[1873] | 1 | !> @file prognostic_equations.f90 |
---|
[1875] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
| 16 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
| 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
| 19 | ! Current revisions: |
---|
| 20 | ! ------------------ |
---|
[1827] | 21 | ! |
---|
| 22 | ! |
---|
[1875] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: prognostic_equations.f90 1917 2016-05-27 14:28:12Z suehring $ |
---|
| 26 | ! |
---|
[1917] | 27 | ! 1914 2016-05-26 14:44:07Z witha |
---|
| 28 | ! Added calls for wind turbine model |
---|
| 29 | ! |
---|
[1874] | 30 | ! 1873 2016-04-18 14:50:06Z maronga |
---|
| 31 | ! Module renamed (removed _mod) |
---|
| 32 | ! |
---|
[1851] | 33 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
| 34 | ! Module renamed |
---|
| 35 | ! |
---|
[1827] | 36 | ! 1826 2016-04-07 12:01:39Z maronga |
---|
[1875] | 37 | ! Renamed canopy model calls. |
---|
| 38 | ! |
---|
| 39 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
| 40 | ! Kessler microphysics scheme moved to microphysics. |
---|
| 41 | ! |
---|
| 42 | ! 1757 2016-02-22 15:49:32Z maronga |
---|
| 43 | ! |
---|
| 44 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 45 | ! Added optional model spin-up without radiation / land surface model calls. |
---|
| 46 | ! Formatting corrections. |
---|
| 47 | ! |
---|
| 48 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 49 | ! Code annotations made doxygen readable |
---|
| 50 | ! |
---|
| 51 | ! 1585 2015-04-30 07:05:52Z maronga |
---|
| 52 | ! Added call for temperature tendency calculation due to radiative flux divergence |
---|
| 53 | ! |
---|
| 54 | ! 1517 2015-01-07 19:12:25Z hoffmann |
---|
| 55 | ! advec_s_bc_mod addded, since advec_s_bc is now a module |
---|
| 56 | ! |
---|
| 57 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
| 58 | ! Renamed "radiation" -> "cloud_top_radiation" |
---|
| 59 | ! |
---|
| 60 | ! 1484 2014-10-21 10:53:05Z kanani |
---|
| 61 | ! Changes due to new module structure of the plant canopy model: |
---|
| 62 | ! parameters cthf and plant_canopy moved to module plant_canopy_model_mod. |
---|
| 63 | ! Removed double-listing of use_upstream_for_tke in ONLY-list of module |
---|
| 64 | ! control_parameters |
---|
| 65 | ! |
---|
| 66 | ! 1409 2014-05-23 12:11:32Z suehring |
---|
| 67 | ! Bugfix: i_omp_start changed for advec_u_ws at left inflow and outflow boundary. |
---|
| 68 | ! This ensures that left-hand side fluxes are also calculated for nxl in that |
---|
| 69 | ! case, even though the solution at nxl is overwritten in boundary_conds() |
---|
| 70 | ! |
---|
| 71 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
| 72 | ! Rayleigh-damping for horizontal velocity components changed: instead of damping |
---|
| 73 | ! against ug and vg, damping against u_init and v_init is used to allow for a |
---|
| 74 | ! homogenized treatment in case of nudging |
---|
| 75 | ! |
---|
| 76 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
| 77 | ! Change order of calls for scalar prognostic quantities: |
---|
| 78 | ! ls_advec -> nudging -> subsidence since initial profiles |
---|
| 79 | ! |
---|
| 80 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 81 | ! missing variables added to ONLY lists |
---|
| 82 | ! |
---|
| 83 | ! 1365 2014-04-22 15:03:56Z boeske |
---|
| 84 | ! Calls of ls_advec for large scale advection added, |
---|
| 85 | ! subroutine subsidence is only called if use_subsidence_tendencies = .F., |
---|
| 86 | ! new argument ls_index added to the calls of subsidence |
---|
| 87 | ! +ls_index |
---|
| 88 | ! |
---|
| 89 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 90 | ! Two-moment microphysics moved to the start of prognostic equations. This makes |
---|
| 91 | ! the 3d arrays for tend_q, tend_qr, tend_pt and tend_pt redundant. |
---|
| 92 | ! Additionally, it is allowed to call the microphysics just once during the time |
---|
| 93 | ! step (not at each sub-time step). |
---|
| 94 | ! |
---|
| 95 | ! Two-moment cloud physics added for vector and accelerator optimization. |
---|
| 96 | ! |
---|
| 97 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 98 | ! REAL constants provided with KIND-attribute |
---|
| 99 | ! |
---|
| 100 | ! 1337 2014-03-25 15:11:48Z heinze |
---|
| 101 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 102 | ! |
---|
| 103 | ! 1332 2014-03-25 11:59:43Z suehring |
---|
| 104 | ! Bugfix: call advec_ws or advec_pw for TKE only if NOT use_upstream_for_tke |
---|
| 105 | ! |
---|
| 106 | ! 1330 2014-03-24 17:29:32Z suehring |
---|
| 107 | ! In case of SGS-particle velocity advection of TKE is also allowed with |
---|
| 108 | ! dissipative 5th-order scheme. |
---|
| 109 | ! |
---|
| 110 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
| 111 | ! ONLY-attribute added to USE-statements, |
---|
| 112 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 113 | ! kinds are defined in new module kinds, |
---|
| 114 | ! old module precision_kind is removed, |
---|
| 115 | ! revision history before 2012 removed, |
---|
| 116 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 117 | ! all variable declaration statements |
---|
| 118 | ! |
---|
| 119 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 120 | ! module interfaces removed |
---|
| 121 | ! |
---|
| 122 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 123 | ! openacc loop vector clauses removed, independent clauses added |
---|
| 124 | ! |
---|
| 125 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
| 126 | ! enable nudging also for accelerator version |
---|
| 127 | ! |
---|
| 128 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 129 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
| 130 | ! |
---|
| 131 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 132 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 133 | ! |
---|
| 134 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 135 | ! those parts requiring global communication moved to time_integration, |
---|
| 136 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 137 | ! j_north |
---|
| 138 | ! |
---|
| 139 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 140 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 141 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 142 | ! |
---|
| 143 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 144 | ! update directives for prognostic quantities removed |
---|
| 145 | ! |
---|
| 146 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 147 | ! small changes in code formatting |
---|
| 148 | ! |
---|
| 149 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 150 | ! unused variables removed |
---|
| 151 | ! |
---|
| 152 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 153 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 154 | ! and rain water content (qr) |
---|
| 155 | ! |
---|
| 156 | ! currently, only available for cache loop optimization |
---|
| 157 | ! |
---|
| 158 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 159 | ! code put under GPL (PALM 3.9) |
---|
| 160 | ! |
---|
| 161 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 162 | ! non-optimized version of prognostic_equations removed |
---|
| 163 | ! |
---|
| 164 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 165 | ! new branch prognostic_equations_acc |
---|
| 166 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 167 | ! |
---|
| 168 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 169 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 170 | ! |
---|
| 171 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 172 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 173 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 174 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 175 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
| 176 | ! |
---|
| 177 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 178 | ! temperature equation can be switched off |
---|
| 179 | ! |
---|
| 180 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 181 | ! Initial revision |
---|
| 182 | ! |
---|
| 183 | ! |
---|
| 184 | ! Description: |
---|
| 185 | ! ------------ |
---|
| 186 | !> Solving the prognostic equations. |
---|
| 187 | !------------------------------------------------------------------------------! |
---|
| 188 | MODULE prognostic_equations_mod |
---|
| 189 | |
---|
| 190 | |
---|
| 191 | |
---|
| 192 | USE arrays_3d, & |
---|
| 193 | ONLY: diss_l_e, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qr, & |
---|
| 194 | diss_l_sa, diss_s_e, diss_s_nr, diss_s_pt, diss_s_q, & |
---|
| 195 | diss_s_qr, diss_s_sa, e, e_p, flux_s_e, flux_s_nr, flux_s_pt, & |
---|
| 196 | flux_s_q, flux_s_qr, flux_s_sa, flux_l_e, flux_l_nr, & |
---|
| 197 | flux_l_pt, flux_l_q, flux_l_qr, flux_l_sa, nr, nr_p, nrsws, & |
---|
| 198 | nrswst, pt, ptdf_x, ptdf_y, pt_init, pt_p, prho, q, q_init, & |
---|
| 199 | q_p, qsws, qswst, qr, qr_p, qrsws, qrswst, rdf, rdf_sc, & |
---|
| 200 | ref_state, rho, sa, sa_init, sa_p, saswsb, saswst, shf, tend, & |
---|
| 201 | te_m, tnr_m, tpt_m, tq_m, tqr_m, tsa_m, tswst, tu_m, tv_m, & |
---|
| 202 | tw_m, u, ug, u_init, u_p, v, vg, vpt, v_init, v_p, w, w_p |
---|
| 203 | |
---|
| 204 | USE control_parameters, & |
---|
| 205 | ONLY: call_microphysics_at_all_substeps, cloud_physics, & |
---|
| 206 | cloud_top_radiation, constant_diffusion, dp_external, & |
---|
| 207 | dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, humidity, & |
---|
| 208 | inflow_l, intermediate_timestep_count, & |
---|
| 209 | intermediate_timestep_count_max, large_scale_forcing, & |
---|
| 210 | large_scale_subsidence, microphysics_seifert, & |
---|
| 211 | microphysics_sat_adjust, neutral, nudging, ocean, outflow_l, & |
---|
| 212 | outflow_s, passive_scalar, prho_reference, prho_reference, & |
---|
| 213 | prho_reference, pt_reference, pt_reference, pt_reference, & |
---|
| 214 | scalar_advec, scalar_advec, simulated_time, sloping_surface, & |
---|
| 215 | timestep_scheme, tsc, use_subsidence_tendencies, & |
---|
| 216 | use_upstream_for_tke, wall_heatflux, & |
---|
| 217 | wall_nrflux, wall_qflux, wall_qflux, wall_qflux, wall_qrflux, & |
---|
| 218 | wall_salinityflux, ws_scheme_mom, ws_scheme_sca |
---|
| 219 | |
---|
| 220 | USE cpulog, & |
---|
| 221 | ONLY: cpu_log, log_point |
---|
| 222 | |
---|
| 223 | USE eqn_state_seawater_mod, & |
---|
| 224 | ONLY: eqn_state_seawater |
---|
| 225 | |
---|
| 226 | USE indices, & |
---|
| 227 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlu, nxr, nyn, nys, & |
---|
| 228 | nysv, nzb_s_inner, nzb_u_inner, nzb_v_inner, nzb_w_inner, nzt |
---|
| 229 | |
---|
| 230 | USE advec_ws, & |
---|
| 231 | ONLY: advec_s_ws, advec_s_ws_acc, advec_u_ws, advec_u_ws_acc, & |
---|
| 232 | advec_v_ws, advec_v_ws_acc, advec_w_ws, advec_w_ws_acc |
---|
| 233 | |
---|
| 234 | USE advec_s_bc_mod, & |
---|
| 235 | ONLY: advec_s_bc |
---|
| 236 | |
---|
| 237 | USE advec_s_pw_mod, & |
---|
| 238 | ONLY: advec_s_pw |
---|
| 239 | |
---|
| 240 | USE advec_s_up_mod, & |
---|
| 241 | ONLY: advec_s_up |
---|
| 242 | |
---|
| 243 | USE advec_u_pw_mod, & |
---|
| 244 | ONLY: advec_u_pw |
---|
| 245 | |
---|
| 246 | USE advec_u_up_mod, & |
---|
| 247 | ONLY: advec_u_up |
---|
| 248 | |
---|
| 249 | USE advec_v_pw_mod, & |
---|
| 250 | ONLY: advec_v_pw |
---|
| 251 | |
---|
| 252 | USE advec_v_up_mod, & |
---|
| 253 | ONLY: advec_v_up |
---|
| 254 | |
---|
| 255 | USE advec_w_pw_mod, & |
---|
| 256 | ONLY: advec_w_pw |
---|
| 257 | |
---|
| 258 | USE advec_w_up_mod, & |
---|
| 259 | ONLY: advec_w_up |
---|
| 260 | |
---|
| 261 | USE buoyancy_mod, & |
---|
| 262 | ONLY: buoyancy, buoyancy_acc |
---|
| 263 | |
---|
| 264 | USE calc_radiation_mod, & |
---|
| 265 | ONLY: calc_radiation |
---|
| 266 | |
---|
| 267 | USE coriolis_mod, & |
---|
| 268 | ONLY: coriolis, coriolis_acc |
---|
| 269 | |
---|
| 270 | USE diffusion_e_mod, & |
