[1] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[19] | 6 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
| 7 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
[1] | 8 | ! |
---|
| 9 | ! Former revisions: |
---|
| 10 | ! ----------------- |
---|
[3] | 11 | ! $Id: prognostic_equations.f90 19 2007-02-23 04:53:48Z raasch $ |
---|
| 12 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 13 | ! |
---|
[1] | 14 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
| 15 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
| 16 | ! regardless of the timestep scheme used for the other quantities, |
---|
| 17 | ! new argument diss in call of diffusion_e |
---|
| 18 | ! |
---|
| 19 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 20 | ! Initial revision |
---|
| 21 | ! |
---|
| 22 | ! |
---|
| 23 | ! Description: |
---|
| 24 | ! ------------ |
---|
[19] | 25 | ! Solving the prognostic equations. |
---|
[1] | 26 | !------------------------------------------------------------------------------! |
---|
| 27 | |
---|
| 28 | USE arrays_3d |
---|
| 29 | USE control_parameters |
---|
| 30 | USE cpulog |
---|
| 31 | USE grid_variables |
---|
| 32 | USE indices |
---|
| 33 | USE interfaces |
---|
| 34 | USE pegrid |
---|
| 35 | USE pointer_interfaces |
---|
| 36 | USE statistics |
---|
| 37 | |
---|
| 38 | USE advec_s_pw_mod |
---|
| 39 | USE advec_s_up_mod |
---|
| 40 | USE advec_u_pw_mod |
---|
| 41 | USE advec_u_up_mod |
---|
| 42 | USE advec_v_pw_mod |
---|
| 43 | USE advec_v_up_mod |
---|
| 44 | USE advec_w_pw_mod |
---|
| 45 | USE advec_w_up_mod |
---|
| 46 | USE buoyancy_mod |
---|
| 47 | USE calc_precipitation_mod |
---|
| 48 | USE calc_radiation_mod |
---|
| 49 | USE coriolis_mod |
---|
| 50 | USE diffusion_e_mod |
---|
| 51 | USE diffusion_s_mod |
---|
| 52 | USE diffusion_u_mod |
---|
| 53 | USE diffusion_v_mod |
---|
| 54 | USE diffusion_w_mod |
---|
| 55 | USE impact_of_latent_heat_mod |
---|
| 56 | USE production_e_mod |
---|
| 57 | USE user_actions_mod |
---|
| 58 | |
---|
| 59 | |
---|
| 60 | PRIVATE |
---|
| 61 | PUBLIC prognostic_equations, prognostic_equations_fast, & |
---|
| 62 | prognostic_equations_vec |
---|
| 63 | |
---|
| 64 | INTERFACE prognostic_equations |
---|
| 65 | MODULE PROCEDURE prognostic_equations |
---|
| 66 | END INTERFACE prognostic_equations |
---|
| 67 | |
---|
| 68 | INTERFACE prognostic_equations_fast |
---|
| 69 | MODULE PROCEDURE prognostic_equations_fast |
---|
| 70 | END INTERFACE prognostic_equations_fast |
---|
| 71 | |
---|
| 72 | INTERFACE prognostic_equations_vec |
---|
| 73 | MODULE PROCEDURE prognostic_equations_vec |
---|
| 74 | END INTERFACE prognostic_equations_vec |
---|
| 75 | |
---|
| 76 | |
---|
| 77 | CONTAINS |
---|
| 78 | |
---|
| 79 | |
---|
| 80 | SUBROUTINE prognostic_equations |
---|
| 81 | |
---|
| 82 | !------------------------------------------------------------------------------! |
---|
| 83 | ! Version with single loop optimization |
---|
| 84 | ! |
---|
| 85 | ! (Optimized over each single prognostic equation.) |
---|
| 86 | !------------------------------------------------------------------------------! |
---|
| 87 | |
---|
| 88 | IMPLICIT NONE |
---|
| 89 | |
---|
| 90 | CHARACTER (LEN=9) :: time_to_string |
---|
| 91 | INTEGER :: i, j, k |
---|
| 92 | REAL :: sat, sbt |
---|
| 93 | |
---|
| 94 | ! |
---|
| 95 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 96 | !-- global communication |
---|
| 97 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
| 98 | IF ( moisture ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
| 99 | |
---|
| 100 | ! |
---|
| 101 | !-- u-velocity component |
---|
| 102 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 103 | |
---|
| 104 | ! |
---|
| 105 | !-- u-tendency terms with communication |
---|
| 106 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 107 | tend = 0.0 |
---|
| 108 | CALL advec_u_ups |
---|
| 109 | ENDIF |
---|
| 110 | |
---|
| 111 | ! |
---|
| 112 | !-- u-tendency terms with no communication |
---|
| 113 | DO i = nxl, nxr+uxrp |
---|
| 114 | DO j = nys, nyn |
---|
| 115 | ! |
---|
| 116 | !-- Tendency terms |
---|
| 117 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 118 | tend(:,j,i) = 0.0 |
---|
| 119 | CALL advec_u_pw( i, j ) |
---|
| 120 | ELSE |
---|
| 121 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 122 | tend(:,j,i) = 0.0 |
---|
| 123 | CALL advec_u_up( i, j ) |
---|
| 124 | ENDIF |
---|
| 125 | ENDIF |
---|
| 126 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 127 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
| 128 | usws_m, v_m, w_m, z0 ) |
---|
| 129 | ELSE |
---|
| 130 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
| 131 | v, w, z0 ) |
---|
| 132 | ENDIF |
---|
| 133 | CALL coriolis( i, j, 1 ) |
---|
| 134 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, 1, 4 ) |
---|
| 135 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 136 | |
---|
| 137 | ! |
---|
| 138 | !-- Prognostic equation for u-velocity component |
---|
| 139 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 140 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 141 | dt_3d * ( & |
---|
| 142 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 143 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 144 | ) - & |
---|
| 145 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 146 | ENDDO |
---|
| 147 | |
---|
| 148 | ! |
---|
| 149 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 150 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 151 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 152 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 153 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 154 | ENDDO |
---|
| 155 | ELSEIF ( intermediate_timestep_count < & |
---|
| 156 | intermediate_timestep_count_max ) THEN |
---|
| 157 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 158 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 159 | ENDDO |
---|
| 160 | ENDIF |
---|
| 161 | ENDIF |
---|
| 162 | |
---|
| 163 | ENDDO |
---|
| 164 | ENDDO |
---|
| 165 | |
---|
| 166 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 167 | |
---|
| 168 | ! |
---|
| 169 | !-- v-velocity component |
---|
| 170 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 171 | |
---|
| 172 | ! |
---|
| 173 | !-- v-tendency terms with communication |
---|
| 174 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 175 | tend = 0.0 |
---|
| 176 | CALL advec_v_ups |
---|
| 177 | ENDIF |
---|
| 178 | |
---|
| 179 | ! |
---|
| 180 | !-- v-tendency terms with no communication |
---|
| 181 | DO i = nxl, nxr |
---|
| 182 | DO j = nys, nyn+vynp |
---|
| 183 | ! |
---|
| 184 | !-- Tendency terms |
---|
| 185 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 186 | tend(:,j,i) = 0.0 |
---|
| 187 | CALL advec_v_pw( i, j ) |
---|
| 188 | ELSE |
---|
| 189 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 190 | tend(:,j,i) = 0.0 |
---|
| 191 | CALL advec_v_up( i, j ) |
---|
| 192 | ENDIF |
---|
| 193 | ENDIF |
---|
| 194 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 195 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
| 196 | v_m, vsws_m, w_m, z0 ) |
---|
| 197 | ELSE |
---|
| 198 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
