[1873] | 1 | !> @file prognostic_equations.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[1875] | 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1875] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2101] | 17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1875] | 19 | ! |
---|
| 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
[1827] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1875] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: prognostic_equations.f90 2119 2017-01-17 16:51:50Z scharf $ |
---|
| 27 | ! |
---|
[2119] | 28 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 29 | ! OpenACC version of subroutine removed |
---|
| 30 | ! |
---|
[2032] | 31 | ! 2031 2016-10-21 15:11:58Z knoop |
---|
| 32 | ! renamed variable rho to rho_ocean |
---|
| 33 | ! |
---|
[2012] | 34 | ! 2011 2016-09-19 17:29:57Z kanani |
---|
| 35 | ! Flag urban_surface is now defined in module control_parameters. |
---|
| 36 | ! |
---|
[2008] | 37 | ! 2007 2016-08-24 15:47:17Z kanani |
---|
| 38 | ! Added pt tendency calculation based on energy balance at urban surfaces |
---|
| 39 | ! (new urban surface model) |
---|
| 40 | ! |
---|
[2001] | 41 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 42 | ! Forced header and separation lines into 80 columns |
---|
| 43 | ! |
---|
[1977] | 44 | ! 1976 2016-07-27 13:28:04Z maronga |
---|
| 45 | ! Simplied calls to radiation model |
---|
| 46 | ! |
---|
[1961] | 47 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
| 48 | ! Separate humidity and passive scalar |
---|
| 49 | ! |
---|
[1917] | 50 | ! 1914 2016-05-26 14:44:07Z witha |
---|
| 51 | ! Added calls for wind turbine model |
---|
| 52 | ! |
---|
[1874] | 53 | ! 1873 2016-04-18 14:50:06Z maronga |
---|
| 54 | ! Module renamed (removed _mod) |
---|
| 55 | ! |
---|
[1851] | 56 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
| 57 | ! Module renamed |
---|
| 58 | ! |
---|
[1827] | 59 | ! 1826 2016-04-07 12:01:39Z maronga |
---|
[1875] | 60 | ! Renamed canopy model calls. |
---|
| 61 | ! |
---|
| 62 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
| 63 | ! Kessler microphysics scheme moved to microphysics. |
---|
| 64 | ! |
---|
| 65 | ! 1757 2016-02-22 15:49:32Z maronga |
---|
| 66 | ! |
---|
| 67 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 68 | ! Added optional model spin-up without radiation / land surface model calls. |
---|
| 69 | ! Formatting corrections. |
---|
| 70 | ! |
---|
| 71 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 72 | ! Code annotations made doxygen readable |
---|
| 73 | ! |
---|
| 74 | ! 1585 2015-04-30 07:05:52Z maronga |
---|
| 75 | ! Added call for temperature tendency calculation due to radiative flux divergence |
---|
| 76 | ! |
---|
| 77 | ! 1517 2015-01-07 19:12:25Z hoffmann |
---|
| 78 | ! advec_s_bc_mod addded, since advec_s_bc is now a module |
---|
| 79 | ! |
---|
| 80 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
| 81 | ! Renamed "radiation" -> "cloud_top_radiation" |
---|
| 82 | ! |
---|
| 83 | ! 1484 2014-10-21 10:53:05Z kanani |
---|
| 84 | ! Changes due to new module structure of the plant canopy model: |
---|
| 85 | ! parameters cthf and plant_canopy moved to module plant_canopy_model_mod. |
---|
| 86 | ! Removed double-listing of use_upstream_for_tke in ONLY-list of module |
---|
| 87 | ! control_parameters |
---|
| 88 | ! |
---|
| 89 | ! 1409 2014-05-23 12:11:32Z suehring |
---|
| 90 | ! Bugfix: i_omp_start changed for advec_u_ws at left inflow and outflow boundary. |
---|
| 91 | ! This ensures that left-hand side fluxes are also calculated for nxl in that |
---|
| 92 | ! case, even though the solution at nxl is overwritten in boundary_conds() |
---|
| 93 | ! |
---|
| 94 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
| 95 | ! Rayleigh-damping for horizontal velocity components changed: instead of damping |
---|
| 96 | ! against ug and vg, damping against u_init and v_init is used to allow for a |
---|
| 97 | ! homogenized treatment in case of nudging |
---|
| 98 | ! |
---|
| 99 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
| 100 | ! Change order of calls for scalar prognostic quantities: |
---|
| 101 | ! ls_advec -> nudging -> subsidence since initial profiles |
---|
| 102 | ! |
---|
| 103 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 104 | ! missing variables added to ONLY lists |
---|
| 105 | ! |
---|
| 106 | ! 1365 2014-04-22 15:03:56Z boeske |
---|
| 107 | ! Calls of ls_advec for large scale advection added, |
---|
| 108 | ! subroutine subsidence is only called if use_subsidence_tendencies = .F., |
---|
| 109 | ! new argument ls_index added to the calls of subsidence |
---|
| 110 | ! +ls_index |
---|
| 111 | ! |
---|
| 112 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 113 | ! Two-moment microphysics moved to the start of prognostic equations. This makes |
---|
| 114 | ! the 3d arrays for tend_q, tend_qr, tend_pt and tend_pt redundant. |
---|
| 115 | ! Additionally, it is allowed to call the microphysics just once during the time |
---|
| 116 | ! step (not at each sub-time step). |
---|
| 117 | ! |
---|
| 118 | ! Two-moment cloud physics added for vector and accelerator optimization. |
---|
| 119 | ! |
---|
| 120 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 121 | ! REAL constants provided with KIND-attribute |
---|
| 122 | ! |
---|
| 123 | ! 1337 2014-03-25 15:11:48Z heinze |
---|
| 124 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 125 | ! |
---|
| 126 | ! 1332 2014-03-25 11:59:43Z suehring |
---|
| 127 | ! Bugfix: call advec_ws or advec_pw for TKE only if NOT use_upstream_for_tke |
---|
| 128 | ! |
---|
| 129 | ! 1330 2014-03-24 17:29:32Z suehring |
---|
| 130 | ! In case of SGS-particle velocity advection of TKE is also allowed with |
---|
| 131 | ! dissipative 5th-order scheme. |
---|
| 132 | ! |
---|
| 133 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
| 134 | ! ONLY-attribute added to USE-statements, |
---|
| 135 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 136 | ! kinds are defined in new module kinds, |
---|
| 137 | ! old module precision_kind is removed, |
---|
| 138 | ! revision history before 2012 removed, |
---|
| 139 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 140 | ! all variable declaration statements |
---|
| 141 | ! |
---|
| 142 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 143 | ! module interfaces removed |
---|
| 144 | ! |
---|
| 145 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 146 | ! openacc loop vector clauses removed, independent clauses added |
---|
| 147 | ! |
---|
| 148 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
| 149 | ! enable nudging also for accelerator version |
---|
| 150 | ! |
---|
| 151 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 152 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
| 153 | ! |
---|
| 154 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 155 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 156 | ! |
---|
| 157 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 158 | ! those parts requiring global communication moved to time_integration, |
---|
| 159 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 160 | ! j_north |
---|
| 161 | ! |
---|
| 162 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 163 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 164 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 165 | ! |
---|
| 166 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 167 | ! update directives for prognostic quantities removed |
---|
| 168 | ! |
---|
| 169 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 170 | ! small changes in code formatting |
---|
| 171 | ! |
---|
| 172 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 173 | ! unused variables removed |
---|
| 174 | ! |
---|
| 175 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 176 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 177 | ! and rain water content (qr) |
---|
| 178 | ! |
---|
| 179 | ! currently, only available for cache loop optimization |
---|
| 180 | ! |
---|
| 181 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 182 | ! code put under GPL (PALM 3.9) |
---|
| 183 | ! |
---|
| 184 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 185 | ! non-optimized version of prognostic_equations removed |
---|
| 186 | ! |
---|
| 187 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 188 | ! new branch prognostic_equations_acc |
---|
| 189 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 190 | ! |
---|
| 191 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 192 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 193 | ! |
---|
| 194 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 195 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 196 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 197 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 198 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
| 199 | ! |
---|
| 200 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 201 | ! temperature equation can be switched off |
---|
| 202 | ! |
---|
| 203 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 204 | ! Initial revision |
---|
| 205 | ! |
---|
| 206 | ! |
---|
| 207 | ! Description: |
---|
| 208 | ! ------------ |
---|
| 209 | !> Solving the prognostic equations. |
---|
| 210 | !------------------------------------------------------------------------------! |
---|
| 211 | MODULE prognostic_equations_mod |
---|
| 212 | |
---|
| 213 | |
---|
| 214 | |
---|
| 215 | USE arrays_3d, & |
---|