---|
| 271 | ONLY: diffusion_e, diffusion_e_acc |
---|
| 272 | |
---|
| 273 | USE diffusion_s_mod, & |
---|
| 274 | ONLY: diffusion_s, diffusion_s_acc |
---|
| 275 | |
---|
| 276 | USE diffusion_u_mod, & |
---|
| 277 | ONLY: diffusion_u, diffusion_u_acc |
---|
| 278 | |
---|
| 279 | USE diffusion_v_mod, & |
---|
| 280 | ONLY: diffusion_v, diffusion_v_acc |
---|
| 281 | |
---|
| 282 | USE diffusion_w_mod, & |
---|
| 283 | ONLY: diffusion_w, diffusion_w_acc |
---|
| 284 | |
---|
| 285 | USE kinds |
---|
| 286 | |
---|
| 287 | USE ls_forcing_mod, & |
---|
| 288 | ONLY: ls_advec |
---|
| 289 | |
---|
| 290 | USE microphysics_mod, & |
---|
| 291 | ONLY: microphysics_control |
---|
| 292 | |
---|
| 293 | USE nudge_mod, & |
---|
| 294 | ONLY: nudge |
---|
| 295 | |
---|
| 296 | USE plant_canopy_model_mod, & |
---|
| 297 | ONLY: cthf, plant_canopy, pcm_tendency |
---|
| 298 | |
---|
| 299 | USE production_e_mod, & |
---|
| 300 | ONLY: production_e, production_e_acc |
---|
| 301 | |
---|
| 302 | USE radiation_model_mod, & |
---|
| 303 | ONLY: radiation, radiation_scheme, radiation_tendency, & |
---|
| 304 | skip_time_do_radiation |
---|
| 305 | |
---|
| 306 | USE statistics, & |
---|
| 307 | ONLY: hom |
---|
| 308 | |
---|
| 309 | USE subsidence_mod, & |
---|
| 310 | ONLY: subsidence |
---|
| 311 | |
---|
| 312 | USE user_actions_mod, & |
---|
| 313 | ONLY: user_actions |
---|
| 314 | |
---|
[1914] | 315 | USE wind_turbine_model_mod, & |
---|
| 316 | ONLY: wind_turbine, wtm_tendencies |
---|
[1875] | 317 | |
---|
[1914] | 318 | |
---|
[1875] | 319 | PRIVATE |
---|
| 320 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 321 | prognostic_equations_acc |
---|
| 322 | |
---|
| 323 | INTERFACE prognostic_equations_cache |
---|
| 324 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 325 | END INTERFACE prognostic_equations_cache |
---|
| 326 | |
---|
| 327 | INTERFACE prognostic_equations_vector |
---|
| 328 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 329 | END INTERFACE prognostic_equations_vector |
---|
| 330 | |
---|
| 331 | INTERFACE prognostic_equations_acc |
---|
| 332 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 333 | END INTERFACE prognostic_equations_acc |
---|
| 334 | |
---|
| 335 | |
---|
| 336 | CONTAINS |
---|
| 337 | |
---|
| 338 | |
---|
| 339 | !------------------------------------------------------------------------------! |
---|
| 340 | ! Description: |
---|
| 341 | ! ------------ |
---|
| 342 | !> Version with one optimized loop over all equations. It is only allowed to |
---|
| 343 | !> be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 344 | !> |
---|
| 345 | !> Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 346 | !> so communication between CPUs is not allowed (does not make sense) within |
---|
| 347 | !> these loops. |
---|
| 348 | !> |
---|
| 349 | !> (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 350 | !------------------------------------------------------------------------------! |
---|
| 351 | |
---|
| 352 | SUBROUTINE prognostic_equations_cache |
---|
| 353 | |
---|
| 354 | |
---|
| 355 | IMPLICIT NONE |
---|
| 356 | |
---|
| 357 | INTEGER(iwp) :: i !< |
---|
| 358 | INTEGER(iwp) :: i_omp_start !< |
---|
| 359 | INTEGER(iwp) :: j !< |
---|
| 360 | INTEGER(iwp) :: k !< |
---|
| 361 | INTEGER(iwp) :: omp_get_thread_num !< |
---|
| 362 | INTEGER(iwp) :: tn = 0 !< |
---|
| 363 | |
---|
| 364 | LOGICAL :: loop_start !< |
---|
| 365 | |
---|
| 366 | |
---|
| 367 | ! |
---|
| 368 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 369 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 370 | |
---|
| 371 | ! |
---|
| 372 | !-- Loop over all prognostic equations |
---|
| 373 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 374 | |
---|
| 375 | !$ tn = omp_get_thread_num() |
---|
| 376 | loop_start = .TRUE. |
---|
| 377 | !$OMP DO |
---|
| 378 | DO i = nxl, nxr |
---|
| 379 | |
---|
| 380 | ! |
---|
| 381 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 382 | !-- later in advec_ws |
---|
| 383 | IF ( loop_start ) THEN |
---|
| 384 | loop_start = .FALSE. |
---|
| 385 | i_omp_start = i |
---|
| 386 | ENDIF |
---|
| 387 | |
---|
| 388 | DO j = nys, nyn |
---|
| 389 | ! |
---|
| 390 | !-- If required, calculate cloud microphysics |
---|
| 391 | IF ( cloud_physics .AND. .NOT. microphysics_sat_adjust .AND. & |
---|
| 392 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 393 | call_microphysics_at_all_substeps ) & |
---|
| 394 | ) THEN |
---|
| 395 | CALL microphysics_control( i, j ) |
---|
| 396 | ENDIF |
---|
| 397 | ! |
---|
| 398 | !-- Tendency terms for u-velocity component |
---|
| 399 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 400 | |
---|
| 401 | tend(:,j,i) = 0.0_wp |
---|
| 402 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 403 | IF ( ws_scheme_mom ) THEN |
---|
| 404 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
| 405 | ELSE |
---|
| 406 | CALL advec_u_pw( i, j ) |
---|
| 407 | ENDIF |
---|
| 408 | ELSE |
---|
| 409 | CALL advec_u_up( i, j ) |
---|
| 410 | ENDIF |
---|
| 411 | CALL diffusion_u( i, j ) |
---|
| 412 | CALL coriolis( i, j, 1 ) |
---|
| 413 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
| 414 | CALL buoyancy( i, j, pt, 1 ) |
---|
| 415 | ENDIF |
---|
| 416 | |
---|
| 417 | ! |
---|
| 418 | !-- Drag by plant canopy |
---|
| 419 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 1 ) |
---|
| 420 | |
---|
| 421 | ! |
---|
| 422 | !-- External pressure gradient |
---|
| 423 | IF ( dp_external ) THEN |
---|
| 424 | DO k = dp_level_ind_b+1, nzt |
---|
| 425 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 426 | ENDDO |
---|
| 427 | ENDIF |
---|
| 428 | |
---|
| 429 | ! |
---|
| 430 | !-- Nudging |
---|
| 431 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
| 432 | |
---|
[1914] | 433 | ! |
---|
| 434 | !-- Forces by wind turbines |
---|
| 435 | IF ( wind_turbine ) CALL wtm_tendencies( i, j, 1 ) |
---|
| 436 | |
---|
[1875] | 437 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 438 | ! |
---|
| 439 | !-- Prognostic equation for u-velocity component |
---|
| 440 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 441 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 442 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 443 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
| 444 | ENDDO |
---|
| 445 | |
---|
| 446 | ! |
---|
| 447 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 448 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 449 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 450 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 451 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 452 | ENDDO |
---|
| 453 | ELSEIF ( intermediate_timestep_count < & |
---|
| 454 | intermediate_timestep_count_max ) THEN |
---|
| 455 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 456 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
| 457 | ENDDO |
---|
| 458 | ENDIF |
---|
| 459 | ENDIF |
---|
| 460 | |
---|
| 461 | ENDIF |
---|
| 462 | |
---|
| 463 | ! |
---|
| 464 | !-- Tendency terms for v-velocity component |
---|
| 465 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 466 | |
---|
| 467 | tend(:,j,i) = 0.0_wp |
---|
| 468 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 469 | IF ( ws_scheme_mom ) THEN |
---|
| 470 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 471 | ELSE |
---|
| 472 | CALL advec_v_pw( i, j ) |
---|
| 473 | ENDIF |
---|
| 474 | ELSE |
---|
| 475 | CALL advec_v_up( i, j ) |
---|
| 476 | ENDIF |
---|
| 477 | CALL diffusion_v( i, j ) |
---|
| 478 | CALL coriolis( i, j, 2 ) |
---|
| 479 | |
---|
| 480 | ! |
---|
| 481 | !-- Drag by plant canopy |
---|
| 482 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 2 ) |
---|
| 483 | |
---|
| 484 | ! |
---|
| 485 | !-- External pressure gradient |
---|
| 486 | IF ( dp_external ) THEN |
---|
| 487 | DO k = dp_level_ind_b+1, nzt |
---|
| 488 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 489 | ENDDO |
---|
| 490 | ENDIF |
---|
| 491 | |
---|
| 492 | ! |
---|
| 493 | !-- Nudging |
---|
| 494 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
| 495 | |
---|
[1914] | 496 | ! |
---|
| 497 | !-- Forces by wind turbines |
---|
| 498 | IF ( wind_turbine ) CALL wtm_tendencies( i, j, 2 ) |
---|
| 499 | |
---|
[1875] | 500 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 501 | ! |
---|
| 502 | !-- Prognostic equation for v-velocity component |
---|
| 503 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 504 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 505 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 506 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
| 507 | ENDDO |
---|
| 508 | |
---|
| 509 | ! |
---|
| 510 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 511 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 512 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 513 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 514 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 515 | ENDDO |
---|
| 516 | ELSEIF ( intermediate_timestep_count < & |
---|
| 517 | intermediate_timestep_count_max ) THEN |
---|
| 518 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 519 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
| 520 | ENDDO |
---|
| 521 | ENDIF |
---|
| 522 | ENDIF |
---|
| 523 | |
---|
| 524 | ENDIF |
---|
| 525 | |
---|
| 526 | ! |
---|
| 527 | !-- Tendency terms for w-velocity component |
---|
| 528 | tend(:,j,i) = 0.0_wp |
---|
| 529 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 530 | IF ( ws_scheme_mom ) THEN |
---|
| 531 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 532 | ELSE |
---|
| 533 | CALL advec_w_pw( i, j ) |
---|
| 534 | END IF |
---|
| 535 | ELSE |
---|
| 536 | CALL advec_w_up( i, j ) |
---|
| 537 | ENDIF |
---|
| 538 | CALL diffusion_w( i, j ) |
---|
| 539 | CALL coriolis( i, j, 3 ) |
---|
| 540 | |
---|
| 541 | IF ( .NOT. neutral ) THEN |
---|
| 542 | IF ( ocean ) THEN |
---|
| 543 | CALL buoyancy( i, j, rho, 3 ) |
---|
| 544 | ELSE |
---|
| 545 | IF ( .NOT. humidity ) THEN |
---|
| 546 | CALL buoyancy( i, j, pt, 3 ) |
---|
| 547 | ELSE |
---|
| 548 | CALL buoyancy( i, j, vpt, 3 ) |
---|
| 549 | ENDIF |
---|
| 550 | ENDIF |
---|
| 551 | ENDIF |
---|
| 552 | |
---|
| 553 | ! |
---|
| 554 | !-- Drag by plant canopy |
---|
| 555 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 3 ) |
---|
| 556 | |
---|
[1914] | 557 | ! |
---|
| 558 | !-- Forces by wind turbines |
---|
| 559 | IF ( wind_turbine ) CALL wtm_tendencies( i, j, 3 ) |
---|
| 560 | |
---|
[1875] | 561 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 562 | |
---|
| 563 | ! |
---|
| 564 | !-- Prognostic equation for w-velocity component |
---|
| 565 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 566 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 567 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 568 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 569 | ENDDO |
---|
| 570 | |
---|
| 571 | ! |
---|
| 572 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 573 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 574 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 575 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 576 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 577 | ENDDO |
---|
| 578 | ELSEIF ( intermediate_timestep_count < & |
---|
| 579 | intermediate_timestep_count_max ) THEN |
---|
| 580 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 581 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
| 582 | ENDDO |
---|
| 583 | ENDIF |
---|
| 584 | ENDIF |
---|
| 585 | |
---|
| 586 | ! |
---|
| 587 | !-- If required, compute prognostic equation for potential temperature |
---|
| 588 | IF ( .NOT. neutral ) THEN |
---|
| 589 | ! |
---|
| 590 | !-- Tendency terms for potential temperature |
---|
| 591 | tend(:,j,i) = 0.0_wp |
---|
| 592 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 593 | IF ( ws_scheme_sca ) THEN |