| 199 | vsws, w, z0 ) |
---|
| 200 | ENDIF |
---|
| 201 | CALL coriolis( i, j, 2 ) |
---|
| 202 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 203 | |
---|
| 204 | ! |
---|
| 205 | !-- Prognostic equation for v-velocity component |
---|
| 206 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 207 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 208 | dt_3d * ( & |
---|
| 209 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 210 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 211 | ) - & |
---|
| 212 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 213 | ENDDO |
---|
| 214 | |
---|
| 215 | ! |
---|
| 216 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 217 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 218 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 219 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 220 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 221 | ENDDO |
---|
| 222 | ELSEIF ( intermediate_timestep_count < & |
---|
| 223 | intermediate_timestep_count_max ) THEN |
---|
| 224 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 225 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 226 | ENDDO |
---|
| 227 | ENDIF |
---|
| 228 | ENDIF |
---|
| 229 | |
---|
| 230 | ENDDO |
---|
| 231 | ENDDO |
---|
| 232 | |
---|
| 233 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 234 | |
---|
| 235 | ! |
---|
| 236 | !-- w-velocity component |
---|
| 237 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 238 | |
---|
| 239 | ! |
---|
| 240 | !-- w-tendency terms with communication |
---|
| 241 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 242 | tend = 0.0 |
---|
| 243 | CALL advec_w_ups |
---|
| 244 | ENDIF |
---|
| 245 | |
---|
| 246 | ! |
---|
| 247 | !-- w-tendency terms with no communication |
---|
| 248 | DO i = nxl, nxr |
---|
| 249 | DO j = nys, nyn |
---|
| 250 | ! |
---|
| 251 | !-- Tendency terms |
---|
| 252 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 253 | tend(:,j,i) = 0.0 |
---|
| 254 | CALL advec_w_pw( i, j ) |
---|
| 255 | ELSE |
---|
| 256 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 257 | tend(:,j,i) = 0.0 |
---|
| 258 | CALL advec_w_up( i, j ) |
---|
| 259 | ENDIF |
---|
| 260 | ENDIF |
---|
| 261 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 262 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
| 263 | tend, u_m, v_m, w_m, z0 ) |
---|
| 264 | ELSE |
---|
| 265 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
| 266 | tend, u, v, w, z0 ) |
---|
| 267 | ENDIF |
---|
| 268 | CALL coriolis( i, j, 3 ) |
---|
| 269 | IF ( .NOT. moisture ) THEN |
---|
| 270 | CALL buoyancy( i, j, pt, 3, 4 ) |
---|
| 271 | ELSE |
---|
| 272 | CALL buoyancy( i, j, vpt, 3, 44 ) |
---|
| 273 | ENDIF |
---|
| 274 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 275 | |
---|
| 276 | ! |
---|
| 277 | !-- Prognostic equation for w-velocity component |
---|
| 278 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 279 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 280 | dt_3d * ( & |
---|
| 281 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 282 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 283 | ) - & |
---|
| 284 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 285 | ENDDO |
---|
| 286 | |
---|
| 287 | ! |
---|
| 288 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 289 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 290 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 291 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 292 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 293 | ENDDO |
---|
| 294 | ELSEIF ( intermediate_timestep_count < & |
---|
| 295 | intermediate_timestep_count_max ) THEN |
---|
| 296 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 297 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 298 | ENDDO |
---|
| 299 | ENDIF |
---|
| 300 | ENDIF |
---|
| 301 | |
---|
| 302 | ENDDO |
---|
| 303 | ENDDO |
---|
| 304 | |
---|
| 305 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 306 | |
---|
| 307 | ! |
---|
| 308 | !-- potential temperature |
---|
| 309 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 310 | |
---|
| 311 | ! |
---|
| 312 | !-- pt-tendency terms with communication |
---|
| 313 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 314 | ! |
---|
| 315 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 316 | sat = 1.0 |
---|
| 317 | sbt = 1.0 |
---|
| 318 | tend = 0.0 |
---|
| 319 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 320 | ELSE |
---|
| 321 | sat = tsc(1) |
---|
| 322 | sbt = tsc(2) |
---|
| 323 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 324 | tend = 0.0 |
---|
| 325 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 326 | ENDIF |
---|
| 327 | ENDIF |
---|
| 328 | |
---|
| 329 | ! |
---|
| 330 | !-- pt-tendency terms with no communication |
---|
| 331 | DO i = nxl, nxr |
---|
| 332 | DO j = nys, nyn |
---|
| 333 | ! |
---|
| 334 | !-- Tendency terms |
---|
| 335 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 336 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 337 | ELSE |
---|
| 338 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 339 | tend(:,j,i) = 0.0 |
---|
| 340 | CALL advec_s_pw( i, j, pt ) |
---|
| 341 | ELSE |
---|
| 342 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 343 | tend(:,j,i) = 0.0 |
---|
| 344 | CALL advec_s_up( i, j, pt ) |
---|
| 345 | ENDIF |
---|
| 346 | ENDIF |
---|
| 347 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 348 | THEN |
---|
[19] | 349 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
| 350 | tswst_m, tend ) |
---|
[1] | 351 | ELSE |
---|
[19] | 352 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 353 | ENDIF |
---|
| 354 | ENDIF |
---|
| 355 | |
---|
| 356 | ! |
---|
| 357 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 358 | !-- processes |
---|
| 359 | IF ( radiation ) THEN |
---|
| 360 | CALL calc_radiation( i, j ) |
---|
| 361 | ENDIF |
---|
| 362 | |
---|
| 363 | ! |
---|
| 364 | !-- If required compute impact of latent heat due to precipitation |
---|
| 365 | IF ( precipitation ) THEN |
---|
| 366 | CALL impact_of_latent_heat( i, j ) |
---|
| 367 | ENDIF |
---|
| 368 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 369 | |
---|
| 370 | ! |
---|
| 371 | !-- Prognostic equation for potential temperature |
---|
[19] | 372 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 373 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 374 | dt_3d * ( & |
---|
| 375 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 376 | ) - & |
---|
| 377 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 378 | ENDDO |
---|
| 379 | |
---|
| 380 | ! |
---|
| 381 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 382 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 383 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 384 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 385 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 386 | ENDDO |
---|
| 387 | ELSEIF ( intermediate_timestep_count < & |
---|
| 388 | intermediate_timestep_count_max ) THEN |
---|
[19] | 389 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 390 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 391 | ENDDO |