| 216 | ONLY: diss_l_e, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qr, & |
---|
[1960] | 217 | diss_l_s, diss_l_sa, diss_s_e, diss_s_nr, diss_s_pt, diss_s_q, & |
---|
| 218 | diss_s_qr, diss_s_s, diss_s_sa, e, e_p, flux_s_e, flux_s_nr, & |
---|
| 219 | flux_s_pt, flux_s_q, flux_s_qr, flux_s_s, flux_s_sa, flux_l_e, & |
---|
| 220 | flux_l_nr, flux_l_pt, flux_l_q, flux_l_qr, flux_l_s, flux_l_sa, & |
---|
| 221 | nr, nr_p, nrsws, nrswst, pt, ptdf_x, ptdf_y, pt_init, pt_p, & |
---|
| 222 | prho, q, q_init, q_p, qsws, qswst, qr, qr_p, qrsws, qrswst, rdf,& |
---|
[2031] | 223 | rdf_sc, ref_state, rho_ocean, s, s_init, s_p, sa, sa_init, sa_p, & |
---|
[1960] | 224 | saswsb, saswst, shf, ssws, sswst, tend, & |
---|
| 225 | te_m, tnr_m, tpt_m, tq_m, tqr_m, ts_m, tsa_m, tswst, tu_m, tv_m,& |
---|
[1875] | 226 | tw_m, u, ug, u_init, u_p, v, vg, vpt, v_init, v_p, w, w_p |
---|
| 227 | |
---|
| 228 | USE control_parameters, & |
---|
| 229 | ONLY: call_microphysics_at_all_substeps, cloud_physics, & |
---|
| 230 | cloud_top_radiation, constant_diffusion, dp_external, & |
---|
| 231 | dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, humidity, & |
---|
| 232 | inflow_l, intermediate_timestep_count, & |
---|
| 233 | intermediate_timestep_count_max, large_scale_forcing, & |
---|
| 234 | large_scale_subsidence, microphysics_seifert, & |
---|
| 235 | microphysics_sat_adjust, neutral, nudging, ocean, outflow_l, & |
---|
| 236 | outflow_s, passive_scalar, prho_reference, prho_reference, & |
---|
| 237 | prho_reference, pt_reference, pt_reference, pt_reference, & |
---|
| 238 | scalar_advec, scalar_advec, simulated_time, sloping_surface, & |
---|
[2011] | 239 | timestep_scheme, tsc, urban_surface, use_subsidence_tendencies, & |
---|
[1875] | 240 | use_upstream_for_tke, wall_heatflux, & |
---|
| 241 | wall_nrflux, wall_qflux, wall_qflux, wall_qflux, wall_qrflux, & |
---|
[1960] | 242 | wall_salinityflux, wall_sflux, ws_scheme_mom, ws_scheme_sca |
---|
[1875] | 243 | |
---|
| 244 | USE cpulog, & |
---|
| 245 | ONLY: cpu_log, log_point |
---|
| 246 | |
---|
| 247 | USE eqn_state_seawater_mod, & |
---|
| 248 | ONLY: eqn_state_seawater |
---|
| 249 | |
---|
| 250 | USE indices, & |
---|
[2118] | 251 | ONLY: nxl, nxlu, nxr, nyn, nys, nysv, nzb_s_inner, nzb_u_inner, & |
---|
| 252 | nzb_v_inner, nzb_w_inner, nzt |
---|
[1875] | 253 | |
---|
| 254 | USE advec_ws, & |
---|
[2118] | 255 | ONLY: advec_s_ws, advec_u_ws, advec_v_ws, advec_w_ws |
---|
[1875] | 256 | |
---|
| 257 | USE advec_s_bc_mod, & |
---|
| 258 | ONLY: advec_s_bc |
---|
| 259 | |
---|
| 260 | USE advec_s_pw_mod, & |
---|
| 261 | ONLY: advec_s_pw |
---|
| 262 | |
---|
| 263 | USE advec_s_up_mod, & |
---|
| 264 | ONLY: advec_s_up |
---|
| 265 | |
---|
| 266 | USE advec_u_pw_mod, & |
---|
| 267 | ONLY: advec_u_pw |
---|
| 268 | |
---|
| 269 | USE advec_u_up_mod, & |
---|
| 270 | ONLY: advec_u_up |
---|
| 271 | |
---|
| 272 | USE advec_v_pw_mod, & |
---|
| 273 | ONLY: advec_v_pw |
---|
| 274 | |
---|
| 275 | USE advec_v_up_mod, & |
---|
| 276 | ONLY: advec_v_up |
---|
| 277 | |
---|
| 278 | USE advec_w_pw_mod, & |
---|
| 279 | ONLY: advec_w_pw |
---|
| 280 | |
---|
| 281 | USE advec_w_up_mod, & |
---|
| 282 | ONLY: advec_w_up |
---|
| 283 | |
---|
| 284 | USE buoyancy_mod, & |
---|
[2118] | 285 | ONLY: buoyancy |
---|
[1875] | 286 | |
---|
| 287 | USE calc_radiation_mod, & |
---|
| 288 | ONLY: calc_radiation |
---|
| 289 | |
---|
| 290 | USE coriolis_mod, & |
---|
[2118] | 291 | ONLY: coriolis |
---|
[1875] | 292 | |
---|
| 293 | USE diffusion_e_mod, & |
---|
[2118] | 294 | ONLY: diffusion_e |
---|
[1875] | 295 | |
---|
| 296 | USE diffusion_s_mod, & |
---|
[2118] | 297 | ONLY: diffusion_s |
---|
[1875] | 298 | |
---|
| 299 | USE diffusion_u_mod, & |
---|
[2118] | 300 | ONLY: diffusion_u |
---|
[1875] | 301 | |
---|
| 302 | USE diffusion_v_mod, & |
---|
[2118] | 303 | ONLY: diffusion_v |
---|
[1875] | 304 | |
---|
| 305 | USE diffusion_w_mod, & |
---|
[2118] | 306 | ONLY: diffusion_w |
---|
[1875] | 307 | |
---|
| 308 | USE kinds |
---|
| 309 | |
---|
| 310 | USE ls_forcing_mod, & |
---|
| 311 | ONLY: ls_advec |
---|
| 312 | |
---|
| 313 | USE microphysics_mod, & |
---|
| 314 | ONLY: microphysics_control |
---|
| 315 | |
---|
| 316 | USE nudge_mod, & |
---|
| 317 | ONLY: nudge |
---|
| 318 | |
---|
| 319 | USE plant_canopy_model_mod, & |
---|
| 320 | ONLY: cthf, plant_canopy, pcm_tendency |
---|
| 321 | |
---|
| 322 | USE production_e_mod, & |
---|
[2118] | 323 | ONLY: production_e |
---|
[1875] | 324 | |
---|
| 325 | USE radiation_model_mod, & |
---|
[1976] | 326 | ONLY: radiation, radiation_tendency, & |
---|
[1875] | 327 | skip_time_do_radiation |
---|
| 328 | |
---|
| 329 | USE statistics, & |
---|
| 330 | ONLY: hom |
---|
| 331 | |
---|
| 332 | USE subsidence_mod, & |
---|
| 333 | ONLY: subsidence |
---|
| 334 | |
---|
[2007] | 335 | USE urban_surface_mod, & |
---|
[2011] | 336 | ONLY: usm_wall_heat_flux |
---|
[2007] | 337 | |
---|
[1875] | 338 | USE user_actions_mod, & |
---|
| 339 | ONLY: user_actions |
---|
| 340 | |
---|
[1914] | 341 | USE wind_turbine_model_mod, & |
---|
| 342 | ONLY: wind_turbine, wtm_tendencies |
---|
[1875] | 343 | |
---|
[1914] | 344 | |
---|
[1875] | 345 | PRIVATE |
---|
[2118] | 346 | PUBLIC prognostic_equations_cache, prognostic_equations_vector |
---|
[1875] | 347 | |
---|
| 348 | INTERFACE prognostic_equations_cache |
---|
| 349 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 350 | END INTERFACE prognostic_equations_cache |
---|
| 351 | |
---|
| 352 | INTERFACE prognostic_equations_vector |
---|
| 353 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 354 | END INTERFACE prognostic_equations_vector |
---|
| 355 | |
---|
| 356 | |
---|
| 357 | CONTAINS |
---|
| 358 | |
---|
| 359 | |
---|
| 360 | !------------------------------------------------------------------------------! |
---|
| 361 | ! Description: |
---|
| 362 | ! ------------ |
---|
| 363 | !> Version with one optimized loop over all equations. It is only allowed to |
---|
| 364 | !> be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 365 | !> |
---|
| 366 | !> Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 367 | !> so communication between CPUs is not allowed (does not make sense) within |
---|
| 368 | !> these loops. |
---|
| 369 | !> |
---|
| 370 | !> (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 371 | !------------------------------------------------------------------------------! |
---|
| 372 | |
---|
| 373 | SUBROUTINE prognostic_equations_cache |
---|
| 374 | |
---|
| 375 | |
---|
| 376 | IMPLICIT NONE |
---|
| 377 | |
---|
| 378 | INTEGER(iwp) :: i !< |
---|
| 379 | INTEGER(iwp) :: i_omp_start !< |
---|
| 380 | INTEGER(iwp) :: j !< |
---|
| 381 | INTEGER(iwp) :: k !< |
---|
| 382 | INTEGER(iwp) :: omp_get_thread_num !< |
---|
| 383 | INTEGER(iwp) :: tn = 0 !< |
---|
| 384 | |
---|
| 385 | LOGICAL :: loop_start !< |
---|
| 386 | |
---|
| 387 | |
---|
| 388 | ! |
---|
| 389 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 390 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 391 | |
---|
| 392 | ! |
---|
| 393 | !-- Loop over all prognostic equations |
---|
| 394 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 395 | |
---|
| 396 | !$ tn = omp_get_thread_num() |
---|
| 397 | loop_start = .TRUE. |
---|
| 398 | !$OMP DO |
---|
| 399 | DO i = nxl, nxr |
---|
| 400 | |
---|
| 401 | ! |
---|
| 402 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 403 | !-- later in advec_ws |
---|
| 404 | IF ( loop_start ) THEN |
---|
| 405 | loop_start = .FALSE. |
---|
| 406 | i_omp_start = i |
---|
| 407 | ENDIF |
---|
| 408 | |
---|
| 409 | DO j = nys, nyn |
---|
| 410 | ! |
---|
| 411 | !-- If required, calculate cloud microphysics |
---|
| 412 | IF ( cloud_physics .AND. .NOT. microphysics_sat_adjust .AND. & |
---|
| 413 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 414 | call_microphysics_at_all_substeps ) & |
---|
| 415 | ) THEN |
---|
| 416 | CALL microphysics_control( i, j ) |
---|
| 417 | ENDIF |
---|
| 418 | ! |
---|
| 419 | !-- Tendency terms for u-velocity component |
---|
| 420 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 421 | |
---|
| 422 | tend(:,j,i) = 0.0_wp |
---|
| 423 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 424 | IF ( ws_scheme_mom ) THEN |
---|
| 425 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
| 426 | ELSE |
---|
| 427 | CALL advec_u_pw( i, j ) |
---|
| 428 | ENDIF |
---|
| 429 | ELSE |
---|
| 430 | CALL advec_u_up( i, j ) |
---|
| 431 | ENDIF |
---|
| 432 | CALL diffusion_u( i, j ) |
---|
| 433 | CALL coriolis( i, j, 1 ) |
---|
| 434 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
| 435 | CALL buoyancy( i, j, pt, 1 ) |
---|
| 436 | ENDIF |
---|
| 437 | |
---|
| 438 | ! |
---|
| 439 | !-- Drag by plant canopy |
---|
| 440 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 1 ) |
---|
| 441 | |
---|
| 442 | ! |
---|
| 443 | !-- External pressure gradient |
---|
| 444 | IF ( dp_external ) THEN |
---|
| 445 | DO k = dp_level_ind_b+1, nzt |
---|
| 446 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 447 | ENDDO |
---|
| 448 | ENDIF |
---|
| 449 | |
---|
| 450 | ! |
---|
| 451 | !-- Nudging |
---|
| 452 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
| 453 | |
---|
[1914] | 454 | ! |
---|
| 455 | !-- Forces by wind turbines |
---|
| 456 | IF ( wind_turbine ) CALL wtm_tendencies( i, j, 1 ) |
---|
| 457 | |
---|
[1875] | 458 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 459 | ! |
---|
| 460 | !-- Prognostic equation for u-velocity component |
---|
