[1] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[198] | 6 | ! |
---|
[98] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
| 10 | ! $Id: prognostic_equations.f90 198 2008-09-17 08:55:28Z raasch $ |
---|
| 11 | ! |
---|
[198] | 12 | ! 153 2008-03-19 09:41:30Z steinfeld |
---|
| 13 | ! add call of plant_canopy_model in the prognostic equation for |
---|
| 14 | ! the potential temperature and for the passive scalar |
---|
| 15 | ! |
---|
[139] | 16 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 17 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
| 18 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
| 19 | ! |
---|
[110] | 20 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 21 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
| 22 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
| 23 | ! for non-cyclic boundary conditions) |
---|
| 24 | ! |
---|
[98] | 25 | ! 97 2007-06-21 08:23:15Z raasch |
---|
[96] | 26 | ! prognostic equation for salinity, density is calculated from equation of |
---|
[97] | 27 | ! state for seawater and is used for calculation of buoyancy, |
---|
| 28 | ! +eqn_state_seawater_mod |
---|
| 29 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
| 30 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
| 31 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
[96] | 32 | ! calc_mean_profile |
---|
[1] | 33 | ! |
---|
[77] | 34 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 35 | ! checking for negative q and limiting for positive values, |
---|
| 36 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
| 37 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
| 38 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
| 39 | ! _vector-version |
---|
| 40 | ! |
---|
[39] | 41 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 42 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
| 43 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
| 44 | ! |
---|
[3] | 45 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 46 | ! |
---|
[1] | 47 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
| 48 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
| 49 | ! regardless of the timestep scheme used for the other quantities, |
---|
| 50 | ! new argument diss in call of diffusion_e |
---|
| 51 | ! |
---|
| 52 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 53 | ! Initial revision |
---|
| 54 | ! |
---|
| 55 | ! |
---|
| 56 | ! Description: |
---|
| 57 | ! ------------ |
---|
[19] | 58 | ! Solving the prognostic equations. |
---|
[1] | 59 | !------------------------------------------------------------------------------! |
---|
| 60 | |
---|
| 61 | USE arrays_3d |
---|
| 62 | USE control_parameters |
---|
| 63 | USE cpulog |
---|
[96] | 64 | USE eqn_state_seawater_mod |
---|
[1] | 65 | USE grid_variables |
---|
| 66 | USE indices |
---|
| 67 | USE interfaces |
---|
| 68 | USE pegrid |
---|
| 69 | USE pointer_interfaces |
---|
| 70 | USE statistics |
---|
| 71 | |
---|
| 72 | USE advec_s_pw_mod |
---|
| 73 | USE advec_s_up_mod |
---|
| 74 | USE advec_u_pw_mod |
---|
| 75 | USE advec_u_up_mod |
---|
| 76 | USE advec_v_pw_mod |
---|
| 77 | USE advec_v_up_mod |
---|
| 78 | USE advec_w_pw_mod |
---|
| 79 | USE advec_w_up_mod |
---|
| 80 | USE buoyancy_mod |
---|
| 81 | USE calc_precipitation_mod |
---|
| 82 | USE calc_radiation_mod |
---|
| 83 | USE coriolis_mod |
---|
| 84 | USE diffusion_e_mod |
---|
| 85 | USE diffusion_s_mod |
---|
| 86 | USE diffusion_u_mod |
---|
| 87 | USE diffusion_v_mod |
---|
| 88 | USE diffusion_w_mod |
---|
| 89 | USE impact_of_latent_heat_mod |
---|
[138] | 90 | USE plant_canopy_model_mod |
---|
[1] | 91 | USE production_e_mod |
---|
| 92 | USE user_actions_mod |
---|
| 93 | |
---|
| 94 | |
---|
| 95 | PRIVATE |
---|
[63] | 96 | PUBLIC prognostic_equations_noopt, prognostic_equations_cache, & |
---|
| 97 | prognostic_equations_vector |
---|
[1] | 98 | |
---|
[63] | 99 | INTERFACE prognostic_equations_noopt |
---|
| 100 | MODULE PROCEDURE prognostic_equations_noopt |
---|
| 101 | END INTERFACE prognostic_equations_noopt |
---|
[1] | 102 | |
---|
[63] | 103 | INTERFACE prognostic_equations_cache |
---|
| 104 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 105 | END INTERFACE prognostic_equations_cache |
---|
[1] | 106 | |
---|
[63] | 107 | INTERFACE prognostic_equations_vector |
---|
| 108 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 109 | END INTERFACE prognostic_equations_vector |
---|
[1] | 110 | |
---|
| 111 | |
---|
| 112 | CONTAINS |
---|
| 113 | |
---|
| 114 | |
---|
[63] | 115 | SUBROUTINE prognostic_equations_noopt |
---|
[1] | 116 | |
---|
| 117 | !------------------------------------------------------------------------------! |
---|
| 118 | ! Version with single loop optimization |
---|
| 119 | ! |
---|
| 120 | ! (Optimized over each single prognostic equation.) |
---|
| 121 | !------------------------------------------------------------------------------! |
---|
| 122 | |
---|
| 123 | IMPLICIT NONE |
---|
| 124 | |
---|
| 125 | CHARACTER (LEN=9) :: time_to_string |
---|
| 126 | INTEGER :: i, j, k |
---|
| 127 | REAL :: sat, sbt |
---|
| 128 | |
---|
| 129 | ! |
---|
| 130 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 131 | !-- global communication |
---|
[96] | 132 | CALL calc_mean_profile( pt, 4 ) |
---|
| 133 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 134 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 135 | |
---|
| 136 | ! |
---|
| 137 | !-- u-velocity component |
---|
| 138 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 139 | |
---|
| 140 | ! |
---|
| 141 | !-- u-tendency terms with communication |
---|
| 142 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 143 | tend = 0.0 |
---|
| 144 | CALL advec_u_ups |
---|
| 145 | ENDIF |
---|
| 146 | |
---|
| 147 | ! |
---|
| 148 | !-- u-tendency terms with no communication |
---|
[106] | 149 | DO i = nxlu, nxr |
---|
[1] | 150 | DO j = nys, nyn |
---|
| 151 | ! |
---|
| 152 | !-- Tendency terms |
---|
| 153 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 154 | tend(:,j,i) = 0.0 |
---|
| 155 | CALL advec_u_pw( i, j ) |
---|
| 156 | ELSE |
---|
| 157 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 158 | tend(:,j,i) = 0.0 |
---|
| 159 | CALL advec_u_up( i, j ) |
---|
| 160 | ENDIF |
---|
| 161 | ENDIF |
---|
| 162 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 163 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
[102] | 164 | usws_m, uswst_m, v_m, w_m ) |
---|
[1] | 165 | ELSE |
---|
| 166 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
[102] | 167 | uswst, v, w ) |
---|
[1] | 168 | ENDIF |
---|
| 169 | CALL coriolis( i, j, 1 ) |
---|
[97] | 170 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, 4 ) |
---|
[138] | 171 | |
---|
| 172 | ! |
---|
| 173 | !-- Drag by plant canopy |
---|
| 174 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
[1] | 175 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 176 | |
---|
| 177 | ! |
---|
| 178 | !-- Prognostic equation for u-velocity component |
---|
| 179 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 180 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 181 | dt_3d * ( & |
---|
| 182 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 183 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 184 | ) - & |
---|
| 185 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 186 | ENDDO |
---|
| 187 | |
---|
| 188 | ! |
---|
| 189 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 190 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 191 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 192 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 193 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 194 | ENDDO |
---|
| 195 | ELSEIF ( intermediate_timestep_count < & |
---|
| 196 | intermediate_timestep_count_max ) THEN |
---|
| 197 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 198 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 199 | ENDDO |
---|
| 200 | ENDIF |
---|
| 201 | ENDIF |
---|
| 202 | |
---|
| 203 | ENDDO |
---|
| 204 | ENDDO |
---|
| 205 | |
---|
| 206 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 207 | |
---|
| 208 | ! |
---|
| 209 | !-- v-velocity component |
---|
| 210 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 211 | |
---|
| 212 | ! |
---|
| 213 | !-- v-tendency terms with communication |
---|
| 214 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 215 | tend = 0.0 |
---|
| 216 | CALL advec_v_ups |
---|
| 217 | ENDIF |
---|
| 218 | |
---|
| 219 | ! |
---|
| 220 | !-- v-tendency terms with no communication |
---|
| 221 | DO i = nxl, nxr |
---|
[106] | 222 | DO j = nysv, nyn |
---|
[1] | 223 | ! |
---|
| 224 | !-- Tendency terms |
---|
| 225 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 226 | tend(:,j,i) = 0.0 |
---|
| 227 | CALL advec_v_pw( i, j ) |
---|
| 228 | ELSE |
---|
| 229 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 230 | tend(:,j,i) = 0.0 |
---|
| 231 | CALL advec_v_up( i, j ) |
---|
| 232 | ENDIF |
---|
| 233 | ENDIF |
---|
| 234 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 235 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
[102] | 236 | v_m, vsws_m, vswst_m, w_m ) |
---|
[1] | 237 | ELSE |
---|
| 238 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[102] | 239 | vsws, vswst, w ) |
---|
[1] | 240 | ENDIF |
---|
| 241 | CALL coriolis( i, j, 2 ) |
---|
[138] | 242 | |
---|
| 243 | ! |
---|
| 244 | !-- Drag by plant canopy |
---|
| 245 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 246 | |
---|