---|
| 392 | ENDIF |
---|
| 393 | ENDIF |
---|
| 394 | |
---|
| 395 | ENDDO |
---|
| 396 | ENDDO |
---|
| 397 | |
---|
| 398 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 399 | |
---|
| 400 | ! |
---|
| 401 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 402 | IF ( moisture .OR. passive_scalar ) THEN |
---|
| 403 | |
---|
| 404 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 405 | |
---|
| 406 | ! |
---|
| 407 | !-- Scalar/q-tendency terms with communication |
---|
| 408 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 409 | ! |
---|
| 410 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 411 | sat = 1.0 |
---|
| 412 | sbt = 1.0 |
---|
| 413 | tend = 0.0 |
---|
| 414 | CALL advec_s_bc( q, 'q' ) |
---|
| 415 | ELSE |
---|
| 416 | sat = tsc(1) |
---|
| 417 | sbt = tsc(2) |
---|
| 418 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 419 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 420 | tend = 0.0 |
---|
| 421 | CALL advec_s_ups( q, 'q' ) |
---|
| 422 | ENDIF |
---|
| 423 | ENDIF |
---|
| 424 | ENDIF |
---|
| 425 | |
---|
| 426 | ! |
---|
| 427 | !-- Scalar/q-tendency terms with no communication |
---|
| 428 | DO i = nxl, nxr |
---|
| 429 | DO j = nys, nyn |
---|
| 430 | ! |
---|
| 431 | !-- Tendency-terms |
---|
| 432 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 433 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, tend ) |
---|
[1] | 434 | ELSE |
---|
| 435 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 436 | tend(:,j,i) = 0.0 |
---|
| 437 | CALL advec_s_pw( i, j, q ) |
---|
| 438 | ELSE |
---|
| 439 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 440 | tend(:,j,i) = 0.0 |
---|
| 441 | CALL advec_s_up( i, j, q ) |
---|
| 442 | ENDIF |
---|
| 443 | ENDIF |
---|
| 444 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 445 | THEN |
---|
| 446 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
[19] | 447 | qswst_m, tend ) |
---|
| 448 | ELSE |
---|
| 449 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
[1] | 450 | tend ) |
---|
| 451 | ENDIF |
---|
| 452 | ENDIF |
---|
| 453 | |
---|
| 454 | ! |
---|
| 455 | !-- If required compute decrease of total water content due to |
---|
| 456 | !-- precipitation |
---|
| 457 | IF ( precipitation ) THEN |
---|
| 458 | CALL calc_precipitation( i, j ) |
---|
| 459 | ENDIF |
---|
| 460 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 461 | |
---|
| 462 | ! |
---|
| 463 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 464 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 465 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 466 | dt_3d * ( & |
---|
| 467 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 468 | ) - & |
---|
| 469 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
| 470 | ENDDO |
---|
| 471 | |
---|
| 472 | ! |
---|
| 473 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 474 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 475 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 476 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 477 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 478 | ENDDO |
---|
| 479 | ELSEIF ( intermediate_timestep_count < & |
---|
| 480 | intermediate_timestep_count_max ) THEN |
---|
[19] | 481 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 482 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 483 | ENDDO |
---|
| 484 | ENDIF |
---|
| 485 | ENDIF |
---|
| 486 | |
---|
| 487 | ENDDO |
---|
| 488 | ENDDO |
---|
| 489 | |
---|
| 490 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 491 | |
---|
| 492 | ENDIF |
---|
| 493 | |
---|
| 494 | ! |
---|
| 495 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 496 | !-- energy (TKE) |
---|
| 497 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 498 | |
---|
| 499 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 500 | |
---|
| 501 | ! |
---|
| 502 | !-- TKE-tendency terms with communication |
---|
| 503 | CALL production_e_init |
---|
| 504 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 505 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 506 | ! |
---|
| 507 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 508 | sat = 1.0 |
---|
| 509 | sbt = 1.0 |
---|
| 510 | tend = 0.0 |
---|
| 511 | CALL advec_s_bc( e, 'e' ) |
---|
| 512 | ELSE |
---|
| 513 | sat = tsc(1) |
---|
| 514 | sbt = tsc(2) |
---|
| 515 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 516 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 517 | tend = 0.0 |
---|
| 518 | CALL advec_s_ups( e, 'e' ) |
---|
| 519 | ENDIF |
---|
| 520 | ENDIF |
---|
| 521 | ENDIF |
---|
| 522 | ENDIF |
---|
| 523 | |
---|
| 524 | ! |
---|
| 525 | !-- TKE-tendency terms with no communication |
---|
| 526 | DO i = nxl, nxr |
---|
| 527 | DO j = nys, nyn |
---|
| 528 | ! |
---|
| 529 | !-- Tendency-terms |
---|
| 530 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
| 531 | .NOT. use_upstream_for_tke ) THEN |
---|
| 532 | IF ( .NOT. moisture ) THEN |
---|
| 533 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 534 | l_grid, pt, rif, tend, zu ) |
---|
| 535 | ELSE |
---|
| 536 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 537 | l_grid, vpt, rif, tend, zu ) |
---|
| 538 | ENDIF |
---|
| 539 | ELSE |
---|
| 540 | IF ( use_upstream_for_tke ) THEN |
---|
| 541 | tend(:,j,i) = 0.0 |
---|
| 542 | CALL advec_s_up( i, j, e ) |
---|
| 543 | ELSE |
---|
| 544 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 545 | THEN |
---|
| 546 | tend(:,j,i) = 0.0 |
---|
| 547 | CALL advec_s_pw( i, j, e ) |
---|
| 548 | ELSE |
---|
| 549 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 550 | tend(:,j,i) = 0.0 |
---|
| 551 | CALL advec_s_up( i, j, e ) |
---|
| 552 | ENDIF |
---|
| 553 | ENDIF |
---|
| 554 | ENDIF |
---|
| 555 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 556 | THEN |
---|
| 557 | IF ( .NOT. moisture ) THEN |
---|
| 558 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 559 | km_m, l_grid, pt_m, rif_m, tend, zu ) |
---|
| 560 | ELSE |
---|
| 561 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 562 | km_m, l_grid, vpt_m, rif_m, tend, zu ) |
---|
| 563 | ENDIF |
---|
| 564 | ELSE |
---|
| 565 | IF ( .NOT. moisture ) THEN |
---|
| 566 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 567 | l_grid, pt, rif, tend, zu ) |
---|
| 568 | ELSE |
---|
| 569 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 570 | l_grid, vpt, rif, tend, zu ) |
---|
| 571 | ENDIF |
---|
| 572 | ENDIF |
---|
| 573 | ENDIF |
---|
| 574 | CALL production_e( i, j ) |
---|
| 575 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 576 | |
---|
| 577 | ! |
---|
| 578 | !-- Prognostic equation for TKE. |
---|
| 579 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 580 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 581 | !-- value is reduced by 90%. |
---|
[19] | 582 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 583 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 584 | dt_3d * ( & |
---|
| 585 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 586 | ) |
---|
| 587 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 588 | ENDDO |
---|
| 589 | |
---|
| 590 | ! |
---|