| 461 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 462 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 463 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 464 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
| 465 | ENDDO |
---|
| 466 | |
---|
| 467 | ! |
---|
| 468 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 469 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 470 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 471 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 472 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 473 | ENDDO |
---|
| 474 | ELSEIF ( intermediate_timestep_count < & |
---|
| 475 | intermediate_timestep_count_max ) THEN |
---|
| 476 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 477 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
| 478 | ENDDO |
---|
| 479 | ENDIF |
---|
| 480 | ENDIF |
---|
| 481 | |
---|
| 482 | ENDIF |
---|
| 483 | |
---|
| 484 | ! |
---|
| 485 | !-- Tendency terms for v-velocity component |
---|
| 486 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 487 | |
---|
| 488 | tend(:,j,i) = 0.0_wp |
---|
| 489 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 490 | IF ( ws_scheme_mom ) THEN |
---|
| 491 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 492 | ELSE |
---|
| 493 | CALL advec_v_pw( i, j ) |
---|
| 494 | ENDIF |
---|
| 495 | ELSE |
---|
| 496 | CALL advec_v_up( i, j ) |
---|
| 497 | ENDIF |
---|
| 498 | CALL diffusion_v( i, j ) |
---|
| 499 | CALL coriolis( i, j, 2 ) |
---|
| 500 | |
---|
| 501 | ! |
---|
| 502 | !-- Drag by plant canopy |
---|
| 503 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 2 ) |
---|
| 504 | |
---|
| 505 | ! |
---|
| 506 | !-- External pressure gradient |
---|
| 507 | IF ( dp_external ) THEN |
---|
| 508 | DO k = dp_level_ind_b+1, nzt |
---|
| 509 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 510 | ENDDO |
---|
| 511 | ENDIF |
---|
| 512 | |
---|
| 513 | ! |
---|
| 514 | !-- Nudging |
---|
| 515 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
| 516 | |
---|
[1914] | 517 | ! |
---|
| 518 | !-- Forces by wind turbines |
---|
| 519 | IF ( wind_turbine ) CALL wtm_tendencies( i, j, 2 ) |
---|
| 520 | |
---|
[1875] | 521 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 522 | ! |
---|
| 523 | !-- Prognostic equation for v-velocity component |
---|
| 524 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 525 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 526 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 527 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
| 528 | ENDDO |
---|
| 529 | |
---|
| 530 | ! |
---|
| 531 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 532 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 533 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 534 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 535 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 536 | ENDDO |
---|
| 537 | ELSEIF ( intermediate_timestep_count < & |
---|
| 538 | intermediate_timestep_count_max ) THEN |
---|
| 539 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 540 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
| 541 | ENDDO |
---|
| 542 | ENDIF |
---|
| 543 | ENDIF |
---|
| 544 | |
---|
| 545 | ENDIF |
---|
| 546 | |
---|
| 547 | ! |
---|
| 548 | !-- Tendency terms for w-velocity component |
---|
| 549 | tend(:,j,i) = 0.0_wp |
---|
| 550 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 551 | IF ( ws_scheme_mom ) THEN |
---|
| 552 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 553 | ELSE |
---|
| 554 | CALL advec_w_pw( i, j ) |
---|
| 555 | END IF |
---|
| 556 | ELSE |
---|
| 557 | CALL advec_w_up( i, j ) |
---|
| 558 | ENDIF |
---|
| 559 | CALL diffusion_w( i, j ) |
---|
| 560 | CALL coriolis( i, j, 3 ) |
---|
| 561 | |
---|
| 562 | IF ( .NOT. neutral ) THEN |
---|
| 563 | IF ( ocean ) THEN |
---|
[2031] | 564 | CALL buoyancy( i, j, rho_ocean, 3 ) |
---|
[1875] | 565 | ELSE |
---|
| 566 | IF ( .NOT. humidity ) THEN |
---|
| 567 | CALL buoyancy( i, j, pt, 3 ) |
---|
| 568 | ELSE |
---|
| 569 | CALL buoyancy( i, j, vpt, 3 ) |
---|
| 570 | ENDIF |
---|
| 571 | ENDIF |
---|
| 572 | ENDIF |
---|
| 573 | |
---|
| 574 | ! |
---|
| 575 | !-- Drag by plant canopy |
---|
| 576 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 3 ) |
---|
| 577 | |
---|
[1914] | 578 | ! |
---|
| 579 | !-- Forces by wind turbines |
---|
| 580 | IF ( wind_turbine ) CALL wtm_tendencies( i, j, 3 ) |
---|
| 581 | |
---|
[1875] | 582 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 583 | |
---|
| 584 | ! |
---|
| 585 | !-- Prognostic equation for w-velocity component |
---|
| 586 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 587 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 588 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 589 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 590 | ENDDO |
---|
| 591 | |
---|
| 592 | ! |
---|
| 593 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 594 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 595 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 596 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 597 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 598 | ENDDO |
---|
| 599 | ELSEIF ( intermediate_timestep_count < & |
---|
| 600 | intermediate_timestep_count_max ) THEN |
---|
| 601 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 602 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
| 603 | ENDDO |
---|
| 604 | ENDIF |
---|
| 605 | ENDIF |
---|
| 606 | |
---|
| 607 | ! |
---|
| 608 | !-- If required, compute prognostic equation for potential temperature |
---|
| 609 | IF ( .NOT. neutral ) THEN |
---|
| 610 | ! |
---|
| 611 | !-- Tendency terms for potential temperature |
---|
| 612 | tend(:,j,i) = 0.0_wp |
---|
| 613 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 614 | IF ( ws_scheme_sca ) THEN |
---|
| 615 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 616 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 617 | ELSE |
---|
| 618 | CALL advec_s_pw( i, j, pt ) |
---|
| 619 | ENDIF |
---|
| 620 | ELSE |
---|
| 621 | CALL advec_s_up( i, j, pt ) |
---|
| 622 | ENDIF |
---|
| 623 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
| 624 | |
---|
| 625 | ! |
---|
[2007] | 626 | !-- Tendency pt from wall heat flux from urban surface |
---|
| 627 | IF ( urban_surface ) THEN |
---|
| 628 | CALL usm_wall_heat_flux( i, j ) |
---|
| 629 | ENDIF |
---|
| 630 | |
---|
| 631 | ! |
---|
[1875] | 632 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 633 | !-- processes |
---|
| 634 | IF ( cloud_top_radiation ) THEN |
---|
| 635 | CALL calc_radiation( i, j ) |
---|
| 636 | ENDIF |
---|
| 637 | |
---|
| 638 | ! |
---|
| 639 | !-- Consideration of heat sources within the plant canopy |
---|
| 640 | IF ( plant_canopy .AND. cthf /= 0.0_wp ) THEN |
---|
| 641 | CALL pcm_tendency( i, j, 4 ) |
---|
| 642 | ENDIF |
---|
| 643 | |
---|
| 644 | ! |
---|
| 645 | !-- Large scale advection |
---|
| 646 | IF ( large_scale_forcing ) THEN |
---|
| 647 | CALL ls_advec( i, j, simulated_time, 'pt' ) |
---|
| 648 | ENDIF |
---|
| 649 | |
---|
| 650 | ! |
---|
| 651 | !-- Nudging |
---|
| 652 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
| 653 | |
---|
| 654 | ! |
---|
| 655 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
| 656 | IF ( large_scale_subsidence .AND. & |
---|
| 657 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 658 | CALL subsidence( i, j, tend, pt, pt_init, 2 ) |
---|
| 659 | ENDIF |
---|
| 660 | |
---|
| 661 | ! |
---|
| 662 | !-- If required, add tendency due to radiative heating/cooling |
---|
[1976] | 663 | IF ( radiation .AND. & |
---|
[1875] | 664 | simulated_time > skip_time_do_radiation ) THEN |
---|
| 665 | CALL radiation_tendency ( i, j, tend ) |
---|
| 666 | ENDIF |
---|
| 667 | |
---|
| 668 | |
---|
| 669 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 670 | |
---|
| 671 | ! |
---|
| 672 | !-- Prognostic equation for potential temperature |
---|
| 673 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 674 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 675 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 676 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 677 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 678 | ENDDO |
---|
| 679 | |
---|
| 680 | ! |
---|
| 681 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 682 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 683 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 684 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 685 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 686 | ENDDO |
---|
| 687 | ELSEIF ( intermediate_timestep_count < & |
---|
| 688 | intermediate_timestep_count_max ) THEN |
---|
| 689 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 690 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 691 | 5.3125_wp * tpt_m(k,j,i) |
---|
| 692 | ENDDO |
---|
| 693 | ENDIF |
---|
| 694 | ENDIF |
---|
| 695 | |
---|
| 696 | ENDIF |
---|
| 697 | |
---|
| 698 | ! |
---|
| 699 | !-- If required, compute prognostic equation for salinity |
---|
| 700 | IF ( ocean ) THEN |
---|
| 701 | |
---|
| 702 | ! |
---|
| 703 | !-- Tendency-terms for salinity |
---|
| 704 | tend(:,j,i) = 0.0_wp |
---|
| 705 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 706 | THEN |
---|
| 707 | IF ( ws_scheme_sca ) THEN |
---|
| 708 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 709 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 710 | ELSE |
---|
| 711 | CALL advec_s_pw( i, j, sa ) |
---|
| 712 | ENDIF |
---|
| 713 | ELSE |
---|
| 714 | CALL advec_s_up( i, j, sa ) |
---|
| 715 | ENDIF |