[1] | 247 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 248 | |
---|
| 249 | ! |
---|
| 250 | !-- Prognostic equation for v-velocity component |
---|
| 251 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 252 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 253 | dt_3d * ( & |
---|
| 254 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 255 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 256 | ) - & |
---|
| 257 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 258 | ENDDO |
---|
| 259 | |
---|
| 260 | ! |
---|
| 261 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 262 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 263 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 264 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 265 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 266 | ENDDO |
---|
| 267 | ELSEIF ( intermediate_timestep_count < & |
---|
| 268 | intermediate_timestep_count_max ) THEN |
---|
| 269 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 270 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 271 | ENDDO |
---|
| 272 | ENDIF |
---|
| 273 | ENDIF |
---|
| 274 | |
---|
| 275 | ENDDO |
---|
| 276 | ENDDO |
---|
| 277 | |
---|
| 278 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 279 | |
---|
| 280 | ! |
---|
| 281 | !-- w-velocity component |
---|
| 282 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 283 | |
---|
| 284 | ! |
---|
| 285 | !-- w-tendency terms with communication |
---|
| 286 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 287 | tend = 0.0 |
---|
| 288 | CALL advec_w_ups |
---|
| 289 | ENDIF |
---|
| 290 | |
---|
| 291 | ! |
---|
| 292 | !-- w-tendency terms with no communication |
---|
| 293 | DO i = nxl, nxr |
---|
| 294 | DO j = nys, nyn |
---|
| 295 | ! |
---|
| 296 | !-- Tendency terms |
---|
| 297 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 298 | tend(:,j,i) = 0.0 |
---|
| 299 | CALL advec_w_pw( i, j ) |
---|
| 300 | ELSE |
---|
| 301 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 302 | tend(:,j,i) = 0.0 |
---|
| 303 | CALL advec_w_up( i, j ) |
---|
| 304 | ENDIF |
---|
| 305 | ENDIF |
---|
| 306 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 307 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
[57] | 308 | tend, u_m, v_m, w_m ) |
---|
[1] | 309 | ELSE |
---|
| 310 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
[57] | 311 | tend, u, v, w ) |
---|
[1] | 312 | ENDIF |
---|
| 313 | CALL coriolis( i, j, 3 ) |
---|
[97] | 314 | IF ( ocean ) THEN |
---|
| 315 | CALL buoyancy( i, j, rho, prho_reference, 3, 64 ) |
---|
[1] | 316 | ELSE |
---|
[97] | 317 | IF ( .NOT. humidity ) THEN |
---|
| 318 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
| 319 | ELSE |
---|
| 320 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
| 321 | ENDIF |
---|
[1] | 322 | ENDIF |
---|
[138] | 323 | |
---|
| 324 | ! |
---|
| 325 | !-- Drag by plant canopy |
---|
| 326 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 327 | |
---|
[1] | 328 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 329 | |
---|
| 330 | ! |
---|
| 331 | !-- Prognostic equation for w-velocity component |
---|
| 332 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 333 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 334 | dt_3d * ( & |
---|
| 335 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 336 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 337 | ) - & |
---|
| 338 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 339 | ENDDO |
---|
| 340 | |
---|
| 341 | ! |
---|
| 342 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 343 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 344 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 345 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 346 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 347 | ENDDO |
---|
| 348 | ELSEIF ( intermediate_timestep_count < & |
---|
| 349 | intermediate_timestep_count_max ) THEN |
---|
| 350 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 351 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 352 | ENDDO |
---|
| 353 | ENDIF |
---|
| 354 | ENDIF |
---|
| 355 | |
---|
| 356 | ENDDO |
---|
| 357 | ENDDO |
---|
| 358 | |
---|
| 359 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 360 | |
---|
| 361 | ! |
---|
| 362 | !-- potential temperature |
---|
| 363 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 364 | |
---|
| 365 | ! |
---|
| 366 | !-- pt-tendency terms with communication |
---|
[70] | 367 | sat = tsc(1) |
---|
| 368 | sbt = tsc(2) |
---|
[1] | 369 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 370 | |
---|
| 371 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 372 | ! |
---|
[70] | 373 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 374 | !-- switched on. Thus: |
---|
| 375 | sat = 1.0 |
---|
| 376 | sbt = 1.0 |
---|
| 377 | ENDIF |
---|
[1] | 378 | tend = 0.0 |
---|
| 379 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 380 | ELSE |
---|
| 381 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 382 | tend = 0.0 |
---|
| 383 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 384 | ENDIF |
---|
| 385 | ENDIF |
---|
| 386 | |
---|
| 387 | ! |
---|
| 388 | !-- pt-tendency terms with no communication |
---|
| 389 | DO i = nxl, nxr |
---|
| 390 | DO j = nys, nyn |
---|
| 391 | ! |
---|
| 392 | !-- Tendency terms |
---|
| 393 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 394 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 395 | wall_heatflux, tend ) |
---|
[1] | 396 | ELSE |
---|
| 397 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 398 | tend(:,j,i) = 0.0 |
---|
| 399 | CALL advec_s_pw( i, j, pt ) |
---|
| 400 | ELSE |
---|
| 401 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 402 | tend(:,j,i) = 0.0 |
---|
| 403 | CALL advec_s_up( i, j, pt ) |
---|
| 404 | ENDIF |
---|
| 405 | ENDIF |
---|
| 406 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 407 | THEN |
---|
[19] | 408 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
[129] | 409 | tswst_m, wall_heatflux, tend ) |
---|
[1] | 410 | ELSE |
---|
[129] | 411 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 412 | wall_heatflux, tend ) |
---|
[1] | 413 | ENDIF |
---|
| 414 | ENDIF |
---|
| 415 | |
---|
| 416 | ! |
---|
| 417 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 418 | !-- processes |
---|
| 419 | IF ( radiation ) THEN |
---|
| 420 | CALL calc_radiation( i, j ) |
---|
| 421 | ENDIF |
---|
| 422 | |
---|
| 423 | ! |
---|
| 424 | !-- If required compute impact of latent heat due to precipitation |
---|
| 425 | IF ( precipitation ) THEN |
---|
| 426 | CALL impact_of_latent_heat( i, j ) |
---|
| 427 | ENDIF |
---|
[153] | 428 | |
---|
| 429 | ! |
---|
| 430 | !-- Consideration of heat sources within the plant canopy |
---|
| 431 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 432 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 433 | ENDIF |
---|
| 434 | |
---|
[1] | 435 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 436 | |
---|
| 437 | ! |
---|
| 438 | !-- Prognostic equation for potential temperature |
---|
[19] | 439 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 440 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 441 | dt_3d * ( & |
---|
| 442 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 443 | ) - & |
---|
| 444 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 445 | ENDDO |
---|
| 446 | |
---|
| 447 | ! |
---|
| 448 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 449 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 450 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 451 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 452 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 453 | ENDDO |
---|
| 454 | ELSEIF ( intermediate_timestep_count < & |
---|
| 455 | intermediate_timestep_count_max ) THEN |
---|
[19] | 456 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 457 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 458 | ENDDO |
---|
| 459 | ENDIF |
---|
| 460 | ENDIF |
---|
| 461 | |
---|
| 462 | ENDDO |
---|
| 463 | ENDDO |
---|
| 464 | |
---|
| 465 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 466 | |
---|
| 467 | ! |
---|
[95] | 468 | !-- If required, compute prognostic equation for salinity |
---|
| 469 | IF ( ocean ) THEN |
---|
| 470 | |
---|
| 471 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 472 | |
---|
| 473 | ! |
---|
| 474 | !-- sa-tendency terms with communication |
---|
| 475 | sat = tsc(1) |
---|
| 476 | sbt = tsc(2) |
---|
| 477 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 478 | |
---|
| 479 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 480 | ! |
---|
| 481 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 482 | !-- switched on. Thus: |
---|
| 483 | sat = 1.0 |
---|
| 484 | sbt = 1.0 |
---|
| 485 | ENDIF |
---|
| 486 | tend = 0.0 |
---|
| 487 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 488 | ELSE |
---|
| 489 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 490 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 491 | tend = 0.0 |
---|
| 492 | CALL advec_s_ups( sa, 'sa' ) |
---|
| 493 | ENDIF |
---|
| 494 | ENDIF |
---|
| 495 | ENDIF |
---|
| 496 | |
---|
| 497 | ! |
---|
| 498 | !-- sa terms with no communication |
---|
| 499 | DO i = nxl, nxr |
---|
| 500 | DO j = nys, nyn |
---|
| 501 | ! |
---|
| 502 | !-- Tendency-terms |
---|
| 503 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 504 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
[129] | 505 | wall_salinityflux, tend ) |
---|