---|
| 594 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 595 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 596 | ELSE |
---|
| 597 | CALL advec_s_pw( i, j, pt ) |
---|
| 598 | ENDIF |
---|
| 599 | ELSE |
---|
| 600 | CALL advec_s_up( i, j, pt ) |
---|
| 601 | ENDIF |
---|
| 602 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
| 603 | |
---|
| 604 | ! |
---|
| 605 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 606 | !-- processes |
---|
| 607 | IF ( cloud_top_radiation ) THEN |
---|
| 608 | CALL calc_radiation( i, j ) |
---|
| 609 | ENDIF |
---|
| 610 | |
---|
| 611 | ! |
---|
| 612 | !-- Consideration of heat sources within the plant canopy |
---|
| 613 | IF ( plant_canopy .AND. cthf /= 0.0_wp ) THEN |
---|
| 614 | CALL pcm_tendency( i, j, 4 ) |
---|
| 615 | ENDIF |
---|
| 616 | |
---|
| 617 | ! |
---|
| 618 | !-- Large scale advection |
---|
| 619 | IF ( large_scale_forcing ) THEN |
---|
| 620 | CALL ls_advec( i, j, simulated_time, 'pt' ) |
---|
| 621 | ENDIF |
---|
| 622 | |
---|
| 623 | ! |
---|
| 624 | !-- Nudging |
---|
| 625 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
| 626 | |
---|
| 627 | ! |
---|
| 628 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
| 629 | IF ( large_scale_subsidence .AND. & |
---|
| 630 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 631 | CALL subsidence( i, j, tend, pt, pt_init, 2 ) |
---|
| 632 | ENDIF |
---|
| 633 | |
---|
| 634 | ! |
---|
| 635 | !-- If required, add tendency due to radiative heating/cooling |
---|
| 636 | IF ( radiation .AND. radiation_scheme == 'rrtmg' .AND. & |
---|
| 637 | simulated_time > skip_time_do_radiation ) THEN |
---|
| 638 | CALL radiation_tendency ( i, j, tend ) |
---|
| 639 | ENDIF |
---|
| 640 | |
---|
| 641 | |
---|
| 642 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 643 | |
---|
| 644 | ! |
---|
| 645 | !-- Prognostic equation for potential temperature |
---|
| 646 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 647 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 648 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 649 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 650 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 651 | ENDDO |
---|
| 652 | |
---|
| 653 | ! |
---|
| 654 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 655 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 656 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 657 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 658 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 659 | ENDDO |
---|
| 660 | ELSEIF ( intermediate_timestep_count < & |
---|
| 661 | intermediate_timestep_count_max ) THEN |
---|
| 662 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 663 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 664 | 5.3125_wp * tpt_m(k,j,i) |
---|
| 665 | ENDDO |
---|
| 666 | ENDIF |
---|
| 667 | ENDIF |
---|
| 668 | |
---|
| 669 | ENDIF |
---|
| 670 | |
---|
| 671 | ! |
---|
| 672 | !-- If required, compute prognostic equation for salinity |
---|
| 673 | IF ( ocean ) THEN |
---|
| 674 | |
---|
| 675 | ! |
---|
| 676 | !-- Tendency-terms for salinity |
---|
| 677 | tend(:,j,i) = 0.0_wp |
---|
| 678 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 679 | THEN |
---|
| 680 | IF ( ws_scheme_sca ) THEN |
---|
| 681 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 682 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 683 | ELSE |
---|
| 684 | CALL advec_s_pw( i, j, sa ) |
---|
| 685 | ENDIF |
---|
| 686 | ELSE |
---|
| 687 | CALL advec_s_up( i, j, sa ) |
---|
| 688 | ENDIF |
---|
| 689 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
| 690 | |
---|
| 691 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 692 | |
---|
| 693 | ! |
---|
| 694 | !-- Prognostic equation for salinity |
---|
| 695 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 696 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 697 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 698 | - tsc(5) * rdf_sc(k) * & |
---|
| 699 | ( sa(k,j,i) - sa_init(k) ) |
---|
| 700 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
| 701 | ENDDO |
---|
| 702 | |
---|
| 703 | ! |
---|
| 704 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 705 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 706 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 707 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 708 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 709 | ENDDO |
---|
| 710 | ELSEIF ( intermediate_timestep_count < & |
---|
| 711 | intermediate_timestep_count_max ) THEN |
---|
| 712 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 713 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 714 | 5.3125_wp * tsa_m(k,j,i) |
---|
| 715 | ENDDO |
---|
| 716 | ENDIF |
---|
| 717 | ENDIF |
---|
| 718 | |
---|
| 719 | ! |
---|
| 720 | !-- Calculate density by the equation of state for seawater |
---|
| 721 | CALL eqn_state_seawater( i, j ) |
---|
| 722 | |
---|
| 723 | ENDIF |
---|
| 724 | |
---|
| 725 | ! |
---|
| 726 | !-- If required, compute prognostic equation for total water content / |
---|
| 727 | !-- scalar |
---|
| 728 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 729 | |
---|
| 730 | ! |
---|
| 731 | !-- Tendency-terms for total water content / scalar |
---|
| 732 | tend(:,j,i) = 0.0_wp |
---|
| 733 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 734 | THEN |
---|
| 735 | IF ( ws_scheme_sca ) THEN |
---|
| 736 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 737 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 738 | ELSE |
---|
| 739 | CALL advec_s_pw( i, j, q ) |
---|
| 740 | ENDIF |
---|
| 741 | ELSE |
---|
| 742 | CALL advec_s_up( i, j, q ) |
---|
| 743 | ENDIF |
---|
| 744 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
| 745 | |
---|
| 746 | ! |
---|
| 747 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 748 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 5 ) |
---|
| 749 | |
---|
| 750 | ! |
---|
| 751 | !-- Large scale advection |
---|
| 752 | IF ( large_scale_forcing ) THEN |
---|
| 753 | CALL ls_advec( i, j, simulated_time, 'q' ) |
---|
| 754 | ENDIF |
---|
| 755 | |
---|
| 756 | ! |
---|
| 757 | !-- Nudging |
---|
| 758 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
| 759 | |
---|
| 760 | ! |
---|
| 761 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 762 | IF ( large_scale_subsidence .AND. & |
---|
| 763 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 764 | CALL subsidence( i, j, tend, q, q_init, 3 ) |
---|
| 765 | ENDIF |
---|
| 766 | |
---|
| 767 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 768 | |
---|
| 769 | ! |
---|
| 770 | !-- Prognostic equation for total water content / scalar |
---|
| 771 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 772 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 773 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 774 | - tsc(5) * rdf_sc(k) * & |
---|
| 775 | ( q(k,j,i) - q_init(k) ) |
---|
| 776 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
| 777 | ENDDO |
---|
| 778 | |
---|
| 779 | ! |
---|
| 780 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 781 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 782 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 783 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 784 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 785 | ENDDO |
---|
| 786 | ELSEIF ( intermediate_timestep_count < & |
---|
| 787 | intermediate_timestep_count_max ) THEN |
---|
| 788 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 789 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 790 | 5.3125_wp * tq_m(k,j,i) |
---|
| 791 | ENDDO |
---|
| 792 | ENDIF |
---|
| 793 | ENDIF |
---|
| 794 | |
---|
| 795 | ! |
---|
| 796 | !-- If required, calculate prognostic equations for rain water content |
---|
| 797 | !-- and rain drop concentration |
---|
| 798 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
| 799 | ! |
---|
| 800 | !-- Calculate prognostic equation for rain water content |
---|
| 801 | tend(:,j,i) = 0.0_wp |
---|
| 802 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 803 | THEN |
---|
| 804 | IF ( ws_scheme_sca ) THEN |
---|
| 805 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 806 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 807 | i_omp_start, tn ) |
---|
| 808 | ELSE |
---|
| 809 | CALL advec_s_pw( i, j, qr ) |
---|
| 810 | ENDIF |
---|
| 811 | ELSE |
---|
| 812 | CALL advec_s_up( i, j, qr ) |
---|
| 813 | ENDIF |
---|
| 814 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 815 | |
---|
| 816 | ! |
---|
| 817 | !-- Prognostic equation for rain water content |
---|
| 818 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 819 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 820 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 821 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 822 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 823 | ENDDO |
---|
| 824 | ! |
---|
| 825 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 826 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 827 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 828 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 829 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 830 | ENDDO |
---|
| 831 | ELSEIF ( intermediate_timestep_count < & |
---|
| 832 | intermediate_timestep_count_max ) THEN |
---|
| 833 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 834 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 835 | 5.3125_wp * tqr_m(k,j,i) |
---|
| 836 | ENDDO |
---|
| 837 | ENDIF |
---|
| 838 | ENDIF |
---|
| 839 | |
---|
| 840 | ! |
---|
| 841 | !-- Calculate prognostic equation for rain drop concentration. |
---|
| 842 | tend(:,j,i) = 0.0_wp |
---|
| 843 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 844 | IF ( ws_scheme_sca ) THEN |
---|
| 845 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 846 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 847 | i_omp_start, tn ) |
---|
| 848 | ELSE |
---|
| 849 | CALL advec_s_pw( i, j, nr ) |
---|
| 850 | ENDIF |
---|
| 851 | ELSE |
---|
| 852 | CALL advec_s_up( i, j, nr ) |
---|
| 853 | ENDIF |
---|
| 854 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
| 855 | |
---|
| 856 | ! |
---|
| 857 | !-- Prognostic equation for rain drop concentration |
---|
| 858 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 859 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 860 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 861 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 862 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 863 | ENDDO |
---|
| 864 | ! |
---|
| 865 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 866 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 867 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 868 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 869 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 870 | ENDDO |
---|
| 871 | ELSEIF ( intermediate_timestep_count < & |
---|
| 872 | intermediate_timestep_count_max ) THEN |
---|
| 873 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 874 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 875 | 5.3125_wp * tnr_m(k,j,i) |
---|
| 876 | ENDDO |
---|
| 877 | ENDIF |
---|
| 878 | ENDIF |
---|
| 879 | |
---|
| 880 | ENDIF |
---|
| 881 | |
---|
| 882 | ENDIF |
---|
| 883 | |
---|
| 884 | ! |
---|
| 885 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 886 | !-- energy (TKE) |
---|
| 887 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 888 | |
---|
| 889 | ! |
---|
| 890 | !-- Tendency-terms for TKE |
---|
| 891 | tend(:,j,i) = 0.0_wp |
---|
| 892 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
| 893 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
| 894 | IF ( ws_scheme_sca ) THEN |
---|