| 591 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 592 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 593 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 594 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 595 | te_m(k,j,i) = tend(k,j,i) |
---|
| 596 | ENDDO |
---|
| 597 | ELSEIF ( intermediate_timestep_count < & |
---|
| 598 | intermediate_timestep_count_max ) THEN |
---|
[19] | 599 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 600 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 601 | ENDDO |
---|
| 602 | ENDIF |
---|
| 603 | ENDIF |
---|
| 604 | |
---|
| 605 | ENDDO |
---|
| 606 | ENDDO |
---|
| 607 | |
---|
| 608 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 609 | |
---|
| 610 | ENDIF |
---|
| 611 | |
---|
| 612 | |
---|
| 613 | END SUBROUTINE prognostic_equations |
---|
| 614 | |
---|
| 615 | |
---|
| 616 | SUBROUTINE prognostic_equations_fast |
---|
| 617 | |
---|
| 618 | !------------------------------------------------------------------------------! |
---|
| 619 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 620 | ! be called for the standard Piascek-Williams advection scheme. |
---|
| 621 | ! |
---|
| 622 | ! The call of this subroutine is embedded in two DO loops over i and j, thus |
---|
| 623 | ! communication between CPUs is not allowed in this subroutine. |
---|
| 624 | ! |
---|
| 625 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 626 | !------------------------------------------------------------------------------! |
---|
| 627 | |
---|
| 628 | IMPLICIT NONE |
---|
| 629 | |
---|
| 630 | CHARACTER (LEN=9) :: time_to_string |
---|
| 631 | INTEGER :: i, j, k |
---|
| 632 | |
---|
| 633 | |
---|
| 634 | ! |
---|
| 635 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 636 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 637 | |
---|
| 638 | |
---|
| 639 | ! |
---|
| 640 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 641 | !-- global communication |
---|
| 642 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
| 643 | IF ( moisture ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
| 644 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
| 645 | |
---|
| 646 | |
---|
| 647 | ! |
---|
| 648 | !-- Loop over all prognostic equations |
---|
| 649 | !$OMP PARALLEL private (i,j,k) |
---|
| 650 | !$OMP DO |
---|
| 651 | DO i = nxl, nxr+uxrp ! Additional levels for non cyclic boundary |
---|
| 652 | DO j = nys, nyn+vynp ! conditions are included |
---|
| 653 | ! |
---|
| 654 | !-- Tendency terms for u-velocity component |
---|
| 655 | IF ( j < nyn+1 ) THEN |
---|
| 656 | |
---|
| 657 | tend(:,j,i) = 0.0 |
---|
| 658 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 659 | CALL advec_u_pw( i, j ) |
---|
| 660 | ELSE |
---|
| 661 | CALL advec_u_up( i, j ) |
---|
| 662 | ENDIF |
---|
| 663 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 664 | THEN |
---|
| 665 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
| 666 | u_m, usws_m, v_m, w_m, z0 ) |
---|
| 667 | ELSE |
---|
| 668 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
| 669 | usws, v, w, z0 ) |
---|
| 670 | ENDIF |
---|
| 671 | CALL coriolis( i, j, 1 ) |
---|
| 672 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, 1, 4 ) |
---|
| 673 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 674 | |
---|
| 675 | ! |
---|
| 676 | !-- Prognostic equation for u-velocity component |
---|
| 677 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 678 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 679 | dt_3d * ( & |
---|
| 680 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 681 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 682 | ) - & |
---|
| 683 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 684 | ENDDO |
---|
| 685 | |
---|
| 686 | ! |
---|
| 687 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 688 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 689 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 690 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 691 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 692 | ENDDO |
---|
| 693 | ELSEIF ( intermediate_timestep_count < & |
---|
| 694 | intermediate_timestep_count_max ) THEN |
---|
| 695 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 696 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 697 | ENDDO |
---|
| 698 | ENDIF |
---|
| 699 | ENDIF |
---|
| 700 | |
---|
| 701 | ENDIF |
---|
| 702 | |
---|
| 703 | ! |
---|
| 704 | !-- Tendency terms for v-velocity component |
---|
| 705 | IF ( i < nxr+1 ) THEN |
---|
| 706 | |
---|
| 707 | tend(:,j,i) = 0.0 |
---|
| 708 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 709 | CALL advec_v_pw( i, j ) |
---|
| 710 | ELSE |
---|
| 711 | CALL advec_v_up( i, j ) |
---|
| 712 | ENDIF |
---|
| 713 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 714 | THEN |
---|
| 715 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
| 716 | u_m, v_m, vsws_m, w_m, z0 ) |
---|
| 717 | ELSE |
---|
| 718 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
| 719 | vsws, w, z0 ) |
---|
| 720 | ENDIF |
---|
| 721 | CALL coriolis( i, j, 2 ) |
---|
| 722 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 723 | |
---|
| 724 | ! |
---|
| 725 | !-- Prognostic equation for v-velocity component |
---|
| 726 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 727 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 728 | dt_3d * ( & |
---|
| 729 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 730 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 731 | ) - & |
---|
| 732 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 733 | ENDDO |
---|
| 734 | |
---|
| 735 | ! |
---|
| 736 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 737 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 738 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 739 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 740 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 741 | ENDDO |
---|
| 742 | ELSEIF ( intermediate_timestep_count < & |
---|
| 743 | intermediate_timestep_count_max ) THEN |
---|
| 744 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 745 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 746 | ENDDO |
---|
| 747 | ENDIF |
---|
| 748 | ENDIF |
---|
| 749 | |
---|
| 750 | ENDIF |
---|
| 751 | |
---|
| 752 | ! |
---|
| 753 | !-- Tendency terms for w-velocity component |
---|
| 754 | IF ( i < nxr+1 .AND. j < nyn+1 ) THEN |
---|
| 755 | |
---|
| 756 | tend(:,j,i) = 0.0 |
---|
| 757 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 758 | CALL advec_w_pw( i, j ) |
---|
| 759 | ELSE |
---|
| 760 | CALL advec_w_up( i, j ) |
---|
| 761 | ENDIF |
---|
| 762 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 763 | THEN |
---|
| 764 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
| 765 | km_damp_y, tend, u_m, v_m, w_m, z0 ) |
---|
| 766 | ELSE |
---|
| 767 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
| 768 | tend, u, v, w, z0 ) |
---|
| 769 | ENDIF |
---|
| 770 | CALL coriolis( i, j, 3 ) |
---|
| 771 | IF ( .NOT. moisture ) THEN |
---|
| 772 | CALL buoyancy( i, j, pt, 3, 4 ) |
---|
| 773 | ELSE |
---|
| 774 | CALL buoyancy( i, j, vpt, 3, 44 ) |
---|
| 775 | ENDIF |
---|
| 776 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 777 | |
---|
| 778 | ! |
---|