[95] | 506 | ELSE |
---|
| 507 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 508 | tend(:,j,i) = 0.0 |
---|
| 509 | CALL advec_s_pw( i, j, sa ) |
---|
| 510 | ELSE |
---|
| 511 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 512 | tend(:,j,i) = 0.0 |
---|
| 513 | CALL advec_s_up( i, j, sa ) |
---|
| 514 | ENDIF |
---|
| 515 | ENDIF |
---|
| 516 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
[129] | 517 | wall_salinityflux, tend ) |
---|
[95] | 518 | ENDIF |
---|
| 519 | |
---|
| 520 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 521 | |
---|
| 522 | ! |
---|
| 523 | !-- Prognostic equation for salinity |
---|
| 524 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 525 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
| 526 | dt_3d * ( & |
---|
| 527 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 528 | ) - & |
---|
| 529 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 530 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 531 | ENDDO |
---|
| 532 | |
---|
| 533 | ! |
---|
| 534 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 535 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 536 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 537 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 538 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 539 | ENDDO |
---|
| 540 | ELSEIF ( intermediate_timestep_count < & |
---|
| 541 | intermediate_timestep_count_max ) THEN |
---|
| 542 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 543 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 544 | 5.3125 * tsa_m(k,j,i) |
---|
| 545 | ENDDO |
---|
| 546 | ENDIF |
---|
| 547 | ENDIF |
---|
| 548 | |
---|
[96] | 549 | ! |
---|
| 550 | !-- Calculate density by the equation of state for seawater |
---|
| 551 | CALL eqn_state_seawater( i, j ) |
---|
| 552 | |
---|
[95] | 553 | ENDDO |
---|
| 554 | ENDDO |
---|
| 555 | |
---|
| 556 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 557 | |
---|
| 558 | ENDIF |
---|
| 559 | |
---|
| 560 | ! |
---|
[1] | 561 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 562 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 563 | |
---|
| 564 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 565 | |
---|
| 566 | ! |
---|
| 567 | !-- Scalar/q-tendency terms with communication |
---|
[70] | 568 | sat = tsc(1) |
---|
| 569 | sbt = tsc(2) |
---|
[1] | 570 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 571 | |
---|
| 572 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 573 | ! |
---|
[70] | 574 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 575 | !-- switched on. Thus: |
---|
| 576 | sat = 1.0 |
---|
| 577 | sbt = 1.0 |
---|
| 578 | ENDIF |
---|
[1] | 579 | tend = 0.0 |
---|
| 580 | CALL advec_s_bc( q, 'q' ) |
---|
| 581 | ELSE |
---|
| 582 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 583 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 584 | tend = 0.0 |
---|
| 585 | CALL advec_s_ups( q, 'q' ) |
---|
| 586 | ENDIF |
---|
| 587 | ENDIF |
---|
| 588 | ENDIF |
---|
| 589 | |
---|
| 590 | ! |
---|
| 591 | !-- Scalar/q-tendency terms with no communication |
---|
| 592 | DO i = nxl, nxr |
---|
| 593 | DO j = nys, nyn |
---|
| 594 | ! |
---|
| 595 | !-- Tendency-terms |
---|
| 596 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 597 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 598 | wall_qflux, tend ) |
---|
[1] | 599 | ELSE |
---|
| 600 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 601 | tend(:,j,i) = 0.0 |
---|
| 602 | CALL advec_s_pw( i, j, q ) |
---|
| 603 | ELSE |
---|
| 604 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 605 | tend(:,j,i) = 0.0 |
---|
| 606 | CALL advec_s_up( i, j, q ) |
---|
| 607 | ENDIF |
---|
| 608 | ENDIF |
---|
| 609 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 610 | THEN |
---|
| 611 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
[129] | 612 | qswst_m, wall_qflux, tend ) |
---|
[19] | 613 | ELSE |
---|
| 614 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
[129] | 615 | wall_qflux, tend ) |
---|
[1] | 616 | ENDIF |
---|
| 617 | ENDIF |
---|
| 618 | |
---|
| 619 | ! |
---|
| 620 | !-- If required compute decrease of total water content due to |
---|
| 621 | !-- precipitation |
---|
| 622 | IF ( precipitation ) THEN |
---|
| 623 | CALL calc_precipitation( i, j ) |
---|
| 624 | ENDIF |
---|
[153] | 625 | |
---|
| 626 | ! |
---|
| 627 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 628 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
| 629 | |
---|
[1] | 630 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 631 | |
---|
| 632 | ! |
---|
| 633 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 634 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 635 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 636 | dt_3d * ( & |
---|
| 637 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 638 | ) - & |
---|
| 639 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 640 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 641 | ENDDO |
---|
| 642 | |
---|
| 643 | ! |
---|
| 644 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 645 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 646 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 647 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 648 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 649 | ENDDO |
---|
| 650 | ELSEIF ( intermediate_timestep_count < & |
---|
| 651 | intermediate_timestep_count_max ) THEN |
---|
[19] | 652 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 653 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 654 | ENDDO |
---|
| 655 | ENDIF |
---|
| 656 | ENDIF |
---|
| 657 | |
---|
| 658 | ENDDO |
---|
| 659 | ENDDO |
---|
| 660 | |
---|
| 661 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 662 | |
---|
| 663 | ENDIF |
---|
| 664 | |
---|
| 665 | ! |
---|
| 666 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 667 | !-- energy (TKE) |
---|
| 668 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 669 | |
---|
| 670 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 671 | |
---|
| 672 | ! |
---|
| 673 | !-- TKE-tendency terms with communication |
---|
| 674 | CALL production_e_init |
---|
[70] | 675 | |
---|
| 676 | sat = tsc(1) |
---|
| 677 | sbt = tsc(2) |
---|
[1] | 678 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 679 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 680 | |
---|
| 681 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 682 | ! |
---|
[70] | 683 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 684 | !-- switched on. Thus: |
---|
| 685 | sat = 1.0 |
---|
| 686 | sbt = 1.0 |
---|
| 687 | ENDIF |
---|
[1] | 688 | tend = 0.0 |
---|
| 689 | CALL advec_s_bc( e, 'e' ) |
---|
| 690 | ELSE |
---|
| 691 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 692 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 693 | tend = 0.0 |
---|
| 694 | CALL advec_s_ups( e, 'e' ) |
---|
| 695 | ENDIF |
---|
| 696 | ENDIF |
---|
| 697 | ENDIF |
---|
| 698 | ENDIF |
---|
| 699 | |
---|
| 700 | ! |
---|
| 701 | !-- TKE-tendency terms with no communication |
---|
| 702 | DO i = nxl, nxr |
---|
| 703 | DO j = nys, nyn |
---|
| 704 | ! |
---|
| 705 | !-- Tendency-terms |
---|
| 706 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
| 707 | .NOT. use_upstream_for_tke ) THEN |
---|
[75] | 708 | IF ( .NOT. humidity ) THEN |
---|
[97] | 709 | IF ( ocean ) THEN |
---|
| 710 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 711 | l_grid, rho, prho_reference, rif, tend, & |
---|
| 712 | zu, zw ) |
---|
| 713 | ELSE |
---|
| 714 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 715 | l_grid, pt, pt_reference, rif, tend, & |
---|
| 716 | zu, zw ) |
---|
| 717 | ENDIF |
---|
[1] | 718 | ELSE |
---|
[97] | 719 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 720 | l_grid, vpt, pt_reference, rif, tend, zu, & |
---|
| 721 | zw ) |
---|
[1] | 722 | ENDIF |
---|
| 723 | ELSE |
---|
| 724 | IF ( use_upstream_for_tke ) THEN |
---|
| 725 | tend(:,j,i) = 0.0 |
---|
| 726 | CALL advec_s_up( i, j, e ) |
---|
| 727 | ELSE |
---|
| 728 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 729 | THEN |
---|
| 730 | tend(:,j,i) = 0.0 |
---|
| 731 | CALL advec_s_pw( i, j, e ) |
---|
| 732 | ELSE |
---|
| 733 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 734 | tend(:,j,i) = 0.0 |
---|
| 735 | CALL advec_s_up( i, j, e ) |
---|
| 736 | ENDIF |
---|
| 737 | ENDIF |
---|
| 738 | ENDIF |
---|
| 739 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 740 | THEN |
---|
[75] | 741 | IF ( .NOT. humidity ) THEN |
---|
[1] | 742 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
[97] | 743 | km_m, l_grid, pt_m, pt_reference, & |
---|
| 744 | rif_m, tend, zu, zw ) |
---|
[1] | 745 | ELSE |
---|
| 746 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
[97] | 747 | km_m, l_grid, vpt_m, pt_reference, & |
---|
| 748 | rif_m, tend, zu, zw ) |
---|
[1] | 749 | ENDIF |
---|
| 750 | ELSE |
---|
[75] | 751 | IF ( .NOT. humidity ) THEN |
---|
[97] | 752 | IF ( ocean ) THEN |
---|
| 753 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 754 | km, l_grid, rho, prho_reference, & |
---|
| 755 | rif, tend, zu, zw ) |
---|
| 756 | ELSE |
---|
| 757 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 758 | km, l_grid, pt, pt_reference, rif, & |
---|
| 759 | tend, zu, zw ) |
---|
| 760 | ENDIF |
---|
[1] | 761 | ELSE |
---|
| 762 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
[97] | 763 | l_grid, vpt, pt_reference, rif, tend, & |
---|
| 764 | zu, zw ) |
---|
[1] | 765 | ENDIF |
---|