| 895 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 896 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
| 897 | ELSE |
---|
| 898 | CALL advec_s_pw( i, j, e ) |
---|
| 899 | ENDIF |
---|
| 900 | ELSE |
---|
| 901 | CALL advec_s_up( i, j, e ) |
---|
| 902 | ENDIF |
---|
| 903 | IF ( .NOT. humidity ) THEN |
---|
| 904 | IF ( ocean ) THEN |
---|
| 905 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
| 906 | ELSE |
---|
| 907 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
| 908 | ENDIF |
---|
| 909 | ELSE |
---|
| 910 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
| 911 | ENDIF |
---|
| 912 | CALL production_e( i, j ) |
---|
| 913 | |
---|
| 914 | ! |
---|
| 915 | !-- Additional sink term for flows through plant canopies |
---|
| 916 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 6 ) |
---|
| 917 | |
---|
| 918 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 919 | |
---|
| 920 | ! |
---|
| 921 | !-- Prognostic equation for TKE. |
---|
| 922 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 923 | !-- reasons in the course of the integration. In such cases the old |
---|
| 924 | !-- TKE value is reduced by 90%. |
---|
| 925 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 926 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 927 | tsc(3) * te_m(k,j,i) ) |
---|
| 928 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
| 929 | ENDDO |
---|
| 930 | |
---|
| 931 | ! |
---|
| 932 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 933 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 934 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 935 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 936 | te_m(k,j,i) = tend(k,j,i) |
---|
| 937 | ENDDO |
---|
| 938 | ELSEIF ( intermediate_timestep_count < & |
---|
| 939 | intermediate_timestep_count_max ) THEN |
---|
| 940 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 941 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 942 | 5.3125_wp * te_m(k,j,i) |
---|
| 943 | ENDDO |
---|
| 944 | ENDIF |
---|
| 945 | ENDIF |
---|
| 946 | |
---|
| 947 | ENDIF ! TKE equation |
---|
| 948 | |
---|
| 949 | ENDDO |
---|
| 950 | ENDDO |
---|
| 951 | !$OMP END PARALLEL |
---|
| 952 | |
---|
| 953 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 954 | |
---|
| 955 | |
---|
| 956 | END SUBROUTINE prognostic_equations_cache |
---|
| 957 | |
---|
| 958 | |
---|
| 959 | !------------------------------------------------------------------------------! |
---|
| 960 | ! Description: |
---|
| 961 | ! ------------ |
---|
| 962 | !> Version for vector machines |
---|
| 963 | !------------------------------------------------------------------------------! |
---|
| 964 | |
---|
| 965 | SUBROUTINE prognostic_equations_vector |
---|
| 966 | |
---|
| 967 | |
---|
| 968 | IMPLICIT NONE |
---|
| 969 | |
---|
| 970 | INTEGER(iwp) :: i !< |
---|
| 971 | INTEGER(iwp) :: j !< |
---|
| 972 | INTEGER(iwp) :: k !< |
---|
| 973 | |
---|
| 974 | REAL(wp) :: sbt !< |
---|
| 975 | |
---|
| 976 | |
---|
| 977 | ! |
---|
| 978 | !-- If required, calculate cloud microphysical impacts |
---|
| 979 | IF ( cloud_physics .AND. .NOT. microphysics_sat_adjust .AND. & |
---|
| 980 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 981 | call_microphysics_at_all_substeps ) & |
---|
| 982 | ) THEN |
---|
| 983 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 984 | CALL microphysics_control |
---|
| 985 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 986 | ENDIF |
---|
| 987 | |
---|
| 988 | ! |
---|
| 989 | !-- u-velocity component |
---|
| 990 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 991 | |
---|
| 992 | tend = 0.0_wp |
---|
| 993 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 994 | IF ( ws_scheme_mom ) THEN |
---|
| 995 | CALL advec_u_ws |
---|
| 996 | ELSE |
---|
| 997 | CALL advec_u_pw |
---|
| 998 | ENDIF |
---|
| 999 | ELSE |
---|
| 1000 | CALL advec_u_up |
---|
| 1001 | ENDIF |
---|
| 1002 | CALL diffusion_u |
---|
| 1003 | CALL coriolis( 1 ) |
---|
| 1004 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
| 1005 | CALL buoyancy( pt, 1 ) |
---|
| 1006 | ENDIF |
---|
| 1007 | |
---|
| 1008 | ! |
---|
| 1009 | !-- Drag by plant canopy |
---|
| 1010 | IF ( plant_canopy ) CALL pcm_tendency( 1 ) |
---|
| 1011 | |
---|
| 1012 | ! |
---|
| 1013 | !-- External pressure gradient |
---|
| 1014 | IF ( dp_external ) THEN |
---|
| 1015 | DO i = nxlu, nxr |
---|
| 1016 | DO j = nys, nyn |
---|
| 1017 | DO k = dp_level_ind_b+1, nzt |
---|
| 1018 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1019 | ENDDO |
---|
| 1020 | ENDDO |
---|
| 1021 | ENDDO |
---|
| 1022 | ENDIF |
---|
| 1023 | |
---|
| 1024 | ! |
---|
| 1025 | !-- Nudging |
---|
| 1026 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 1027 | |
---|
[1914] | 1028 | ! |
---|
| 1029 | !-- Forces by wind turbines |
---|
| 1030 | IF ( wind_turbine ) CALL wtm_tendencies( 1 ) |
---|
| 1031 | |
---|
[1875] | 1032 | CALL user_actions( 'u-tendency' ) |
---|
| 1033 | |
---|
| 1034 | ! |
---|
| 1035 | !-- Prognostic equation for u-velocity component |
---|
| 1036 | DO i = nxlu, nxr |
---|
| 1037 | DO j = nys, nyn |
---|
| 1038 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1039 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1040 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 1041 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
| 1042 | ENDDO |
---|
| 1043 | ENDDO |
---|
| 1044 | ENDDO |
---|
| 1045 | |
---|
| 1046 | ! |
---|
| 1047 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1048 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1049 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1050 | DO i = nxlu, nxr |
---|
| 1051 | DO j = nys, nyn |
---|
| 1052 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1053 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1054 | ENDDO |
---|
| 1055 | ENDDO |
---|
| 1056 | ENDDO |
---|
| 1057 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1058 | intermediate_timestep_count_max ) THEN |
---|
| 1059 | DO i = nxlu, nxr |
---|
| 1060 | DO j = nys, nyn |
---|
| 1061 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1062 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
| 1063 | ENDDO |
---|
| 1064 | ENDDO |
---|
| 1065 | ENDDO |
---|
| 1066 | ENDIF |
---|
| 1067 | ENDIF |
---|
| 1068 | |
---|
| 1069 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1070 | |
---|
| 1071 | ! |
---|
| 1072 | !-- v-velocity component |
---|
| 1073 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1074 | |
---|
| 1075 | tend = 0.0_wp |
---|
| 1076 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1077 | IF ( ws_scheme_mom ) THEN |
---|
| 1078 | CALL advec_v_ws |
---|
| 1079 | ELSE |
---|
| 1080 | CALL advec_v_pw |
---|
| 1081 | END IF |
---|
| 1082 | ELSE |
---|
| 1083 | CALL advec_v_up |
---|
| 1084 | ENDIF |
---|
| 1085 | CALL diffusion_v |
---|
| 1086 | CALL coriolis( 2 ) |
---|
| 1087 | |
---|
| 1088 | ! |
---|
| 1089 | !-- Drag by plant canopy |
---|
| 1090 | IF ( plant_canopy ) CALL pcm_tendency( 2 ) |
---|
| 1091 | |
---|
| 1092 | ! |
---|
| 1093 | !-- External pressure gradient |
---|
| 1094 | IF ( dp_external ) THEN |
---|
| 1095 | DO i = nxl, nxr |
---|
| 1096 | DO j = nysv, nyn |
---|
| 1097 | DO k = dp_level_ind_b+1, nzt |
---|
| 1098 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1099 | ENDDO |
---|
| 1100 | ENDDO |
---|
| 1101 | ENDDO |
---|
| 1102 | ENDIF |
---|
| 1103 | |
---|
| 1104 | ! |
---|
| 1105 | !-- Nudging |
---|
| 1106 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1107 | |
---|
[1914] | 1108 | ! |
---|
| 1109 | !-- Forces by wind turbines |
---|
| 1110 | IF ( wind_turbine ) CALL wtm_tendencies( 2 ) |
---|
| 1111 | |
---|
[1875] | 1112 | CALL user_actions( 'v-tendency' ) |
---|
| 1113 | |
---|
| 1114 | ! |
---|
| 1115 | !-- Prognostic equation for v-velocity component |
---|
| 1116 | DO i = nxl, nxr |
---|
| 1117 | DO j = nysv, nyn |
---|
| 1118 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1119 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1120 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 1121 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
| 1122 | ENDDO |
---|
| 1123 | ENDDO |
---|
| 1124 | ENDDO |
---|
| 1125 | |
---|
| 1126 | ! |
---|
| 1127 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1128 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1129 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1130 | DO i = nxl, nxr |
---|
| 1131 | DO j = nysv, nyn |
---|
| 1132 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1133 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1134 | ENDDO |
---|
| 1135 | ENDDO |
---|
| 1136 | ENDDO |
---|
| 1137 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1138 | intermediate_timestep_count_max ) THEN |
---|
| 1139 | DO i = nxl, nxr |
---|
| 1140 | DO j = nysv, nyn |
---|
| 1141 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1142 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
| 1143 | ENDDO |
---|
| 1144 | ENDDO |
---|
| 1145 | ENDDO |
---|
| 1146 | ENDIF |
---|
| 1147 | ENDIF |
---|
| 1148 | |
---|
| 1149 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1150 | |
---|
| 1151 | ! |
---|
| 1152 | !-- w-velocity component |
---|
| 1153 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1154 | |
---|
| 1155 | tend = 0.0_wp |
---|
| 1156 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1157 | IF ( ws_scheme_mom ) THEN |
---|
| 1158 | CALL advec_w_ws |
---|
| 1159 | ELSE |
---|
| 1160 | CALL advec_w_pw |
---|
| 1161 | ENDIF |
---|
| 1162 | ELSE |
---|
| 1163 | CALL advec_w_up |
---|
| 1164 | ENDIF |
---|
| 1165 | CALL diffusion_w |
---|
| 1166 | CALL coriolis( 3 ) |
---|
| 1167 | |
---|
| 1168 | IF ( .NOT. neutral ) THEN |
---|
| 1169 | IF ( ocean ) THEN |
---|
| 1170 | CALL buoyancy( rho, 3 ) |
---|
| 1171 | ELSE |
---|
| 1172 | IF ( .NOT. humidity ) THEN |
---|
| 1173 | CALL buoyancy( pt, 3 ) |
---|
| 1174 | ELSE |
---|
| 1175 | CALL buoyancy( vpt, 3 ) |
---|
| 1176 | ENDIF |
---|
| 1177 | ENDIF |
---|
| 1178 | ENDIF |
---|
| 1179 | |
---|
| 1180 | ! |
---|
| 1181 | !-- Drag by plant canopy |
---|
| 1182 | IF ( plant_canopy ) CALL pcm_tendency( 3 ) |
---|
| 1183 | |
---|
[1914] | 1184 | ! |
---|
| 1185 | !-- Forces by wind turbines |
---|
| 1186 | IF ( wind_turbine ) CALL wtm_tendencies( 3 ) |
---|
| 1187 | |
---|
[1875] | 1188 | CALL user_actions( 'w-tendency' ) |
---|
| 1189 | |
---|
| 1190 | ! |
---|
| 1191 | !-- Prognostic equation for w-velocity component |
---|
| 1192 | DO i = nxl, nxr |
---|
| 1193 | DO j = nys, nyn |
---|
| 1194 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1195 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1196 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1197 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1198 | ENDDO |
---|
| 1199 | ENDDO |
---|
| 1200 | ENDDO |
---|
| 1201 | |
---|
| 1202 | ! |
---|
| 1203 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1204 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1205 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1206 | DO i = nxl, nxr |
---|
| 1207 | DO j = nys, nyn |
---|
| 1208 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1209 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1210 | ENDDO |
---|
| 1211 | ENDDO |
---|
| 1212 | ENDDO |
---|
| 1213 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1214 | intermediate_timestep_count_max ) THEN |
---|
| 1215 | DO i = nxl, nxr |
---|
| 1216 | DO j = nys, nyn |
---|
| 1217 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1218 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
| 1219 | ENDDO |
---|
| 1220 | ENDDO |
---|
| 1221 | ENDDO |
---|
| 1222 | ENDIF |
---|
| 1223 | ENDIF |
---|
| 1224 | |
---|
| 1225 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1226 | |
---|
| 1227 | |
---|
| 1228 | ! |
---|
| 1229 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1230 | IF ( .NOT. neutral ) THEN |
---|
| 1231 | |
---|
