[1] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[240] | 6 | ! external pressure gradient |
---|
[98] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
| 10 | ! $Id: prognostic_equations.f90 240 2009-02-18 17:50:38Z weinreis $ |
---|
| 11 | ! |
---|
[198] | 12 | ! 153 2008-03-19 09:41:30Z steinfeld |
---|
| 13 | ! add call of plant_canopy_model in the prognostic equation for |
---|
| 14 | ! the potential temperature and for the passive scalar |
---|
| 15 | ! |
---|
[139] | 16 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 17 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
| 18 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
| 19 | ! |
---|
[110] | 20 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 21 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
| 22 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
| 23 | ! for non-cyclic boundary conditions) |
---|
| 24 | ! |
---|
[98] | 25 | ! 97 2007-06-21 08:23:15Z raasch |
---|
[96] | 26 | ! prognostic equation for salinity, density is calculated from equation of |
---|
[97] | 27 | ! state for seawater and is used for calculation of buoyancy, |
---|
| 28 | ! +eqn_state_seawater_mod |
---|
| 29 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
| 30 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
| 31 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
[96] | 32 | ! calc_mean_profile |
---|
[1] | 33 | ! |
---|
[77] | 34 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 35 | ! checking for negative q and limiting for positive values, |
---|
| 36 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
| 37 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
| 38 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
| 39 | ! _vector-version |
---|
| 40 | ! |
---|
[39] | 41 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 42 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
| 43 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
| 44 | ! |
---|
[3] | 45 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 46 | ! |
---|
[1] | 47 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
| 48 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
| 49 | ! regardless of the timestep scheme used for the other quantities, |
---|
| 50 | ! new argument diss in call of diffusion_e |
---|
| 51 | ! |
---|
| 52 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 53 | ! Initial revision |
---|
| 54 | ! |
---|
| 55 | ! |
---|
| 56 | ! Description: |
---|
| 57 | ! ------------ |
---|
[19] | 58 | ! Solving the prognostic equations. |
---|
[1] | 59 | !------------------------------------------------------------------------------! |
---|
| 60 | |
---|
| 61 | USE arrays_3d |
---|
| 62 | USE control_parameters |
---|
| 63 | USE cpulog |
---|
[96] | 64 | USE eqn_state_seawater_mod |
---|
[1] | 65 | USE grid_variables |
---|
| 66 | USE indices |
---|
| 67 | USE interfaces |
---|
| 68 | USE pegrid |
---|
| 69 | USE pointer_interfaces |
---|
| 70 | USE statistics |
---|
| 71 | |
---|
| 72 | USE advec_s_pw_mod |
---|
| 73 | USE advec_s_up_mod |
---|
| 74 | USE advec_u_pw_mod |
---|
| 75 | USE advec_u_up_mod |
---|
| 76 | USE advec_v_pw_mod |
---|
| 77 | USE advec_v_up_mod |
---|
| 78 | USE advec_w_pw_mod |
---|
| 79 | USE advec_w_up_mod |
---|
| 80 | USE buoyancy_mod |
---|
| 81 | USE calc_precipitation_mod |
---|
| 82 | USE calc_radiation_mod |
---|
| 83 | USE coriolis_mod |
---|
| 84 | USE diffusion_e_mod |
---|
| 85 | USE diffusion_s_mod |
---|
| 86 | USE diffusion_u_mod |
---|
| 87 | USE diffusion_v_mod |
---|
| 88 | USE diffusion_w_mod |
---|
| 89 | USE impact_of_latent_heat_mod |
---|
[138] | 90 | USE plant_canopy_model_mod |
---|
[1] | 91 | USE production_e_mod |
---|
| 92 | USE user_actions_mod |
---|
| 93 | |
---|
| 94 | |
---|
| 95 | PRIVATE |
---|
[63] | 96 | PUBLIC prognostic_equations_noopt, prognostic_equations_cache, & |
---|
| 97 | prognostic_equations_vector |
---|
[1] | 98 | |
---|
[63] | 99 | INTERFACE prognostic_equations_noopt |
---|
| 100 | MODULE PROCEDURE prognostic_equations_noopt |
---|
| 101 | END INTERFACE prognostic_equations_noopt |
---|
[1] | 102 | |
---|
[63] | 103 | INTERFACE prognostic_equations_cache |
---|
| 104 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 105 | END INTERFACE prognostic_equations_cache |
---|
[1] | 106 | |
---|
[63] | 107 | INTERFACE prognostic_equations_vector |
---|
| 108 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 109 | END INTERFACE prognostic_equations_vector |
---|
[1] | 110 | |
---|
| 111 | |
---|
| 112 | CONTAINS |
---|
| 113 | |
---|
| 114 | |
---|
[63] | 115 | SUBROUTINE prognostic_equations_noopt |
---|
[1] | 116 | |
---|
| 117 | !------------------------------------------------------------------------------! |
---|
| 118 | ! Version with single loop optimization |
---|
| 119 | ! |
---|
| 120 | ! (Optimized over each single prognostic equation.) |
---|
| 121 | !------------------------------------------------------------------------------! |
---|
| 122 | |
---|
| 123 | IMPLICIT NONE |
---|
| 124 | |
---|
| 125 | CHARACTER (LEN=9) :: time_to_string |
---|
| 126 | INTEGER :: i, j, k |
---|
| 127 | REAL :: sat, sbt |
---|
| 128 | |
---|
| 129 | ! |
---|
| 130 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 131 | !-- global communication |
---|
[96] | 132 | CALL calc_mean_profile( pt, 4 ) |
---|
| 133 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 134 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 135 | |
---|
| 136 | ! |
---|
| 137 | !-- u-velocity component |
---|
| 138 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 139 | |
---|
| 140 | ! |
---|
| 141 | !-- u-tendency terms with communication |
---|
| 142 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 143 | tend = 0.0 |
---|
| 144 | CALL advec_u_ups |
---|
| 145 | ENDIF |
---|
| 146 | |
---|
| 147 | ! |
---|
| 148 | !-- u-tendency terms with no communication |
---|
[106] | 149 | DO i = nxlu, nxr |
---|
[1] | 150 | DO j = nys, nyn |
---|
| 151 | ! |
---|
| 152 | !-- Tendency terms |
---|
| 153 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 154 | tend(:,j,i) = 0.0 |
---|
| 155 | CALL advec_u_pw( i, j ) |
---|
| 156 | ELSE |
---|
| 157 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 158 | tend(:,j,i) = 0.0 |
---|
| 159 | CALL advec_u_up( i, j ) |
---|
| 160 | ENDIF |
---|
| 161 | ENDIF |
---|
| 162 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 163 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
[102] | 164 | usws_m, uswst_m, v_m, w_m ) |
---|
[1] | 165 | ELSE |
---|
| 166 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
[102] | 167 | uswst, v, w ) |
---|
[1] | 168 | ENDIF |
---|
| 169 | CALL coriolis( i, j, 1 ) |
---|
[97] | 170 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, 4 ) |
---|
[138] | 171 | |
---|
| 172 | ! |
---|
| 173 | !-- Drag by plant canopy |
---|
| 174 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
[240] | 175 | |
---|
| 176 | ! |
---|
| 177 | !-- External pressure gradient |
---|
| 178 | IF ( dp_external ) THEN |
---|
| 179 | DO k = dp_level_ind_b+1, nzt |
---|
| 180 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 181 | ENDDO |
---|
| 182 | ENDIF |
---|
| 183 | |
---|
[1] | 184 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 185 | |
---|
| 186 | ! |
---|
| 187 | !-- Prognostic equation for u-velocity component |
---|
| 188 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 189 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 190 | dt_3d * ( & |
---|
| 191 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 192 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 193 | ) - & |
---|
| 194 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 195 | ENDDO |
---|
| 196 | |
---|
| 197 | ! |
---|
| 198 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 199 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 200 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 201 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 202 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 203 | ENDDO |
---|
| 204 | ELSEIF ( intermediate_timestep_count < & |
---|
| 205 | intermediate_timestep_count_max ) THEN |
---|
| 206 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 207 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 208 | ENDDO |
---|
| 209 | ENDIF |
---|
| 210 | ENDIF |
---|
| 211 | |
---|
| 212 | ENDDO |
---|
| 213 | ENDDO |
---|
| 214 | |
---|
| 215 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 216 | |
---|
| 217 | ! |
---|
| 218 | !-- v-velocity component |
---|
| 219 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 220 | |
---|
| 221 | ! |
---|
| 222 | !-- v-tendency terms with communication |
---|
| 223 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 224 | tend = 0.0 |
---|
| 225 | CALL advec_v_ups |
---|
| 226 | ENDIF |
---|
| 227 | |
---|
| 228 | ! |
---|
| 229 | !-- v-tendency terms with no communication |
---|
| 230 | DO i = nxl, nxr |
---|
[106] | 231 | DO j = nysv, nyn |
---|
[1] | 232 | ! |
---|
| 233 | !-- Tendency terms |
---|
| 234 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 235 | tend(:,j,i) = 0.0 |
---|
| 236 | CALL advec_v_pw( i, j ) |
---|
| 237 | ELSE |
---|
| 238 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 239 | tend(:,j,i) = 0.0 |
---|
| 240 | CALL advec_v_up( i, j ) |
---|
| 241 | ENDIF |
---|
| 242 | ENDIF |
---|
| 243 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 244 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
[102] | 245 | v_m, vsws_m, vswst_m, w_m ) |
---|
[1] | 246 | ELSE |
---|
| 247 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[102] | 248 | vsws, vswst, w ) |
---|
[1] | 249 | ENDIF |
---|
| 250 | CALL coriolis( i, j, 2 ) |
---|
[138] | 251 | |
---|
| 252 | ! |
---|
| 253 | !-- Drag by plant canopy |
---|