| 766 | ENDIF |
---|
| 767 | ENDIF |
---|
| 768 | CALL production_e( i, j ) |
---|
[138] | 769 | |
---|
| 770 | ! |
---|
| 771 | !-- Additional sink term for flows through plant canopies |
---|
[153] | 772 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
[138] | 773 | |
---|
[1] | 774 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 775 | |
---|
| 776 | ! |
---|
| 777 | !-- Prognostic equation for TKE. |
---|
| 778 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 779 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 780 | !-- value is reduced by 90%. |
---|
[19] | 781 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 782 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 783 | dt_3d * ( & |
---|
| 784 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 785 | ) |
---|
| 786 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 787 | ENDDO |
---|
| 788 | |
---|
| 789 | ! |
---|
| 790 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 791 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 792 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 793 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 794 | te_m(k,j,i) = tend(k,j,i) |
---|
| 795 | ENDDO |
---|
| 796 | ELSEIF ( intermediate_timestep_count < & |
---|
| 797 | intermediate_timestep_count_max ) THEN |
---|
[19] | 798 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 799 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 800 | ENDDO |
---|
| 801 | ENDIF |
---|
| 802 | ENDIF |
---|
| 803 | |
---|
| 804 | ENDDO |
---|
| 805 | ENDDO |
---|
| 806 | |
---|
| 807 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 808 | |
---|
| 809 | ENDIF |
---|
| 810 | |
---|
| 811 | |
---|
[63] | 812 | END SUBROUTINE prognostic_equations_noopt |
---|
[1] | 813 | |
---|
| 814 | |
---|
[63] | 815 | SUBROUTINE prognostic_equations_cache |
---|
[1] | 816 | |
---|
| 817 | !------------------------------------------------------------------------------! |
---|
| 818 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 819 | ! be called for the standard Piascek-Williams advection scheme. |
---|
| 820 | ! |
---|
[95] | 821 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 822 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 823 | ! these loops. |
---|
[1] | 824 | ! |
---|
| 825 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 826 | !------------------------------------------------------------------------------! |
---|
| 827 | |
---|
| 828 | IMPLICIT NONE |
---|
| 829 | |
---|
| 830 | CHARACTER (LEN=9) :: time_to_string |
---|
| 831 | INTEGER :: i, j, k |
---|
| 832 | |
---|
| 833 | |
---|
| 834 | ! |
---|
| 835 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 836 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 837 | |
---|
| 838 | |
---|
| 839 | ! |
---|
| 840 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 841 | !-- global communication |
---|
[96] | 842 | CALL calc_mean_profile( pt, 4 ) |
---|
| 843 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 844 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 845 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
| 846 | |
---|
| 847 | |
---|
| 848 | ! |
---|
| 849 | !-- Loop over all prognostic equations |
---|
| 850 | !$OMP PARALLEL private (i,j,k) |
---|
| 851 | !$OMP DO |
---|
[75] | 852 | DO i = nxl, nxr |
---|
| 853 | DO j = nys, nyn |
---|
[1] | 854 | ! |
---|
| 855 | !-- Tendency terms for u-velocity component |
---|
[106] | 856 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
[1] | 857 | |
---|
| 858 | tend(:,j,i) = 0.0 |
---|
| 859 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 860 | CALL advec_u_pw( i, j ) |
---|
| 861 | ELSE |
---|
| 862 | CALL advec_u_up( i, j ) |
---|
| 863 | ENDIF |
---|
| 864 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 865 | THEN |
---|
| 866 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
[102] | 867 | u_m, usws_m, uswst_m, v_m, w_m ) |
---|
[1] | 868 | ELSE |
---|
| 869 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
[102] | 870 | usws, uswst, v, w ) |
---|
[1] | 871 | ENDIF |
---|
| 872 | CALL coriolis( i, j, 1 ) |
---|
[97] | 873 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, & |
---|
| 874 | 4 ) |
---|
[138] | 875 | |
---|
| 876 | ! |
---|
| 877 | !-- Drag by plant canopy |
---|
| 878 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 879 | |
---|
[1] | 880 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 881 | |
---|
| 882 | ! |
---|
| 883 | !-- Prognostic equation for u-velocity component |
---|
| 884 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 885 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 886 | dt_3d * ( & |
---|
| 887 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 888 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 889 | ) - & |
---|
| 890 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 891 | ENDDO |
---|
| 892 | |
---|
| 893 | ! |
---|
| 894 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 895 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 896 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 897 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 898 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 899 | ENDDO |
---|
| 900 | ELSEIF ( intermediate_timestep_count < & |
---|
| 901 | intermediate_timestep_count_max ) THEN |
---|
| 902 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 903 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 904 | ENDDO |
---|
| 905 | ENDIF |
---|
| 906 | ENDIF |
---|
| 907 | |
---|
| 908 | ENDIF |
---|
| 909 | |
---|
| 910 | ! |
---|
| 911 | !-- Tendency terms for v-velocity component |
---|
[106] | 912 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
[1] | 913 | |
---|
| 914 | tend(:,j,i) = 0.0 |
---|
| 915 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 916 | CALL advec_v_pw( i, j ) |
---|
| 917 | ELSE |
---|
| 918 | CALL advec_v_up( i, j ) |
---|
| 919 | ENDIF |
---|
| 920 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 921 | THEN |
---|
| 922 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
[102] | 923 | u_m, v_m, vsws_m, vswst_m, w_m ) |
---|
[1] | 924 | ELSE |
---|
| 925 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[102] | 926 | vsws, vswst, w ) |
---|
[1] | 927 | ENDIF |
---|
| 928 | CALL coriolis( i, j, 2 ) |
---|
[138] | 929 | |
---|
| 930 | ! |
---|
| 931 | !-- Drag by plant canopy |
---|
| 932 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 933 | |
---|
[1] | 934 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 935 | |
---|
| 936 | ! |
---|
| 937 | !-- Prognostic equation for v-velocity component |
---|
| 938 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 939 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 940 | dt_3d * ( & |
---|
| 941 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 942 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 943 | ) - & |
---|
| 944 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 945 | ENDDO |
---|
| 946 | |
---|
| 947 | ! |
---|
| 948 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 949 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 950 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 951 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 952 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 953 | ENDDO |
---|
| 954 | ELSEIF ( intermediate_timestep_count < & |
---|
| 955 | intermediate_timestep_count_max ) THEN |
---|
| 956 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 957 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 958 | ENDDO |
---|
| 959 | ENDIF |
---|
| 960 | ENDIF |
---|
| 961 | |
---|
| 962 | ENDIF |
---|
| 963 | |
---|
| 964 | ! |
---|
| 965 | !-- Tendency terms for w-velocity component |
---|
[106] | 966 | tend(:,j,i) = 0.0 |
---|
| 967 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 968 | CALL advec_w_pw( i, j ) |
---|
| 969 | ELSE |
---|
| 970 | CALL advec_w_up( i, j ) |
---|
| 971 | ENDIF |
---|
| 972 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 973 | THEN |
---|
| 974 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
| 975 | km_damp_y, tend, u_m, v_m, w_m ) |
---|
| 976 | ELSE |
---|
| 977 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
| 978 | tend, u, v, w ) |
---|
| 979 | ENDIF |
---|
| 980 | CALL coriolis( i, j, 3 ) |
---|
| 981 | IF ( ocean ) THEN |
---|
| 982 | CALL buoyancy( i, j, rho, prho_reference, 3, 64 ) |
---|
| 983 | ELSE |
---|
| 984 | IF ( .NOT. humidity ) THEN |
---|
| 985 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
| 986 | ELSE |
---|
| 987 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
| 988 | ENDIF |
---|
| 989 | ENDIF |
---|
[138] | 990 | |
---|
| 991 | ! |
---|
| 992 | !-- Drag by plant canopy |
---|
| 993 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 994 | |
---|
[106] | 995 | CALL user_actions( i, j, 'w-tendency' ) |
---|
[1] | 996 | |
---|
[106] | 997 | ! |
---|
| 998 | !-- Prognostic equation for w-velocity component |
---|
| 999 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1000 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 1001 | dt_3d * ( & |
---|
| 1002 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 1003 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 1004 | ) - & |
---|
| 1005 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1006 | ENDDO |
---|
| 1007 | |
---|
| 1008 | ! |
---|
| 1009 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1010 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1011 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1012 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1013 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1014 | ENDDO |