| 1232 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1233 | |
---|
| 1234 | ! |
---|
| 1235 | !-- pt-tendency terms with communication |
---|
| 1236 | sbt = tsc(2) |
---|
| 1237 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1238 | |
---|
| 1239 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1240 | ! |
---|
| 1241 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1242 | sbt = 1.0_wp |
---|
| 1243 | ENDIF |
---|
| 1244 | tend = 0.0_wp |
---|
| 1245 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1246 | |
---|
| 1247 | ENDIF |
---|
| 1248 | |
---|
| 1249 | ! |
---|
| 1250 | !-- pt-tendency terms with no communication |
---|
| 1251 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1252 | tend = 0.0_wp |
---|
| 1253 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1254 | IF ( ws_scheme_sca ) THEN |
---|
| 1255 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1256 | ELSE |
---|
| 1257 | CALL advec_s_pw( pt ) |
---|
| 1258 | ENDIF |
---|
| 1259 | ELSE |
---|
| 1260 | CALL advec_s_up( pt ) |
---|
| 1261 | ENDIF |
---|
| 1262 | ENDIF |
---|
| 1263 | |
---|
| 1264 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1265 | |
---|
| 1266 | ! |
---|
| 1267 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1268 | IF ( cloud_top_radiation ) THEN |
---|
| 1269 | CALL calc_radiation |
---|
| 1270 | ENDIF |
---|
| 1271 | |
---|
| 1272 | ! |
---|
| 1273 | !-- Consideration of heat sources within the plant canopy |
---|
| 1274 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
| 1275 | CALL pcm_tendency( 4 ) |
---|
| 1276 | ENDIF |
---|
| 1277 | |
---|
| 1278 | ! |
---|
| 1279 | !-- Large scale advection |
---|
| 1280 | IF ( large_scale_forcing ) THEN |
---|
| 1281 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 1282 | ENDIF |
---|
| 1283 | |
---|
| 1284 | ! |
---|
| 1285 | !-- Nudging |
---|
| 1286 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1287 | |
---|
| 1288 | ! |
---|
| 1289 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1290 | IF ( large_scale_subsidence .AND. & |
---|
| 1291 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1292 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
| 1293 | ENDIF |
---|
| 1294 | |
---|
| 1295 | ! |
---|
| 1296 | !-- If required, add tendency due to radiative heating/cooling |
---|
| 1297 | IF ( radiation .AND. radiation_scheme == 'rrtmg' .AND. & |
---|
| 1298 | simulated_time > skip_time_do_radiation ) THEN |
---|
| 1299 | CALL radiation_tendency ( tend ) |
---|
| 1300 | ENDIF |
---|
| 1301 | |
---|
| 1302 | CALL user_actions( 'pt-tendency' ) |
---|
| 1303 | |
---|
| 1304 | ! |
---|
| 1305 | !-- Prognostic equation for potential temperature |
---|
| 1306 | DO i = nxl, nxr |
---|
| 1307 | DO j = nys, nyn |
---|
| 1308 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1309 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1310 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1311 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1312 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 1313 | ENDDO |
---|
| 1314 | ENDDO |
---|
| 1315 | ENDDO |
---|
| 1316 | |
---|
| 1317 | ! |
---|
| 1318 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1319 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1320 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1321 | DO i = nxl, nxr |
---|
| 1322 | DO j = nys, nyn |
---|
| 1323 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1324 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1325 | ENDDO |
---|
| 1326 | ENDDO |
---|
| 1327 | ENDDO |
---|
| 1328 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1329 | intermediate_timestep_count_max ) THEN |
---|
| 1330 | DO i = nxl, nxr |
---|
| 1331 | DO j = nys, nyn |
---|
| 1332 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1333 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1334 | 5.3125_wp * tpt_m(k,j,i) |
---|
| 1335 | ENDDO |
---|
| 1336 | ENDDO |
---|
| 1337 | ENDDO |
---|
| 1338 | ENDIF |
---|
| 1339 | ENDIF |
---|
| 1340 | |
---|
| 1341 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1342 | |
---|
| 1343 | ENDIF |
---|
| 1344 | |
---|
| 1345 | ! |
---|
| 1346 | !-- If required, compute prognostic equation for salinity |
---|
| 1347 | IF ( ocean ) THEN |
---|
| 1348 | |
---|
| 1349 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1350 | |
---|
| 1351 | ! |
---|
| 1352 | !-- sa-tendency terms with communication |
---|
| 1353 | sbt = tsc(2) |
---|
| 1354 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1355 | |
---|
| 1356 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1357 | ! |
---|
| 1358 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1359 | sbt = 1.0_wp |
---|
| 1360 | ENDIF |
---|
| 1361 | tend = 0.0_wp |
---|
| 1362 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 1363 | |
---|
| 1364 | ENDIF |
---|
| 1365 | |
---|
| 1366 | ! |
---|
| 1367 | !-- sa-tendency terms with no communication |
---|
| 1368 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1369 | tend = 0.0_wp |
---|
| 1370 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1371 | IF ( ws_scheme_sca ) THEN |
---|
| 1372 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1373 | ELSE |
---|
| 1374 | CALL advec_s_pw( sa ) |
---|
| 1375 | ENDIF |
---|
| 1376 | ELSE |
---|
| 1377 | CALL advec_s_up( sa ) |
---|
| 1378 | ENDIF |
---|
| 1379 | ENDIF |
---|
| 1380 | |
---|
| 1381 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 1382 | |
---|
| 1383 | CALL user_actions( 'sa-tendency' ) |
---|
| 1384 | |
---|
| 1385 | ! |
---|
| 1386 | !-- Prognostic equation for salinity |
---|
| 1387 | DO i = nxl, nxr |
---|
| 1388 | DO j = nys, nyn |
---|
| 1389 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1390 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1391 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1392 | - tsc(5) * rdf_sc(k) * & |
---|
| 1393 | ( sa(k,j,i) - sa_init(k) ) |
---|
| 1394 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
| 1395 | ENDDO |
---|
| 1396 | ENDDO |
---|
| 1397 | ENDDO |
---|
| 1398 | |
---|
| 1399 | ! |
---|
| 1400 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1401 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1402 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1403 | DO i = nxl, nxr |
---|
| 1404 | DO j = nys, nyn |
---|
| 1405 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1406 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1407 | ENDDO |
---|
| 1408 | ENDDO |
---|
| 1409 | ENDDO |
---|
| 1410 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1411 | intermediate_timestep_count_max ) THEN |
---|
| 1412 | DO i = nxl, nxr |
---|
| 1413 | DO j = nys, nyn |
---|
| 1414 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1415 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1416 | 5.3125_wp * tsa_m(k,j,i) |
---|
| 1417 | ENDDO |
---|
| 1418 | ENDDO |
---|
| 1419 | ENDDO |
---|
| 1420 | ENDIF |
---|
| 1421 | ENDIF |
---|
| 1422 | |
---|
| 1423 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1424 | |
---|
| 1425 | ! |
---|
| 1426 | !-- Calculate density by the equation of state for seawater |
---|
| 1427 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1428 | CALL eqn_state_seawater |
---|
| 1429 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1430 | |
---|
| 1431 | ENDIF |
---|
| 1432 | |
---|
| 1433 | ! |
---|
| 1434 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1435 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1436 | |
---|
| 1437 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1438 | |
---|
| 1439 | ! |
---|
| 1440 | !-- Scalar/q-tendency terms with communication |
---|
| 1441 | sbt = tsc(2) |
---|
| 1442 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1443 | |
---|
| 1444 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1445 | ! |
---|
| 1446 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1447 | sbt = 1.0_wp |
---|
| 1448 | ENDIF |
---|
| 1449 | tend = 0.0_wp |
---|
| 1450 | CALL advec_s_bc( q, 'q' ) |
---|
| 1451 | |
---|
| 1452 | ENDIF |
---|
| 1453 | |
---|
| 1454 | ! |
---|
| 1455 | !-- Scalar/q-tendency terms with no communication |
---|
| 1456 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1457 | tend = 0.0_wp |
---|
| 1458 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1459 | IF ( ws_scheme_sca ) THEN |
---|
| 1460 | CALL advec_s_ws( q, 'q' ) |
---|
| 1461 | ELSE |
---|
| 1462 | CALL advec_s_pw( q ) |
---|
| 1463 | ENDIF |
---|
| 1464 | ELSE |
---|
| 1465 | CALL advec_s_up( q ) |
---|
| 1466 | ENDIF |
---|
| 1467 | ENDIF |
---|
| 1468 | |
---|
| 1469 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 1470 | |
---|
| 1471 | ! |
---|
| 1472 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1473 | IF ( plant_canopy ) CALL pcm_tendency( 5 ) |
---|
| 1474 | |
---|
| 1475 | ! |
---|
| 1476 | !-- Large scale advection |
---|
| 1477 | IF ( large_scale_forcing ) THEN |
---|
| 1478 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 1479 | ENDIF |
---|
| 1480 | |
---|
| 1481 | ! |
---|
| 1482 | !-- Nudging |
---|
| 1483 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1484 | |
---|
| 1485 | ! |
---|
| 1486 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1487 | IF ( large_scale_subsidence .AND. & |
---|
| 1488 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1489 | CALL subsidence( tend, q, q_init, 3 ) |
---|
| 1490 | ENDIF |
---|
| 1491 | |
---|
| 1492 | CALL user_actions( 'q-tendency' ) |
---|
| 1493 | |
---|
| 1494 | ! |
---|
| 1495 | !-- Prognostic equation for total water content / scalar |
---|
| 1496 | DO i = nxl, nxr |
---|
| 1497 | DO j = nys, nyn |
---|
| 1498 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1499 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1500 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1501 | - tsc(5) * rdf_sc(k) * & |
---|
| 1502 | ( q(k,j,i) - q_init(k) ) |
---|
| 1503 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
| 1504 | ENDDO |
---|
| 1505 | ENDDO |
---|
| 1506 | ENDDO |
---|
| 1507 | |
---|
| 1508 | ! |
---|
| 1509 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1510 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1511 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1512 | DO i = nxl, nxr |
---|
| 1513 | DO j = nys, nyn |
---|
| 1514 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1515 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1516 | ENDDO |
---|
| 1517 | ENDDO |
---|
| 1518 | ENDDO |
---|
| 1519 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1520 | intermediate_timestep_count_max ) THEN |
---|
| 1521 | DO i = nxl, nxr |
---|
| 1522 | DO j = nys, nyn |
---|
| 1523 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1524 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
| 1525 | ENDDO |
---|
| 1526 | ENDDO |
---|
| 1527 | ENDDO |
---|
| 1528 | ENDIF |
---|
| 1529 | ENDIF |
---|
| 1530 | |
---|
| 1531 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1532 | |
---|
| 1533 | ! |
---|
| 1534 | !-- If required, calculate prognostic equations for rain water content |
---|
| 1535 | !-- and rain drop concentration |
---|
| 1536 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
| 1537 | |
---|
| 1538 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 1539 | |
---|
| 1540 | ! |
---|
| 1541 | !-- Calculate prognostic equation for rain water content |
---|
| 1542 | sbt = tsc(2) |
---|
| 1543 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1544 | |
---|
| 1545 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1546 | ! |
---|
| 1547 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1548 | sbt = 1.0_wp |
---|
| 1549 | ENDIF |
---|
| 1550 | tend = 0.0_wp |
---|
| 1551 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 1552 | |
---|
| 1553 | ENDIF |
---|
| 1554 | |
---|
| 1555 | ! |
---|
| 1556 | !-- qr-tendency terms with no communication |
---|
| 1557 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1558 | tend = 0.0_wp |
---|