---|
| 716 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
| 717 | |
---|
| 718 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 719 | |
---|
| 720 | ! |
---|
| 721 | !-- Prognostic equation for salinity |
---|
| 722 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 723 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 724 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 725 | - tsc(5) * rdf_sc(k) * & |
---|
| 726 | ( sa(k,j,i) - sa_init(k) ) |
---|
| 727 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
| 728 | ENDDO |
---|
| 729 | |
---|
| 730 | ! |
---|
| 731 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 732 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 733 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 734 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 735 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 736 | ENDDO |
---|
| 737 | ELSEIF ( intermediate_timestep_count < & |
---|
| 738 | intermediate_timestep_count_max ) THEN |
---|
| 739 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 740 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 741 | 5.3125_wp * tsa_m(k,j,i) |
---|
| 742 | ENDDO |
---|
| 743 | ENDIF |
---|
| 744 | ENDIF |
---|
| 745 | |
---|
| 746 | ! |
---|
| 747 | !-- Calculate density by the equation of state for seawater |
---|
| 748 | CALL eqn_state_seawater( i, j ) |
---|
| 749 | |
---|
| 750 | ENDIF |
---|
| 751 | |
---|
| 752 | ! |
---|
[1960] | 753 | !-- If required, compute prognostic equation for total water content |
---|
| 754 | IF ( humidity ) THEN |
---|
[1875] | 755 | |
---|
| 756 | ! |
---|
| 757 | !-- Tendency-terms for total water content / scalar |
---|
| 758 | tend(:,j,i) = 0.0_wp |
---|
| 759 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 760 | THEN |
---|
| 761 | IF ( ws_scheme_sca ) THEN |
---|
| 762 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 763 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 764 | ELSE |
---|
| 765 | CALL advec_s_pw( i, j, q ) |
---|
| 766 | ENDIF |
---|
| 767 | ELSE |
---|
| 768 | CALL advec_s_up( i, j, q ) |
---|
| 769 | ENDIF |
---|
| 770 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
| 771 | |
---|
| 772 | ! |
---|
[1960] | 773 | !-- Sink or source of humidity due to canopy elements |
---|
[1875] | 774 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 5 ) |
---|
| 775 | |
---|
| 776 | ! |
---|
| 777 | !-- Large scale advection |
---|
| 778 | IF ( large_scale_forcing ) THEN |
---|
| 779 | CALL ls_advec( i, j, simulated_time, 'q' ) |
---|
| 780 | ENDIF |
---|
| 781 | |
---|
| 782 | ! |
---|
| 783 | !-- Nudging |
---|
| 784 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
| 785 | |
---|
| 786 | ! |
---|
| 787 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 788 | IF ( large_scale_subsidence .AND. & |
---|
| 789 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 790 | CALL subsidence( i, j, tend, q, q_init, 3 ) |
---|
| 791 | ENDIF |
---|
| 792 | |
---|
| 793 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 794 | |
---|
| 795 | ! |
---|
| 796 | !-- Prognostic equation for total water content / scalar |
---|
| 797 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 798 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 799 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 800 | - tsc(5) * rdf_sc(k) * & |
---|
| 801 | ( q(k,j,i) - q_init(k) ) |
---|
| 802 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
| 803 | ENDDO |
---|
| 804 | |
---|
| 805 | ! |
---|
| 806 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 807 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 808 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 809 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 810 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 811 | ENDDO |
---|
| 812 | ELSEIF ( intermediate_timestep_count < & |
---|
| 813 | intermediate_timestep_count_max ) THEN |
---|
| 814 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 815 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 816 | 5.3125_wp * tq_m(k,j,i) |
---|
| 817 | ENDDO |
---|
| 818 | ENDIF |
---|
| 819 | ENDIF |
---|
| 820 | |
---|
| 821 | ! |
---|
| 822 | !-- If required, calculate prognostic equations for rain water content |
---|
| 823 | !-- and rain drop concentration |
---|
| 824 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
| 825 | ! |
---|
| 826 | !-- Calculate prognostic equation for rain water content |
---|
| 827 | tend(:,j,i) = 0.0_wp |
---|
| 828 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 829 | THEN |
---|
| 830 | IF ( ws_scheme_sca ) THEN |
---|
| 831 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 832 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 833 | i_omp_start, tn ) |
---|
| 834 | ELSE |
---|
| 835 | CALL advec_s_pw( i, j, qr ) |
---|
| 836 | ENDIF |
---|
| 837 | ELSE |
---|
| 838 | CALL advec_s_up( i, j, qr ) |
---|
| 839 | ENDIF |
---|
| 840 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 841 | |
---|
| 842 | ! |
---|
| 843 | !-- Prognostic equation for rain water content |
---|
| 844 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 845 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 846 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 847 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 848 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 849 | ENDDO |
---|
| 850 | ! |
---|
| 851 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 852 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 853 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 854 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 855 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 856 | ENDDO |
---|
| 857 | ELSEIF ( intermediate_timestep_count < & |
---|
| 858 | intermediate_timestep_count_max ) THEN |
---|
| 859 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 860 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 861 | 5.3125_wp * tqr_m(k,j,i) |
---|
| 862 | ENDDO |
---|
| 863 | ENDIF |
---|
| 864 | ENDIF |
---|
| 865 | |
---|
| 866 | ! |
---|
| 867 | !-- Calculate prognostic equation for rain drop concentration. |
---|
| 868 | tend(:,j,i) = 0.0_wp |
---|
| 869 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 870 | IF ( ws_scheme_sca ) THEN |
---|
| 871 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 872 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 873 | i_omp_start, tn ) |
---|
| 874 | ELSE |
---|
| 875 | CALL advec_s_pw( i, j, nr ) |
---|
| 876 | ENDIF |
---|
| 877 | ELSE |
---|
| 878 | CALL advec_s_up( i, j, nr ) |
---|
| 879 | ENDIF |
---|
| 880 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
| 881 | |
---|
| 882 | ! |
---|
| 883 | !-- Prognostic equation for rain drop concentration |
---|
| 884 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 885 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 886 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 887 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 888 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 889 | ENDDO |
---|
| 890 | ! |
---|
| 891 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 892 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 893 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 894 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 895 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 896 | ENDDO |
---|
| 897 | ELSEIF ( intermediate_timestep_count < & |
---|
| 898 | intermediate_timestep_count_max ) THEN |
---|
| 899 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 900 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 901 | 5.3125_wp * tnr_m(k,j,i) |
---|
| 902 | ENDDO |
---|
| 903 | ENDIF |
---|
| 904 | ENDIF |
---|
| 905 | |
---|
| 906 | ENDIF |
---|
| 907 | |
---|
| 908 | ENDIF |
---|
[1960] | 909 | |
---|
| 910 | ! |
---|
| 911 | !-- If required, compute prognostic equation for scalar |
---|
| 912 | IF ( passive_scalar ) THEN |
---|
| 913 | ! |
---|
| 914 | !-- Tendency-terms for total water content / scalar |
---|
| 915 | tend(:,j,i) = 0.0_wp |
---|
| 916 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 917 | THEN |
---|
| 918 | IF ( ws_scheme_sca ) THEN |
---|
| 919 | CALL advec_s_ws( i, j, s, 's', flux_s_s, & |
---|
| 920 | diss_s_s, flux_l_s, diss_l_s, i_omp_start, tn ) |
---|
| 921 | ELSE |
---|
| 922 | CALL advec_s_pw( i, j, s ) |
---|
| 923 | ENDIF |
---|
| 924 | ELSE |
---|
| 925 | CALL advec_s_up( i, j, s ) |
---|
| 926 | ENDIF |
---|
| 927 | CALL diffusion_s( i, j, s, ssws, sswst, wall_sflux ) |
---|
[1875] | 928 | |
---|
| 929 | ! |
---|
[1960] | 930 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 931 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 7 ) |
---|
| 932 | |
---|
| 933 | ! |
---|
| 934 | !-- Large scale advection, still need to be extended for scalars |
---|
| 935 | ! IF ( large_scale_forcing ) THEN |
---|
| 936 | ! CALL ls_advec( i, j, simulated_time, 's' ) |
---|
| 937 | ! ENDIF |
---|
| 938 | |
---|
| 939 | ! |
---|
| 940 | !-- Nudging, still need to be extended for scalars |
---|
| 941 | ! IF ( nudging ) CALL nudge( i, j, simulated_time, 's' ) |
---|
| 942 | |
---|
| 943 | ! |
---|
| 944 | !-- If required compute influence of large-scale subsidence/ascent. |
---|
| 945 | !-- Note, the last argument is of no meaning in this case, as it is |
---|
| 946 | !-- only used in conjunction with large_scale_forcing, which is to |
---|
| 947 | !-- date not implemented for scalars. |
---|
| 948 | IF ( large_scale_subsidence .AND. & |
---|
| 949 | .NOT. use_subsidence_tendencies .AND. & |
---|
| 950 | .NOT. large_scale_forcing ) THEN |