---|
| 1015 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1016 | intermediate_timestep_count_max ) THEN |
---|
| 1017 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1018 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1019 | ENDDO |
---|
| 1020 | ENDIF |
---|
| 1021 | ENDIF |
---|
| 1022 | |
---|
| 1023 | ! |
---|
| 1024 | !-- Tendency terms for potential temperature |
---|
| 1025 | tend(:,j,i) = 0.0 |
---|
| 1026 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1027 | CALL advec_s_pw( i, j, pt ) |
---|
| 1028 | ELSE |
---|
| 1029 | CALL advec_s_up( i, j, pt ) |
---|
| 1030 | ENDIF |
---|
| 1031 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 1032 | THEN |
---|
| 1033 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
[129] | 1034 | tswst_m, wall_heatflux, tend ) |
---|
[106] | 1035 | ELSE |
---|
[129] | 1036 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 1037 | wall_heatflux, tend ) |
---|
[106] | 1038 | ENDIF |
---|
| 1039 | |
---|
| 1040 | ! |
---|
| 1041 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 1042 | !-- processes |
---|
| 1043 | IF ( radiation ) THEN |
---|
| 1044 | CALL calc_radiation( i, j ) |
---|
| 1045 | ENDIF |
---|
| 1046 | |
---|
| 1047 | ! |
---|
| 1048 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1049 | IF ( precipitation ) THEN |
---|
| 1050 | CALL impact_of_latent_heat( i, j ) |
---|
| 1051 | ENDIF |
---|
[153] | 1052 | |
---|
| 1053 | ! |
---|
| 1054 | !-- Consideration of heat sources within the plant canopy |
---|
| 1055 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1056 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 1057 | ENDIF |
---|
| 1058 | |
---|
[106] | 1059 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 1060 | |
---|
| 1061 | ! |
---|
| 1062 | !-- Prognostic equation for potential temperature |
---|
| 1063 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1064 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
| 1065 | dt_3d * ( & |
---|
| 1066 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1067 | ) - & |
---|
| 1068 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1069 | ENDDO |
---|
| 1070 | |
---|
| 1071 | ! |
---|
| 1072 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1073 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1074 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1075 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1076 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1077 | ENDDO |
---|
| 1078 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1079 | intermediate_timestep_count_max ) THEN |
---|
| 1080 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1081 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1082 | 5.3125 * tpt_m(k,j,i) |
---|
| 1083 | ENDDO |
---|
| 1084 | ENDIF |
---|
| 1085 | ENDIF |
---|
| 1086 | |
---|
| 1087 | ! |
---|
| 1088 | !-- If required, compute prognostic equation for salinity |
---|
| 1089 | IF ( ocean ) THEN |
---|
| 1090 | |
---|
| 1091 | ! |
---|
| 1092 | !-- Tendency-terms for salinity |
---|
[1] | 1093 | tend(:,j,i) = 0.0 |
---|
[106] | 1094 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
[1] | 1095 | THEN |
---|
[106] | 1096 | CALL advec_s_pw( i, j, sa ) |
---|
[1] | 1097 | ELSE |
---|
[106] | 1098 | CALL advec_s_up( i, j, sa ) |
---|
[1] | 1099 | ENDIF |
---|
[106] | 1100 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
[129] | 1101 | wall_salinityflux, tend ) |
---|
[1] | 1102 | |
---|
[106] | 1103 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 1104 | |
---|
[1] | 1105 | ! |
---|
[106] | 1106 | !-- Prognostic equation for salinity |
---|
| 1107 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1108 | sa_p(k,j,i) = tsc(1) * sa(k,j,i) + & |
---|
| 1109 | dt_3d * ( & |
---|
| 1110 | tsc(2) * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 1111 | ) - & |
---|
| 1112 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 1113 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
[1] | 1114 | ENDDO |
---|
| 1115 | |
---|
| 1116 | ! |
---|
| 1117 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1118 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1119 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[106] | 1120 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1121 | tsa_m(k,j,i) = tend(k,j,i) |
---|
[1] | 1122 | ENDDO |
---|
| 1123 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1124 | intermediate_timestep_count_max ) THEN |
---|
[106] | 1125 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1126 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1127 | 5.3125 * tsa_m(k,j,i) |
---|
[1] | 1128 | ENDDO |
---|
| 1129 | ENDIF |
---|
| 1130 | ENDIF |
---|
| 1131 | |
---|
| 1132 | ! |
---|
[106] | 1133 | !-- Calculate density by the equation of state for seawater |
---|
| 1134 | CALL eqn_state_seawater( i, j ) |
---|
| 1135 | |
---|
| 1136 | ENDIF |
---|
| 1137 | |
---|
| 1138 | ! |
---|
| 1139 | !-- If required, compute prognostic equation for total water content / |
---|
| 1140 | !-- scalar |
---|
| 1141 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1142 | |
---|
| 1143 | ! |
---|
| 1144 | !-- Tendency-terms for total water content / scalar |
---|
[1] | 1145 | tend(:,j,i) = 0.0 |
---|
[106] | 1146 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 1147 | THEN |
---|
| 1148 | CALL advec_s_pw( i, j, q ) |
---|
[1] | 1149 | ELSE |
---|
[106] | 1150 | CALL advec_s_up( i, j, q ) |
---|
[1] | 1151 | ENDIF |
---|
[106] | 1152 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
[1] | 1153 | THEN |
---|
[106] | 1154 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
[129] | 1155 | qswst_m, wall_qflux, tend ) |
---|
[1] | 1156 | ELSE |
---|
[106] | 1157 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
[129] | 1158 | wall_qflux, tend ) |
---|
[1] | 1159 | ENDIF |
---|
[106] | 1160 | |
---|
[1] | 1161 | ! |
---|
[106] | 1162 | !-- If required compute decrease of total water content due to |
---|
| 1163 | !-- precipitation |
---|
[1] | 1164 | IF ( precipitation ) THEN |
---|
[106] | 1165 | CALL calc_precipitation( i, j ) |
---|
[1] | 1166 | ENDIF |
---|
[153] | 1167 | |
---|
| 1168 | ! |
---|
| 1169 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1170 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
| 1171 | |
---|
| 1172 | |
---|
[106] | 1173 | CALL user_actions( i, j, 'q-tendency' ) |
---|
[1] | 1174 | |
---|
| 1175 | ! |
---|
[106] | 1176 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 1177 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1178 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
| 1179 | dt_3d * ( & |
---|
| 1180 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1181 | ) - & |
---|
| 1182 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
| 1183 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 1184 | ENDDO |
---|
| 1185 | |
---|
| 1186 | ! |
---|
| 1187 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1188 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1189 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 1190 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1191 | tq_m(k,j,i) = tend(k,j,i) |
---|
[1] | 1192 | ENDDO |
---|
| 1193 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1194 | intermediate_timestep_count_max ) THEN |
---|
[19] | 1195 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1196 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1197 | 5.3125 * tq_m(k,j,i) |
---|
[1] | 1198 | ENDDO |
---|
| 1199 | ENDIF |
---|
| 1200 | ENDIF |
---|
| 1201 | |
---|
[106] | 1202 | ENDIF |
---|
[95] | 1203 | |
---|
| 1204 | ! |
---|
[106] | 1205 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1206 | !-- energy (TKE) |
---|
| 1207 | IF ( .NOT. constant_diffusion ) THEN |
---|
[95] | 1208 | |
---|
| 1209 | ! |
---|
[106] | 1210 | !-- Tendency-terms for TKE |
---|
| 1211 | tend(:,j,i) = 0.0 |
---|
| 1212 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 1213 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
| 1214 | CALL advec_s_pw( i, j, e ) |
---|
| 1215 | ELSE |
---|
| 1216 | CALL advec_s_up( i, j, e ) |
---|
[95] | 1217 | ENDIF |
---|
[106] | 1218 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 1219 | THEN |
---|
| 1220 | IF ( .NOT. humidity ) THEN |
---|
| 1221 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 1222 | km_m, l_grid, pt_m, pt_reference, & |
---|
| 1223 | rif_m, tend, zu, zw ) |
---|
[1] | 1224 | ELSE |
---|
[106] | 1225 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 1226 | km_m, l_grid, vpt_m, pt_reference, & |
---|
| 1227 | rif_m, tend, zu, zw ) |
---|
[1] | 1228 | ENDIF |
---|
[106] | 1229 | ELSE |
---|
| 1230 | IF ( .NOT. humidity ) THEN |
---|
| 1231 | IF ( ocean ) THEN |
---|
| 1232 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 1233 | km, l_grid, rho, prho_reference, & |
---|
| 1234 | rif, tend, zu, zw ) |
---|
[1] | 1235 | ELSE |
---|
[106] | 1236 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 1237 | km, l_grid, pt, pt_reference, rif, & |
---|
| 1238 | tend, zu, zw ) |
---|
[1] | 1239 | ENDIF |
---|
| 1240 | ELSE |
---|
[106] | 1241 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 1242 | l_grid, vpt, pt_reference, rif, tend, & |
---|
| 1243 | zu, zw ) |
---|
[1] | 1244 | ENDIF |
---|
[106] | 1245 | ENDIF |
---|
| 1246 | CALL production_e( i, j ) |
---|
[138] | 1247 | |
---|
| 1248 | ! |
---|
| 1249 | !-- Additional sink term for flows through plant canopies |
---|
[153] | 1250 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