| 779 | !-- Prognostic equation for w-velocity component |
---|
| 780 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 781 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 782 | dt_3d * ( & |
---|
| 783 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 784 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 785 | ) - & |
---|
| 786 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 787 | ENDDO |
---|
| 788 | |
---|
| 789 | ! |
---|
| 790 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 791 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 792 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 793 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 794 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 795 | ENDDO |
---|
| 796 | ELSEIF ( intermediate_timestep_count < & |
---|
| 797 | intermediate_timestep_count_max ) THEN |
---|
| 798 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 799 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 800 | ENDDO |
---|
| 801 | ENDIF |
---|
| 802 | ENDIF |
---|
| 803 | |
---|
| 804 | ! |
---|
| 805 | !-- Tendency terms for potential temperature |
---|
| 806 | tend(:,j,i) = 0.0 |
---|
| 807 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 808 | CALL advec_s_pw( i, j, pt ) |
---|
| 809 | ELSE |
---|
| 810 | CALL advec_s_up( i, j, pt ) |
---|
| 811 | ENDIF |
---|
| 812 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 813 | THEN |
---|
[19] | 814 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
| 815 | tswst_m, tend ) |
---|
[1] | 816 | ELSE |
---|
[19] | 817 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 818 | ENDIF |
---|
| 819 | |
---|
| 820 | ! |
---|
| 821 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 822 | !-- processes |
---|
| 823 | IF ( radiation ) THEN |
---|
| 824 | CALL calc_radiation( i, j ) |
---|
| 825 | ENDIF |
---|
| 826 | |
---|
| 827 | ! |
---|
| 828 | !-- If required compute impact of latent heat due to precipitation |
---|
| 829 | IF ( precipitation ) THEN |
---|
| 830 | CALL impact_of_latent_heat( i, j ) |
---|
| 831 | ENDIF |
---|
| 832 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 833 | |
---|
| 834 | ! |
---|
| 835 | !-- Prognostic equation for potential temperature |
---|
[19] | 836 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 837 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
| 838 | dt_3d * ( & |
---|
| 839 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 840 | ) - & |
---|
| 841 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 842 | ENDDO |
---|
| 843 | |
---|
| 844 | ! |
---|
| 845 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 846 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 847 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 848 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 849 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 850 | ENDDO |
---|
| 851 | ELSEIF ( intermediate_timestep_count < & |
---|
| 852 | intermediate_timestep_count_max ) THEN |
---|
[19] | 853 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 854 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 855 | 5.3125 * tpt_m(k,j,i) |
---|
| 856 | ENDDO |
---|
| 857 | ENDIF |
---|
| 858 | ENDIF |
---|
| 859 | |
---|
| 860 | ! |
---|
| 861 | !-- If required, compute prognostic equation for total water content / |
---|
| 862 | !-- scalar |
---|
| 863 | IF ( moisture .OR. passive_scalar ) THEN |
---|
| 864 | |
---|
| 865 | ! |
---|
| 866 | !-- Tendency-terms for total water content / scalar |
---|
| 867 | tend(:,j,i) = 0.0 |
---|
| 868 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 869 | THEN |
---|
| 870 | CALL advec_s_pw( i, j, q ) |
---|
| 871 | ELSE |
---|
| 872 | CALL advec_s_up( i, j, q ) |
---|
| 873 | ENDIF |
---|
| 874 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 875 | THEN |
---|
[19] | 876 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
| 877 | qswst_m, tend ) |
---|
[1] | 878 | ELSE |
---|
[19] | 879 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 880 | tend ) |
---|
[1] | 881 | ENDIF |
---|
| 882 | |
---|
| 883 | ! |
---|
| 884 | !-- If required compute decrease of total water content due to |
---|
| 885 | !-- precipitation |
---|
| 886 | IF ( precipitation ) THEN |
---|
| 887 | CALL calc_precipitation( i, j ) |
---|
| 888 | ENDIF |
---|
| 889 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 890 | |
---|
| 891 | ! |
---|
| 892 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 893 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 894 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
| 895 | dt_3d * ( & |
---|
| 896 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 897 | ) - & |
---|
| 898 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
| 899 | ENDDO |
---|
| 900 | |
---|
| 901 | ! |
---|
| 902 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 903 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 904 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 905 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 906 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 907 | ENDDO |
---|
| 908 | ELSEIF ( intermediate_timestep_count < & |
---|
| 909 | intermediate_timestep_count_max ) THEN |
---|
[19] | 910 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 911 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 912 | 5.3125 * tq_m(k,j,i) |
---|
| 913 | ENDDO |
---|
| 914 | ENDIF |
---|
| 915 | ENDIF |
---|
| 916 | |
---|
| 917 | ENDIF |
---|
| 918 | |
---|
| 919 | ! |
---|
| 920 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 921 | !-- energy (TKE) |
---|
| 922 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 923 | |
---|
| 924 | ! |
---|
| 925 | !-- Tendency-terms for TKE |
---|
| 926 | tend(:,j,i) = 0.0 |
---|
| 927 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 928 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
| 929 | CALL advec_s_pw( i, j, e ) |
---|
| 930 | ELSE |
---|
| 931 | CALL advec_s_up( i, j, e ) |
---|
| 932 | ENDIF |
---|
| 933 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 934 | THEN |
---|
| 935 | IF ( .NOT. moisture ) THEN |
---|
| 936 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 937 | km_m, l_grid, pt_m, rif_m, tend, zu ) |
---|
| 938 | ELSE |
---|
| 939 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 940 | km_m, l_grid, vpt_m, rif_m, tend, zu ) |
---|
| 941 | ENDIF |
---|
| 942 | ELSE |
---|
| 943 | IF ( .NOT. moisture ) THEN |
---|
| 944 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 945 | l_grid, pt, rif, tend, zu ) |
---|
| 946 | ELSE |
---|
| 947 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 948 | l_grid, vpt, rif, tend, zu ) |
---|
| 949 | ENDIF |
---|
| 950 | ENDIF |
---|
| 951 | CALL production_e( i, j ) |
---|
| 952 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 953 | |
---|
| 954 | ! |
---|
| 955 | !-- Prognostic equation for TKE. |
---|
| 956 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 957 | !-- reasons in the course of the integration. In such cases the old |
---|
| 958 | !-- TKE value is reduced by 90%. |
---|
[19] | 959 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 960 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
| 961 | dt_3d * ( & |
---|