| 254 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 255 | |
---|
[240] | 256 | ! |
---|
| 257 | !-- External pressure gradient |
---|
| 258 | IF ( dp_external ) THEN |
---|
| 259 | DO k = dp_level_ind_b+1, nzt |
---|
| 260 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 261 | ENDDO |
---|
| 262 | ENDIF |
---|
| 263 | |
---|
[1] | 264 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 265 | |
---|
| 266 | ! |
---|
| 267 | !-- Prognostic equation for v-velocity component |
---|
| 268 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 269 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 270 | dt_3d * ( & |
---|
| 271 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 272 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 273 | ) - & |
---|
| 274 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 275 | ENDDO |
---|
| 276 | |
---|
| 277 | ! |
---|
| 278 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 279 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 280 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 281 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 282 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 283 | ENDDO |
---|
| 284 | ELSEIF ( intermediate_timestep_count < & |
---|
| 285 | intermediate_timestep_count_max ) THEN |
---|
| 286 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 287 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 288 | ENDDO |
---|
| 289 | ENDIF |
---|
| 290 | ENDIF |
---|
| 291 | |
---|
| 292 | ENDDO |
---|
| 293 | ENDDO |
---|
| 294 | |
---|
| 295 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 296 | |
---|
| 297 | ! |
---|
| 298 | !-- w-velocity component |
---|
| 299 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 300 | |
---|
| 301 | ! |
---|
| 302 | !-- w-tendency terms with communication |
---|
| 303 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 304 | tend = 0.0 |
---|
| 305 | CALL advec_w_ups |
---|
| 306 | ENDIF |
---|
| 307 | |
---|
| 308 | ! |
---|
| 309 | !-- w-tendency terms with no communication |
---|
| 310 | DO i = nxl, nxr |
---|
| 311 | DO j = nys, nyn |
---|
| 312 | ! |
---|
| 313 | !-- Tendency terms |
---|
| 314 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 315 | tend(:,j,i) = 0.0 |
---|
| 316 | CALL advec_w_pw( i, j ) |
---|
| 317 | ELSE |
---|
| 318 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 319 | tend(:,j,i) = 0.0 |
---|
| 320 | CALL advec_w_up( i, j ) |
---|
| 321 | ENDIF |
---|
| 322 | ENDIF |
---|
| 323 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 324 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
[57] | 325 | tend, u_m, v_m, w_m ) |
---|
[1] | 326 | ELSE |
---|
| 327 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
[57] | 328 | tend, u, v, w ) |
---|
[1] | 329 | ENDIF |
---|
| 330 | CALL coriolis( i, j, 3 ) |
---|
[97] | 331 | IF ( ocean ) THEN |
---|
| 332 | CALL buoyancy( i, j, rho, prho_reference, 3, 64 ) |
---|
[1] | 333 | ELSE |
---|
[97] | 334 | IF ( .NOT. humidity ) THEN |
---|
| 335 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
| 336 | ELSE |
---|
| 337 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
| 338 | ENDIF |
---|
[1] | 339 | ENDIF |
---|
[138] | 340 | |
---|
| 341 | ! |
---|
| 342 | !-- Drag by plant canopy |
---|
| 343 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 344 | |
---|
[1] | 345 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 346 | |
---|
| 347 | ! |
---|
| 348 | !-- Prognostic equation for w-velocity component |
---|
| 349 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 350 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 351 | dt_3d * ( & |
---|
| 352 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 353 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 354 | ) - & |
---|
| 355 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 356 | ENDDO |
---|
| 357 | |
---|
| 358 | ! |
---|
| 359 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 360 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 361 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 362 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 363 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 364 | ENDDO |
---|
| 365 | ELSEIF ( intermediate_timestep_count < & |
---|
| 366 | intermediate_timestep_count_max ) THEN |
---|
| 367 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 368 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 369 | ENDDO |
---|
| 370 | ENDIF |
---|
| 371 | ENDIF |
---|
| 372 | |
---|
| 373 | ENDDO |
---|
| 374 | ENDDO |
---|
| 375 | |
---|
| 376 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 377 | |
---|
| 378 | ! |
---|
| 379 | !-- potential temperature |
---|
| 380 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 381 | |
---|
| 382 | ! |
---|
| 383 | !-- pt-tendency terms with communication |
---|
[70] | 384 | sat = tsc(1) |
---|
| 385 | sbt = tsc(2) |
---|
[1] | 386 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 387 | |
---|
| 388 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 389 | ! |
---|
[70] | 390 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 391 | !-- switched on. Thus: |
---|
| 392 | sat = 1.0 |
---|
| 393 | sbt = 1.0 |
---|
| 394 | ENDIF |
---|
[1] | 395 | tend = 0.0 |
---|
| 396 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 397 | ELSE |
---|
| 398 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 399 | tend = 0.0 |
---|
| 400 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 401 | ENDIF |
---|
| 402 | ENDIF |
---|
| 403 | |
---|
| 404 | ! |
---|
| 405 | !-- pt-tendency terms with no communication |
---|
| 406 | DO i = nxl, nxr |
---|
| 407 | DO j = nys, nyn |
---|
| 408 | ! |
---|
| 409 | !-- Tendency terms |
---|
| 410 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 411 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 412 | wall_heatflux, tend ) |
---|
[1] | 413 | ELSE |
---|
| 414 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 415 | tend(:,j,i) = 0.0 |
---|
| 416 | CALL advec_s_pw( i, j, pt ) |
---|
| 417 | ELSE |
---|
| 418 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 419 | tend(:,j,i) = 0.0 |
---|
| 420 | CALL advec_s_up( i, j, pt ) |
---|
| 421 | ENDIF |
---|
| 422 | ENDIF |
---|
| 423 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 424 | THEN |
---|
[19] | 425 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
[129] | 426 | tswst_m, wall_heatflux, tend ) |
---|
[1] | 427 | ELSE |
---|
[129] | 428 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 429 | wall_heatflux, tend ) |
---|
[1] | 430 | ENDIF |
---|
| 431 | ENDIF |
---|
| 432 | |
---|
| 433 | ! |
---|
| 434 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 435 | !-- processes |
---|
| 436 | IF ( radiation ) THEN |
---|
| 437 | CALL calc_radiation( i, j ) |
---|
| 438 | ENDIF |
---|
| 439 | |
---|
| 440 | ! |
---|
| 441 | !-- If required compute impact of latent heat due to precipitation |
---|
| 442 | IF ( precipitation ) THEN |
---|
| 443 | CALL impact_of_latent_heat( i, j ) |
---|
| 444 | ENDIF |
---|
[153] | 445 | |
---|
| 446 | ! |
---|
| 447 | !-- Consideration of heat sources within the plant canopy |
---|
| 448 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 449 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 450 | ENDIF |
---|
| 451 | |
---|
[1] | 452 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 453 | |
---|
| 454 | ! |
---|
| 455 | !-- Prognostic equation for potential temperature |
---|
[19] | 456 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 457 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 458 | dt_3d * ( & |
---|
| 459 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 460 | ) - & |
---|
| 461 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 462 | ENDDO |
---|
| 463 | |
---|
| 464 | ! |
---|
| 465 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 466 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 467 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 468 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 469 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 470 | ENDDO |
---|
| 471 | ELSEIF ( intermediate_timestep_count < & |
---|
| 472 | intermediate_timestep_count_max ) THEN |
---|
[19] | 473 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 474 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 475 | ENDDO |
---|
| 476 | ENDIF |
---|
| 477 | ENDIF |
---|
| 478 | |
---|
| 479 | ENDDO |
---|
| 480 | ENDDO |
---|
| 481 | |
---|
| 482 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 483 | |
---|
| 484 | ! |
---|
[95] | 485 | !-- If required, compute prognostic equation for salinity |
---|
| 486 | IF ( ocean ) THEN |
---|
| 487 | |
---|
| 488 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 489 | |
---|
| 490 | ! |
---|
| 491 | !-- sa-tendency terms with communication |
---|
| 492 | sat = tsc(1) |
---|
| 493 | sbt = tsc(2) |
---|
| 494 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 495 | |
---|
| 496 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 497 | ! |
---|
| 498 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 499 | !-- switched on. Thus: |
---|
| 500 | sat = 1.0 |
---|
| 501 | sbt = 1.0 |
---|
| 502 | ENDIF |
---|
| 503 | tend = 0.0 |
---|
| 504 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 505 | ELSE |
---|
| 506 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 507 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 508 | tend = 0.0 |
---|
| 509 | CALL advec_s_ups( sa, 'sa' ) |
---|
| 510 | ENDIF |
---|
| 511 | ENDIF |
---|
| 512 | ENDIF |
---|
| 513 | |
---|
| 514 | ! |
---|
| 515 | !-- sa terms with no communication |
---|
| 516 | DO i = nxl, nxr |
---|
| 517 | DO j = nys, nyn |
---|
| 518 | ! |
---|
| 519 | !-- Tendency-terms |
---|
| 520 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 521 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