[138] | 1251 | |
---|
[106] | 1252 | CALL user_actions( i, j, 'e-tendency' ) |
---|
[1] | 1253 | |
---|
| 1254 | ! |
---|
[106] | 1255 | !-- Prognostic equation for TKE. |
---|
| 1256 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1257 | !-- reasons in the course of the integration. In such cases the old |
---|
| 1258 | !-- TKE value is reduced by 90%. |
---|
| 1259 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1260 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
| 1261 | dt_3d * ( & |
---|
| 1262 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 1263 | ) |
---|
| 1264 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1265 | ENDDO |
---|
[1] | 1266 | |
---|
| 1267 | ! |
---|
[106] | 1268 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1269 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1270 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1271 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1272 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1273 | ENDDO |
---|
| 1274 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1275 | intermediate_timestep_count_max ) THEN |
---|
| 1276 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1277 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1278 | 5.3125 * te_m(k,j,i) |
---|
| 1279 | ENDDO |
---|
[1] | 1280 | ENDIF |
---|
[106] | 1281 | ENDIF |
---|
[1] | 1282 | |
---|
[106] | 1283 | ENDIF ! TKE equation |
---|
[1] | 1284 | |
---|
| 1285 | ENDDO |
---|
| 1286 | ENDDO |
---|
| 1287 | !$OMP END PARALLEL |
---|
| 1288 | |
---|
| 1289 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 1290 | |
---|
| 1291 | |
---|
[63] | 1292 | END SUBROUTINE prognostic_equations_cache |
---|
[1] | 1293 | |
---|
| 1294 | |
---|
[63] | 1295 | SUBROUTINE prognostic_equations_vector |
---|
[1] | 1296 | |
---|
| 1297 | !------------------------------------------------------------------------------! |
---|
| 1298 | ! Version for vector machines |
---|
| 1299 | !------------------------------------------------------------------------------! |
---|
| 1300 | |
---|
| 1301 | IMPLICIT NONE |
---|
| 1302 | |
---|
| 1303 | CHARACTER (LEN=9) :: time_to_string |
---|
| 1304 | INTEGER :: i, j, k |
---|
| 1305 | REAL :: sat, sbt |
---|
| 1306 | |
---|
| 1307 | ! |
---|
| 1308 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 1309 | !-- global communication |
---|
[96] | 1310 | CALL calc_mean_profile( pt, 4 ) |
---|
| 1311 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 1312 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 1313 | |
---|
| 1314 | ! |
---|
| 1315 | !-- u-velocity component |
---|
| 1316 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1317 | |
---|
| 1318 | ! |
---|
| 1319 | !-- u-tendency terms with communication |
---|
| 1320 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1321 | tend = 0.0 |
---|
| 1322 | CALL advec_u_ups |
---|
| 1323 | ENDIF |
---|
| 1324 | |
---|
| 1325 | ! |
---|
| 1326 | !-- u-tendency terms with no communication |
---|
| 1327 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1328 | tend = 0.0 |
---|
| 1329 | CALL advec_u_pw |
---|
| 1330 | ELSE |
---|
| 1331 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1332 | tend = 0.0 |
---|
| 1333 | CALL advec_u_up |
---|
| 1334 | ENDIF |
---|
| 1335 | ENDIF |
---|
| 1336 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[102] | 1337 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, & |
---|
| 1338 | uswst_m, v_m, w_m ) |
---|
[1] | 1339 | ELSE |
---|
[102] | 1340 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, uswst, v, w ) |
---|
[1] | 1341 | ENDIF |
---|
| 1342 | CALL coriolis( 1 ) |
---|
[97] | 1343 | IF ( sloping_surface ) CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
[138] | 1344 | |
---|
| 1345 | ! |
---|
| 1346 | !-- Drag by plant canopy |
---|
| 1347 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1348 | |
---|
[1] | 1349 | CALL user_actions( 'u-tendency' ) |
---|
| 1350 | |
---|
| 1351 | ! |
---|
| 1352 | !-- Prognostic equation for u-velocity component |
---|
[106] | 1353 | DO i = nxlu, nxr |
---|
[1] | 1354 | DO j = nys, nyn |
---|
| 1355 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1356 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 1357 | dt_3d * ( & |
---|
| 1358 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 1359 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 1360 | ) - & |
---|
| 1361 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1362 | ENDDO |
---|
| 1363 | ENDDO |
---|
| 1364 | ENDDO |
---|
| 1365 | |
---|
| 1366 | ! |
---|
| 1367 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1368 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1369 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[106] | 1370 | DO i = nxlu, nxr |
---|
[1] | 1371 | DO j = nys, nyn |
---|
| 1372 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1373 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1374 | ENDDO |
---|
| 1375 | ENDDO |
---|
| 1376 | ENDDO |
---|
| 1377 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1378 | intermediate_timestep_count_max ) THEN |
---|
[106] | 1379 | DO i = nxlu, nxr |
---|
[1] | 1380 | DO j = nys, nyn |
---|
| 1381 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1382 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 1383 | ENDDO |
---|
| 1384 | ENDDO |
---|
| 1385 | ENDDO |
---|
| 1386 | ENDIF |
---|
| 1387 | ENDIF |
---|
| 1388 | |
---|
| 1389 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1390 | |
---|
| 1391 | ! |
---|
| 1392 | !-- v-velocity component |
---|
| 1393 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1394 | |
---|
| 1395 | ! |
---|
| 1396 | !-- v-tendency terms with communication |
---|
| 1397 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1398 | tend = 0.0 |
---|
| 1399 | CALL advec_v_ups |
---|
| 1400 | ENDIF |
---|
| 1401 | |
---|
| 1402 | ! |
---|
| 1403 | !-- v-tendency terms with no communication |
---|
| 1404 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1405 | tend = 0.0 |
---|
| 1406 | CALL advec_v_pw |
---|
| 1407 | ELSE |
---|
| 1408 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1409 | tend = 0.0 |
---|
| 1410 | CALL advec_v_up |
---|
| 1411 | ENDIF |
---|
| 1412 | ENDIF |
---|
| 1413 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1414 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
[102] | 1415 | vswst_m, w_m ) |
---|
[1] | 1416 | ELSE |
---|
[102] | 1417 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, vswst, w ) |
---|
[1] | 1418 | ENDIF |
---|
| 1419 | CALL coriolis( 2 ) |
---|
[138] | 1420 | |
---|
| 1421 | ! |
---|
| 1422 | !-- Drag by plant canopy |
---|
| 1423 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
[1] | 1424 | CALL user_actions( 'v-tendency' ) |
---|
| 1425 | |
---|
| 1426 | ! |
---|
| 1427 | !-- Prognostic equation for v-velocity component |
---|
| 1428 | DO i = nxl, nxr |
---|
[106] | 1429 | DO j = nysv, nyn |
---|
[1] | 1430 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1431 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 1432 | dt_3d * ( & |
---|
| 1433 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 1434 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 1435 | ) - & |
---|
| 1436 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1437 | ENDDO |
---|
| 1438 | ENDDO |
---|
| 1439 | ENDDO |
---|
| 1440 | |
---|
| 1441 | ! |
---|
| 1442 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1443 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1444 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1445 | DO i = nxl, nxr |
---|
[106] | 1446 | DO j = nysv, nyn |
---|
[1] | 1447 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1448 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1449 | ENDDO |
---|
| 1450 | ENDDO |
---|
| 1451 | ENDDO |
---|
| 1452 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1453 | intermediate_timestep_count_max ) THEN |
---|
| 1454 | DO i = nxl, nxr |
---|
[106] | 1455 | DO j = nysv, nyn |
---|
[1] | 1456 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1457 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1458 | ENDDO |
---|
| 1459 | ENDDO |
---|
| 1460 | ENDDO |
---|
| 1461 | ENDIF |
---|
| 1462 | ENDIF |
---|
| 1463 | |
---|
| 1464 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1465 | |
---|
| 1466 | ! |
---|
| 1467 | !-- w-velocity component |
---|
| 1468 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1469 | |
---|
| 1470 | ! |
---|
| 1471 | !-- w-tendency terms with communication |
---|
| 1472 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1473 | tend = 0.0 |
---|
| 1474 | CALL advec_w_ups |
---|
| 1475 | ENDIF |
---|
| 1476 | |
---|
| 1477 | ! |
---|
| 1478 | !-- w-tendency terms with no communication |
---|
| 1479 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1480 | tend = 0.0 |
---|
| 1481 | CALL advec_w_pw |
---|
| 1482 | ELSE |
---|
| 1483 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1484 | tend = 0.0 |
---|
| 1485 | CALL advec_w_up |
---|
| 1486 | ENDIF |
---|
| 1487 | ENDIF |
---|
| 1488 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1489 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
[57] | 1490 | v_m, w_m ) |
---|
[1] | 1491 | ELSE |
---|
[57] | 1492 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w ) |
---|
[1] | 1493 | ENDIF |
---|
| 1494 | CALL coriolis( 3 ) |
---|
[97] | 1495 | IF ( ocean ) THEN |
---|
| 1496 | CALL buoyancy( rho, prho_reference, 3, 64 ) |
---|
[1] | 1497 | ELSE |
---|
[97] | 1498 | IF ( .NOT. humidity ) THEN |
---|
| 1499 | CALL buoyancy( pt, pt_reference, 3, 4 ) |