| 962 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 963 | ) |
---|
| 964 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 965 | ENDDO |
---|
| 966 | |
---|
| 967 | ! |
---|
| 968 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 969 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 970 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 971 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 972 | te_m(k,j,i) = tend(k,j,i) |
---|
| 973 | ENDDO |
---|
| 974 | ELSEIF ( intermediate_timestep_count < & |
---|
| 975 | intermediate_timestep_count_max ) THEN |
---|
[19] | 976 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 977 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 978 | 5.3125 * te_m(k,j,i) |
---|
| 979 | ENDDO |
---|
| 980 | ENDIF |
---|
| 981 | ENDIF |
---|
| 982 | |
---|
| 983 | ENDIF ! TKE equation |
---|
| 984 | |
---|
| 985 | ENDIF ! Gridpoints excluding the non-cyclic wall |
---|
| 986 | |
---|
| 987 | ENDDO |
---|
| 988 | ENDDO |
---|
| 989 | !$OMP END PARALLEL |
---|
| 990 | |
---|
| 991 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 992 | |
---|
| 993 | |
---|
| 994 | END SUBROUTINE prognostic_equations_fast |
---|
| 995 | |
---|
| 996 | |
---|
| 997 | SUBROUTINE prognostic_equations_vec |
---|
| 998 | |
---|
| 999 | !------------------------------------------------------------------------------! |
---|
| 1000 | ! Version for vector machines |
---|
| 1001 | !------------------------------------------------------------------------------! |
---|
| 1002 | |
---|
| 1003 | IMPLICIT NONE |
---|
| 1004 | |
---|
| 1005 | CHARACTER (LEN=9) :: time_to_string |
---|
| 1006 | INTEGER :: i, j, k |
---|
| 1007 | REAL :: sat, sbt |
---|
| 1008 | |
---|
| 1009 | ! |
---|
| 1010 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 1011 | !-- global communication |
---|
| 1012 | CALL calc_mean_pt_profile( pt, 4 ) |
---|
| 1013 | IF ( moisture ) CALL calc_mean_pt_profile( vpt, 44 ) |
---|
| 1014 | |
---|
| 1015 | ! |
---|
| 1016 | !-- u-velocity component |
---|
| 1017 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1018 | |
---|
| 1019 | ! |
---|
| 1020 | !-- u-tendency terms with communication |
---|
| 1021 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1022 | tend = 0.0 |
---|
| 1023 | CALL advec_u_ups |
---|
| 1024 | ENDIF |
---|
| 1025 | |
---|
| 1026 | ! |
---|
| 1027 | !-- u-tendency terms with no communication |
---|
| 1028 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1029 | tend = 0.0 |
---|
| 1030 | CALL advec_u_pw |
---|
| 1031 | ELSE |
---|
| 1032 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1033 | tend = 0.0 |
---|
| 1034 | CALL advec_u_up |
---|
| 1035 | ENDIF |
---|
| 1036 | ENDIF |
---|
| 1037 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1038 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, v_m, & |
---|
| 1039 | w_m, z0 ) |
---|
| 1040 | ELSE |
---|
| 1041 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, v, w, z0 ) |
---|
| 1042 | ENDIF |
---|
| 1043 | CALL coriolis( 1 ) |
---|
| 1044 | IF ( sloping_surface ) CALL buoyancy( pt, 1, 4 ) |
---|
| 1045 | CALL user_actions( 'u-tendency' ) |
---|
| 1046 | |
---|
| 1047 | ! |
---|
| 1048 | !-- Prognostic equation for u-velocity component |
---|
| 1049 | DO i = nxl, nxr+uxrp |
---|
| 1050 | DO j = nys, nyn |
---|
| 1051 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1052 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 1053 | dt_3d * ( & |
---|
| 1054 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 1055 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 1056 | ) - & |
---|
| 1057 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1058 | ENDDO |
---|
| 1059 | ENDDO |
---|
| 1060 | ENDDO |
---|
| 1061 | |
---|
| 1062 | ! |
---|
| 1063 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1064 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1065 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1066 | DO i = nxl, nxr+uxrp |
---|
| 1067 | DO j = nys, nyn |
---|
| 1068 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1069 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1070 | ENDDO |
---|
| 1071 | ENDDO |
---|
| 1072 | ENDDO |
---|
| 1073 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1074 | intermediate_timestep_count_max ) THEN |
---|
| 1075 | DO i = nxl, nxr+uxrp |
---|
| 1076 | DO j = nys, nyn |
---|
| 1077 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1078 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 1079 | ENDDO |
---|
| 1080 | ENDDO |
---|
| 1081 | ENDDO |
---|
| 1082 | ENDIF |
---|
| 1083 | ENDIF |
---|
| 1084 | |
---|
| 1085 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1086 | |
---|
| 1087 | ! |
---|
| 1088 | !-- v-velocity component |
---|
| 1089 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1090 | |
---|
| 1091 | ! |
---|
| 1092 | !-- v-tendency terms with communication |
---|
| 1093 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1094 | tend = 0.0 |
---|
| 1095 | CALL advec_v_ups |
---|
| 1096 | ENDIF |
---|
| 1097 | |
---|
| 1098 | ! |
---|
| 1099 | !-- v-tendency terms with no communication |
---|
| 1100 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1101 | tend = 0.0 |
---|
| 1102 | CALL advec_v_pw |
---|
| 1103 | ELSE |
---|
| 1104 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1105 | tend = 0.0 |
---|
| 1106 | CALL advec_v_up |
---|
| 1107 | ENDIF |
---|
| 1108 | ENDIF |
---|
| 1109 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1110 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
| 1111 | w_m, z0 ) |
---|
| 1112 | ELSE |
---|
| 1113 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, w, z0 ) |
---|
| 1114 | ENDIF |
---|
| 1115 | CALL coriolis( 2 ) |
---|
| 1116 | CALL user_actions( 'v-tendency' ) |
---|
| 1117 | |
---|
| 1118 | ! |
---|
| 1119 | !-- Prognostic equation for v-velocity component |
---|
| 1120 | DO i = nxl, nxr |
---|
| 1121 | DO j = nys, nyn+vynp |
---|
| 1122 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1123 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 1124 | dt_3d * ( & |
---|
| 1125 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 1126 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 1127 | ) - & |
---|
| 1128 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1129 | ENDDO |
---|
| 1130 | ENDDO |
---|
| 1131 | ENDDO |
---|
| 1132 | |
---|
| 1133 | ! |
---|
| 1134 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1135 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1136 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1137 | DO i = nxl, nxr |
---|
| 1138 | DO j = nys, nyn+vynp |
---|
| 1139 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1140 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1141 | ENDDO |
---|
| 1142 | ENDDO |
---|
| 1143 | ENDDO |
---|
| 1144 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1145 | intermediate_timestep_count_max ) THEN |
---|
| 1146 | DO i = nxl, nxr |
---|
| 1147 | DO j = nys, nyn+vynp |
---|
| 1148 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1149 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1150 | ENDDO |
---|
| 1151 | ENDDO |
---|
| 1152 | ENDDO |
---|
| 1153 | ENDIF |
---|
| 1154 | ENDIF |
---|
| 1155 | |
---|
