] | 1467 | ENDIF |
---|
| 1468 | CALL coriolis( 2 ) |
---|
[138] | 1469 | |
---|
| 1470 | ! |
---|
| 1471 | !-- Drag by plant canopy |
---|
| 1472 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
[240] | 1473 | |
---|
| 1474 | ! |
---|
| 1475 | !-- External pressure gradient |
---|
| 1476 | IF ( dp_external ) THEN |
---|
| 1477 | DO i = nxl, nxr |
---|
| 1478 | DO j = nysv, nyn |
---|
| 1479 | DO k = dp_level_ind_b+1, nzt |
---|
| 1480 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1481 | ENDDO |
---|
| 1482 | ENDDO |
---|
| 1483 | ENDDO |
---|
| 1484 | ENDIF |
---|
| 1485 | |
---|
[1] | 1486 | CALL user_actions( 'v-tendency' ) |
---|
| 1487 | |
---|
| 1488 | ! |
---|
| 1489 | !-- Prognostic equation for v-velocity component |
---|
| 1490 | DO i = nxl, nxr |
---|
[106] | 1491 | DO j = nysv, nyn |
---|
[1] | 1492 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1493 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 1494 | dt_3d * ( & |
---|
| 1495 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 1496 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 1497 | ) - & |
---|
| 1498 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1499 | ENDDO |
---|
| 1500 | ENDDO |
---|
| 1501 | ENDDO |
---|
| 1502 | |
---|
| 1503 | ! |
---|
| 1504 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1505 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1506 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1507 | DO i = nxl, nxr |
---|
[106] | 1508 | DO j = nysv, nyn |
---|
[1] | 1509 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1510 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1511 | ENDDO |
---|
| 1512 | ENDDO |
---|
| 1513 | ENDDO |
---|
| 1514 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1515 | intermediate_timestep_count_max ) THEN |
---|
| 1516 | DO i = nxl, nxr |
---|
[106] | 1517 | DO j = nysv, nyn |
---|
[1] | 1518 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1519 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1520 | ENDDO |
---|
| 1521 | ENDDO |
---|
| 1522 | ENDDO |
---|
| 1523 | ENDIF |
---|
| 1524 | ENDIF |
---|
| 1525 | |
---|
| 1526 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1527 | |
---|
| 1528 | ! |
---|
| 1529 | !-- w-velocity component |
---|
| 1530 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1531 | |
---|
| 1532 | ! |
---|
| 1533 | !-- w-tendency terms with communication |
---|
| 1534 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1535 | tend = 0.0 |
---|
| 1536 | CALL advec_w_ups |
---|
| 1537 | ENDIF |
---|
| 1538 | |
---|
| 1539 | ! |
---|
| 1540 | !-- w-tendency terms with no communication |
---|
| 1541 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1542 | tend = 0.0 |
---|
| 1543 | CALL advec_w_pw |
---|
| 1544 | ELSE |
---|
| 1545 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1546 | tend = 0.0 |
---|
| 1547 | CALL advec_w_up |
---|
| 1548 | ENDIF |
---|
| 1549 | ENDIF |
---|
| 1550 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1551 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
[57] | 1552 | v_m, w_m ) |
---|
[1] | 1553 | ELSE |
---|
[57] | 1554 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w ) |
---|
[1] | 1555 | ENDIF |
---|
| 1556 | CALL coriolis( 3 ) |
---|
[97] | 1557 | IF ( ocean ) THEN |
---|
[388] | 1558 | CALL buoyancy( rho, rho_reference, 3, 64 ) |
---|
[1] | 1559 | ELSE |
---|
[97] | 1560 | IF ( .NOT. humidity ) THEN |
---|
| 1561 | CALL buoyancy( pt, pt_reference, 3, 4 ) |
---|
| 1562 | ELSE |
---|
| 1563 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
| 1564 | ENDIF |
---|
[1] | 1565 | ENDIF |
---|
[138] | 1566 | |
---|
| 1567 | ! |
---|
| 1568 | !-- Drag by plant canopy |
---|
| 1569 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1570 | |
---|
[1] | 1571 | CALL user_actions( 'w-tendency' ) |
---|
| 1572 | |
---|
| 1573 | ! |
---|
| 1574 | !-- Prognostic equation for w-velocity component |
---|
| 1575 | DO i = nxl, nxr |
---|
| 1576 | DO j = nys, nyn |
---|
| 1577 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1578 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 1579 | dt_3d * ( & |
---|
| 1580 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 1581 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 1582 | ) - & |
---|
| 1583 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1584 | ENDDO |
---|
| 1585 | ENDDO |
---|
| 1586 | ENDDO |
---|
| 1587 | |
---|
| 1588 | ! |
---|