---|
| 1500 | ELSE |
---|
| 1501 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
| 1502 | ENDIF |
---|
[1] | 1503 | ENDIF |
---|
[138] | 1504 | |
---|
| 1505 | ! |
---|
| 1506 | !-- Drag by plant canopy |
---|
| 1507 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1508 | |
---|
[1] | 1509 | CALL user_actions( 'w-tendency' ) |
---|
| 1510 | |
---|
| 1511 | ! |
---|
| 1512 | !-- Prognostic equation for w-velocity component |
---|
| 1513 | DO i = nxl, nxr |
---|
| 1514 | DO j = nys, nyn |
---|
| 1515 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1516 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 1517 | dt_3d * ( & |
---|
| 1518 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 1519 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 1520 | ) - & |
---|
| 1521 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1522 | ENDDO |
---|
| 1523 | ENDDO |
---|
| 1524 | ENDDO |
---|
| 1525 | |
---|
| 1526 | ! |
---|
| 1527 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1528 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1529 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1530 | DO i = nxl, nxr |
---|
| 1531 | DO j = nys, nyn |
---|
| 1532 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1533 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1534 | ENDDO |
---|
| 1535 | ENDDO |
---|
| 1536 | ENDDO |
---|
| 1537 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1538 | intermediate_timestep_count_max ) THEN |
---|
| 1539 | DO i = nxl, nxr |
---|
| 1540 | DO j = nys, nyn |
---|
| 1541 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1542 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1543 | ENDDO |
---|
| 1544 | ENDDO |
---|
| 1545 | ENDDO |
---|
| 1546 | ENDIF |
---|
| 1547 | ENDIF |
---|
| 1548 | |
---|
| 1549 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1550 | |
---|
| 1551 | ! |
---|
| 1552 | !-- potential temperature |
---|
| 1553 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1554 | |
---|
| 1555 | ! |
---|
| 1556 | !-- pt-tendency terms with communication |
---|
[63] | 1557 | sat = tsc(1) |
---|
| 1558 | sbt = tsc(2) |
---|
[1] | 1559 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1560 | |
---|
| 1561 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1562 | ! |
---|
[63] | 1563 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1564 | !-- switched on. Thus: |
---|
| 1565 | sat = 1.0 |
---|
| 1566 | sbt = 1.0 |
---|
| 1567 | ENDIF |
---|
[1] | 1568 | tend = 0.0 |
---|
| 1569 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1570 | ELSE |
---|
| 1571 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 1572 | tend = 0.0 |
---|
| 1573 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 1574 | ENDIF |
---|
| 1575 | ENDIF |
---|
| 1576 | |
---|
| 1577 | ! |
---|
| 1578 | !-- pt-tendency terms with no communication |
---|
| 1579 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 1580 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
| 1581 | tend ) |
---|
[1] | 1582 | ELSE |
---|
| 1583 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1584 | tend = 0.0 |
---|
| 1585 | CALL advec_s_pw( pt ) |
---|
| 1586 | ELSE |
---|
| 1587 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1588 | tend = 0.0 |
---|
| 1589 | CALL advec_s_up( pt ) |
---|
| 1590 | ENDIF |
---|
| 1591 | ENDIF |
---|
| 1592 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[129] | 1593 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tswst_m, & |
---|
| 1594 | wall_heatflux, tend ) |
---|
[1] | 1595 | ELSE |
---|
[129] | 1596 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
| 1597 | tend ) |
---|
[1] | 1598 | ENDIF |
---|
| 1599 | ENDIF |
---|
| 1600 | |
---|
| 1601 | ! |
---|
| 1602 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 1603 | !-- processes |
---|
| 1604 | IF ( radiation ) THEN |
---|
| 1605 | CALL calc_radiation |
---|
| 1606 | ENDIF |
---|
| 1607 | |
---|
| 1608 | ! |
---|
| 1609 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1610 | IF ( precipitation ) THEN |
---|
| 1611 | CALL impact_of_latent_heat |
---|
| 1612 | ENDIF |
---|
[153] | 1613 | |
---|
| 1614 | ! |
---|
| 1615 | !-- Consideration of heat sources within the plant canopy |
---|
| 1616 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1617 | CALL plant_canopy_model( 4 ) |
---|
| 1618 | ENDIF |
---|
| 1619 | |
---|
| 1620 | |
---|
[1] | 1621 | CALL user_actions( 'pt-tendency' ) |
---|
| 1622 | |
---|
| 1623 | ! |
---|
| 1624 | !-- Prognostic equation for potential temperature |
---|
| 1625 | DO i = nxl, nxr |
---|
| 1626 | DO j = nys, nyn |
---|
[19] | 1627 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1628 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 1629 | dt_3d * ( & |
---|
| 1630 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1631 | ) - & |
---|
| 1632 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1633 | ENDDO |
---|
| 1634 | ENDDO |
---|
| 1635 | ENDDO |
---|
| 1636 | |
---|
| 1637 | ! |
---|
| 1638 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1639 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1640 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1641 | DO i = nxl, nxr |
---|
| 1642 | DO j = nys, nyn |
---|
[19] | 1643 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1644 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1645 | ENDDO |
---|
| 1646 | ENDDO |
---|
| 1647 | ENDDO |
---|
| 1648 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1649 | intermediate_timestep_count_max ) THEN |
---|
| 1650 | DO i = nxl, nxr |
---|
| 1651 | DO j = nys, nyn |
---|
[19] | 1652 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1653 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 1654 | ENDDO |
---|
| 1655 | ENDDO |
---|
| 1656 | ENDDO |
---|
| 1657 | ENDIF |
---|
| 1658 | ENDIF |
---|
| 1659 | |
---|
| 1660 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1661 | |
---|
| 1662 | ! |
---|
[95] | 1663 | !-- If required, compute prognostic equation for salinity |
---|
| 1664 | IF ( ocean ) THEN |
---|
| 1665 | |
---|
| 1666 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1667 | |
---|
| 1668 | ! |
---|
| 1669 | !-- sa-tendency terms with communication |
---|
| 1670 | sat = tsc(1) |
---|
| 1671 | sbt = tsc(2) |
---|
| 1672 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1673 | |
---|
| 1674 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1675 | ! |
---|
| 1676 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1677 | !-- switched on. Thus: |
---|
| 1678 | sat = 1.0 |
---|
| 1679 | sbt = 1.0 |
---|
| 1680 | ENDIF |
---|
| 1681 | tend = 0.0 |
---|
| 1682 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 1683 | ELSE |
---|
| 1684 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1685 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1686 | tend = 0.0 |
---|
| 1687 | CALL advec_s_ups( sa, 'sa' ) |
---|
| 1688 | ENDIF |
---|
| 1689 | ENDIF |
---|
| 1690 | ENDIF |
---|
| 1691 | |
---|
| 1692 | ! |
---|
[129] | 1693 | !-- sa-tendency terms with no communication |
---|
[95] | 1694 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 1695 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 1696 | wall_salinityflux, tend ) |
---|
[95] | 1697 | ELSE |
---|
| 1698 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1699 | tend = 0.0 |
---|
| 1700 | CALL advec_s_pw( sa ) |
---|
| 1701 | ELSE |
---|
| 1702 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1703 | tend = 0.0 |
---|
| 1704 | CALL advec_s_up( sa ) |
---|
| 1705 | ENDIF |
---|
| 1706 | ENDIF |
---|
[129] | 1707 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 1708 | wall_salinityflux, tend ) |
---|
[95] | 1709 | ENDIF |
---|
| 1710 | |
---|
| 1711 | CALL user_actions( 'sa-tendency' ) |
---|
| 1712 | |
---|
| 1713 | ! |
---|
| 1714 | !-- Prognostic equation for salinity |
---|
| 1715 | DO i = nxl, nxr |
---|
| 1716 | DO j = nys, nyn |
---|
| 1717 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1718 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
| 1719 | dt_3d * ( & |
---|
| 1720 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 1721 | ) - & |
---|
| 1722 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 1723 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1724 | ENDDO |
---|
| 1725 | ENDDO |
---|
| 1726 | ENDDO |
---|
| 1727 | |
---|
| 1728 | ! |
---|
| 1729 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1730 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1731 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1732 | DO i = nxl, nxr |
---|
| 1733 | DO j = nys, nyn |
---|
| 1734 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1735 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1736 | ENDDO |
---|
| 1737 | ENDDO |
---|
| 1738 | ENDDO |
---|
| 1739 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1740 | intermediate_timestep_count_max ) THEN |
---|
| 1741 | DO i = nxl, nxr |
---|
| 1742 | DO j = nys, nyn |
---|
| 1743 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1744 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1745 | 5.3125 * tsa_m(k,j,i) |
---|
| 1746 | ENDDO |
---|
| 1747 | ENDDO |
---|
| 1748 | ENDDO |
---|
| 1749 | ENDIF |
---|
| 1750 | ENDIF |
---|
| 1751 | |
---|
| 1752 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1753 | |
---|
[96] | 1754 | ! |
---|
| 1755 | !-- Calculate density by the equation of state for seawater |
---|
| 1756 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1757 | CALL eqn_state_seawater |
---|
| 1758 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1759 | |
---|
[95] | 1760 | ENDIF |