| 1156 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1157 | |
---|
| 1158 | ! |
---|
| 1159 | !-- w-velocity component |
---|
| 1160 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1161 | |
---|
| 1162 | ! |
---|
| 1163 | !-- w-tendency terms with communication |
---|
| 1164 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1165 | tend = 0.0 |
---|
| 1166 | CALL advec_w_ups |
---|
| 1167 | ENDIF |
---|
| 1168 | |
---|
| 1169 | ! |
---|
| 1170 | !-- w-tendency terms with no communication |
---|
| 1171 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1172 | tend = 0.0 |
---|
| 1173 | CALL advec_w_pw |
---|
| 1174 | ELSE |
---|
| 1175 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1176 | tend = 0.0 |
---|
| 1177 | CALL advec_w_up |
---|
| 1178 | ENDIF |
---|
| 1179 | ENDIF |
---|
| 1180 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1181 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
| 1182 | v_m, w_m, z0 ) |
---|
| 1183 | ELSE |
---|
| 1184 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w, & |
---|
| 1185 | z0 ) |
---|
| 1186 | ENDIF |
---|
| 1187 | CALL coriolis( 3 ) |
---|
| 1188 | IF ( .NOT. moisture ) THEN |
---|
| 1189 | CALL buoyancy( pt, 3, 4 ) |
---|
| 1190 | ELSE |
---|
| 1191 | CALL buoyancy( vpt, 3, 44 ) |
---|
| 1192 | ENDIF |
---|
| 1193 | CALL user_actions( 'w-tendency' ) |
---|
| 1194 | |
---|
| 1195 | ! |
---|
| 1196 | !-- Prognostic equation for w-velocity component |
---|
| 1197 | DO i = nxl, nxr |
---|
| 1198 | DO j = nys, nyn |
---|
| 1199 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1200 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 1201 | dt_3d * ( & |
---|
| 1202 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 1203 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 1204 | ) - & |
---|
| 1205 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1206 | ENDDO |
---|
| 1207 | ENDDO |
---|
| 1208 | ENDDO |
---|
| 1209 | |
---|
| 1210 | ! |
---|
| 1211 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1212 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1213 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1214 | DO i = nxl, nxr |
---|
| 1215 | DO j = nys, nyn |
---|
| 1216 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1217 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1218 | ENDDO |
---|
| 1219 | ENDDO |
---|
| 1220 | ENDDO |
---|
| 1221 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1222 | intermediate_timestep_count_max ) THEN |
---|
| 1223 | DO i = nxl, nxr |
---|
| 1224 | DO j = nys, nyn |
---|
| 1225 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1226 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1227 | ENDDO |
---|
| 1228 | ENDDO |
---|
| 1229 | ENDDO |
---|
| 1230 | ENDIF |
---|
| 1231 | ENDIF |
---|
| 1232 | |
---|
| 1233 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1234 | |
---|
| 1235 | ! |
---|
| 1236 | !-- potential temperature |
---|
| 1237 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1238 | |
---|
| 1239 | ! |
---|
| 1240 | !-- pt-tendency terms with communication |
---|
| 1241 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1242 | ! |
---|
| 1243 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1244 | sat = 1.0 |
---|
| 1245 | sbt = 1.0 |
---|
| 1246 | tend = 0.0 |
---|
| 1247 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1248 | ELSE |
---|
| 1249 | sat = tsc(1) |
---|
| 1250 | sbt = tsc(2) |
---|
| 1251 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 1252 | tend = 0.0 |
---|
| 1253 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 1254 | ENDIF |
---|
| 1255 | ENDIF |
---|
| 1256 | |
---|
| 1257 | ! |
---|
| 1258 | !-- pt-tendency terms with no communication |
---|
| 1259 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 1260 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 1261 | ELSE |
---|
| 1262 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1263 | tend = 0.0 |
---|
| 1264 | CALL advec_s_pw( pt ) |
---|
| 1265 | ELSE |
---|
| 1266 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1267 | tend = 0.0 |
---|
| 1268 | CALL advec_s_up( pt ) |
---|
| 1269 | ENDIF |
---|
| 1270 | ENDIF |
---|
| 1271 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[19] | 1272 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tswst_m, tend ) |
---|
[1] | 1273 | ELSE |
---|
[19] | 1274 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 1275 | ENDIF |
---|
| 1276 | ENDIF |
---|
| 1277 | |
---|
| 1278 | ! |
---|
| 1279 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 1280 | !-- processes |
---|
| 1281 | IF ( radiation ) THEN |
---|
| 1282 | CALL calc_radiation |
---|
| 1283 | ENDIF |
---|
| 1284 | |
---|
| 1285 | ! |
---|
| 1286 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1287 | IF ( precipitation ) THEN |
---|
| 1288 | CALL impact_of_latent_heat |
---|
| 1289 | ENDIF |
---|
| 1290 | CALL user_actions( 'pt-tendency' ) |
---|
| 1291 | |
---|
| 1292 | ! |
---|
| 1293 | !-- Prognostic equation for potential temperature |
---|
| 1294 | DO i = nxl, nxr |
---|
| 1295 | DO j = nys, nyn |
---|
[19] | 1296 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1297 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 1298 | dt_3d * ( & |
---|
| 1299 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1300 | ) - & |
---|
| 1301 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1302 | ENDDO |
---|
| 1303 | ENDDO |
---|
| 1304 | ENDDO |
---|
| 1305 | |
---|
| 1306 | ! |
---|
| 1307 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1308 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1309 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1310 | DO i = nxl, nxr |
---|
| 1311 | DO j = nys, nyn |
---|
[19] | 1312 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1313 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1314 | ENDDO |
---|
| 1315 | ENDDO |
---|
| 1316 | ENDDO |
---|
| 1317 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1318 | intermediate_timestep_count_max ) THEN |
---|
| 1319 | DO i = nxl, nxr |
---|
| 1320 | DO j = nys, nyn |
---|
[19] | 1321 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1322 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 1323 | ENDDO |
---|
| 1324 | ENDDO |
---|
| 1325 | ENDDO |
---|
| 1326 | ENDIF |
---|
| 1327 | ENDIF |
---|
| 1328 | |
---|
| 1329 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1330 | |
---|
| 1331 | ! |
---|
| 1332 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1333 | IF ( moisture .OR. passive_scalar ) THEN |
---|
| 1334 | |
---|
| 1335 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1336 | |
---|
| 1337 | ! |
---|
| 1338 | !-- Scalar/q-tendency terms with communication |
---|
| 1339 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1340 | ! |
---|
| 1341 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1342 | sat = 1.0 |
---|
| 1343 | sbt = 1.0 |
---|
| 1344 | tend = 0.0 |
---|
| 1345 | CALL advec_s_bc( q, 'q' ) |
---|
| 1346 | ELSE |
---|
| 1347 | sat = tsc(1) |
---|
| 1348 | sbt = tsc(2) |
---|
| 1349 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1350 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1351 | tend = 0.0 |
---|
| 1352 | CALL advec_s_ups( q, 'q' ) |
---|
| 1353 | ENDIF |
---|
| 1354 | ENDIF |
---|
| 1355 | ENDIF |
---|