---|
| 951 | CALL subsidence( i, j, tend, s, s_init, 3 ) |
---|
| 952 | ENDIF |
---|
| 953 | |
---|
| 954 | CALL user_actions( i, j, 's-tendency' ) |
---|
| 955 | |
---|
| 956 | ! |
---|
| 957 | !-- Prognostic equation for scalar |
---|
| 958 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 959 | s_p(k,j,i) = s(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 960 | tsc(3) * ts_m(k,j,i) ) & |
---|
| 961 | - tsc(5) * rdf_sc(k) * & |
---|
| 962 | ( s(k,j,i) - s_init(k) ) |
---|
| 963 | IF ( s_p(k,j,i) < 0.0_wp ) s_p(k,j,i) = 0.1_wp * s(k,j,i) |
---|
| 964 | ENDDO |
---|
| 965 | |
---|
| 966 | ! |
---|
| 967 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 968 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 969 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 970 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 971 | ts_m(k,j,i) = tend(k,j,i) |
---|
| 972 | ENDDO |
---|
| 973 | ELSEIF ( intermediate_timestep_count < & |
---|
| 974 | intermediate_timestep_count_max ) THEN |
---|
| 975 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 976 | ts_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 977 | 5.3125_wp * ts_m(k,j,i) |
---|
| 978 | ENDDO |
---|
| 979 | ENDIF |
---|
| 980 | ENDIF |
---|
| 981 | |
---|
| 982 | ENDIF |
---|
| 983 | ! |
---|
[1875] | 984 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 985 | !-- energy (TKE) |
---|
| 986 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 987 | |
---|
| 988 | ! |
---|
| 989 | !-- Tendency-terms for TKE |
---|
| 990 | tend(:,j,i) = 0.0_wp |
---|
| 991 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
| 992 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
| 993 | IF ( ws_scheme_sca ) THEN |
---|
| 994 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 995 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
| 996 | ELSE |
---|
| 997 | CALL advec_s_pw( i, j, e ) |
---|
| 998 | ENDIF |
---|
| 999 | ELSE |
---|
| 1000 | CALL advec_s_up( i, j, e ) |
---|
| 1001 | ENDIF |
---|
| 1002 | IF ( .NOT. humidity ) THEN |
---|
| 1003 | IF ( ocean ) THEN |
---|
| 1004 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
| 1005 | ELSE |
---|
| 1006 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
| 1007 | ENDIF |
---|
| 1008 | ELSE |
---|
| 1009 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
| 1010 | ENDIF |
---|
| 1011 | CALL production_e( i, j ) |
---|
| 1012 | |
---|
| 1013 | ! |
---|
| 1014 | !-- Additional sink term for flows through plant canopies |
---|
| 1015 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 6 ) |
---|
| 1016 | |
---|
| 1017 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 1018 | |
---|
| 1019 | ! |
---|
| 1020 | !-- Prognostic equation for TKE. |
---|
| 1021 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1022 | !-- reasons in the course of the integration. In such cases the old |
---|
| 1023 | !-- TKE value is reduced by 90%. |
---|
| 1024 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1025 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1026 | tsc(3) * te_m(k,j,i) ) |
---|
| 1027 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
| 1028 | ENDDO |
---|
| 1029 | |
---|
| 1030 | ! |
---|
| 1031 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1032 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1033 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1034 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1035 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1036 | ENDDO |
---|
| 1037 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1038 | intermediate_timestep_count_max ) THEN |
---|
| 1039 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1040 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1041 | 5.3125_wp * te_m(k,j,i) |
---|
| 1042 | ENDDO |
---|
| 1043 | ENDIF |
---|
| 1044 | ENDIF |
---|
| 1045 | |
---|
| 1046 | ENDIF ! TKE equation |
---|
| 1047 | |
---|
| 1048 | ENDDO |
---|
| 1049 | ENDDO |
---|
| 1050 | !$OMP END PARALLEL |
---|
| 1051 | |
---|
| 1052 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 1053 | |
---|
| 1054 | |
---|
| 1055 | END SUBROUTINE prognostic_equations_cache |
---|
| 1056 | |
---|
| 1057 | |
---|
| 1058 | !------------------------------------------------------------------------------! |
---|
| 1059 | ! Description: |
---|
| 1060 | ! ------------ |
---|
| 1061 | !> Version for vector machines |
---|
| 1062 | !------------------------------------------------------------------------------! |
---|
| 1063 | |
---|
| 1064 | SUBROUTINE prognostic_equations_vector |
---|
| 1065 | |
---|
| 1066 | |
---|
| 1067 | IMPLICIT NONE |
---|
| 1068 | |
---|
| 1069 | INTEGER(iwp) :: i !< |
---|
| 1070 | INTEGER(iwp) :: j !< |
---|
| 1071 | INTEGER(iwp) :: k !< |
---|
| 1072 | |
---|
| 1073 | REAL(wp) :: sbt !< |
---|
| 1074 | |
---|
| 1075 | |
---|
| 1076 | ! |
---|
| 1077 | !-- If required, calculate cloud microphysical impacts |
---|
| 1078 | IF ( cloud_physics .AND. .NOT. microphysics_sat_adjust .AND. & |
---|
| 1079 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 1080 | call_microphysics_at_all_substeps ) & |
---|
| 1081 | ) THEN |
---|
| 1082 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 1083 | CALL microphysics_control |
---|
| 1084 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 1085 | ENDIF |
---|
| 1086 | |
---|
| 1087 | ! |
---|
| 1088 | !-- u-velocity component |
---|
| 1089 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1090 | |
---|
| 1091 | tend = 0.0_wp |
---|
| 1092 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1093 | IF ( ws_scheme_mom ) THEN |
---|
| 1094 | CALL advec_u_ws |
---|
| 1095 | ELSE |
---|
| 1096 | CALL advec_u_pw |
---|
| 1097 | ENDIF |
---|
| 1098 | ELSE |
---|
| 1099 | CALL advec_u_up |
---|
| 1100 | ENDIF |
---|
| 1101 | CALL diffusion_u |
---|
| 1102 | CALL coriolis( 1 ) |
---|
| 1103 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
| 1104 | CALL buoyancy( pt, 1 ) |
---|
| 1105 | ENDIF |
---|
| 1106 | |
---|
| 1107 | ! |
---|
| 1108 | !-- Drag by plant canopy |
---|
| 1109 | IF ( plant_canopy ) CALL pcm_tendency( 1 ) |
---|
| 1110 | |
---|
| 1111 | ! |
---|
| 1112 | !-- External pressure gradient |
---|
| 1113 | IF ( dp_external ) THEN |
---|
| 1114 | DO i = nxlu, nxr |
---|
| 1115 | DO j = nys, nyn |
---|
| 1116 | DO k = dp_level_ind_b+1, nzt |
---|
| 1117 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1118 | ENDDO |
---|
| 1119 | ENDDO |
---|
| 1120 | ENDDO |
---|
| 1121 | ENDIF |
---|
| 1122 | |
---|
| 1123 | ! |
---|
| 1124 | !-- Nudging |
---|
| 1125 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 1126 | |
---|
[1914] | 1127 | ! |
---|
| 1128 | !-- Forces by wind turbines |
---|
| 1129 | IF ( wind_turbine ) CALL wtm_tendencies( 1 ) |
---|
| 1130 | |
---|
[1875] | 1131 | CALL user_actions( 'u-tendency' ) |
---|
| 1132 | |
---|
| 1133 | ! |
---|
| 1134 | !-- Prognostic equation for u-velocity component |
---|
| 1135 | DO i = nxlu, nxr |
---|
| 1136 | DO j = nys, nyn |
---|
| 1137 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1138 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1139 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 1140 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
| 1141 | ENDDO |
---|
| 1142 | ENDDO |
---|
| 1143 | ENDDO |
---|
| 1144 | |
---|
| 1145 | ! |
---|
| 1146 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1147 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1148 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1149 | DO i = nxlu, nxr |
---|
| 1150 | DO j = nys, nyn |
---|
| 1151 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1152 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1153 | ENDDO |
---|
| 1154 | ENDDO |
---|
| 1155 | ENDDO |
---|
| 1156 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1157 | intermediate_timestep_count_max ) THEN |
---|
| 1158 | DO i = nxlu, nxr |
---|
| 1159 | DO j = nys, nyn |
---|
| 1160 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1161 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
| 1162 | ENDDO |
---|
| 1163 | ENDDO |
---|
| 1164 | ENDDO |
---|
| 1165 | ENDIF |
---|
| 1166 | ENDIF |
---|
| 1167 | |
---|
| 1168 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1169 | |
---|
| 1170 | ! |
---|
| 1171 | !-- v-velocity component |
---|
| 1172 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1173 | |
---|
| 1174 | tend = 0.0_wp |
---|
| 1175 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1176 | IF ( ws_scheme_mom ) THEN |
---|
| 1177 | CALL advec_v_ws |
---|
| 1178 | ELSE |
---|
| 1179 | CALL advec_v_pw |
---|
| 1180 | END IF |
---|
| 1181 | ELSE |
---|
| 1182 | CALL advec_v_up |
---|
| 1183 | ENDIF |
---|
| 1184 | CALL diffusion_v |
---|
| 1185 | CALL coriolis( 2 ) |
---|
| 1186 | |
---|
| 1187 | ! |
---|
| 1188 | !-- Drag by plant canopy |
---|
| 1189 | IF ( plant_canopy ) CALL pcm_tendency( 2 ) |
---|
| 1190 | |
---|
| 1191 | ! |
---|
| 1192 | !-- External pressure gradient |
---|
| 1193 | IF ( dp_external ) THEN |
---|
| 1194 | DO i = nxl, nxr |
---|
| 1195 | DO j = nysv, nyn |
---|
| 1196 | DO k = dp_level_ind_b+1, nzt |
---|
| 1197 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1198 | ENDDO |
---|
| 1199 | ENDDO |
---|
| 1200 | ENDDO |
---|
| 1201 | ENDIF |
---|
| 1202 | |
---|
| 1203 | ! |
---|
| 1204 | !-- Nudging |
---|
| 1205 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1206 | |
---|
[1914] | 1207 | ! |
---|
| 1208 | !-- Forces by wind turbines |
---|
| 1209 | IF ( wind_turbine ) CALL wtm_tendencies( 2 ) |
---|
| 1210 | |
---|
[1875] | 1211 | CALL user_actions( 'v-tendency' ) |
---|