---|
| 1761 | |
---|
| 1762 | ! |
---|
[1] | 1763 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 1764 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 1765 | |
---|
| 1766 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1767 | |
---|
| 1768 | ! |
---|
| 1769 | !-- Scalar/q-tendency terms with communication |
---|
[63] | 1770 | sat = tsc(1) |
---|
| 1771 | sbt = tsc(2) |
---|
[1] | 1772 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1773 | |
---|
| 1774 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1775 | ! |
---|
[63] | 1776 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1777 | !-- switched on. Thus: |
---|
| 1778 | sat = 1.0 |
---|
| 1779 | sbt = 1.0 |
---|
| 1780 | ENDIF |
---|
[1] | 1781 | tend = 0.0 |
---|
| 1782 | CALL advec_s_bc( q, 'q' ) |
---|
| 1783 | ELSE |
---|
| 1784 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1785 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1786 | tend = 0.0 |
---|
| 1787 | CALL advec_s_ups( q, 'q' ) |
---|
| 1788 | ENDIF |
---|
| 1789 | ENDIF |
---|
| 1790 | ENDIF |
---|
| 1791 | |
---|
| 1792 | ! |
---|
| 1793 | !-- Scalar/q-tendency terms with no communication |
---|
| 1794 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 1795 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, wall_qflux, tend ) |
---|
[1] | 1796 | ELSE |
---|
| 1797 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1798 | tend = 0.0 |
---|
| 1799 | CALL advec_s_pw( q ) |
---|
| 1800 | ELSE |
---|
| 1801 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1802 | tend = 0.0 |
---|
| 1803 | CALL advec_s_up( q ) |
---|
| 1804 | ENDIF |
---|
| 1805 | ENDIF |
---|
| 1806 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[129] | 1807 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, qswst_m, & |
---|
| 1808 | wall_qflux, tend ) |
---|
[1] | 1809 | ELSE |
---|
[129] | 1810 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 1811 | wall_qflux, tend ) |
---|
[1] | 1812 | ENDIF |
---|
| 1813 | ENDIF |
---|
| 1814 | |
---|
| 1815 | ! |
---|
| 1816 | !-- If required compute decrease of total water content due to |
---|
| 1817 | !-- precipitation |
---|
| 1818 | IF ( precipitation ) THEN |
---|
| 1819 | CALL calc_precipitation |
---|
| 1820 | ENDIF |
---|
[153] | 1821 | |
---|
| 1822 | ! |
---|
| 1823 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1824 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1825 | |
---|
[1] | 1826 | CALL user_actions( 'q-tendency' ) |
---|
| 1827 | |
---|
| 1828 | ! |
---|
| 1829 | !-- Prognostic equation for total water content / scalar |
---|
| 1830 | DO i = nxl, nxr |
---|
| 1831 | DO j = nys, nyn |
---|
[19] | 1832 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1833 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 1834 | dt_3d * ( & |
---|
| 1835 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1836 | ) - & |
---|
| 1837 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 1838 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 1839 | ENDDO |
---|
| 1840 | ENDDO |
---|
| 1841 | ENDDO |
---|
| 1842 | |
---|
| 1843 | ! |
---|
| 1844 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1845 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1846 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1847 | DO i = nxl, nxr |
---|
| 1848 | DO j = nys, nyn |
---|
[19] | 1849 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1850 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1851 | ENDDO |
---|
| 1852 | ENDDO |
---|
| 1853 | ENDDO |
---|
| 1854 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1855 | intermediate_timestep_count_max ) THEN |
---|
| 1856 | DO i = nxl, nxr |
---|
| 1857 | DO j = nys, nyn |
---|
[19] | 1858 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1859 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1860 | ENDDO |
---|
| 1861 | ENDDO |
---|
| 1862 | ENDDO |
---|
| 1863 | ENDIF |
---|
| 1864 | ENDIF |
---|
| 1865 | |
---|
| 1866 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1867 | |
---|
| 1868 | ENDIF |
---|
| 1869 | |
---|
| 1870 | ! |
---|
| 1871 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1872 | !-- energy (TKE) |
---|
| 1873 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1874 | |
---|
| 1875 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1876 | |
---|
| 1877 | ! |
---|
| 1878 | !-- TKE-tendency terms with communication |
---|
| 1879 | CALL production_e_init |
---|
[63] | 1880 | |
---|
| 1881 | sat = tsc(1) |
---|
| 1882 | sbt = tsc(2) |
---|
[1] | 1883 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1884 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1885 | |
---|
| 1886 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1887 | ! |
---|
[63] | 1888 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1889 | !-- switched on. Thus: |
---|
| 1890 | sat = 1.0 |
---|
| 1891 | sbt = 1.0 |
---|
| 1892 | ENDIF |
---|
[1] | 1893 | tend = 0.0 |
---|
| 1894 | CALL advec_s_bc( e, 'e' ) |
---|
| 1895 | ELSE |
---|
| 1896 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1897 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1898 | tend = 0.0 |
---|
| 1899 | CALL advec_s_ups( e, 'e' ) |
---|
| 1900 | ENDIF |
---|
| 1901 | ENDIF |
---|
| 1902 | ENDIF |
---|
| 1903 | ENDIF |
---|
| 1904 | |
---|
| 1905 | ! |
---|
| 1906 | !-- TKE-tendency terms with no communication |
---|
| 1907 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
| 1908 | THEN |
---|
[75] | 1909 | IF ( .NOT. humidity ) THEN |
---|
[97] | 1910 | IF ( ocean ) THEN |
---|
| 1911 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, rho, & |
---|
| 1912 | prho_reference, rif, tend, zu, zw ) |
---|
| 1913 | ELSE |
---|
| 1914 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
| 1915 | pt_reference, rif, tend, zu, zw ) |
---|
| 1916 | ENDIF |
---|
[1] | 1917 | ELSE |
---|
| 1918 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
[97] | 1919 | pt_reference, rif, tend, zu, zw ) |
---|
[1] | 1920 | ENDIF |
---|
| 1921 | ELSE |
---|
| 1922 | IF ( use_upstream_for_tke ) THEN |
---|
| 1923 | tend = 0.0 |
---|
| 1924 | CALL advec_s_up( e ) |
---|
| 1925 | ELSE |
---|
| 1926 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1927 | tend = 0.0 |
---|
| 1928 | CALL advec_s_pw( e ) |
---|
| 1929 | ELSE |
---|
| 1930 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1931 | tend = 0.0 |
---|
| 1932 | CALL advec_s_up( e ) |
---|
| 1933 | ENDIF |
---|
| 1934 | ENDIF |
---|
| 1935 | ENDIF |
---|
| 1936 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[75] | 1937 | IF ( .NOT. humidity ) THEN |
---|
[1] | 1938 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
[97] | 1939 | pt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
[1] | 1940 | ELSE |
---|
| 1941 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
[97] | 1942 | vpt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
[1] | 1943 | ENDIF |
---|
| 1944 | ELSE |
---|
[75] | 1945 | IF ( .NOT. humidity ) THEN |
---|
[97] | 1946 | IF ( ocean ) THEN |
---|
| 1947 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
| 1948 | rho, prho_reference, rif, tend, zu, zw ) |
---|
| 1949 | ELSE |
---|
| 1950 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
| 1951 | pt, pt_reference, rif, tend, zu, zw ) |
---|
| 1952 | ENDIF |
---|
[1] | 1953 | ELSE |
---|
| 1954 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
[97] | 1955 | pt_reference, rif, tend, zu, zw ) |
---|
[1] | 1956 | ENDIF |
---|
| 1957 | ENDIF |
---|
| 1958 | ENDIF |
---|
| 1959 | CALL production_e |
---|
[138] | 1960 | |
---|
| 1961 | ! |
---|
| 1962 | !-- Additional sink term for flows through plant canopies |
---|
[153] | 1963 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
[1] | 1964 | CALL user_actions( 'e-tendency' ) |
---|
| 1965 | |
---|
| 1966 | ! |
---|
| 1967 | !-- Prognostic equation for TKE. |
---|
| 1968 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1969 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1970 | !-- value is reduced by 90%. |
---|
| 1971 | DO i = nxl, nxr |
---|
| 1972 | DO j = nys, nyn |
---|
[19] | 1973 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1974 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 1975 | dt_3d * ( & |
---|
| 1976 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 1977 | ) |
---|
| 1978 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1979 | ENDDO |
---|
| 1980 | ENDDO |
---|
| 1981 | ENDDO |
---|
| 1982 | |
---|
| 1983 | ! |
---|
| 1984 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1985 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1986 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1987 | DO i = nxl, nxr |
---|
| 1988 | DO j = nys, nyn |
---|
[19] | 1989 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1990 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1991 | ENDDO |
---|
| 1992 | ENDDO |
---|
| 1993 | ENDDO |
---|
| 1994 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1995 | intermediate_timestep_count_max ) THEN |
---|
| 1996 | DO i = nxl, nxr |
---|
| 1997 | DO j = nys, nyn |
---|
[19] | 1998 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1999 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 2000 | ENDDO |
---|
| 2001 | ENDDO |
---|
| 2002 | ENDDO |
---|
| 2003 | ENDIF |
---|
| 2004 | ENDIF |
---|
| 2005 | |
---|
| 2006 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2007 | |
---|
| 2008 | ENDIF |
---|
| 2009 | |
---|
| 2010 | |
---|
[63] | 2011 | END SUBROUTINE prognostic_equations_vector |
---|
[1] | 2012 | |
---|
| 2013 | |
---|
| 2014 | END MODULE prognostic_equations_mod |
---|