| 1589 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1590 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1591 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1592 | DO i = nxl, nxr |
---|
| 1593 | DO j = nys, nyn |
---|
| 1594 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1595 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1596 | ENDDO |
---|
| 1597 | ENDDO |
---|
| 1598 | ENDDO |
---|
| 1599 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1600 | intermediate_timestep_count_max ) THEN |
---|
| 1601 | DO i = nxl, nxr |
---|
| 1602 | DO j = nys, nyn |
---|
| 1603 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1604 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1605 | ENDDO |
---|
| 1606 | ENDDO |
---|
| 1607 | ENDDO |
---|
| 1608 | ENDIF |
---|
| 1609 | ENDIF |
---|
| 1610 | |
---|
| 1611 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1612 | |
---|
| 1613 | ! |
---|
| 1614 | !-- potential temperature |
---|
| 1615 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1616 | |
---|
| 1617 | ! |
---|
| 1618 | !-- pt-tendency terms with communication |
---|
[63] | 1619 | sat = tsc(1) |
---|
| 1620 | sbt = tsc(2) |
---|
[1] | 1621 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1622 | |
---|
| 1623 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1624 | ! |
---|
[63] | 1625 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1626 | !-- switched on. Thus: |
---|
| 1627 | sat = 1.0 |
---|
| 1628 | sbt = 1.0 |
---|
| 1629 | ENDIF |
---|
[1] | 1630 | tend = 0.0 |
---|
| 1631 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1632 | ELSE |
---|
| 1633 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 1634 | tend = 0.0 |
---|
| 1635 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 1636 | ENDIF |
---|
| 1637 | ENDIF |
---|
| 1638 | |
---|
| 1639 | ! |
---|
| 1640 | !-- pt-tendency terms with no communication |
---|
| 1641 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 1642 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
| 1643 | tend ) |
---|
[1] | 1644 | ELSE |
---|
| 1645 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1646 | tend = 0.0 |
---|
| 1647 | CALL advec_s_pw( pt ) |
---|
| 1648 | ELSE |
---|
| 1649 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1650 | tend = 0.0 |
---|
| 1651 | CALL advec_s_up( pt ) |
---|
| 1652 | ENDIF |
---|
| 1653 | ENDIF |
---|
| 1654 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[129] | 1655 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tswst_m, & |
---|
| 1656 | wall_heatflux, tend ) |
---|
[1] | 1657 | ELSE |
---|
[129] | 1658 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
| 1659 | tend ) |
---|
[1] | 1660 | ENDIF |
---|
| 1661 | ENDIF |
---|
| 1662 | |
---|
| 1663 | ! |
---|
| 1664 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 1665 | !-- processes |
---|
| 1666 | IF ( radiation ) THEN |
---|
| 1667 | CALL calc_radiation |
---|
| 1668 | ENDIF |
---|
| 1669 | |
---|
| 1670 | ! |
---|
| 1671 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1672 | IF ( precipitation ) THEN |
---|
| 1673 | CALL impact_of_latent_heat |
---|
| 1674 | ENDIF |
---|
[153] | 1675 | |
---|
| 1676 | ! |
---|
| 1677 | !-- Consideration of heat sources within the plant canopy |
---|
| 1678 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1679 | CALL plant_canopy_model( 4 ) |
---|
| 1680 | ENDIF |
---|
| 1681 | |
---|
| 1682 | |
---|
[1] | 1683 | CALL user_actions( 'pt-tendency' ) |
---|
| 1684 | |
---|
| 1685 | ! |
---|
| 1686 | !-- Prognostic equation for potential temperature |
---|
| 1687 | DO i = nxl, nxr |
---|
| 1688 | DO j = nys, nyn |
---|
[19] | 1689 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1690 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 1691 | dt_3d * ( & |
---|
| 1692 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1693 | ) - & |
---|
| 1694 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1695 | ENDDO |
---|
| 1696 | ENDDO |
---|
| 1697 | ENDDO |
---|
| 1698 | |
---|
| 1699 | ! |
---|
| 1700 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1701 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1702 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1703 | DO i = nxl, nxr |
---|
| 1704 | DO j = nys, nyn |
---|
[19] | 1705 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1706 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1707 | ENDDO |
---|
| 1708 | ENDDO |
---|
| 1709 | ENDDO |
---|
| 1710 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1711 | intermediate_timestep_count_max ) THEN |
---|
| 1712 | DO i = nxl, nxr |
---|
| 1713 | DO j = nys, nyn |
---|