| 1212 | |
---|
| 1213 | ! |
---|
| 1214 | !-- Prognostic equation for v-velocity component |
---|
| 1215 | DO i = nxl, nxr |
---|
| 1216 | DO j = nysv, nyn |
---|
| 1217 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1218 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1219 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 1220 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
| 1221 | ENDDO |
---|
| 1222 | ENDDO |
---|
| 1223 | ENDDO |
---|
| 1224 | |
---|
| 1225 | ! |
---|
| 1226 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1227 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1228 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1229 | DO i = nxl, nxr |
---|
| 1230 | DO j = nysv, nyn |
---|
| 1231 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1232 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1233 | ENDDO |
---|
| 1234 | ENDDO |
---|
| 1235 | ENDDO |
---|
| 1236 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1237 | intermediate_timestep_count_max ) THEN |
---|
| 1238 | DO i = nxl, nxr |
---|
| 1239 | DO j = nysv, nyn |
---|
| 1240 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1241 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
| 1242 | ENDDO |
---|
| 1243 | ENDDO |
---|
| 1244 | ENDDO |
---|
| 1245 | ENDIF |
---|
| 1246 | ENDIF |
---|
| 1247 | |
---|
| 1248 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1249 | |
---|
| 1250 | ! |
---|
| 1251 | !-- w-velocity component |
---|
| 1252 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1253 | |
---|
| 1254 | tend = 0.0_wp |
---|
| 1255 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1256 | IF ( ws_scheme_mom ) THEN |
---|
| 1257 | CALL advec_w_ws |
---|
| 1258 | ELSE |
---|
| 1259 | CALL advec_w_pw |
---|
| 1260 | ENDIF |
---|
| 1261 | ELSE |
---|
| 1262 | CALL advec_w_up |
---|
| 1263 | ENDIF |
---|
| 1264 | CALL diffusion_w |
---|
| 1265 | CALL coriolis( 3 ) |
---|
| 1266 | |
---|
| 1267 | IF ( .NOT. neutral ) THEN |
---|
| 1268 | IF ( ocean ) THEN |
---|
[2031] | 1269 | CALL buoyancy( rho_ocean, 3 ) |
---|
[1875] | 1270 | ELSE |
---|
| 1271 | IF ( .NOT. humidity ) THEN |
---|
| 1272 | CALL buoyancy( pt, 3 ) |
---|
| 1273 | ELSE |
---|
| 1274 | CALL buoyancy( vpt, 3 ) |
---|
| 1275 | ENDIF |
---|
| 1276 | ENDIF |
---|
| 1277 | ENDIF |
---|
| 1278 | |
---|
| 1279 | ! |
---|
| 1280 | !-- Drag by plant canopy |
---|
| 1281 | IF ( plant_canopy ) CALL pcm_tendency( 3 ) |
---|
| 1282 | |
---|
[1914] | 1283 | ! |
---|
| 1284 | !-- Forces by wind turbines |
---|
| 1285 | IF ( wind_turbine ) CALL wtm_tendencies( 3 ) |
---|
| 1286 | |
---|
[1875] | 1287 | CALL user_actions( 'w-tendency' ) |
---|
| 1288 | |
---|
| 1289 | ! |
---|
| 1290 | !-- Prognostic equation for w-velocity component |
---|
| 1291 | DO i = nxl, nxr |
---|
| 1292 | DO j = nys, nyn |
---|
| 1293 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1294 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1295 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1296 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1297 | ENDDO |
---|
| 1298 | ENDDO |
---|
| 1299 | ENDDO |
---|
| 1300 | |
---|
| 1301 | ! |
---|
| 1302 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1303 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1304 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1305 | DO i = nxl, nxr |
---|
| 1306 | DO j = nys, nyn |
---|
| 1307 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1308 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1309 | ENDDO |
---|
| 1310 | ENDDO |
---|
| 1311 | ENDDO |
---|
| 1312 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1313 | intermediate_timestep_count_max ) THEN |
---|
| 1314 | DO i = nxl, nxr |
---|
| 1315 | DO j = nys, nyn |
---|
| 1316 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1317 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
| 1318 | ENDDO |
---|
| 1319 | ENDDO |
---|
| 1320 | ENDDO |
---|
| 1321 | ENDIF |
---|
| 1322 | ENDIF |
---|
| 1323 | |
---|
| 1324 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1325 | |
---|
| 1326 | |
---|
| 1327 | ! |
---|
| 1328 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1329 | IF ( .NOT. neutral ) THEN |
---|
| 1330 | |
---|
| 1331 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1332 | |
---|
| 1333 | ! |
---|
| 1334 | !-- pt-tendency terms with communication |
---|
| 1335 | sbt = tsc(2) |
---|
| 1336 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1337 | |
---|
| 1338 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1339 | ! |
---|
| 1340 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1341 | sbt = 1.0_wp |
---|
| 1342 | ENDIF |
---|
| 1343 | tend = 0.0_wp |
---|
| 1344 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1345 | |
---|
| 1346 | ENDIF |
---|
| 1347 | |
---|
| 1348 | ! |
---|
| 1349 | !-- pt-tendency terms with no communication |
---|
| 1350 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1351 | tend = 0.0_wp |
---|
| 1352 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1353 | IF ( ws_scheme_sca ) THEN |
---|
| 1354 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1355 | ELSE |
---|
| 1356 | CALL advec_s_pw( pt ) |
---|
| 1357 | ENDIF |
---|
| 1358 | ELSE |
---|
| 1359 | CALL advec_s_up( pt ) |
---|
| 1360 | ENDIF |
---|
| 1361 | ENDIF |
---|
| 1362 | |
---|
| 1363 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1364 | |
---|
| 1365 | ! |
---|
[2007] | 1366 | !-- Tendency pt from wall heat flux from urban surface |
---|
| 1367 | IF ( urban_surface ) THEN |
---|
| 1368 | CALL usm_wall_heat_flux |
---|
| 1369 | ENDIF |
---|
| 1370 | |
---|
| 1371 | ! |
---|
[1875] | 1372 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1373 | IF ( cloud_top_radiation ) THEN |
---|
| 1374 | CALL calc_radiation |
---|
| 1375 | ENDIF |
---|
| 1376 | |
---|
| 1377 | ! |
---|
| 1378 | !-- Consideration of heat sources within the plant canopy |
---|
| 1379 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
| 1380 | CALL pcm_tendency( 4 ) |
---|
| 1381 | ENDIF |
---|
| 1382 | |
---|
| 1383 | ! |
---|
| 1384 | !-- Large scale advection |
---|
| 1385 | IF ( large_scale_forcing ) THEN |
---|
| 1386 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 1387 | ENDIF |
---|
| 1388 | |
---|
| 1389 | ! |
---|
| 1390 | !-- Nudging |
---|
| 1391 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1392 | |
---|
| 1393 | ! |
---|
| 1394 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1395 | IF ( large_scale_subsidence .AND. & |
---|
| 1396 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1397 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
| 1398 | ENDIF |
---|
| 1399 | |
---|
| 1400 | ! |
---|
| 1401 | !-- If required, add tendency due to radiative heating/cooling |
---|
[1976] | 1402 | IF ( radiation .AND. & |
---|
[1875] | 1403 | simulated_time > skip_time_do_radiation ) THEN |
---|
| 1404 | CALL radiation_tendency ( tend ) |
---|
| 1405 | ENDIF |
---|
| 1406 | |
---|
| 1407 | CALL user_actions( 'pt-tendency' ) |
---|
| 1408 | |
---|
| 1409 | ! |
---|
| 1410 | !-- Prognostic equation for potential temperature |
---|
| 1411 | DO i = nxl, nxr |
---|
| 1412 | DO j = nys, nyn |
---|
| 1413 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1414 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1415 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1416 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1417 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 1418 | ENDDO |
---|
| 1419 | ENDDO |
---|
| 1420 | ENDDO |
---|
| 1421 | |
---|
| 1422 | ! |
---|
| 1423 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1424 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1425 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1426 | DO i = nxl, nxr |
---|
| 1427 | DO j = nys, nyn |
---|
| 1428 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1429 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1430 | ENDDO |
---|
| 1431 | ENDDO |
---|
| 1432 | ENDDO |
---|
| 1433 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1434 | intermediate_timestep_count_max ) THEN |
---|
| 1435 | DO i = nxl, nxr |
---|
| 1436 | DO j = nys, nyn |
---|
| 1437 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1438 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1439 | 5.3125_wp * tpt_m(k,j,i) |
---|
| 1440 | ENDDO |
---|
| 1441 | ENDDO |
---|
| 1442 | ENDDO |
---|
| 1443 | ENDIF |
---|
| 1444 | ENDIF |
---|
| 1445 | |
---|
| 1446 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1447 | |
---|
| 1448 | ENDIF |
---|
| 1449 | |
---|
| 1450 | ! |
---|
| 1451 | !-- If required, compute prognostic equation for salinity |
---|
| 1452 | IF ( ocean ) THEN |
---|
| 1453 | |
---|
| 1454 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1455 | |
---|
| 1456 | ! |
---|
| 1457 | !-- sa-tendency terms with communication |
---|
| 1458 | sbt = tsc(2) |
---|
| 1459 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1460 | |
---|
| 1461 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1462 | ! |
---|
| 1463 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1464 | sbt = 1.0_wp |
---|
| 1465 | ENDIF |
---|
| 1466 | tend = 0.0_wp |
---|
| 1467 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 1468 | |
---|
| 1469 | ENDIF |
---|
| 1470 | |
---|
| 1471 | ! |
---|
| 1472 | !-- sa-tendency terms with no communication |
---|
| 1473 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1474 | tend = 0.0_wp |
---|
| 1475 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1476 | IF ( ws_scheme_sca ) THEN |
---|
| 1477 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1478 | ELSE |