[129] | 522 | wall_salinityflux, tend ) |
---|
[95] | 523 | ELSE |
---|
| 524 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 525 | tend(:,j,i) = 0.0 |
---|
| 526 | CALL advec_s_pw( i, j, sa ) |
---|
| 527 | ELSE |
---|
| 528 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 529 | tend(:,j,i) = 0.0 |
---|
| 530 | CALL advec_s_up( i, j, sa ) |
---|
| 531 | ENDIF |
---|
| 532 | ENDIF |
---|
| 533 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
[129] | 534 | wall_salinityflux, tend ) |
---|
[95] | 535 | ENDIF |
---|
| 536 | |
---|
| 537 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 538 | |
---|
| 539 | ! |
---|
| 540 | !-- Prognostic equation for salinity |
---|
| 541 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 542 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
| 543 | dt_3d * ( & |
---|
| 544 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 545 | ) - & |
---|
| 546 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 547 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 548 | ENDDO |
---|
| 549 | |
---|
| 550 | ! |
---|
| 551 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 552 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 553 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 554 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 555 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 556 | ENDDO |
---|
| 557 | ELSEIF ( intermediate_timestep_count < & |
---|
| 558 | intermediate_timestep_count_max ) THEN |
---|
| 559 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 560 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 561 | 5.3125 * tsa_m(k,j,i) |
---|
| 562 | ENDDO |
---|
| 563 | ENDIF |
---|
| 564 | ENDIF |
---|
| 565 | |
---|
[96] | 566 | ! |
---|
| 567 | !-- Calculate density by the equation of state for seawater |
---|
| 568 | CALL eqn_state_seawater( i, j ) |
---|
| 569 | |
---|
[95] | 570 | ENDDO |
---|
| 571 | ENDDO |
---|
| 572 | |
---|
| 573 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 574 | |
---|
| 575 | ENDIF |
---|
| 576 | |
---|
| 577 | ! |
---|
[1] | 578 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 579 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 580 | |
---|
| 581 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 582 | |
---|
| 583 | ! |
---|
| 584 | !-- Scalar/q-tendency terms with communication |
---|
[70] | 585 | sat = tsc(1) |
---|
| 586 | sbt = tsc(2) |
---|
[1] | 587 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 588 | |
---|
| 589 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 590 | ! |
---|
[70] | 591 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 592 | !-- switched on. Thus: |
---|
| 593 | sat = 1.0 |
---|
| 594 | sbt = 1.0 |
---|
| 595 | ENDIF |
---|
[1] | 596 | tend = 0.0 |
---|
| 597 | CALL advec_s_bc( q, 'q' ) |
---|
| 598 | ELSE |
---|
| 599 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 600 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 601 | tend = 0.0 |
---|
| 602 | CALL advec_s_ups( q, 'q' ) |
---|
| 603 | ENDIF |
---|
| 604 | ENDIF |
---|
| 605 | ENDIF |
---|
| 606 | |
---|
| 607 | ! |
---|
| 608 | !-- Scalar/q-tendency terms with no communication |
---|
| 609 | DO i = nxl, nxr |
---|
| 610 | DO j = nys, nyn |
---|
| 611 | ! |
---|
| 612 | !-- Tendency-terms |
---|
| 613 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 614 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 615 | wall_qflux, tend ) |
---|
[1] | 616 | ELSE |
---|
| 617 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 618 | tend(:,j,i) = 0.0 |
---|
| 619 | CALL advec_s_pw( i, j, q ) |
---|
| 620 | ELSE |
---|
| 621 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 622 | tend(:,j,i) = 0.0 |
---|
| 623 | CALL advec_s_up( i, j, q ) |
---|
| 624 | ENDIF |
---|
| 625 | ENDIF |
---|
| 626 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 627 | THEN |
---|
| 628 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
[129] | 629 | qswst_m, wall_qflux, tend ) |
---|
[19] | 630 | ELSE |
---|
| 631 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
[129] | 632 | wall_qflux, tend ) |
---|
[1] | 633 | ENDIF |
---|
| 634 | ENDIF |
---|
| 635 | |
---|
| 636 | ! |
---|
| 637 | !-- If required compute decrease of total water content due to |
---|
| 638 | !-- precipitation |
---|
| 639 | IF ( precipitation ) THEN |
---|
| 640 | CALL calc_precipitation( i, j ) |
---|
| 641 | ENDIF |
---|
[153] | 642 | |
---|
| 643 | ! |
---|
| 644 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 645 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
| 646 | |
---|
[1] | 647 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 648 | |
---|
| 649 | ! |
---|
| 650 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 651 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 652 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 653 | dt_3d * ( & |
---|
| 654 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 655 | ) - & |
---|
| 656 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 657 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 658 | ENDDO |
---|
| 659 | |
---|
| 660 | ! |
---|
| 661 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 662 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 663 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 664 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 665 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 666 | ENDDO |
---|
| 667 | ELSEIF ( intermediate_timestep_count < & |
---|
| 668 | intermediate_timestep_count_max ) THEN |
---|
[19] | 669 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 670 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 671 | ENDDO |
---|
| 672 | ENDIF |
---|
| 673 | ENDIF |
---|
| 674 | |
---|
| 675 | ENDDO |
---|
| 676 | ENDDO |
---|
| 677 | |
---|
| 678 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 679 | |
---|
| 680 | ENDIF |
---|
| 681 | |
---|
| 682 | ! |
---|
| 683 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 684 | !-- energy (TKE) |
---|
| 685 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 686 | |
---|
| 687 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 688 | |
---|
| 689 | ! |
---|
| 690 | !-- TKE-tendency terms with communication |
---|
| 691 | CALL production_e_init |
---|
[70] | 692 | |
---|
| 693 | sat = tsc(1) |
---|
| 694 | sbt = tsc(2) |
---|
[1] | 695 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 696 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 697 | |
---|
| 698 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 699 | ! |
---|
[70] | 700 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 701 | !-- switched on. Thus: |
---|
| 702 | sat = 1.0 |
---|
| 703 | sbt = 1.0 |
---|
| 704 | ENDIF |
---|
[1] | 705 | tend = 0.0 |
---|
| 706 | CALL advec_s_bc( e, 'e' ) |
---|
| 707 | ELSE |
---|
| 708 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 709 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 710 | tend = 0.0 |
---|
| 711 | CALL advec_s_ups( e, 'e' ) |
---|
| 712 | ENDIF |
---|
| 713 | ENDIF |
---|
| 714 | ENDIF |
---|
| 715 | ENDIF |
---|
| 716 | |
---|
| 717 | ! |
---|
| 718 | !-- TKE-tendency terms with no communication |
---|
| 719 | DO i = nxl, nxr |
---|
| 720 | DO j = nys, nyn |
---|
| 721 | ! |
---|
| 722 | !-- Tendency-terms |
---|
| 723 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
| 724 | .NOT. use_upstream_for_tke ) THEN |
---|
[75] | 725 | IF ( .NOT. humidity ) THEN |
---|
[97] | 726 | IF ( ocean ) THEN |
---|
| 727 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 728 | l_grid, rho, prho_reference, rif, tend, & |
---|
| 729 | zu, zw ) |
---|
| 730 | ELSE |
---|
| 731 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 732 | l_grid, pt, pt_reference, rif, tend, & |
---|
| 733 | zu, zw ) |
---|
| 734 | ENDIF |
---|
[1] | 735 | ELSE |
---|
[97] | 736 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 737 | l_grid, vpt, pt_reference, rif, tend, zu, & |
---|
| 738 | zw ) |
---|
[1] | 739 | ENDIF |
---|
| 740 | ELSE |
---|
| 741 | IF ( use_upstream_for_tke ) THEN |
---|
| 742 | tend(:,j,i) = 0.0 |
---|
| 743 | CALL advec_s_up( i, j, e ) |
---|
| 744 | ELSE |
---|
| 745 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 746 | THEN |
---|
| 747 | tend(:,j,i) = 0.0 |
---|
| 748 | CALL advec_s_pw( i, j, e ) |
---|
| 749 | ELSE |
---|
| 750 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 751 | tend(:,j,i) = 0.0 |
---|
| 752 | CALL advec_s_up( i, j, e ) |
---|
| 753 | ENDIF |
---|
| 754 | ENDIF |
---|
| 755 | ENDIF |
---|
| 756 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 757 | THEN |
---|
[75] | 758 | IF ( .NOT. humidity ) THEN |
---|
[1] | 759 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
[97] | 760 | km_m, l_grid, pt_m, pt_reference, & |
---|
| 761 | rif_m, tend, zu, zw ) |
---|
[1] | 762 | ELSE |
---|
| 763 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
[97] | 764 | km_m, l_grid, vpt_m, pt_reference, & |
---|
| 765 | rif_m, tend, zu, zw ) |
---|
[1] | 766 | ENDIF |
---|
| 767 | ELSE |
---|
[75] | 768 | IF ( .NOT. humidity ) THEN |
---|
[97] | 769 | IF ( ocean ) THEN |
---|
| 770 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 771 | km, l_grid, rho, prho_reference, & |
---|
| 772 | rif, tend, zu, zw ) |
---|
| 773 | ELSE |
---|
| 774 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 775 | km, l_grid, pt, pt_reference, rif, & |
---|
| 776 | tend, zu, zw ) |
---|
| 777 | ENDIF |
---|
[1] | 778 | ELSE |
---|
| 779 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
[97] | 780 | l_grid, vpt, pt_reference, rif, tend, & |
---|
| 781 | zu, zw ) |
---|
[1] | 782 | ENDIF |
---|
| 783 | ENDIF |
---|
| 784 | ENDIF |
---|
| 785 | CALL production_e( i, j ) |
---|
[138] | 786 | |
---|
| 787 | ! |
---|