[19] | 1714 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1715 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 1716 | ENDDO |
---|
| 1717 | ENDDO |
---|
| 1718 | ENDDO |
---|
| 1719 | ENDIF |
---|
| 1720 | ENDIF |
---|
| 1721 | |
---|
| 1722 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1723 | |
---|
| 1724 | ! |
---|
[95] | 1725 | !-- If required, compute prognostic equation for salinity |
---|
| 1726 | IF ( ocean ) THEN |
---|
| 1727 | |
---|
| 1728 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1729 | |
---|
| 1730 | ! |
---|
| 1731 | !-- sa-tendency terms with communication |
---|
| 1732 | sat = tsc(1) |
---|
| 1733 | sbt = tsc(2) |
---|
| 1734 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1735 | |
---|
| 1736 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1737 | ! |
---|
| 1738 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1739 | !-- switched on. Thus: |
---|
| 1740 | sat = 1.0 |
---|
| 1741 | sbt = 1.0 |
---|
| 1742 | ENDIF |
---|
| 1743 | tend = 0.0 |
---|
| 1744 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 1745 | ELSE |
---|
| 1746 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1747 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1748 | tend = 0.0 |
---|
| 1749 | CALL advec_s_ups( sa, 'sa' ) |
---|
| 1750 | ENDIF |
---|
| 1751 | ENDIF |
---|
| 1752 | ENDIF |
---|
| 1753 | |
---|
| 1754 | ! |
---|
[129] | 1755 | !-- sa-tendency terms with no communication |
---|
[95] | 1756 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 1757 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 1758 | wall_salinityflux, tend ) |
---|
[95] | 1759 | ELSE |
---|
| 1760 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1761 | tend = 0.0 |
---|
| 1762 | CALL advec_s_pw( sa ) |
---|
| 1763 | ELSE |
---|
| 1764 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1765 | tend = 0.0 |
---|
| 1766 | CALL advec_s_up( sa ) |
---|
| 1767 | ENDIF |
---|
| 1768 | ENDIF |
---|
[129] | 1769 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 1770 | wall_salinityflux, tend ) |
---|
[95] | 1771 | ENDIF |
---|
| 1772 | |
---|
| 1773 | CALL user_actions( 'sa-tendency' ) |
---|
| 1774 | |
---|
| 1775 | ! |
---|
| 1776 | !-- Prognostic equation for salinity |
---|
| 1777 | DO i = nxl, nxr |
---|
| 1778 | DO j = nys, nyn |
---|
| 1779 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1780 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
| 1781 | dt_3d * ( & |
---|
| 1782 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 1783 | ) - & |
---|
| 1784 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 1785 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1786 | ENDDO |
---|
| 1787 | ENDDO |
---|
| 1788 | ENDDO |
---|
| 1789 | |
---|
| 1790 | ! |
---|
| 1791 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1792 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1793 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1794 | DO i = nxl, nxr |
---|
| 1795 | DO j = nys, nyn |
---|
| 1796 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1797 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1798 | ENDDO |
---|
| 1799 | ENDDO |
---|
| 1800 | ENDDO |
---|
| 1801 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1802 | intermediate_timestep_count_max ) THEN |
---|
| 1803 | DO i = nxl, nxr |
---|
| 1804 | DO j = nys, nyn |
---|
| 1805 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1806 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1807 | 5.3125 * tsa_m(k,j,i) |
---|
| 1808 | ENDDO |
---|
| 1809 | ENDDO |
---|
| 1810 | ENDDO |
---|
| 1811 | ENDIF |
---|
| 1812 | ENDIF |
---|
| 1813 | |
---|
| 1814 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1815 | |
---|
[96] | 1816 | ! |
---|
| 1817 | !-- Calculate density by the equation of state for seawater |
---|
| 1818 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1819 | CALL eqn_state_seawater |
---|
| 1820 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1821 | |
---|
[95] | 1822 | ENDIF |
---|
| 1823 | |
---|
| 1824 | ! |
---|
[1] | 1825 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 1826 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 1827 | |
---|
| 1828 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1829 | |
---|
| 1830 | ! |
---|
| 1831 | !-- Scalar/q-tendency terms with communication |
---|
[63] | 1832 | sat = tsc(1) |
---|
| 1833 | sbt = tsc(2) |
---|
[1] | 1834 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1835 | |
---|
| 1836 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1837 | ! |