| 1559 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1560 | IF ( ws_scheme_sca ) THEN |
---|
| 1561 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 1562 | ELSE |
---|
| 1563 | CALL advec_s_pw( qr ) |
---|
| 1564 | ENDIF |
---|
| 1565 | ELSE |
---|
| 1566 | CALL advec_s_up( qr ) |
---|
| 1567 | ENDIF |
---|
| 1568 | ENDIF |
---|
| 1569 | |
---|
| 1570 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 1571 | |
---|
| 1572 | CALL user_actions( 'qr-tendency' ) |
---|
| 1573 | |
---|
| 1574 | ! |
---|
| 1575 | !-- Prognostic equation for rain water content |
---|
| 1576 | DO i = nxl, nxr |
---|
| 1577 | DO j = nys, nyn |
---|
| 1578 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1579 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1580 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 1581 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 1582 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 1583 | ENDDO |
---|
| 1584 | ENDDO |
---|
| 1585 | ENDDO |
---|
| 1586 | |
---|
| 1587 | ! |
---|
| 1588 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1589 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1590 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1591 | DO i = nxl, nxr |
---|
| 1592 | DO j = nys, nyn |
---|
| 1593 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1594 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 1595 | ENDDO |
---|
| 1596 | ENDDO |
---|
| 1597 | ENDDO |
---|
| 1598 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1599 | intermediate_timestep_count_max ) THEN |
---|
| 1600 | DO i = nxl, nxr |
---|
| 1601 | DO j = nys, nyn |
---|
| 1602 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1603 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1604 | tqr_m(k,j,i) |
---|
| 1605 | ENDDO |
---|
| 1606 | ENDDO |
---|
| 1607 | ENDDO |
---|
| 1608 | ENDIF |
---|
| 1609 | ENDIF |
---|
| 1610 | |
---|
| 1611 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 1612 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 1613 | |
---|
| 1614 | ! |
---|
| 1615 | !-- Calculate prognostic equation for rain drop concentration |
---|
| 1616 | sbt = tsc(2) |
---|
| 1617 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1618 | |
---|
| 1619 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1620 | ! |
---|
| 1621 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1622 | sbt = 1.0_wp |
---|
| 1623 | ENDIF |
---|
| 1624 | tend = 0.0_wp |
---|
| 1625 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 1626 | |
---|
| 1627 | ENDIF |
---|
| 1628 | |
---|
| 1629 | ! |
---|
| 1630 | !-- nr-tendency terms with no communication |
---|
| 1631 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1632 | tend = 0.0_wp |
---|
| 1633 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1634 | IF ( ws_scheme_sca ) THEN |
---|
| 1635 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 1636 | ELSE |
---|
| 1637 | CALL advec_s_pw( nr ) |
---|
| 1638 | ENDIF |
---|
| 1639 | ELSE |
---|
| 1640 | CALL advec_s_up( nr ) |
---|
| 1641 | ENDIF |
---|
| 1642 | ENDIF |
---|
| 1643 | |
---|
| 1644 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 1645 | |
---|
| 1646 | ! |
---|
| 1647 | !-- Prognostic equation for rain drop concentration |
---|
| 1648 | DO i = nxl, nxr |
---|
| 1649 | DO j = nys, nyn |
---|
| 1650 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1651 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1652 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 1653 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 1654 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 1655 | ENDDO |
---|
| 1656 | ENDDO |
---|
| 1657 | ENDDO |
---|
| 1658 | |
---|
| 1659 | ! |
---|
| 1660 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1661 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1662 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1663 | DO i = nxl, nxr |
---|
| 1664 | DO j = nys, nyn |
---|
| 1665 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1666 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 1667 | ENDDO |
---|
| 1668 | ENDDO |
---|
| 1669 | ENDDO |
---|
| 1670 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1671 | intermediate_timestep_count_max ) THEN |
---|
| 1672 | DO i = nxl, nxr |
---|
| 1673 | DO j = nys, nyn |
---|
| 1674 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1675 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1676 | tnr_m(k,j,i) |
---|
| 1677 | ENDDO |
---|
| 1678 | ENDDO |
---|
| 1679 | ENDDO |
---|
| 1680 | ENDIF |
---|
| 1681 | ENDIF |
---|
| 1682 | |
---|
| 1683 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 1684 | |
---|
| 1685 | ENDIF |
---|
| 1686 | |
---|
| 1687 | ENDIF |
---|
| 1688 | |
---|
| 1689 | ! |
---|
| 1690 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1691 | !-- energy (TKE) |
---|
| 1692 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1693 | |
---|
| 1694 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1695 | |
---|
| 1696 | sbt = tsc(2) |
---|
| 1697 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1698 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1699 | |
---|
| 1700 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1701 | ! |
---|
| 1702 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1703 | sbt = 1.0_wp |
---|
| 1704 | ENDIF |
---|
| 1705 | tend = 0.0_wp |
---|
| 1706 | CALL advec_s_bc( e, 'e' ) |
---|
| 1707 | |
---|
| 1708 | ENDIF |
---|
| 1709 | ENDIF |
---|
| 1710 | |
---|
| 1711 | ! |
---|
| 1712 | !-- TKE-tendency terms with no communication |
---|
| 1713 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 1714 | IF ( use_upstream_for_tke ) THEN |
---|
| 1715 | tend = 0.0_wp |
---|
| 1716 | CALL advec_s_up( e ) |
---|
| 1717 | ELSE |
---|
| 1718 | tend = 0.0_wp |
---|
| 1719 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1720 | IF ( ws_scheme_sca ) THEN |
---|
| 1721 | CALL advec_s_ws( e, 'e' ) |
---|
| 1722 | ELSE |
---|
| 1723 | CALL advec_s_pw( e ) |
---|
| 1724 | ENDIF |
---|
| 1725 | ELSE |
---|
| 1726 | CALL advec_s_up( e ) |
---|
| 1727 | ENDIF |
---|
| 1728 | ENDIF |
---|
| 1729 | ENDIF |
---|
| 1730 | |
---|
| 1731 | IF ( .NOT. humidity ) THEN |
---|
| 1732 | IF ( ocean ) THEN |
---|
| 1733 | CALL diffusion_e( prho, prho_reference ) |
---|
| 1734 | ELSE |
---|
| 1735 | CALL diffusion_e( pt, pt_reference ) |
---|
| 1736 | ENDIF |
---|
| 1737 | ELSE |
---|
| 1738 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 1739 | ENDIF |
---|
| 1740 | |
---|
| 1741 | CALL production_e |
---|
| 1742 | |
---|
| 1743 | ! |
---|
| 1744 | !-- Additional sink term for flows through plant canopies |
---|
| 1745 | IF ( plant_canopy ) CALL pcm_tendency( 6 ) |
---|
| 1746 | CALL user_actions( 'e-tendency' ) |
---|
| 1747 | |
---|
| 1748 | ! |
---|
| 1749 | !-- Prognostic equation for TKE. |
---|
| 1750 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1751 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1752 | !-- value is reduced by 90%. |
---|
| 1753 | DO i = nxl, nxr |
---|
| 1754 | DO j = nys, nyn |
---|
| 1755 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1756 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1757 | tsc(3) * te_m(k,j,i) ) |
---|
| 1758 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
| 1759 | ENDDO |
---|
| 1760 | ENDDO |
---|
| 1761 | ENDDO |
---|
| 1762 | |
---|
| 1763 | ! |
---|
| 1764 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1765 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1766 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1767 | DO i = nxl, nxr |
---|
| 1768 | DO j = nys, nyn |
---|
| 1769 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1770 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1771 | ENDDO |
---|
| 1772 | ENDDO |
---|
| 1773 | ENDDO |
---|
| 1774 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1775 | intermediate_timestep_count_max ) THEN |
---|
| 1776 | DO i = nxl, nxr |
---|
| 1777 | DO j = nys, nyn |
---|
| 1778 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1779 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
| 1780 | ENDDO |
---|
| 1781 | ENDDO |
---|
| 1782 | ENDDO |
---|
| 1783 | ENDIF |
---|
| 1784 | ENDIF |
---|
| 1785 | |
---|
| 1786 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1787 | |
---|
| 1788 | ENDIF |
---|
| 1789 | |
---|
| 1790 | END SUBROUTINE prognostic_equations_vector |
---|
| 1791 | |
---|
| 1792 | |
---|
| 1793 | !------------------------------------------------------------------------------! |
---|
| 1794 | ! Description: |
---|
| 1795 | ! ------------ |
---|
| 1796 | !> Version for accelerator boards |
---|
| 1797 | !------------------------------------------------------------------------------! |
---|
| 1798 | |
---|
| 1799 | SUBROUTINE prognostic_equations_acc |
---|
| 1800 | |
---|
| 1801 | |
---|
| 1802 | IMPLICIT NONE |
---|
| 1803 | |
---|
| 1804 | INTEGER(iwp) :: i !< |
---|
| 1805 | INTEGER(iwp) :: j !< |
---|
| 1806 | INTEGER(iwp) :: k !< |
---|
| 1807 | INTEGER(iwp) :: runge_step !< |
---|
| 1808 | |
---|
| 1809 | REAL(wp) :: sbt !< |
---|
| 1810 | |
---|
| 1811 | ! |
---|
| 1812 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1813 | runge_step = 0 |
---|
| 1814 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1815 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1816 | runge_step = 1 |
---|
| 1817 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1818 | intermediate_timestep_count_max ) THEN |
---|
| 1819 | runge_step = 2 |
---|
| 1820 | ENDIF |
---|
| 1821 | ENDIF |
---|
| 1822 | |
---|
| 1823 | ! |
---|
| 1824 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 1825 | IF ( cloud_physics .AND. .NOT. microphysics_sat_adjust .AND. & |
---|
| 1826 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 1827 | call_microphysics_at_all_substeps ) & |
---|
| 1828 | ) THEN |
---|
| 1829 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 1830 | CALL microphysics_control |
---|
| 1831 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 1832 | ENDIF |
---|
| 1833 | |
---|
| 1834 | ! |
---|
| 1835 | !-- u-velocity component |
---|
| 1836 | !++ Statistics still not completely ported to accelerators |
---|
| 1837 | !$acc update device( hom, ref_state ) |
---|
| 1838 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1839 | |
---|
| 1840 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1841 | IF ( ws_scheme_mom ) THEN |
---|
| 1842 | CALL advec_u_ws_acc |
---|
| 1843 | ELSE |
---|
| 1844 | tend = 0.0_wp ! to be removed later?? |
---|
| 1845 | CALL advec_u_pw |
---|
| 1846 | ENDIF |
---|
| 1847 | ELSE |
---|
| 1848 | CALL advec_u_up |
---|
| 1849 | ENDIF |
---|
| 1850 | CALL diffusion_u_acc |
---|
| 1851 | CALL coriolis_acc( 1 ) |
---|
| 1852 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
| 1853 | CALL buoyancy( pt, 1 ) |
---|
| 1854 | ENDIF |
---|
| 1855 | |
---|
| 1856 | ! |
---|
| 1857 | !-- Drag by plant canopy |
---|
| 1858 | IF ( plant_canopy ) CALL pcm_tendency( 1 ) |
---|
| 1859 | |
---|
| 1860 | ! |
---|
| 1861 | !-- External pressure gradient |
---|
| 1862 | IF ( dp_external ) THEN |
---|
| 1863 | DO i = i_left, i_right |
---|
| 1864 | DO j = j_south, j_north |
---|
| 1865 | DO k = dp_level_ind_b+1, nzt |
---|
| 1866 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1867 | ENDDO |
---|
| 1868 | ENDDO |
---|
| 1869 | ENDDO |
---|
| 1870 | ENDIF |
---|
| 1871 | |
---|
| 1872 | ! |
---|
| 1873 | !-- Nudging |
---|
| 1874 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 1875 | |
---|
[1914] | 1876 | ! |
---|
| 1877 | !-- Forces by wind turbines |
---|
| 1878 | IF ( wind_turbine ) CALL wtm_tendencies( 1 ) |
---|
| 1879 | |
---|
[1875] | 1880 | CALL user_actions( 'u-tendency' ) |
---|
| 1881 | |
---|
| 1882 | ! |
---|
| 1883 | !-- Prognostic equation for u-velocity component |
---|
| 1884 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, u_init, u_p ) |
---|
| 1885 | !$acc loop independent |
---|
| 1886 | DO i = i_left, i_right |