| 788 | !-- Additional sink term for flows through plant canopies |
---|
[153] | 789 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
[138] | 790 | |
---|
[1] | 791 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 792 | |
---|
| 793 | ! |
---|
| 794 | !-- Prognostic equation for TKE. |
---|
| 795 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 796 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 797 | !-- value is reduced by 90%. |
---|
[19] | 798 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 799 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 800 | dt_3d * ( & |
---|
| 801 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 802 | ) |
---|
| 803 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 804 | ENDDO |
---|
| 805 | |
---|
| 806 | ! |
---|
| 807 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 808 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 809 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 810 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 811 | te_m(k,j,i) = tend(k,j,i) |
---|
| 812 | ENDDO |
---|
| 813 | ELSEIF ( intermediate_timestep_count < & |
---|
| 814 | intermediate_timestep_count_max ) THEN |
---|
[19] | 815 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 816 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 817 | ENDDO |
---|
| 818 | ENDIF |
---|
| 819 | ENDIF |
---|
| 820 | |
---|
| 821 | ENDDO |
---|
| 822 | ENDDO |
---|
| 823 | |
---|
| 824 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 825 | |
---|
| 826 | ENDIF |
---|
| 827 | |
---|
| 828 | |
---|
[63] | 829 | END SUBROUTINE prognostic_equations_noopt |
---|
[1] | 830 | |
---|
| 831 | |
---|
[63] | 832 | SUBROUTINE prognostic_equations_cache |
---|
[1] | 833 | |
---|
| 834 | !------------------------------------------------------------------------------! |
---|
| 835 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 836 | ! be called for the standard Piascek-Williams advection scheme. |
---|
| 837 | ! |
---|
[95] | 838 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 839 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 840 | ! these loops. |
---|
[1] | 841 | ! |
---|
| 842 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 843 | !------------------------------------------------------------------------------! |
---|
| 844 | |
---|
| 845 | IMPLICIT NONE |
---|
| 846 | |
---|
| 847 | CHARACTER (LEN=9) :: time_to_string |
---|
| 848 | INTEGER :: i, j, k |
---|
| 849 | |
---|
| 850 | |
---|
| 851 | ! |
---|
| 852 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 853 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 854 | |
---|
| 855 | |
---|
| 856 | ! |
---|
| 857 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 858 | !-- global communication |
---|
[96] | 859 | CALL calc_mean_profile( pt, 4 ) |
---|
| 860 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 861 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 862 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
| 863 | |
---|
| 864 | |
---|
| 865 | ! |
---|
| 866 | !-- Loop over all prognostic equations |
---|
| 867 | !$OMP PARALLEL private (i,j,k) |
---|
| 868 | !$OMP DO |
---|
[75] | 869 | DO i = nxl, nxr |
---|
| 870 | DO j = nys, nyn |
---|
[1] | 871 | ! |
---|
| 872 | !-- Tendency terms for u-velocity component |
---|
[106] | 873 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
[1] | 874 | |
---|
| 875 | tend(:,j,i) = 0.0 |
---|
| 876 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 877 | CALL advec_u_pw( i, j ) |
---|
| 878 | ELSE |
---|
| 879 | CALL advec_u_up( i, j ) |
---|
| 880 | ENDIF |
---|
| 881 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 882 | THEN |
---|
| 883 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
[102] | 884 | u_m, usws_m, uswst_m, v_m, w_m ) |
---|
[1] | 885 | ELSE |
---|
| 886 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
[102] | 887 | usws, uswst, v, w ) |
---|
[1] | 888 | ENDIF |
---|
| 889 | CALL coriolis( i, j, 1 ) |
---|
[97] | 890 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, & |
---|
| 891 | 4 ) |
---|
[138] | 892 | |
---|
| 893 | ! |
---|
| 894 | !-- Drag by plant canopy |
---|
| 895 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 896 | |
---|
[240] | 897 | ! |
---|
| 898 | !-- External pressure gradient |
---|
| 899 | IF ( dp_external ) THEN |
---|
| 900 | DO k = dp_level_ind_b+1, nzt |
---|
| 901 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 902 | ENDDO |
---|
| 903 | ENDIF |
---|
| 904 | |
---|
[1] | 905 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 906 | |
---|
| 907 | ! |
---|
| 908 | !-- Prognostic equation for u-velocity component |
---|
| 909 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 910 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 911 | dt_3d * ( & |
---|
| 912 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 913 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 914 | ) - & |
---|
| 915 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 916 | ENDDO |
---|
| 917 | |
---|
| 918 | ! |
---|
| 919 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 920 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 921 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 922 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 923 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 924 | ENDDO |
---|
| 925 | ELSEIF ( intermediate_timestep_count < & |
---|
| 926 | intermediate_timestep_count_max ) THEN |
---|
| 927 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 928 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 929 | ENDDO |
---|
| 930 | ENDIF |
---|
| 931 | ENDIF |
---|
| 932 | |
---|
| 933 | ENDIF |
---|
| 934 | |
---|
| 935 | ! |
---|
| 936 | !-- Tendency terms for v-velocity component |
---|
[106] | 937 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
[1] | 938 | |
---|
| 939 | tend(:,j,i) = 0.0 |
---|
| 940 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 941 | CALL advec_v_pw( i, j ) |
---|
| 942 | ELSE |
---|
| 943 | CALL advec_v_up( i, j ) |
---|
| 944 | ENDIF |
---|
| 945 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 946 | THEN |
---|
| 947 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
[102] | 948 | u_m, v_m, vsws_m, vswst_m, w_m ) |
---|
[1] | 949 | ELSE |
---|
| 950 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[102] | 951 | vsws, vswst, w ) |
---|
[1] | 952 | ENDIF |
---|
| 953 | CALL coriolis( i, j, 2 ) |
---|
[138] | 954 | |
---|
| 955 | ! |
---|
| 956 | !-- Drag by plant canopy |
---|
| 957 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 958 | |
---|
[240] | 959 | ! |
---|
| 960 | !-- External pressure gradient |
---|
| 961 | IF ( dp_external ) THEN |
---|
| 962 | DO k = dp_level_ind_b+1, nzt |
---|
| 963 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 964 | ENDDO |
---|
| 965 | ENDIF |
---|
| 966 | |
---|
[1] | 967 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 968 | |
---|
| 969 | ! |
---|
| 970 | !-- Prognostic equation for v-velocity component |
---|
| 971 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 972 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 973 | dt_3d * ( & |
---|
| 974 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 975 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 976 | ) - & |
---|
| 977 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 978 | ENDDO |
---|
| 979 | |
---|
| 980 | ! |
---|
| 981 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 982 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 983 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 984 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 985 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 986 | ENDDO |
---|
| 987 | ELSEIF ( intermediate_timestep_count < & |
---|
| 988 | intermediate_timestep_count_max ) THEN |
---|
| 989 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 990 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 991 | ENDDO |
---|
| 992 | ENDIF |
---|
| 993 | ENDIF |
---|
| 994 | |
---|
| 995 | ENDIF |
---|
| 996 | |
---|
| 997 | ! |
---|
| 998 | !-- Tendency terms for w-velocity component |
---|
[106] | 999 | tend(:,j,i) = 0.0 |
---|
| 1000 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1001 | CALL advec_w_pw( i, j ) |
---|
| 1002 | ELSE |
---|
| 1003 | CALL advec_w_up( i, j ) |
---|
| 1004 | ENDIF |
---|
| 1005 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 1006 | THEN |
---|
| 1007 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
| 1008 | km_damp_y, tend, u_m, v_m, w_m ) |
---|
| 1009 | ELSE |
---|
| 1010 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
| 1011 | tend, u, v, w ) |
---|
| 1012 | ENDIF |
---|
| 1013 | CALL coriolis( i, j, 3 ) |
---|
| 1014 | IF ( ocean ) THEN |
---|
| 1015 | CALL buoyancy( i, j, rho, prho_reference, 3, 64 ) |
---|
| 1016 | ELSE |
---|
| 1017 | IF ( .NOT. humidity ) THEN |
---|
| 1018 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
| 1019 | ELSE |
---|
| 1020 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
| 1021 | ENDIF |
---|
| 1022 | ENDIF |
---|
[138] | 1023 | |
---|
| 1024 | ! |
---|
| 1025 | !-- Drag by plant canopy |
---|
| 1026 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 1027 | |
---|
[106] | 1028 | CALL user_actions( i, j, 'w-tendency' ) |
---|
[1] | 1029 | |
---|
[106] | 1030 | ! |
---|
| 1031 | !-- Prognostic equation for w-velocity component |
---|
| 1032 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1033 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 1034 | dt_3d * ( & |
---|
| 1035 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 1036 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 1037 | ) - & |
---|
| 1038 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1039 | ENDDO |
---|
| 1040 | |
---|
| 1041 | ! |
---|