---|
[63] | 1838 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1839 | !-- switched on. Thus: |
---|
| 1840 | sat = 1.0 |
---|
| 1841 | sbt = 1.0 |
---|
| 1842 | ENDIF |
---|
[1] | 1843 | tend = 0.0 |
---|
| 1844 | CALL advec_s_bc( q, 'q' ) |
---|
| 1845 | ELSE |
---|
| 1846 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1847 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1848 | tend = 0.0 |
---|
| 1849 | CALL advec_s_ups( q, 'q' ) |
---|
| 1850 | ENDIF |
---|
| 1851 | ENDIF |
---|
| 1852 | ENDIF |
---|
| 1853 | |
---|
| 1854 | ! |
---|
| 1855 | !-- Scalar/q-tendency terms with no communication |
---|
| 1856 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 1857 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, wall_qflux, tend ) |
---|
[1] | 1858 | ELSE |
---|
| 1859 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1860 | tend = 0.0 |
---|
| 1861 | CALL advec_s_pw( q ) |
---|
| 1862 | ELSE |
---|
| 1863 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1864 | tend = 0.0 |
---|
| 1865 | CALL advec_s_up( q ) |
---|
| 1866 | ENDIF |
---|
| 1867 | ENDIF |
---|
| 1868 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[129] | 1869 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, qswst_m, & |
---|
| 1870 | wall_qflux, tend ) |
---|
[1] | 1871 | ELSE |
---|
[129] | 1872 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 1873 | wall_qflux, tend ) |
---|
[1] | 1874 | ENDIF |
---|
| 1875 | ENDIF |
---|
| 1876 | |
---|
| 1877 | ! |
---|
| 1878 | !-- If required compute decrease of total water content due to |
---|
| 1879 | !-- precipitation |
---|
| 1880 | IF ( precipitation ) THEN |
---|
| 1881 | CALL calc_precipitation |
---|
| 1882 | ENDIF |
---|
[153] | 1883 | |
---|
| 1884 | ! |
---|
| 1885 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1886 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1887 | |
---|
[1] | 1888 | CALL user_actions( 'q-tendency' ) |
---|
| 1889 | |
---|
| 1890 | ! |
---|
| 1891 | !-- Prognostic equation for total water content / scalar |
---|
| 1892 | DO i = nxl, nxr |
---|
| 1893 | DO j = nys, nyn |
---|
[19] | 1894 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1895 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 1896 | dt_3d * ( & |
---|
| 1897 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1898 | ) - & |
---|
| 1899 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 1900 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 1901 | ENDDO |
---|
| 1902 | ENDDO |
---|
| 1903 | ENDDO |
---|
| 1904 | |
---|
| 1905 | ! |
---|
| 1906 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1907 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1908 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1909 | DO i = nxl, nxr |
---|
| 1910 | DO j = nys, nyn |
---|
[19] | 1911 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1912 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1913 | ENDDO |
---|
| 1914 | ENDDO |
---|
| 1915 | ENDDO |
---|
| 1916 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1917 | intermediate_timestep_count_max ) THEN |
---|
| 1918 | DO i = nxl, nxr |
---|
| 1919 | DO j = nys, nyn |
---|
[19] | 1920 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1921 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1922 | ENDDO |
---|
| 1923 | ENDDO |
---|
| 1924 | ENDDO |
---|
| 1925 | ENDIF |
---|
| 1926 | ENDIF |
---|
| 1927 | |
---|
| 1928 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1929 | |
---|
| 1930 | ENDIF |
---|
| 1931 | |
---|
| 1932 | ! |
---|
| 1933 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1934 | !-- energy (TKE) |
---|
| 1935 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1936 | |
---|
| 1937 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1938 | |
---|
| 1939 | ! |
---|
| 1940 | !-- TKE-tendency terms with communication |
---|
| 1941 | CALL production_e_init |
---|
[63] | 1942 | |
---|
| 1943 | sat = tsc(1) |
---|
| 1944 | sbt = tsc(2) |
---|
[1] | 1945 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1946 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1947 | |
---|
| 1948 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1949 | ! |
---|
[63] | 1950 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1951 | !-- switched on. Thus: |
---|
| 1952 | sat = 1.0 |
---|
| 1953 | sbt = 1.0 |
---|
| 1954 | ENDIF |
---|
[1] | 1955 | tend = 0.0 |
---|
| 1956 | CALL advec_s_bc( e, 'e' ) |
---|
| 1957 | ELSE |
---|
| 1958 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1959 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1960 | tend = 0.0 |