---|
| 1887 | !$acc loop independent |
---|
| 1888 | DO j = j_south, j_north |
---|
| 1889 | !$acc loop independent |
---|
| 1890 | DO k = 1, nzt |
---|
| 1891 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1892 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1893 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 1894 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
| 1895 | ! |
---|
| 1896 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1897 | IF ( runge_step == 1 ) THEN |
---|
| 1898 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1899 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1900 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
| 1901 | ENDIF |
---|
| 1902 | ENDIF |
---|
| 1903 | ENDDO |
---|
| 1904 | ENDDO |
---|
| 1905 | ENDDO |
---|
| 1906 | !$acc end kernels |
---|
| 1907 | |
---|
| 1908 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1909 | |
---|
| 1910 | ! |
---|
| 1911 | !-- v-velocity component |
---|
| 1912 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1913 | |
---|
| 1914 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1915 | IF ( ws_scheme_mom ) THEN |
---|
| 1916 | CALL advec_v_ws_acc |
---|
| 1917 | ELSE |
---|
| 1918 | tend = 0.0_wp ! to be removed later?? |
---|
| 1919 | CALL advec_v_pw |
---|
| 1920 | END IF |
---|
| 1921 | ELSE |
---|
| 1922 | CALL advec_v_up |
---|
| 1923 | ENDIF |
---|
| 1924 | CALL diffusion_v_acc |
---|
| 1925 | CALL coriolis_acc( 2 ) |
---|
| 1926 | |
---|
| 1927 | ! |
---|
| 1928 | !-- Drag by plant canopy |
---|
| 1929 | IF ( plant_canopy ) CALL pcm_tendency( 2 ) |
---|
| 1930 | |
---|
| 1931 | ! |
---|
| 1932 | !-- External pressure gradient |
---|
| 1933 | IF ( dp_external ) THEN |
---|
| 1934 | DO i = i_left, i_right |
---|
| 1935 | DO j = j_south, j_north |
---|
| 1936 | DO k = dp_level_ind_b+1, nzt |
---|
| 1937 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1938 | ENDDO |
---|
| 1939 | ENDDO |
---|
| 1940 | ENDDO |
---|
| 1941 | ENDIF |
---|
| 1942 | |
---|
| 1943 | ! |
---|
| 1944 | !-- Nudging |
---|
| 1945 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1946 | |
---|
[1914] | 1947 | ! |
---|
| 1948 | !-- Forces by wind turbines |
---|
| 1949 | IF ( wind_turbine ) CALL wtm_tendencies( 2 ) |
---|
| 1950 | |
---|
[1875] | 1951 | CALL user_actions( 'v-tendency' ) |
---|
| 1952 | |
---|
| 1953 | ! |
---|
| 1954 | !-- Prognostic equation for v-velocity component |
---|
| 1955 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, v_init, v_p ) |
---|
| 1956 | !$acc loop independent |
---|
| 1957 | DO i = i_left, i_right |
---|
| 1958 | !$acc loop independent |
---|
| 1959 | DO j = j_south, j_north |
---|
| 1960 | !$acc loop independent |
---|
| 1961 | DO k = 1, nzt |
---|
| 1962 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1963 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1964 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 1965 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
| 1966 | ! |
---|
| 1967 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1968 | IF ( runge_step == 1 ) THEN |
---|
| 1969 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1970 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1971 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
| 1972 | ENDIF |
---|
| 1973 | ENDIF |
---|
| 1974 | ENDDO |
---|
| 1975 | ENDDO |
---|
| 1976 | ENDDO |
---|
| 1977 | !$acc end kernels |
---|
| 1978 | |
---|
| 1979 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1980 | |
---|
| 1981 | ! |
---|
| 1982 | !-- w-velocity component |
---|
| 1983 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1984 | |
---|
| 1985 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1986 | IF ( ws_scheme_mom ) THEN |
---|
| 1987 | CALL advec_w_ws_acc |
---|
| 1988 | ELSE |
---|
| 1989 | tend = 0.0_wp ! to be removed later?? |
---|
| 1990 | CALL advec_w_pw |
---|
| 1991 | ENDIF |
---|
| 1992 | ELSE |
---|
| 1993 | CALL advec_w_up |
---|
| 1994 | ENDIF |
---|
| 1995 | CALL diffusion_w_acc |
---|
| 1996 | CALL coriolis_acc( 3 ) |
---|
| 1997 | |
---|
| 1998 | IF ( .NOT. neutral ) THEN |
---|
| 1999 | IF ( ocean ) THEN |
---|
| 2000 | CALL buoyancy( rho, 3 ) |
---|
| 2001 | ELSE |
---|
| 2002 | IF ( .NOT. humidity ) THEN |
---|
| 2003 | CALL buoyancy_acc( pt, 3 ) |
---|
| 2004 | ELSE |
---|
| 2005 | CALL buoyancy( vpt, 3 ) |
---|
| 2006 | ENDIF |
---|
| 2007 | ENDIF |
---|
| 2008 | ENDIF |
---|
| 2009 | |
---|
| 2010 | ! |
---|
| 2011 | !-- Drag by plant canopy |
---|
| 2012 | IF ( plant_canopy ) CALL pcm_tendency( 3 ) |
---|
| 2013 | |
---|
[1914] | 2014 | ! |
---|
| 2015 | !-- Forces by wind turbines |
---|
| 2016 | IF ( wind_turbine ) CALL wtm_tendencies( 3 ) |
---|
| 2017 | |
---|
[1875] | 2018 | CALL user_actions( 'w-tendency' ) |
---|
| 2019 | |
---|
| 2020 | ! |
---|
| 2021 | !-- Prognostic equation for w-velocity component |
---|
| 2022 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
| 2023 | !$acc loop independent |
---|
| 2024 | DO i = i_left, i_right |
---|
| 2025 | !$acc loop independent |
---|
| 2026 | DO j = j_south, j_north |
---|
| 2027 | !$acc loop independent |
---|
| 2028 | DO k = 1, nzt-1 |
---|
| 2029 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 2030 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 2031 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 2032 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 2033 | ! |
---|
| 2034 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2035 | IF ( runge_step == 1 ) THEN |
---|
| 2036 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 2037 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2038 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
| 2039 | ENDIF |
---|
| 2040 | ENDIF |
---|
| 2041 | ENDDO |
---|
| 2042 | ENDDO |
---|
| 2043 | ENDDO |
---|
| 2044 | !$acc end kernels |
---|
| 2045 | |
---|
| 2046 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 2047 | |
---|
| 2048 | |
---|
| 2049 | ! |
---|
| 2050 | !-- If required, compute prognostic equation for potential temperature |
---|
| 2051 | IF ( .NOT. neutral ) THEN |
---|
| 2052 | |
---|
| 2053 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 2054 | |
---|
| 2055 | ! |
---|
| 2056 | !-- pt-tendency terms with communication |
---|
| 2057 | sbt = tsc(2) |
---|
| 2058 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2059 | |
---|
| 2060 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2061 | ! |
---|
| 2062 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2063 | sbt = 1.0_wp |
---|
| 2064 | ENDIF |
---|
| 2065 | tend = 0.0_wp |
---|
| 2066 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 2067 | |
---|
| 2068 | ENDIF |
---|
| 2069 | |
---|
| 2070 | ! |
---|
| 2071 | !-- pt-tendency terms with no communication |
---|
| 2072 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2073 | tend = 0.0_wp |
---|
| 2074 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2075 | IF ( ws_scheme_sca ) THEN |
---|
| 2076 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 2077 | ELSE |
---|
| 2078 | tend = 0.0_wp ! to be removed later?? |
---|
| 2079 | CALL advec_s_pw( pt ) |
---|
| 2080 | ENDIF |
---|
| 2081 | ELSE |
---|
| 2082 | CALL advec_s_up( pt ) |
---|
| 2083 | ENDIF |
---|
| 2084 | ENDIF |
---|
| 2085 | |
---|
| 2086 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 2087 | |
---|
| 2088 | ! |
---|
| 2089 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 2090 | IF ( cloud_top_radiation ) THEN |
---|
| 2091 | CALL calc_radiation |
---|
| 2092 | ENDIF |
---|
| 2093 | |
---|
| 2094 | ! |
---|
| 2095 | !-- Consideration of heat sources within the plant canopy |
---|
| 2096 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
| 2097 | CALL pcm_tendency( 4 ) |
---|
| 2098 | ENDIF |
---|
| 2099 | |
---|
| 2100 | ! |
---|
| 2101 | !-- Large scale advection |
---|
| 2102 | IF ( large_scale_forcing ) THEN |
---|
| 2103 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 2104 | ENDIF |
---|
| 2105 | |
---|
| 2106 | ! |
---|
| 2107 | !-- Nudging |
---|
| 2108 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 2109 | |
---|
| 2110 | ! |
---|
| 2111 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 2112 | IF ( large_scale_subsidence .AND. & |
---|
| 2113 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2114 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
| 2115 | ENDIF |
---|
| 2116 | |
---|
| 2117 | IF ( radiation .AND. radiation_scheme == 'rrtmg' .AND. & |
---|
| 2118 | simulated_time > skip_time_do_radiation ) THEN |
---|
| 2119 | CALL radiation_tendency ( tend ) |
---|
| 2120 | ENDIF |
---|
| 2121 | |
---|
| 2122 | CALL user_actions( 'pt-tendency' ) |
---|
| 2123 | |
---|
| 2124 | ! |
---|
| 2125 | !-- Prognostic equation for potential temperature |
---|
| 2126 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 2127 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
| 2128 | !$acc loop independent |
---|
| 2129 | DO i = i_left, i_right |
---|
| 2130 | !$acc loop independent |
---|
| 2131 | DO j = j_south, j_north |
---|
| 2132 | !$acc loop independent |
---|
| 2133 | DO k = 1, nzt |
---|
| 2134 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2135 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2136 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 2137 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 2138 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 2139 | ! |
---|
| 2140 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2141 | IF ( runge_step == 1 ) THEN |
---|
| 2142 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 2143 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2144 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tpt_m(k,j,i) |
---|
| 2145 | ENDIF |
---|
| 2146 | ENDIF |
---|
| 2147 | ENDDO |
---|
| 2148 | ENDDO |
---|
| 2149 | ENDDO |
---|
| 2150 | !$acc end kernels |
---|
| 2151 | |
---|
| 2152 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 2153 | |
---|
| 2154 | ENDIF |
---|
| 2155 | |
---|
| 2156 | ! |
---|
| 2157 | !-- If required, compute prognostic equation for salinity |
---|
| 2158 | IF ( ocean ) THEN |
---|
| 2159 | |
---|
| 2160 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 2161 | |
---|
| 2162 | ! |
---|
| 2163 | !-- sa-tendency terms with communication |
---|
| 2164 | sbt = tsc(2) |
---|
| 2165 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2166 | |
---|
| 2167 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2168 | ! |
---|
| 2169 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2170 | sbt = 1.0_wp |
---|
| 2171 | ENDIF |
---|
| 2172 | tend = 0.0_wp |
---|
| 2173 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 2174 | |
---|
| 2175 | ENDIF |
---|
| 2176 | |
---|
| 2177 | ! |
---|
| 2178 | !-- sa-tendency terms with no communication |
---|
| 2179 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2180 | tend = 0.0_wp |
---|
| 2181 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2182 | IF ( ws_scheme_sca ) THEN |
---|
| 2183 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 2184 | ELSE |
---|
| 2185 | CALL advec_s_pw( sa ) |
---|
| 2186 | ENDIF |
---|
| 2187 | ELSE |
---|
| 2188 | CALL advec_s_up( sa ) |
---|
| 2189 | ENDIF |
---|
| 2190 | ENDIF |
---|
| 2191 | |
---|
| 2192 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 2193 | |
---|
| 2194 | CALL user_actions( 'sa-tendency' ) |
---|
| 2195 | |
---|
| 2196 | ! |
---|
| 2197 | !-- Prognostic equation for salinity |
---|
| 2198 | DO i = i_left, i_right |
---|
| 2199 | DO j = j_south, j_north |
---|
| 2200 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2201 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2202 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 2203 | - tsc(5) * rdf_sc(k) * & |
---|
| 2204 | ( sa(k,j,i) - sa_init(k) ) |
---|
| 2205 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
| 2206 | ! |
---|
| 2207 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2208 | IF ( runge_step == 1 ) THEN |