---|
| 1479 | CALL advec_s_pw( sa ) |
---|
| 1480 | ENDIF |
---|
| 1481 | ELSE |
---|
| 1482 | CALL advec_s_up( sa ) |
---|
| 1483 | ENDIF |
---|
| 1484 | ENDIF |
---|
| 1485 | |
---|
| 1486 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 1487 | |
---|
| 1488 | CALL user_actions( 'sa-tendency' ) |
---|
| 1489 | |
---|
| 1490 | ! |
---|
| 1491 | !-- Prognostic equation for salinity |
---|
| 1492 | DO i = nxl, nxr |
---|
| 1493 | DO j = nys, nyn |
---|
| 1494 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1495 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1496 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1497 | - tsc(5) * rdf_sc(k) * & |
---|
| 1498 | ( sa(k,j,i) - sa_init(k) ) |
---|
| 1499 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
| 1500 | ENDDO |
---|
| 1501 | ENDDO |
---|
| 1502 | ENDDO |
---|
| 1503 | |
---|
| 1504 | ! |
---|
| 1505 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1506 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1507 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1508 | DO i = nxl, nxr |
---|
| 1509 | DO j = nys, nyn |
---|
| 1510 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1511 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1512 | ENDDO |
---|
| 1513 | ENDDO |
---|
| 1514 | ENDDO |
---|
| 1515 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1516 | intermediate_timestep_count_max ) THEN |
---|
| 1517 | DO i = nxl, nxr |
---|
| 1518 | DO j = nys, nyn |
---|
| 1519 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1520 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1521 | 5.3125_wp * tsa_m(k,j,i) |
---|
| 1522 | ENDDO |
---|
| 1523 | ENDDO |
---|
| 1524 | ENDDO |
---|
| 1525 | ENDIF |
---|
| 1526 | ENDIF |
---|
| 1527 | |
---|
| 1528 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1529 | |
---|
| 1530 | ! |
---|
| 1531 | !-- Calculate density by the equation of state for seawater |
---|
| 1532 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1533 | CALL eqn_state_seawater |
---|
| 1534 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1535 | |
---|
| 1536 | ENDIF |
---|
| 1537 | |
---|
| 1538 | ! |
---|
[1960] | 1539 | !-- If required, compute prognostic equation for total water content |
---|
| 1540 | IF ( humidity ) THEN |
---|
[1875] | 1541 | |
---|
[1960] | 1542 | CALL cpu_log( log_point(29), 'q-equation', 'start' ) |
---|
[1875] | 1543 | |
---|
| 1544 | ! |
---|
| 1545 | !-- Scalar/q-tendency terms with communication |
---|
| 1546 | sbt = tsc(2) |
---|
| 1547 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1548 | |
---|
| 1549 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1550 | ! |
---|
| 1551 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1552 | sbt = 1.0_wp |
---|
| 1553 | ENDIF |
---|
| 1554 | tend = 0.0_wp |
---|
| 1555 | CALL advec_s_bc( q, 'q' ) |
---|
| 1556 | |
---|
| 1557 | ENDIF |
---|
| 1558 | |
---|
| 1559 | ! |
---|
| 1560 | !-- Scalar/q-tendency terms with no communication |
---|
| 1561 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1562 | tend = 0.0_wp |
---|
| 1563 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1564 | IF ( ws_scheme_sca ) THEN |
---|
| 1565 | CALL advec_s_ws( q, 'q' ) |
---|
| 1566 | ELSE |
---|
| 1567 | CALL advec_s_pw( q ) |
---|
| 1568 | ENDIF |
---|
| 1569 | ELSE |
---|
| 1570 | CALL advec_s_up( q ) |
---|
| 1571 | ENDIF |
---|
| 1572 | ENDIF |
---|
| 1573 | |
---|
| 1574 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 1575 | |
---|
| 1576 | ! |
---|
[1960] | 1577 | !-- Sink or source of humidity due to canopy elements |
---|
[1875] | 1578 | IF ( plant_canopy ) CALL pcm_tendency( 5 ) |
---|
| 1579 | |
---|
| 1580 | ! |
---|
| 1581 | !-- Large scale advection |
---|
| 1582 | IF ( large_scale_forcing ) THEN |
---|
| 1583 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 1584 | ENDIF |
---|
| 1585 | |
---|
| 1586 | ! |
---|
| 1587 | !-- Nudging |
---|
| 1588 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1589 | |
---|
| 1590 | ! |
---|
| 1591 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1592 | IF ( large_scale_subsidence .AND. & |
---|
| 1593 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1594 | CALL subsidence( tend, q, q_init, 3 ) |
---|
| 1595 | ENDIF |
---|
| 1596 | |
---|
| 1597 | CALL user_actions( 'q-tendency' ) |
---|
| 1598 | |
---|
| 1599 | ! |
---|
[1960] | 1600 | !-- Prognostic equation for total water content |
---|
[1875] | 1601 | DO i = nxl, nxr |
---|
| 1602 | DO j = nys, nyn |
---|
| 1603 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1604 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1605 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1606 | - tsc(5) * rdf_sc(k) * & |
---|
| 1607 | ( q(k,j,i) - q_init(k) ) |
---|
| 1608 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
| 1609 | ENDDO |
---|
| 1610 | ENDDO |
---|
| 1611 | ENDDO |
---|
| 1612 | |
---|
| 1613 | ! |
---|
| 1614 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1615 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1616 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1617 | DO i = nxl, nxr |
---|
| 1618 | DO j = nys, nyn |
---|
| 1619 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1620 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1621 | ENDDO |
---|
| 1622 | ENDDO |
---|
| 1623 | ENDDO |
---|
| 1624 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1625 | intermediate_timestep_count_max ) THEN |
---|
| 1626 | DO i = nxl, nxr |
---|
| 1627 | DO j = nys, nyn |
---|
| 1628 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1629 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
| 1630 | ENDDO |
---|
| 1631 | ENDDO |
---|
| 1632 | ENDDO |
---|
| 1633 | ENDIF |
---|
| 1634 | ENDIF |
---|
| 1635 | |
---|
[1960] | 1636 | CALL cpu_log( log_point(29), 'q-equation', 'stop' ) |
---|
[1875] | 1637 | |
---|
| 1638 | ! |
---|
| 1639 | !-- If required, calculate prognostic equations for rain water content |
---|
| 1640 | !-- and rain drop concentration |
---|
| 1641 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
| 1642 | |
---|
| 1643 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 1644 | |
---|
| 1645 | ! |
---|
| 1646 | !-- Calculate prognostic equation for rain water content |
---|
| 1647 | sbt = tsc(2) |
---|
| 1648 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1649 | |
---|
| 1650 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1651 | ! |
---|
| 1652 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1653 | sbt = 1.0_wp |
---|
| 1654 | ENDIF |
---|
| 1655 | tend = 0.0_wp |
---|
| 1656 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 1657 | |
---|
| 1658 | ENDIF |
---|
| 1659 | |
---|
| 1660 | ! |
---|
| 1661 | !-- qr-tendency terms with no communication |
---|
| 1662 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1663 | tend = 0.0_wp |
---|
| 1664 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1665 | IF ( ws_scheme_sca ) THEN |
---|
| 1666 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 1667 | ELSE |
---|
| 1668 | CALL advec_s_pw( qr ) |
---|
| 1669 | ENDIF |
---|
| 1670 | ELSE |
---|
| 1671 | CALL advec_s_up( qr ) |
---|
| 1672 | ENDIF |
---|
| 1673 | ENDIF |
---|
| 1674 | |
---|
| 1675 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 1676 | |
---|
| 1677 | CALL user_actions( 'qr-tendency' ) |
---|
| 1678 | |
---|
| 1679 | ! |
---|
| 1680 | !-- Prognostic equation for rain water content |
---|
| 1681 | DO i = nxl, nxr |
---|
| 1682 | DO j = nys, nyn |
---|
| 1683 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1684 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1685 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 1686 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 1687 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 1688 | ENDDO |
---|
| 1689 | ENDDO |
---|
| 1690 | ENDDO |
---|
| 1691 | |
---|
| 1692 | ! |
---|
| 1693 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1694 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1695 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1696 | DO i = nxl, nxr |
---|
| 1697 | DO j = nys, nyn |
---|
| 1698 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1699 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 1700 | ENDDO |
---|
| 1701 | ENDDO |
---|
| 1702 | ENDDO |
---|
| 1703 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1704 | intermediate_timestep_count_max ) THEN |
---|
| 1705 | DO i = nxl, nxr |
---|
| 1706 | DO j = nys, nyn |
---|
| 1707 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1708 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1709 | tqr_m(k,j,i) |
---|
| 1710 | ENDDO |
---|
| 1711 | ENDDO |
---|
| 1712 | ENDDO |
---|
| 1713 | ENDIF |
---|
| 1714 | ENDIF |
---|
| 1715 | |
---|
| 1716 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 1717 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 1718 | |
---|
| 1719 | ! |
---|
| 1720 | !-- Calculate prognostic equation for rain drop concentration |
---|
| 1721 | sbt = tsc(2) |
---|
| 1722 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1723 | |
---|
| 1724 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1725 | ! |
---|
| 1726 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1727 | sbt = 1.0_wp |
---|
| 1728 | ENDIF |
---|
| 1729 | tend = 0.0_wp |
---|
| 1730 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 1731 | |
---|
| 1732 | ENDIF |
---|
| 1733 | |
---|
| 1734 | ! |
---|
| 1735 | !-- nr-tendency terms with no communication |
---|
| 1736 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1737 | tend = 0.0_wp |
---|