| 1356 | |
---|
| 1357 | ! |
---|
| 1358 | !-- Scalar/q-tendency terms with no communication |
---|
| 1359 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 1360 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, tend ) |
---|
[1] | 1361 | ELSE |
---|
| 1362 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1363 | tend = 0.0 |
---|
| 1364 | CALL advec_s_pw( q ) |
---|
| 1365 | ELSE |
---|
| 1366 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1367 | tend = 0.0 |
---|
| 1368 | CALL advec_s_up( q ) |
---|
| 1369 | ENDIF |
---|
| 1370 | ENDIF |
---|
| 1371 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[19] | 1372 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, qswst_m, tend ) |
---|
[1] | 1373 | ELSE |
---|
[19] | 1374 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, tend ) |
---|
[1] | 1375 | ENDIF |
---|
| 1376 | ENDIF |
---|
| 1377 | |
---|
| 1378 | ! |
---|
| 1379 | !-- If required compute decrease of total water content due to |
---|
| 1380 | !-- precipitation |
---|
| 1381 | IF ( precipitation ) THEN |
---|
| 1382 | CALL calc_precipitation |
---|
| 1383 | ENDIF |
---|
| 1384 | CALL user_actions( 'q-tendency' ) |
---|
| 1385 | |
---|
| 1386 | ! |
---|
| 1387 | !-- Prognostic equation for total water content / scalar |
---|
| 1388 | DO i = nxl, nxr |
---|
| 1389 | DO j = nys, nyn |
---|
[19] | 1390 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1391 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 1392 | dt_3d * ( & |
---|
| 1393 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1394 | ) - & |
---|
| 1395 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
| 1396 | ENDDO |
---|
| 1397 | ENDDO |
---|
| 1398 | ENDDO |
---|
| 1399 | |
---|
| 1400 | ! |
---|
| 1401 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1402 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1403 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1404 | DO i = nxl, nxr |
---|
| 1405 | DO j = nys, nyn |
---|
[19] | 1406 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1407 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1408 | ENDDO |
---|
| 1409 | ENDDO |
---|
| 1410 | ENDDO |
---|
| 1411 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1412 | intermediate_timestep_count_max ) THEN |
---|
| 1413 | DO i = nxl, nxr |
---|
| 1414 | DO j = nys, nyn |
---|
[19] | 1415 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1416 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1417 | ENDDO |
---|
| 1418 | ENDDO |
---|
| 1419 | ENDDO |
---|
| 1420 | ENDIF |
---|
| 1421 | ENDIF |
---|
| 1422 | |
---|
| 1423 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1424 | |
---|
| 1425 | ENDIF |
---|
| 1426 | |
---|
| 1427 | ! |
---|
| 1428 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1429 | !-- energy (TKE) |
---|
| 1430 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1431 | |
---|
| 1432 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1433 | |
---|
| 1434 | ! |
---|
| 1435 | !-- TKE-tendency terms with communication |
---|
| 1436 | CALL production_e_init |
---|
| 1437 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1438 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1439 | ! |
---|
| 1440 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1441 | sat = 1.0 |
---|
| 1442 | sbt = 1.0 |
---|
| 1443 | tend = 0.0 |
---|
| 1444 | CALL advec_s_bc( e, 'e' ) |
---|
| 1445 | ELSE |
---|
| 1446 | sat = tsc(1) |
---|
| 1447 | sbt = tsc(2) |
---|
| 1448 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1449 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1450 | tend = 0.0 |
---|
| 1451 | CALL advec_s_ups( e, 'e' ) |
---|
| 1452 | ENDIF |
---|
| 1453 | ENDIF |
---|
| 1454 | ENDIF |
---|
| 1455 | ENDIF |
---|
| 1456 | |
---|
| 1457 | ! |
---|
| 1458 | !-- TKE-tendency terms with no communication |
---|
| 1459 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
| 1460 | THEN |
---|
| 1461 | IF ( .NOT. moisture ) THEN |
---|
| 1462 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
| 1463 | rif, tend, zu ) |
---|
| 1464 | ELSE |
---|
| 1465 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
| 1466 | rif, tend, zu ) |
---|
| 1467 | ENDIF |
---|
| 1468 | ELSE |
---|
| 1469 | IF ( use_upstream_for_tke ) THEN |
---|
| 1470 | tend = 0.0 |
---|
| 1471 | CALL advec_s_up( e ) |
---|
| 1472 | ELSE |
---|
| 1473 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1474 | tend = 0.0 |
---|
| 1475 | CALL advec_s_pw( e ) |
---|
| 1476 | ELSE |
---|
| 1477 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1478 | tend = 0.0 |
---|
| 1479 | CALL advec_s_up( e ) |
---|
| 1480 | ENDIF |
---|
| 1481 | ENDIF |
---|
| 1482 | ENDIF |
---|
| 1483 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1484 | IF ( .NOT. moisture ) THEN |
---|
| 1485 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
| 1486 | pt_m, rif_m, tend, zu ) |
---|
| 1487 | ELSE |
---|
| 1488 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
| 1489 | vpt_m, rif_m, tend, zu ) |
---|
| 1490 | ENDIF |
---|
| 1491 | ELSE |
---|
| 1492 | IF ( .NOT. moisture ) THEN |
---|
| 1493 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
| 1494 | rif, tend, zu ) |
---|
| 1495 | ELSE |
---|
| 1496 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
| 1497 | rif, tend, zu ) |
---|
| 1498 | ENDIF |
---|
| 1499 | ENDIF |
---|
| 1500 | ENDIF |
---|
| 1501 | CALL production_e |
---|
| 1502 | CALL user_actions( 'e-tendency' ) |
---|
| 1503 | |
---|
| 1504 | ! |
---|
| 1505 | !-- Prognostic equation for TKE. |
---|
| 1506 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1507 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1508 | !-- value is reduced by 90%. |
---|
| 1509 | DO i = nxl, nxr |
---|
| 1510 | DO j = nys, nyn |
---|
[19] | 1511 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1512 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 1513 | dt_3d * ( & |
---|
| 1514 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 1515 | ) |
---|
| 1516 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1517 | ENDDO |
---|
| 1518 | ENDDO |
---|
| 1519 | ENDDO |
---|
| 1520 | |
---|
| 1521 | ! |
---|
| 1522 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1523 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1524 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1525 | DO i = nxl, nxr |
---|
| 1526 | DO j = nys, nyn |
---|
[19] | 1527 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1528 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1529 | ENDDO |
---|
| 1530 | ENDDO |
---|
| 1531 | ENDDO |
---|
| 1532 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1533 | intermediate_timestep_count_max ) THEN |
---|
| 1534 | DO i = nxl, nxr |
---|
| 1535 | DO j = nys, nyn |
---|
[19] | 1536 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1537 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 1538 | ENDDO |
---|
| 1539 | ENDDO |
---|
| 1540 | ENDDO |
---|
| 1541 | ENDIF |
---|
| 1542 | ENDIF |
---|
| 1543 | |
---|
| 1544 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1545 | |
---|
| 1546 | ENDIF |
---|
| 1547 | |
---|
| 1548 | |
---|
| 1549 | END SUBROUTINE prognostic_equations_vec |
---|
| 1550 | |
---|
| 1551 | |
---|
| 1552 | END MODULE prognostic_equations_mod |
---|