| 1042 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1043 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1044 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1045 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1046 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1047 | ENDDO |
---|
| 1048 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1049 | intermediate_timestep_count_max ) THEN |
---|
| 1050 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1051 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1052 | ENDDO |
---|
| 1053 | ENDIF |
---|
| 1054 | ENDIF |
---|
| 1055 | |
---|
| 1056 | ! |
---|
| 1057 | !-- Tendency terms for potential temperature |
---|
| 1058 | tend(:,j,i) = 0.0 |
---|
| 1059 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1060 | CALL advec_s_pw( i, j, pt ) |
---|
| 1061 | ELSE |
---|
| 1062 | CALL advec_s_up( i, j, pt ) |
---|
| 1063 | ENDIF |
---|
| 1064 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 1065 | THEN |
---|
| 1066 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
[129] | 1067 | tswst_m, wall_heatflux, tend ) |
---|
[106] | 1068 | ELSE |
---|
[129] | 1069 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 1070 | wall_heatflux, tend ) |
---|
[106] | 1071 | ENDIF |
---|
| 1072 | |
---|
| 1073 | ! |
---|
| 1074 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 1075 | !-- processes |
---|
| 1076 | IF ( radiation ) THEN |
---|
| 1077 | CALL calc_radiation( i, j ) |
---|
| 1078 | ENDIF |
---|
| 1079 | |
---|
| 1080 | ! |
---|
| 1081 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1082 | IF ( precipitation ) THEN |
---|
| 1083 | CALL impact_of_latent_heat( i, j ) |
---|
| 1084 | ENDIF |
---|
[153] | 1085 | |
---|
| 1086 | ! |
---|
| 1087 | !-- Consideration of heat sources within the plant canopy |
---|
| 1088 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1089 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 1090 | ENDIF |
---|
| 1091 | |
---|
[106] | 1092 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 1093 | |
---|
| 1094 | ! |
---|
| 1095 | !-- Prognostic equation for potential temperature |
---|
| 1096 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1097 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
| 1098 | dt_3d * ( & |
---|
| 1099 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1100 | ) - & |
---|
| 1101 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1102 | ENDDO |
---|
| 1103 | |
---|
| 1104 | ! |
---|
| 1105 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1106 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1107 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1108 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1109 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1110 | ENDDO |
---|
| 1111 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1112 | intermediate_timestep_count_max ) THEN |
---|
| 1113 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1114 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1115 | 5.3125 * tpt_m(k,j,i) |
---|
| 1116 | ENDDO |
---|
| 1117 | ENDIF |
---|
| 1118 | ENDIF |
---|
| 1119 | |
---|
| 1120 | ! |
---|
| 1121 | !-- If required, compute prognostic equation for salinity |
---|
| 1122 | IF ( ocean ) THEN |
---|
| 1123 | |
---|
| 1124 | ! |
---|
| 1125 | !-- Tendency-terms for salinity |
---|
[1] | 1126 | tend(:,j,i) = 0.0 |
---|
[106] | 1127 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
[1] | 1128 | THEN |
---|
[106] | 1129 | CALL advec_s_pw( i, j, sa ) |
---|
[1] | 1130 | ELSE |
---|
[106] | 1131 | CALL advec_s_up( i, j, sa ) |
---|
[1] | 1132 | ENDIF |
---|
[106] | 1133 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
[129] | 1134 | wall_salinityflux, tend ) |
---|
[1] | 1135 | |
---|
[106] | 1136 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 1137 | |
---|
[1] | 1138 | ! |
---|
[106] | 1139 | !-- Prognostic equation for salinity |
---|
| 1140 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1141 | sa_p(k,j,i) = tsc(1) * sa(k,j,i) + & |
---|
| 1142 | dt_3d * ( & |
---|
| 1143 | tsc(2) * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 1144 | ) - & |
---|
| 1145 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 1146 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
[1] | 1147 | ENDDO |
---|
| 1148 | |
---|
| 1149 | ! |
---|
| 1150 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1151 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1152 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[106] | 1153 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1154 | tsa_m(k,j,i) = tend(k,j,i) |
---|
[1] | 1155 | ENDDO |
---|
| 1156 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1157 | intermediate_timestep_count_max ) THEN |
---|
[106] | 1158 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1159 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1160 | 5.3125 * tsa_m(k,j,i) |
---|
[1] | 1161 | ENDDO |
---|
| 1162 | ENDIF |
---|
| 1163 | ENDIF |
---|
| 1164 | |
---|
| 1165 | ! |
---|
[106] | 1166 | !-- Calculate density by the equation of state for seawater |
---|
| 1167 | CALL eqn_state_seawater( i, j ) |
---|
| 1168 | |
---|
| 1169 | ENDIF |
---|
| 1170 | |
---|
| 1171 | ! |
---|
| 1172 | !-- If required, compute prognostic equation for total water content / |
---|
| 1173 | !-- scalar |
---|
| 1174 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1175 | |
---|
| 1176 | ! |
---|
| 1177 | !-- Tendency-terms for total water content / scalar |
---|
[1] | 1178 | tend(:,j,i) = 0.0 |
---|
[106] | 1179 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 1180 | THEN |
---|
| 1181 | CALL advec_s_pw( i, j, q ) |
---|
[1] | 1182 | ELSE |
---|
[106] | 1183 | CALL advec_s_up( i, j, q ) |
---|
[1] | 1184 | ENDIF |
---|
[106] | 1185 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
[1] | 1186 | THEN |
---|
[106] | 1187 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
[129] | 1188 | qswst_m, wall_qflux, tend ) |
---|
[1] | 1189 | ELSE |
---|
[106] | 1190 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
[129] | 1191 | wall_qflux, tend ) |
---|
[1] | 1192 | ENDIF |
---|
[106] | 1193 | |
---|
[1] | 1194 | ! |
---|
[106] | 1195 | !-- If required compute decrease of total water content due to |
---|
| 1196 | !-- precipitation |
---|
[1] | 1197 | IF ( precipitation ) THEN |
---|
[106] | 1198 | CALL calc_precipitation( i, j ) |
---|
[1] | 1199 | ENDIF |
---|
[153] | 1200 | |
---|
| 1201 | ! |
---|
| 1202 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1203 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
| 1204 | |
---|
| 1205 | |
---|
[106] | 1206 | CALL user_actions( i, j, 'q-tendency' ) |
---|
[1] | 1207 | |
---|
| 1208 | ! |
---|
[106] | 1209 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 1210 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1211 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
| 1212 | dt_3d * ( & |
---|
| 1213 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1214 | ) - & |
---|
| 1215 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
| 1216 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 1217 | ENDDO |
---|
| 1218 | |
---|
| 1219 | ! |
---|
| 1220 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1221 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1222 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 1223 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1224 | tq_m(k,j,i) = tend(k,j,i) |
---|
[1] | 1225 | ENDDO |
---|
| 1226 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1227 | intermediate_timestep_count_max ) THEN |
---|
[19] | 1228 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1229 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1230 | 5.3125 * tq_m(k,j,i) |
---|
[1] | 1231 | ENDDO |
---|
| 1232 | ENDIF |
---|
| 1233 | ENDIF |
---|
| 1234 | |
---|
[106] | 1235 | ENDIF |
---|
[95] | 1236 | |
---|
| 1237 | ! |
---|
[106] | 1238 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1239 | !-- energy (TKE) |
---|
| 1240 | IF ( .NOT. constant_diffusion ) THEN |
---|
[95] | 1241 | |
---|
| 1242 | ! |
---|
[106] | 1243 | !-- Tendency-terms for TKE |
---|
| 1244 | tend(:,j,i) = 0.0 |
---|
| 1245 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 1246 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
| 1247 | CALL advec_s_pw( i, j, e ) |
---|
| 1248 | ELSE |
---|
| 1249 | CALL advec_s_up( i, j, e ) |
---|
[95] | 1250 | ENDIF |
---|
[106] | 1251 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 1252 | THEN |
---|
| 1253 | IF ( .NOT. humidity ) THEN |
---|
| 1254 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 1255 | km_m, l_grid, pt_m, pt_reference, & |
---|
| 1256 | rif_m, tend, zu, zw ) |
---|
[1] | 1257 | ELSE |
---|
[106] | 1258 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 1259 | km_m, l_grid, vpt_m, pt_reference, & |
---|
| 1260 | rif_m, tend, zu, zw ) |
---|
[1] | 1261 | ENDIF |
---|
[106] | 1262 | ELSE |
---|
| 1263 | IF ( .NOT. humidity ) THEN |
---|
| 1264 | IF ( ocean ) THEN |
---|
| 1265 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 1266 | km, l_grid, rho, prho_reference, & |
---|
| 1267 | rif, tend, zu, zw ) |
---|
[1] | 1268 | ELSE |
---|
[106] | 1269 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 1270 | km, l_grid, pt, pt_reference, rif, & |
---|
| 1271 | tend, zu, zw ) |
---|
[1] | 1272 | ENDIF |
---|
| 1273 | ELSE |
---|
[106] | 1274 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 1275 | l_grid, vpt, pt_reference, rif, tend, & |
---|
| 1276 | zu, zw ) |
---|
[1] | 1277 | ENDIF |
---|
[106] | 1278 | ENDIF |
---|
| 1279 | CALL production_e( i, j ) |
---|
[138] | 1280 | |
---|
| 1281 | ! |
---|
| 1282 | !-- Additional sink term for flows through plant canopies |
---|
[153] | 1283 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
[138] | 1284 | |
---|