| 1738 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1739 | IF ( ws_scheme_sca ) THEN |
---|
| 1740 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 1741 | ELSE |
---|
| 1742 | CALL advec_s_pw( nr ) |
---|
| 1743 | ENDIF |
---|
| 1744 | ELSE |
---|
| 1745 | CALL advec_s_up( nr ) |
---|
| 1746 | ENDIF |
---|
| 1747 | ENDIF |
---|
| 1748 | |
---|
| 1749 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 1750 | |
---|
| 1751 | ! |
---|
| 1752 | !-- Prognostic equation for rain drop concentration |
---|
| 1753 | DO i = nxl, nxr |
---|
| 1754 | DO j = nys, nyn |
---|
| 1755 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1756 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1757 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 1758 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 1759 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 1760 | ENDDO |
---|
| 1761 | ENDDO |
---|
| 1762 | ENDDO |
---|
| 1763 | |
---|
| 1764 | ! |
---|
| 1765 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1766 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1767 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1768 | DO i = nxl, nxr |
---|
| 1769 | DO j = nys, nyn |
---|
| 1770 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1771 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 1772 | ENDDO |
---|
| 1773 | ENDDO |
---|
| 1774 | ENDDO |
---|
| 1775 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1776 | intermediate_timestep_count_max ) THEN |
---|
| 1777 | DO i = nxl, nxr |
---|
| 1778 | DO j = nys, nyn |
---|
| 1779 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1780 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1781 | tnr_m(k,j,i) |
---|
| 1782 | ENDDO |
---|
| 1783 | ENDDO |
---|
| 1784 | ENDDO |
---|
| 1785 | ENDIF |
---|
| 1786 | ENDIF |
---|
| 1787 | |
---|
| 1788 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 1789 | |
---|
| 1790 | ENDIF |
---|
| 1791 | |
---|
| 1792 | ENDIF |
---|
[1960] | 1793 | ! |
---|
| 1794 | !-- If required, compute prognostic equation for scalar |
---|
| 1795 | IF ( passive_scalar ) THEN |
---|
[1875] | 1796 | |
---|
[1960] | 1797 | CALL cpu_log( log_point(66), 's-equation', 'start' ) |
---|
| 1798 | |
---|
[1875] | 1799 | ! |
---|
[1960] | 1800 | !-- Scalar/q-tendency terms with communication |
---|
| 1801 | sbt = tsc(2) |
---|
| 1802 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1803 | |
---|
| 1804 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1805 | ! |
---|
| 1806 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1807 | sbt = 1.0_wp |
---|
| 1808 | ENDIF |
---|
| 1809 | tend = 0.0_wp |
---|
| 1810 | CALL advec_s_bc( s, 's' ) |
---|
| 1811 | |
---|
| 1812 | ENDIF |
---|
| 1813 | |
---|
| 1814 | ! |
---|
| 1815 | !-- Scalar/q-tendency terms with no communication |
---|
| 1816 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1817 | tend = 0.0_wp |
---|
| 1818 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1819 | IF ( ws_scheme_sca ) THEN |
---|
| 1820 | CALL advec_s_ws( s, 's' ) |
---|
| 1821 | ELSE |
---|
| 1822 | CALL advec_s_pw( s ) |
---|
| 1823 | ENDIF |
---|
| 1824 | ELSE |
---|
| 1825 | CALL advec_s_up( s ) |
---|
| 1826 | ENDIF |
---|
| 1827 | ENDIF |
---|
| 1828 | |
---|
| 1829 | CALL diffusion_s( s, ssws, sswst, wall_sflux ) |
---|
| 1830 | |
---|
| 1831 | ! |
---|
| 1832 | !-- Sink or source of humidity due to canopy elements |
---|
| 1833 | IF ( plant_canopy ) CALL pcm_tendency( 7 ) |
---|
| 1834 | |
---|
| 1835 | ! |
---|
| 1836 | !-- Large scale advection. Not implemented for scalars so far. |
---|
| 1837 | ! IF ( large_scale_forcing ) THEN |
---|
| 1838 | ! CALL ls_advec( simulated_time, 'q' ) |
---|
| 1839 | ! ENDIF |
---|
| 1840 | |
---|
| 1841 | ! |
---|
| 1842 | !-- Nudging. Not implemented for scalars so far. |
---|
| 1843 | ! IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1844 | |
---|
| 1845 | ! |
---|
| 1846 | !-- If required compute influence of large-scale subsidence/ascent. |
---|
| 1847 | !-- Not implemented for scalars so far. |
---|
| 1848 | IF ( large_scale_subsidence .AND. & |
---|
| 1849 | .NOT. use_subsidence_tendencies .AND. & |
---|
| 1850 | .NOT. large_scale_forcing ) THEN |
---|
| 1851 | CALL subsidence( tend, s, s_init, 3 ) |
---|
| 1852 | ENDIF |
---|
| 1853 | |
---|
| 1854 | CALL user_actions( 's-tendency' ) |
---|
| 1855 | |
---|
| 1856 | ! |
---|
| 1857 | !-- Prognostic equation for total water content |
---|
| 1858 | DO i = nxl, nxr |
---|
| 1859 | DO j = nys, nyn |
---|
| 1860 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1861 | s_p(k,j,i) = s(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1862 | tsc(3) * ts_m(k,j,i) ) & |
---|
| 1863 | - tsc(5) * rdf_sc(k) * & |
---|
| 1864 | ( s(k,j,i) - s_init(k) ) |
---|
| 1865 | IF ( s_p(k,j,i) < 0.0_wp ) s_p(k,j,i) = 0.1_wp * s(k,j,i) |
---|
| 1866 | ENDDO |
---|
| 1867 | ENDDO |
---|
| 1868 | ENDDO |
---|
| 1869 | |
---|
| 1870 | ! |
---|
| 1871 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1872 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1873 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1874 | DO i = nxl, nxr |
---|
| 1875 | DO j = nys, nyn |
---|
| 1876 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1877 | ts_m(k,j,i) = tend(k,j,i) |
---|
| 1878 | ENDDO |
---|
| 1879 | ENDDO |
---|
| 1880 | ENDDO |
---|
| 1881 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1882 | intermediate_timestep_count_max ) THEN |
---|
| 1883 | DO i = nxl, nxr |
---|
| 1884 | DO j = nys, nyn |
---|
| 1885 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1886 | ts_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * ts_m(k,j,i) |
---|
| 1887 | ENDDO |
---|
| 1888 | ENDDO |
---|
| 1889 | ENDDO |
---|
| 1890 | ENDIF |
---|
| 1891 | ENDIF |
---|
| 1892 | |
---|
| 1893 | CALL cpu_log( log_point(66), 's-equation', 'stop' ) |
---|
| 1894 | |
---|
| 1895 | ENDIF |
---|
| 1896 | ! |
---|
[1875] | 1897 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1898 | !-- energy (TKE) |
---|
| 1899 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1900 | |
---|
| 1901 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1902 | |
---|
| 1903 | sbt = tsc(2) |
---|
| 1904 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1905 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1906 | |
---|
| 1907 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1908 | ! |
---|
| 1909 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1910 | sbt = 1.0_wp |
---|
| 1911 | ENDIF |
---|
| 1912 | tend = 0.0_wp |
---|
| 1913 | CALL advec_s_bc( e, 'e' ) |
---|
| 1914 | |
---|
| 1915 | ENDIF |
---|
| 1916 | ENDIF |
---|
| 1917 | |
---|
| 1918 | ! |
---|
| 1919 | !-- TKE-tendency terms with no communication |
---|
| 1920 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 1921 | IF ( use_upstream_for_tke ) THEN |
---|
| 1922 | tend = 0.0_wp |
---|
| 1923 | CALL advec_s_up( e ) |
---|
| 1924 | ELSE |
---|
| 1925 | tend = 0.0_wp |
---|
| 1926 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1927 | IF ( ws_scheme_sca ) THEN |
---|
| 1928 | CALL advec_s_ws( e, 'e' ) |
---|
| 1929 | ELSE |
---|
| 1930 | CALL advec_s_pw( e ) |
---|
| 1931 | ENDIF |
---|
| 1932 | ELSE |
---|
| 1933 | CALL advec_s_up( e ) |
---|
| 1934 | ENDIF |
---|
| 1935 | ENDIF |
---|
| 1936 | ENDIF |
---|
| 1937 | |
---|
| 1938 | IF ( .NOT. humidity ) THEN |
---|
| 1939 | IF ( ocean ) THEN |
---|
| 1940 | CALL diffusion_e( prho, prho_reference ) |
---|
| 1941 | ELSE |
---|
| 1942 | CALL diffusion_e( pt, pt_reference ) |
---|
| 1943 | ENDIF |
---|
| 1944 | ELSE |
---|
| 1945 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 1946 | ENDIF |
---|
| 1947 | |
---|
| 1948 | CALL production_e |
---|
| 1949 | |
---|
| 1950 | ! |
---|
| 1951 | !-- Additional sink term for flows through plant canopies |
---|
| 1952 | IF ( plant_canopy ) CALL pcm_tendency( 6 ) |
---|
| 1953 | CALL user_actions( 'e-tendency' ) |
---|
| 1954 | |
---|
| 1955 | ! |
---|
| 1956 | !-- Prognostic equation for TKE. |
---|
| 1957 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1958 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1959 | !-- value is reduced by 90%. |
---|
| 1960 | DO i = nxl, nxr |
---|
| 1961 | DO j = nys, nyn |
---|
| 1962 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1963 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1964 | tsc(3) * te_m(k,j,i) ) |
---|
| 1965 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
| 1966 | ENDDO |
---|
| 1967 | ENDDO |
---|
| 1968 | ENDDO |
---|
| 1969 | |
---|
| 1970 | ! |
---|
| 1971 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1972 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1973 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1974 | DO i = nxl, nxr |
---|
| 1975 | DO j = nys, nyn |
---|
| 1976 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1977 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1978 | ENDDO |
---|
| 1979 | ENDDO |
---|
| 1980 | ENDDO |
---|
| 1981 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1982 | intermediate_timestep_count_max ) THEN |
---|
| 1983 | DO i = nxl, nxr |
---|
| 1984 | DO j = nys, nyn |
---|
| 1985 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1986 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
| 1987 | ENDDO |
---|
| 1988 | ENDDO |
---|
| 1989 | ENDDO |
---|
| 1990 | ENDIF |
---|
| 1991 | ENDIF |
---|
| 1992 | |
---|
| 1993 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1994 | |
---|
| 1995 | ENDIF |
---|
| 1996 | |
---|
| 1997 | END SUBROUTINE prognostic_equations_vector |
---|
| 1998 | |
---|
| 1999 | |
---|
| 2000 | END MODULE prognostic_equations_mod |
---|