---|
| 2209 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 2210 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2211 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tsa_m(k,j,i) |
---|
| 2212 | ENDIF |
---|
| 2213 | ENDDO |
---|
| 2214 | ENDDO |
---|
| 2215 | ENDDO |
---|
| 2216 | |
---|
| 2217 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 2218 | |
---|
| 2219 | ! |
---|
| 2220 | !-- Calculate density by the equation of state for seawater |
---|
| 2221 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 2222 | CALL eqn_state_seawater |
---|
| 2223 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 2224 | |
---|
| 2225 | ENDIF |
---|
| 2226 | |
---|
| 2227 | ! |
---|
| 2228 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 2229 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 2230 | |
---|
| 2231 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 2232 | |
---|
| 2233 | ! |
---|
| 2234 | !-- Scalar/q-tendency terms with communication |
---|
| 2235 | sbt = tsc(2) |
---|
| 2236 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2237 | |
---|
| 2238 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2239 | ! |
---|
| 2240 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2241 | sbt = 1.0_wp |
---|
| 2242 | ENDIF |
---|
| 2243 | tend = 0.0_wp |
---|
| 2244 | CALL advec_s_bc( q, 'q' ) |
---|
| 2245 | |
---|
| 2246 | ENDIF |
---|
| 2247 | |
---|
| 2248 | ! |
---|
| 2249 | !-- Scalar/q-tendency terms with no communication |
---|
| 2250 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2251 | tend = 0.0_wp |
---|
| 2252 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2253 | IF ( ws_scheme_sca ) THEN |
---|
| 2254 | CALL advec_s_ws( q, 'q' ) |
---|
| 2255 | ELSE |
---|
| 2256 | CALL advec_s_pw( q ) |
---|
| 2257 | ENDIF |
---|
| 2258 | ELSE |
---|
| 2259 | CALL advec_s_up( q ) |
---|
| 2260 | ENDIF |
---|
| 2261 | ENDIF |
---|
| 2262 | |
---|
| 2263 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 2264 | |
---|
| 2265 | ! |
---|
| 2266 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 2267 | IF ( plant_canopy ) CALL pcm_tendency( 5 ) |
---|
| 2268 | |
---|
| 2269 | ! |
---|
| 2270 | !-- Large scale advection |
---|
| 2271 | IF ( large_scale_forcing ) THEN |
---|
| 2272 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 2273 | ENDIF |
---|
| 2274 | |
---|
| 2275 | ! |
---|
| 2276 | !-- Nudging |
---|
| 2277 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 2278 | |
---|
| 2279 | ! |
---|
| 2280 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 2281 | IF ( large_scale_subsidence .AND. & |
---|
| 2282 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2283 | CALL subsidence( tend, q, q_init, 3 ) |
---|
| 2284 | ENDIF |
---|
| 2285 | |
---|
| 2286 | CALL user_actions( 'q-tendency' ) |
---|
| 2287 | |
---|
| 2288 | ! |
---|
| 2289 | !-- Prognostic equation for total water content / scalar |
---|
| 2290 | DO i = i_left, i_right |
---|
| 2291 | DO j = j_south, j_north |
---|
| 2292 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2293 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2294 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 2295 | - tsc(5) * rdf_sc(k) * & |
---|
| 2296 | ( q(k,j,i) - q_init(k) ) |
---|
| 2297 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
| 2298 | ! |
---|
| 2299 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2300 | IF ( runge_step == 1 ) THEN |
---|
| 2301 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 2302 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2303 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
| 2304 | ENDIF |
---|
| 2305 | ENDDO |
---|
| 2306 | ENDDO |
---|
| 2307 | ENDDO |
---|
| 2308 | |
---|
| 2309 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 2310 | |
---|
| 2311 | ! |
---|
| 2312 | !-- If required, calculate prognostic equations for rain water content |
---|
| 2313 | !-- and rain drop concentration |
---|
| 2314 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
| 2315 | |
---|
| 2316 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 2317 | ! |
---|
| 2318 | !-- qr-tendency terms with communication |
---|
| 2319 | sbt = tsc(2) |
---|
| 2320 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2321 | |
---|
| 2322 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2323 | ! |
---|
| 2324 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2325 | sbt = 1.0_wp |
---|
| 2326 | ENDIF |
---|
| 2327 | tend = 0.0_wp |
---|
| 2328 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 2329 | |
---|
| 2330 | ENDIF |
---|
| 2331 | |
---|
| 2332 | ! |
---|
| 2333 | !-- qr-tendency terms with no communication |
---|
| 2334 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2335 | tend = 0.0_wp |
---|
| 2336 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2337 | IF ( ws_scheme_sca ) THEN |
---|
| 2338 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 2339 | ELSE |
---|
| 2340 | CALL advec_s_pw( qr ) |
---|
| 2341 | ENDIF |
---|
| 2342 | ELSE |
---|
| 2343 | CALL advec_s_up( qr ) |
---|
| 2344 | ENDIF |
---|
| 2345 | ENDIF |
---|
| 2346 | |
---|
| 2347 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 2348 | |
---|
| 2349 | ! |
---|
| 2350 | !-- Prognostic equation for rain water content |
---|
| 2351 | DO i = i_left, i_right |
---|
| 2352 | DO j = j_south, j_north |
---|
| 2353 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2354 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2355 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 2356 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 2357 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 2358 | ! |
---|
| 2359 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2360 | IF ( runge_step == 1 ) THEN |
---|
| 2361 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 2362 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2363 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2364 | tqr_m(k,j,i) |
---|
| 2365 | ENDIF |
---|
| 2366 | ENDDO |
---|
| 2367 | ENDDO |
---|
| 2368 | ENDDO |
---|
| 2369 | |
---|
| 2370 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 2371 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 2372 | |
---|
| 2373 | ! |
---|
| 2374 | !-- nr-tendency terms with communication |
---|
| 2375 | sbt = tsc(2) |
---|
| 2376 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2377 | |
---|
| 2378 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2379 | ! |
---|
| 2380 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2381 | sbt = 1.0_wp |
---|
| 2382 | ENDIF |
---|
| 2383 | tend = 0.0_wp |
---|
| 2384 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 2385 | |
---|
| 2386 | ENDIF |
---|
| 2387 | |
---|
| 2388 | ! |
---|
| 2389 | !-- nr-tendency terms with no communication |
---|
| 2390 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2391 | tend = 0.0_wp |
---|
| 2392 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2393 | IF ( ws_scheme_sca ) THEN |
---|
| 2394 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 2395 | ELSE |
---|
| 2396 | CALL advec_s_pw( nr ) |
---|
| 2397 | ENDIF |
---|
| 2398 | ELSE |
---|
| 2399 | CALL advec_s_up( nr ) |
---|
| 2400 | ENDIF |
---|
| 2401 | ENDIF |
---|
| 2402 | |
---|
| 2403 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 2404 | |
---|
| 2405 | ! |
---|
| 2406 | !-- Prognostic equation for rain drop concentration |
---|
| 2407 | DO i = i_left, i_right |
---|
| 2408 | DO j = j_south, j_north |
---|
| 2409 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2410 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2411 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 2412 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 2413 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 2414 | ! |
---|
| 2415 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2416 | IF ( runge_step == 1 ) THEN |
---|
| 2417 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 2418 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2419 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2420 | tnr_m(k,j,i) |
---|
| 2421 | ENDIF |
---|
| 2422 | ENDDO |
---|
| 2423 | ENDDO |
---|
| 2424 | ENDDO |
---|
| 2425 | |
---|
| 2426 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 2427 | |
---|
| 2428 | ENDIF |
---|
| 2429 | |
---|
| 2430 | ENDIF |
---|
| 2431 | |
---|
| 2432 | ! |
---|
| 2433 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 2434 | !-- energy (TKE) |
---|
| 2435 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 2436 | |
---|
| 2437 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 2438 | |
---|
| 2439 | sbt = tsc(2) |
---|
| 2440 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 2441 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2442 | |
---|
| 2443 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2444 | ! |
---|
| 2445 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2446 | sbt = 1.0_wp |
---|
| 2447 | ENDIF |
---|
| 2448 | tend = 0.0_wp |
---|
| 2449 | CALL advec_s_bc( e, 'e' ) |
---|
| 2450 | |
---|
| 2451 | ENDIF |
---|
| 2452 | ENDIF |
---|
| 2453 | |
---|
| 2454 | ! |
---|
| 2455 | !-- TKE-tendency terms with no communication |
---|
| 2456 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 2457 | IF ( use_upstream_for_tke ) THEN |
---|
| 2458 | tend = 0.0_wp |
---|
| 2459 | CALL advec_s_up( e ) |
---|
| 2460 | ELSE |
---|
| 2461 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2462 | IF ( ws_scheme_sca ) THEN |
---|
| 2463 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 2464 | ELSE |
---|
| 2465 | tend = 0.0_wp ! to be removed later?? |
---|
| 2466 | CALL advec_s_pw( e ) |
---|
| 2467 | ENDIF |
---|
| 2468 | ELSE |
---|
| 2469 | tend = 0.0_wp ! to be removed later?? |
---|
| 2470 | CALL advec_s_up( e ) |
---|
| 2471 | ENDIF |
---|
| 2472 | ENDIF |
---|
| 2473 | ENDIF |
---|
| 2474 | |
---|
| 2475 | IF ( .NOT. humidity ) THEN |
---|
| 2476 | IF ( ocean ) THEN |
---|
| 2477 | CALL diffusion_e( prho, prho_reference ) |
---|
| 2478 | ELSE |
---|
| 2479 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 2480 | ENDIF |
---|
| 2481 | ELSE |
---|
| 2482 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 2483 | ENDIF |
---|
| 2484 | |
---|
| 2485 | CALL production_e_acc |
---|
| 2486 | |
---|
| 2487 | ! |
---|
| 2488 | !-- Additional sink term for flows through plant canopies |
---|
| 2489 | IF ( plant_canopy ) CALL pcm_tendency( 6 ) |
---|
| 2490 | CALL user_actions( 'e-tendency' ) |
---|
| 2491 | |
---|
| 2492 | ! |
---|
| 2493 | !-- Prognostic equation for TKE. |
---|
| 2494 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2495 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2496 | !-- value is reduced by 90%. |
---|
| 2497 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
| 2498 | !$acc loop independent |
---|
| 2499 | DO i = i_left, i_right |
---|
| 2500 | !$acc loop independent |
---|
| 2501 | DO j = j_south, j_north |
---|
| 2502 | !$acc loop independent |
---|
| 2503 | DO k = 1, nzt |
---|
| 2504 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2505 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2506 | tsc(3) * te_m(k,j,i) ) |
---|
| 2507 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
| 2508 | ! |
---|
| 2509 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2510 | IF ( runge_step == 1 ) THEN |
---|
| 2511 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2512 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2513 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
| 2514 | ENDIF |
---|
| 2515 | ENDIF |
---|
| 2516 | ENDDO |
---|
| 2517 | ENDDO |
---|
| 2518 | ENDDO |
---|
| 2519 | !$acc end kernels |
---|
| 2520 | |
---|
| 2521 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2522 | |
---|
| 2523 | ENDIF |
---|
| 2524 | |
---|
| 2525 | END SUBROUTINE prognostic_equations_acc |
---|
| 2526 | |
---|
| 2527 | |
---|
| 2528 | END MODULE prognostic_equations_mod |
---|