---|
| 1961 | CALL advec_s_ups( e, 'e' ) |
---|
| 1962 | ENDIF |
---|
| 1963 | ENDIF |
---|
| 1964 | ENDIF |
---|
| 1965 | ENDIF |
---|
| 1966 | |
---|
| 1967 | ! |
---|
| 1968 | !-- TKE-tendency terms with no communication |
---|
| 1969 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
| 1970 | THEN |
---|
[75] | 1971 | IF ( .NOT. humidity ) THEN |
---|
[97] | 1972 | IF ( ocean ) THEN |
---|
[388] | 1973 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
| 1974 | prho, prho_reference, rif, tend, zu, zw ) |
---|
[97] | 1975 | ELSE |
---|
| 1976 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
| 1977 | pt_reference, rif, tend, zu, zw ) |
---|
| 1978 | ENDIF |
---|
[1] | 1979 | ELSE |
---|
| 1980 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
[97] | 1981 | pt_reference, rif, tend, zu, zw ) |
---|
[1] | 1982 | ENDIF |
---|
| 1983 | ELSE |
---|
| 1984 | IF ( use_upstream_for_tke ) THEN |
---|
| 1985 | tend = 0.0 |
---|
| 1986 | CALL advec_s_up( e ) |
---|
| 1987 | ELSE |
---|
| 1988 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1989 | tend = 0.0 |
---|
| 1990 | CALL advec_s_pw( e ) |
---|
| 1991 | ELSE |
---|
| 1992 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1993 | tend = 0.0 |
---|
| 1994 | CALL advec_s_up( e ) |
---|
| 1995 | ENDIF |
---|
| 1996 | ENDIF |
---|
| 1997 | ENDIF |
---|
| 1998 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[75] | 1999 | IF ( .NOT. humidity ) THEN |
---|
[1] | 2000 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
[97] | 2001 | pt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
[1] | 2002 | ELSE |
---|
| 2003 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
[97] | 2004 | vpt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
[1] | 2005 | ENDIF |
---|
| 2006 | ELSE |
---|
[75] | 2007 | IF ( .NOT. humidity ) THEN |
---|
[97] | 2008 | IF ( ocean ) THEN |
---|
| 2009 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
[388] | 2010 | prho, prho_reference, rif, tend, zu, zw ) |
---|
[97] | 2011 | ELSE |
---|
| 2012 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
| 2013 | pt, pt_reference, rif, tend, zu, zw ) |
---|
| 2014 | ENDIF |
---|
[1] | 2015 | ELSE |
---|
| 2016 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
[97] | 2017 | pt_reference, rif, tend, zu, zw ) |
---|
[1] | 2018 | ENDIF |
---|
| 2019 | ENDIF |
---|
| 2020 | ENDIF |
---|
| 2021 | CALL production_e |
---|
[138] | 2022 | |
---|
| 2023 | ! |
---|
| 2024 | !-- Additional sink term for flows through plant canopies |
---|
[153] | 2025 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
[1] | 2026 | CALL user_actions( 'e-tendency' ) |
---|
| 2027 | |
---|
| 2028 | ! |
---|
| 2029 | !-- Prognostic equation for TKE. |
---|
| 2030 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2031 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2032 | !-- value is reduced by 90%. |
---|
| 2033 | DO i = nxl, nxr |
---|
| 2034 | DO j = nys, nyn |
---|
[19] | 2035 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 2036 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 2037 | dt_3d * ( & |
---|
| 2038 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 2039 | ) |
---|
| 2040 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 2041 | ENDDO |
---|
| 2042 | ENDDO |
---|
| 2043 | ENDDO |
---|
| 2044 | |
---|
| 2045 | ! |
---|
| 2046 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 2047 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2048 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 2049 | DO i = nxl, nxr |
---|
| 2050 | DO j = nys, nyn |
---|
[19] | 2051 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 2052 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2053 | ENDDO |
---|
| 2054 | ENDDO |
---|
| 2055 | ENDDO |
---|
| 2056 | ELSEIF ( intermediate_timestep_count < & |
---|
| 2057 | intermediate_timestep_count_max ) THEN |
---|
| 2058 | DO i = nxl, nxr |
---|
| 2059 | DO j = nys, nyn |
---|
[19] | 2060 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 2061 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 2062 | ENDDO |
---|
| 2063 | ENDDO |
---|
| 2064 | ENDDO |
---|
| 2065 | ENDIF |
---|
| 2066 | ENDIF |
---|
| 2067 | |
---|
| 2068 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2069 | |
---|
| 2070 | ENDIF |
---|
| 2071 | |
---|
| 2072 | |
---|
[63] | 2073 | END SUBROUTINE prognostic_equations_vector |
---|
[1] | 2074 | |
---|
| 2075 | |
---|
| 2076 | END MODULE prognostic_equations_mod |
---|