[106] | 1285 | CALL user_actions( i, j, 'e-tendency' ) |
---|
[1] | 1286 | |
---|
| 1287 | ! |
---|
[106] | 1288 | !-- Prognostic equation for TKE. |
---|
| 1289 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1290 | !-- reasons in the course of the integration. In such cases the old |
---|
| 1291 | !-- TKE value is reduced by 90%. |
---|
| 1292 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1293 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
| 1294 | dt_3d * ( & |
---|
| 1295 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 1296 | ) |
---|
| 1297 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1298 | ENDDO |
---|
[1] | 1299 | |
---|
| 1300 | ! |
---|
[106] | 1301 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1302 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1303 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1304 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1305 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1306 | ENDDO |
---|
| 1307 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1308 | intermediate_timestep_count_max ) THEN |
---|
| 1309 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1310 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1311 | 5.3125 * te_m(k,j,i) |
---|
| 1312 | ENDDO |
---|
[1] | 1313 | ENDIF |
---|
[106] | 1314 | ENDIF |
---|
[1] | 1315 | |
---|
[106] | 1316 | ENDIF ! TKE equation |
---|
[1] | 1317 | |
---|
| 1318 | ENDDO |
---|
| 1319 | ENDDO |
---|
| 1320 | !$OMP END PARALLEL |
---|
| 1321 | |
---|
| 1322 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 1323 | |
---|
| 1324 | |
---|
[63] | 1325 | END SUBROUTINE prognostic_equations_cache |
---|
[1] | 1326 | |
---|
| 1327 | |
---|
[63] | 1328 | SUBROUTINE prognostic_equations_vector |
---|
[1] | 1329 | |
---|
| 1330 | !------------------------------------------------------------------------------! |
---|
| 1331 | ! Version for vector machines |
---|
| 1332 | !------------------------------------------------------------------------------! |
---|
| 1333 | |
---|
| 1334 | IMPLICIT NONE |
---|
| 1335 | |
---|
| 1336 | CHARACTER (LEN=9) :: time_to_string |
---|
| 1337 | INTEGER :: i, j, k |
---|
| 1338 | REAL :: sat, sbt |
---|
| 1339 | |
---|
| 1340 | ! |
---|
| 1341 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 1342 | !-- global communication |
---|
[96] | 1343 | CALL calc_mean_profile( pt, 4 ) |
---|
| 1344 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 1345 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 1346 | |
---|
| 1347 | ! |
---|
| 1348 | !-- u-velocity component |
---|
| 1349 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1350 | |
---|
| 1351 | ! |
---|
| 1352 | !-- u-tendency terms with communication |
---|
| 1353 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1354 | tend = 0.0 |
---|
| 1355 | CALL advec_u_ups |
---|
| 1356 | ENDIF |
---|
| 1357 | |
---|
| 1358 | ! |
---|
| 1359 | !-- u-tendency terms with no communication |
---|
| 1360 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1361 | tend = 0.0 |
---|
| 1362 | CALL advec_u_pw |
---|
| 1363 | ELSE |
---|
| 1364 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1365 | tend = 0.0 |
---|
| 1366 | CALL advec_u_up |
---|
| 1367 | ENDIF |
---|
| 1368 | ENDIF |
---|
| 1369 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[102] | 1370 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, & |
---|
| 1371 | uswst_m, v_m, w_m ) |
---|
[1] | 1372 | ELSE |
---|
[102] | 1373 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, uswst, v, w ) |
---|
[1] | 1374 | ENDIF |
---|
| 1375 | CALL coriolis( 1 ) |
---|
[97] | 1376 | IF ( sloping_surface ) CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
[138] | 1377 | |
---|
| 1378 | ! |
---|
| 1379 | !-- Drag by plant canopy |
---|
| 1380 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1381 | |
---|
[240] | 1382 | ! |
---|
| 1383 | !-- External pressure gradient |
---|
| 1384 | IF ( dp_external ) THEN |
---|
| 1385 | DO i = nxlu, nxr |
---|
| 1386 | DO j = nys, nyn |
---|
| 1387 | DO k = dp_level_ind_b+1, nzt |
---|
| 1388 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1389 | ENDDO |
---|
| 1390 | ENDDO |
---|
| 1391 | ENDDO |
---|
| 1392 | ENDIF |
---|
| 1393 | |
---|
[1] | 1394 | CALL user_actions( 'u-tendency' ) |
---|
| 1395 | |
---|
| 1396 | ! |
---|
| 1397 | !-- Prognostic equation for u-velocity component |
---|
[106] | 1398 | DO i = nxlu, nxr |
---|
[1] | 1399 | DO j = nys, nyn |
---|
| 1400 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1401 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 1402 | dt_3d * ( & |
---|
| 1403 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 1404 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 1405 | ) - & |
---|
| 1406 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1407 | ENDDO |
---|
| 1408 | ENDDO |
---|
| 1409 | ENDDO |
---|
| 1410 | |
---|
| 1411 | ! |
---|
| 1412 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1413 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1414 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[106] | 1415 | DO i = nxlu, nxr |
---|
[1] | 1416 | DO j = nys, nyn |
---|
| 1417 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1418 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1419 | ENDDO |
---|
| 1420 | ENDDO |
---|
| 1421 | ENDDO |
---|
| 1422 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1423 | intermediate_timestep_count_max ) THEN |
---|
[106] | 1424 | DO i = nxlu, nxr |
---|
[1] | 1425 | DO j = nys, nyn |
---|
| 1426 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1427 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 1428 | ENDDO |
---|
| 1429 | ENDDO |
---|
| 1430 | ENDDO |
---|
| 1431 | ENDIF |
---|
| 1432 | ENDIF |
---|
| 1433 | |
---|
| 1434 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1435 | |
---|
| 1436 | ! |
---|
| 1437 | !-- v-velocity component |
---|
| 1438 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1439 | |
---|
| 1440 | ! |
---|
| 1441 | !-- v-tendency terms with communication |
---|
| 1442 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1443 | tend = 0.0 |
---|
| 1444 | CALL advec_v_ups |
---|
| 1445 | ENDIF |
---|
| 1446 | |
---|
| 1447 | ! |
---|
| 1448 | !-- v-tendency terms with no communication |
---|
| 1449 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1450 | tend = 0.0 |
---|
| 1451 | CALL advec_v_pw |
---|
| 1452 | ELSE |
---|
| 1453 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1454 | tend = 0.0 |
---|
| 1455 | CALL advec_v_up |
---|
| 1456 | ENDIF |
---|
| 1457 | ENDIF |
---|
| 1458 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1459 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
[102] | 1460 | vswst_m, w_m ) |
---|
[1] | 1461 | ELSE |
---|
[102] | 1462 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, vswst, w ) |
---|
[1] | 1463 | ENDIF |
---|
| 1464 | CALL coriolis( 2 ) |
---|
[138] | 1465 | |
---|
| 1466 | ! |
---|
| 1467 | !-- Drag by plant canopy |
---|
| 1468 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
[240] | 1469 | |
---|
| 1470 | ! |
---|
| 1471 | !-- External pressure gradient |
---|
| 1472 | IF ( dp_external ) THEN |
---|
| 1473 | DO i = nxl, nxr |
---|
| 1474 | DO j = nysv, nyn |
---|
| 1475 | DO k = dp_level_ind_b+1, nzt |
---|
| 1476 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1477 | ENDDO |
---|
| 1478 | ENDDO |
---|
| 1479 | ENDDO |
---|
| 1480 | ENDIF |
---|
| 1481 | |
---|
[1] | 1482 | CALL user_actions( 'v-tendency' ) |
---|
| 1483 | |
---|
| 1484 | ! |
---|
| 1485 | !-- Prognostic equation for v-velocity component |
---|
| 1486 | DO i = nxl, nxr |
---|
[106] | 1487 | DO j = nysv, nyn |
---|
[1] | 1488 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1489 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 1490 | dt_3d * ( & |
---|
| 1491 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 1492 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 1493 | ) - & |
---|
| 1494 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1495 | ENDDO |
---|
| 1496 | ENDDO |
---|
| 1497 | ENDDO |
---|
| 1498 | |
---|
| 1499 | ! |
---|
| 1500 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1501 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1502 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1503 | DO i = nxl, nxr |
---|
[106] | 1504 | DO j = nysv, nyn |
---|
[1] | 1505 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1506 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1507 | ENDDO |
---|
| 1508 | ENDDO |
---|
| 1509 | ENDDO |
---|
| 1510 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1511 | intermediate_timestep_count_max ) THEN |
---|
| 1512 | DO i = nxl, nxr |
---|
[106] | 1513 | DO j = nysv, nyn |
---|
[1] | 1514 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1515 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1516 | ENDDO |
---|
| 1517 | ENDDO |
---|
| 1518 | ENDDO |
---|
| 1519 | ENDIF |
---|
| 1520 | ENDIF |
---|
| 1521 | |
---|
| 1522 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1523 | |
---|
| 1524 | ! |
---|
| 1525 | !-- w-velocity component |
---|
| 1526 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1527 | |
---|
| 1528 | ! |
---|
| 1529 | !-- w-tendency terms with communication |
---|
| 1530 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1531 | tend = 0.0 |
---|
| 1532 | CALL advec_w_ups |
---|
| 1533 | ENDIF |
---|
| 1534 | |
---|
| 1535 | ! |
---|
| 1536 | !-- w-tendency terms with no communication |
---|
| 1537 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1538 | tend = 0.0 |
---|
| 1539 | CALL advec_w_pw |
---|
| 1540 | ELSE |
---|
| 1541 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1542 | tend = 0.0 |
---|
| 1543 | CALL advec_w_up |
---|
| 1544 | ENDIF |
---|
| 1545 | ENDIF |
---|
| 1546 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1547 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
[57] | 1548 | v_m, w_m ) |
---|
[1] | 1549 | ELSE |
---|
[57] | 1550 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w ) |
---|
[1] | 1551 | ENDIF |
---|
| 1552 | CALL coriolis( 3 ) |
---|
[97] | 1553 | IF ( ocean ) THEN |
---|
| 1554 | CALL buoyancy( rho, prho_reference, 3, 64 ) |
---|
[1] | 1555 | ELSE |
---|
[97] | 1556 | IF ( .NOT. humidity ) THEN |
---|
| 1557 | CALL buoyancy( pt, pt_reference, 3, 4 ) |
---|
| 1558 | ELSE |
---|
| 1559 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
| 1560 | ENDIF |
---|
[1] | 1561 | ENDIF |
---|
[138] | 1562 | |
---|
| 1563 | ! |
---|
| 1564 | !-- Drag by plant canopy |
---|
| 1565 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1566 | |
---|
[1] | 1567 | CALL user_actions( 'w-tendency' ) |
---|
| 1568 | |
---|
| 1569 | ! |
---|
| 1570 | !-- Prognostic equation for w-velocity component |
---|
| 1571 | DO i = nxl, nxr |
---|
| 1572 | DO j = nys, nyn |
---|
| 1573 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1574 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 1575 | dt_3d * ( & |
---|
| 1576 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 1577 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 1578 | ) - & |
---|
| 1579 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1580 | ENDDO |
---|
| 1581 | ENDDO |
---|
| 1582 | ENDDO |
---|
| 1583 | |
---|
| 1584 | ! |
---|
| 1585 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1586 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1587 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1588 | DO i = nxl, nxr |
---|
| 1589 | DO j = nys, nyn |
---|
| 1590 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1591 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1592 | ENDDO |
---|
| 1593 | ENDDO |
---|
| 1594 | ENDDO |
---|
| 1595 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1596 | intermediate_timestep_count_max ) THEN |
---|
| 1597 | DO i = nxl, nxr |
---|
| 1598 | DO j = nys, nyn |
---|
| 1599 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1600 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1601 | ENDDO |
---|
| 1602 | ENDDO |
---|
| 1603 | ENDDO |
---|
| 1604 | ENDIF |
---|
| 1605 | ENDIF |
---|
| 1606 | |
---|
| 1607 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1608 | |
---|
| 1609 | ! |
---|
| 1610 | !-- potential temperature |
---|
| 1611 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1612 | |
---|
| 1613 | ! |
---|
| 1614 | !-- pt-tendency terms with communication |
---|
[63] | 1615 | sat = tsc(1) |
---|
| 1616 | sbt = tsc(2) |
---|
[1] | 1617 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1618 | |
---|
| 1619 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1620 | ! |
---|
[63] | 1621 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1622 | !-- switched on. Thus: |
---|
| 1623 | sat = 1.0 |
---|
| 1624 | sbt = 1.0 |
---|
| 1625 | ENDIF |
---|
[1] | 1626 | tend = 0.0 |
---|
| 1627 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1628 | ELSE |
---|
| 1629 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 1630 | tend = 0.0 |
---|
| 1631 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 1632 | ENDIF |
---|
| 1633 | ENDIF |
---|
| 1634 | |
---|
| 1635 | ! |
---|
| 1636 | !-- pt-tendency terms with no communication |
---|
| 1637 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 1638 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
| 1639 | tend ) |
---|
[1] | 1640 | ELSE |
---|
| 1641 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1642 | tend = 0.0 |
---|
| 1643 | CALL advec_s_pw( pt ) |
---|
| 1644 | ELSE |
---|
| 1645 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1646 | tend = 0.0 |
---|
| 1647 | CALL advec_s_up( pt ) |
---|
| 1648 | ENDIF |
---|
| 1649 | ENDIF |
---|
| 1650 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[129] | 1651 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tswst_m, & |
---|
| 1652 | wall_heatflux, tend ) |
---|
[1] | 1653 | ELSE |
---|
[129] | 1654 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
| 1655 | tend ) |
---|
[1] | 1656 | ENDIF |
---|
| 1657 | ENDIF |
---|
| 1658 | |
---|
| 1659 | ! |
---|
| 1660 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 1661 | !-- processes |
---|
| 1662 | IF ( radiation ) THEN |
---|
| 1663 | CALL calc_radiation |
---|
| 1664 | ENDIF |
---|
| 1665 | |
---|
| 1666 | ! |
---|
| 1667 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1668 | IF ( precipitation ) THEN |
---|
| 1669 | CALL impact_of_latent_heat |
---|
| 1670 | ENDIF |
---|
[153] | 1671 | |
---|
| 1672 | ! |
---|
| 1673 | !-- Consideration of heat sources within the plant canopy |
---|
| 1674 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1675 | CALL plant_canopy_model( 4 ) |
---|
| 1676 | ENDIF |
---|
| 1677 | |
---|
| 1678 | |
---|
[1] | 1679 | CALL user_actions( 'pt-tendency' ) |
---|
| 1680 | |
---|
| 1681 | ! |
---|
| 1682 | !-- Prognostic equation for potential temperature |
---|
| 1683 | DO i = nxl, nxr |
---|
| 1684 | DO j = nys, nyn |
---|
[19] | 1685 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1686 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 1687 | dt_3d * ( & |
---|
| 1688 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1689 | ) - & |
---|
| 1690 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1691 | ENDDO |
---|
| 1692 | ENDDO |
---|
| 1693 | ENDDO |
---|
| 1694 | |
---|
| 1695 | ! |
---|
| 1696 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1697 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1698 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1699 | DO i = nxl, nxr |
---|
| 1700 | DO j = nys, nyn |
---|
[19] | 1701 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1702 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1703 | ENDDO |
---|
| 1704 | ENDDO |
---|
| 1705 | ENDDO |
---|
| 1706 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1707 | intermediate_timestep_count_max ) THEN |
---|
| 1708 | DO i = nxl, nxr |
---|
| 1709 | DO j = nys, nyn |
---|
[19] | 1710 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1711 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 1712 | ENDDO |
---|
| 1713 | ENDDO |
---|
| 1714 | ENDDO |
---|
| 1715 | ENDIF |
---|
| 1716 | ENDIF |
---|
| 1717 | |
---|
| 1718 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1719 | |
---|
| 1720 | ! |
---|
[95] | 1721 | !-- If required, compute prognostic equation for salinity |
---|
| 1722 | IF ( ocean ) THEN |
---|
| 1723 | |
---|
| 1724 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1725 | |
---|
| 1726 | ! |
---|
| 1727 | !-- sa-tendency terms with communication |
---|
| 1728 | sat = tsc(1) |
---|
| 1729 | sbt = tsc(2) |
---|
| 1730 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1731 | |
---|
| 1732 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1733 | ! |
---|
| 1734 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1735 | !-- switched on. Thus: |
---|
| 1736 | sat = 1.0 |
---|
| 1737 | sbt = 1.0 |
---|
| 1738 | ENDIF |
---|
| 1739 | tend = 0.0 |
---|
| 1740 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 1741 | ELSE |
---|
| 1742 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1743 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1744 | tend = 0.0 |
---|
| 1745 | CALL advec_s_ups( sa, 'sa' ) |
---|
| 1746 | ENDIF |
---|
| 1747 | ENDIF |
---|
| 1748 | ENDIF |
---|
| 1749 | |
---|
| 1750 | ! |
---|
[129] | 1751 | !-- sa-tendency terms with no communication |
---|
[95] | 1752 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 1753 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 1754 | wall_salinityflux, tend ) |
---|
[95] | 1755 | ELSE |
---|
| 1756 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1757 | tend = 0.0 |
---|
| 1758 | CALL advec_s_pw( sa ) |
---|
| 1759 | ELSE |
---|
| 1760 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1761 | tend = 0.0 |
---|
| 1762 | CALL advec_s_up( sa ) |
---|
| 1763 | ENDIF |
---|
| 1764 | ENDIF |
---|
[129] | 1765 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 1766 | wall_salinityflux, tend ) |
---|
[95] | 1767 | ENDIF |
---|
| 1768 | |
---|
| 1769 | CALL user_actions( 'sa-tendency' ) |
---|
| 1770 | |
---|
| 1771 | ! |
---|
| 1772 | !-- Prognostic equation for salinity |
---|
| 1773 | DO i = nxl, nxr |
---|
| 1774 | DO j = nys, nyn |
---|
| 1775 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1776 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
| 1777 | dt_3d * ( & |
---|
| 1778 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 1779 | ) - & |
---|
| 1780 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 1781 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1782 | ENDDO |
---|
| 1783 | ENDDO |
---|
| 1784 | ENDDO |
---|
| 1785 | |
---|
| 1786 | ! |
---|
| 1787 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1788 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1789 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1790 | DO i = nxl, nxr |
---|
| 1791 | DO j = nys, nyn |
---|
| 1792 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1793 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1794 | ENDDO |
---|
| 1795 | ENDDO |
---|
| 1796 | ENDDO |
---|
| 1797 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1798 | intermediate_timestep_count_max ) THEN |
---|
| 1799 | DO i = nxl, nxr |
---|
| 1800 | DO j = nys, nyn |
---|
| 1801 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1802 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1803 | 5.3125 * tsa_m(k,j,i) |
---|
| 1804 | ENDDO |
---|
| 1805 | ENDDO |
---|
| 1806 | ENDDO |
---|
| 1807 | ENDIF |
---|
| 1808 | ENDIF |
---|
| 1809 | |
---|
| 1810 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1811 | |
---|
[96] | 1812 | ! |
---|
| 1813 | !-- Calculate density by the equation of state for seawater |
---|
| 1814 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1815 | CALL eqn_state_seawater |
---|
| 1816 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1817 | |
---|
[95] | 1818 | ENDIF |
---|
| 1819 | |
---|
| 1820 | ! |
---|
[1] | 1821 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 1822 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 1823 | |
---|
| 1824 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1825 | |
---|
| 1826 | ! |
---|
| 1827 | !-- Scalar/q-tendency terms with communication |
---|
[63] | 1828 | sat = tsc(1) |
---|
| 1829 | sbt = tsc(2) |
---|
[1] | 1830 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1831 | |
---|
| 1832 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1833 | ! |
---|
[63] | 1834 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1835 | !-- switched on. Thus: |
---|
| 1836 | sat = 1.0 |
---|
| 1837 | sbt = 1.0 |
---|
| 1838 | ENDIF |
---|
[1] | 1839 | tend = 0.0 |
---|
| 1840 | CALL advec_s_bc( q, 'q' ) |
---|
| 1841 | ELSE |
---|
| 1842 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1843 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1844 | tend = 0.0 |
---|
| 1845 | CALL advec_s_ups( q, 'q' ) |
---|
| 1846 | ENDIF |
---|
| 1847 | ENDIF |
---|
| 1848 | ENDIF |
---|
| 1849 | |
---|
| 1850 | ! |
---|
| 1851 | !-- Scalar/q-tendency terms with no communication |
---|
| 1852 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 1853 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, wall_qflux, tend ) |
---|
[1] | 1854 | ELSE |
---|
| 1855 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1856 | tend = 0.0 |
---|
| 1857 | CALL advec_s_pw( q ) |
---|
| 1858 | ELSE |
---|
| 1859 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1860 | tend = 0.0 |
---|
| 1861 | CALL advec_s_up( q ) |
---|
| 1862 | ENDIF |
---|
| 1863 | ENDIF |
---|
| 1864 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[129] | 1865 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, qswst_m, & |
---|
| 1866 | wall_qflux, tend ) |
---|
[1] | 1867 | ELSE |
---|
[129] | 1868 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 1869 | wall_qflux, tend ) |
---|
[1] | 1870 | ENDIF |
---|
| 1871 | ENDIF |
---|
| 1872 | |
---|
| 1873 | ! |
---|
| 1874 | !-- If required compute decrease of total water content due to |
---|
| 1875 | !-- precipitation |
---|
| 1876 | IF ( precipitation ) THEN |
---|
| 1877 | CALL calc_precipitation |
---|
| 1878 | ENDIF |
---|
[153] | 1879 | |
---|
| 1880 | ! |
---|
| 1881 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1882 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1883 | |
---|
[1] | 1884 | CALL user_actions( 'q-tendency' ) |
---|
| 1885 | |
---|
| 1886 | ! |
---|
| 1887 | !-- Prognostic equation for total water content / scalar |
---|
| 1888 | DO i = nxl, nxr |
---|
| 1889 | DO j = nys, nyn |
---|
[19] | 1890 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1891 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 1892 | dt_3d * ( & |
---|
| 1893 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1894 | ) - & |
---|
| 1895 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 1896 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 1897 | ENDDO |
---|
| 1898 | ENDDO |
---|
| 1899 | ENDDO |
---|
| 1900 | |
---|
| 1901 | ! |
---|
| 1902 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1903 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1904 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1905 | DO i = nxl, nxr |
---|
| 1906 | DO j = nys, nyn |
---|
[19] | 1907 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1908 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1909 | ENDDO |
---|
| 1910 | ENDDO |
---|
| 1911 | ENDDO |
---|
| 1912 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1913 | intermediate_timestep_count_max ) THEN |
---|
| 1914 | DO i = nxl, nxr |
---|
| 1915 | DO j = nys, nyn |
---|
[19] | 1916 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1917 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1918 | ENDDO |
---|
| 1919 | ENDDO |
---|
| 1920 | ENDDO |
---|
| 1921 | ENDIF |
---|
| 1922 | ENDIF |
---|
| 1923 | |
---|
| 1924 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1925 | |
---|
| 1926 | ENDIF |
---|
| 1927 | |
---|
| 1928 | ! |
---|
| 1929 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1930 | !-- energy (TKE) |
---|
| 1931 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1932 | |
---|
| 1933 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1934 | |
---|
| 1935 | ! |
---|
| 1936 | !-- TKE-tendency terms with communication |
---|
| 1937 | CALL production_e_init |
---|
[63] | 1938 | |
---|
| 1939 | sat = tsc(1) |
---|
| 1940 | sbt = tsc(2) |
---|
[1] | 1941 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1942 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1943 | |
---|
| 1944 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1945 | ! |
---|
[63] | 1946 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1947 | !-- switched on. Thus: |
---|
| 1948 | sat = 1.0 |
---|
| 1949 | sbt = 1.0 |
---|
| 1950 | ENDIF |
---|
[1] | 1951 | tend = 0.0 |
---|
| 1952 | CALL advec_s_bc( e, 'e' ) |
---|
| 1953 | ELSE |
---|
| 1954 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1955 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1956 | tend = 0.0 |
---|
| 1957 | CALL advec_s_ups( e, 'e' ) |
---|
| 1958 | ENDIF |
---|
| 1959 | ENDIF |
---|
| 1960 | ENDIF |
---|
| 1961 | ENDIF |
---|
| 1962 | |
---|
| 1963 | ! |
---|
| 1964 | !-- TKE-tendency terms with no communication |
---|
| 1965 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
| 1966 | THEN |
---|
[75] | 1967 | IF ( .NOT. humidity ) THEN |
---|
[97] | 1968 | IF ( ocean ) THEN |
---|
| 1969 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, rho, & |
---|
| 1970 | prho_reference, rif, tend, zu, zw ) |
---|
| 1971 | ELSE |
---|
| 1972 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
| 1973 | pt_reference, rif, tend, zu, zw ) |
---|
| 1974 | ENDIF |
---|
[1] | 1975 | ELSE |
---|
| 1976 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
[97] | 1977 | pt_reference, rif, tend, zu, zw ) |
---|
[1] | 1978 | ENDIF |
---|
| 1979 | ELSE |
---|
| 1980 | IF ( use_upstream_for_tke ) THEN |
---|
| 1981 | tend = 0.0 |
---|
| 1982 | CALL advec_s_up( e ) |
---|
| 1983 | ELSE |
---|
| 1984 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1985 | tend = 0.0 |
---|
| 1986 | CALL advec_s_pw( e ) |
---|
| 1987 | ELSE |
---|
| 1988 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1989 | tend = 0.0 |
---|
| 1990 | CALL advec_s_up( e ) |
---|
| 1991 | ENDIF |
---|
| 1992 | ENDIF |
---|
| 1993 | ENDIF |
---|
| 1994 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[75] | 1995 | IF ( .NOT. humidity ) THEN |
---|
[1] | 1996 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
[97] | 1997 | pt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
[1] | 1998 | ELSE |
---|
| 1999 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
[97] | 2000 | vpt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
[1] | 2001 | ENDIF |
---|
| 2002 | ELSE |
---|
[75] | 2003 | IF ( .NOT. humidity ) THEN |
---|
[97] | 2004 | IF ( ocean ) THEN |
---|
| 2005 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
| 2006 | rho, prho_reference, rif, tend, zu, zw ) |
---|
| 2007 | ELSE |
---|
| 2008 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
| 2009 | pt, pt_reference, rif, tend, zu, zw ) |
---|
| 2010 | ENDIF |
---|
[1] | 2011 | ELSE |
---|
| 2012 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
[97] | 2013 | pt_reference, rif, tend, zu, zw ) |
---|
[1] | 2014 | ENDIF |
---|
| 2015 | ENDIF |
---|
| 2016 | ENDIF |
---|
| 2017 | CALL production_e |
---|
[138] | 2018 | |
---|
| 2019 | ! |
---|
| 2020 | !-- Additional sink term for flows through plant canopies |
---|
[153] | 2021 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
[1] | 2022 | CALL user_actions( 'e-tendency' ) |
---|
| 2023 | |
---|
| 2024 | ! |
---|
| 2025 | !-- Prognostic equation for TKE. |
---|
| 2026 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2027 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2028 | !-- value is reduced by 90%. |
---|
| 2029 | DO i = nxl, nxr |
---|
| 2030 | DO j = nys, nyn |
---|
[19] | 2031 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 2032 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 2033 | dt_3d * ( & |
---|
| 2034 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 2035 | ) |
---|
| 2036 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 2037 | ENDDO |
---|
| 2038 | ENDDO |
---|
| 2039 | ENDDO |
---|
| 2040 | |
---|
| 2041 | ! |
---|
| 2042 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 2043 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2044 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 2045 | DO i = nxl, nxr |
---|
| 2046 | DO j = nys, nyn |
---|
[19] | 2047 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 2048 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2049 | ENDDO |
---|
| 2050 | ENDDO |
---|
| 2051 | ENDDO |
---|
| 2052 | ELSEIF ( intermediate_timestep_count < & |
---|
| 2053 | intermediate_timestep_count_max ) THEN |
---|
| 2054 | DO i = nxl, nxr |
---|
| 2055 | DO j = nys, nyn |
---|
[19] | 2056 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 2057 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 2058 | ENDDO |
---|
| 2059 | ENDDO |
---|
| 2060 | ENDDO |
---|
| 2061 | ENDIF |
---|
| 2062 | ENDIF |
---|
| 2063 | |
---|
| 2064 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2065 | |
---|
| 2066 | ENDIF |
---|
| 2067 | |
---|
| 2068 | |
---|
[63] | 2069 | END SUBROUTINE prognostic_equations_vector |
---|
[1] | 2070 | |
---|
| 2071 | |
---|
| 2072 | END MODULE prognostic_equations_mod |
---|