[1691] | 1 | !> @file prognostic_equations.f90 |
---|
[1036] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1818] | 16 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
[1036] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
[736] | 19 | ! Current revisions: |
---|
[1092] | 20 | ! ------------------ |
---|
[1827] | 21 | ! |
---|
| 22 | ! |
---|
[1485] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: prognostic_equations.f90 1827 2016-04-07 12:12:23Z raasch $ |
---|
| 26 | ! |
---|
[1827] | 27 | ! 1826 2016-04-07 12:01:39Z maronga |
---|
| 28 | ! Renamed canopy model calls. |
---|
| 29 | ! |
---|
[1823] | 30 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
| 31 | ! Kessler microphysics scheme moved to microphysics. |
---|
| 32 | ! |
---|
[1822] | 33 | ! 1757 2016-02-22 15:49:32Z maronga |
---|
[1758] | 34 | ! |
---|
| 35 | ! |
---|
[1757] | 36 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
[1692] | 37 | ! Added optional model spin-up without radiation / land surface model calls. |
---|
| 38 | ! Formatting corrections. |
---|
| 39 | ! |
---|
[1691] | 40 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 41 | ! Code annotations made doxygen readable |
---|
| 42 | ! |
---|
| 43 | ! 1585 2015-04-30 07:05:52Z maronga |
---|
[1586] | 44 | ! Added call for temperature tendency calculation due to radiative flux divergence |
---|
| 45 | ! |
---|
[1518] | 46 | ! 1517 2015-01-07 19:12:25Z hoffmann |
---|
| 47 | ! advec_s_bc_mod addded, since advec_s_bc is now a module |
---|
| 48 | ! |
---|
[1517] | 49 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
[1497] | 50 | ! Renamed "radiation" -> "cloud_top_radiation" |
---|
| 51 | ! |
---|
[1496] | 52 | ! 1484 2014-10-21 10:53:05Z kanani |
---|
[1484] | 53 | ! Changes due to new module structure of the plant canopy model: |
---|
| 54 | ! parameters cthf and plant_canopy moved to module plant_canopy_model_mod. |
---|
| 55 | ! Removed double-listing of use_upstream_for_tke in ONLY-list of module |
---|
| 56 | ! control_parameters |
---|
| 57 | ! |
---|
| 58 | ! 1409 2014-05-23 12:11:32Z suehring |
---|
[1409] | 59 | ! Bugfix: i_omp_start changed for advec_u_ws at left inflow and outflow boundary. |
---|
| 60 | ! This ensures that left-hand side fluxes are also calculated for nxl in that |
---|
| 61 | ! case, even though the solution at nxl is overwritten in boundary_conds() |
---|
| 62 | ! |
---|
| 63 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
[1398] | 64 | ! Rayleigh-damping for horizontal velocity components changed: instead of damping |
---|
| 65 | ! against ug and vg, damping against u_init and v_init is used to allow for a |
---|
| 66 | ! homogenized treatment in case of nudging |
---|
| 67 | ! |
---|
| 68 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
[1381] | 69 | ! Change order of calls for scalar prognostic quantities: |
---|
| 70 | ! ls_advec -> nudging -> subsidence since initial profiles |
---|
| 71 | ! |
---|
[1380] | 72 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 73 | ! missing variables added to ONLY lists |
---|
| 74 | ! |
---|
| 75 | ! 1365 2014-04-22 15:03:56Z boeske |
---|
[1365] | 76 | ! Calls of ls_advec for large scale advection added, |
---|
| 77 | ! subroutine subsidence is only called if use_subsidence_tendencies = .F., |
---|
| 78 | ! new argument ls_index added to the calls of subsidence |
---|
| 79 | ! +ls_index |
---|
| 80 | ! |
---|
| 81 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
[1361] | 82 | ! Two-moment microphysics moved to the start of prognostic equations. This makes |
---|
| 83 | ! the 3d arrays for tend_q, tend_qr, tend_pt and tend_pt redundant. |
---|
| 84 | ! Additionally, it is allowed to call the microphysics just once during the time |
---|
| 85 | ! step (not at each sub-time step). |
---|
| 86 | ! |
---|
| 87 | ! Two-moment cloud physics added for vector and accelerator optimization. |
---|
| 88 | ! |
---|
| 89 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
[1354] | 90 | ! REAL constants provided with KIND-attribute |
---|
| 91 | ! |
---|
[1353] | 92 | ! 1337 2014-03-25 15:11:48Z heinze |
---|
| 93 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 94 | ! |
---|
| 95 | ! 1332 2014-03-25 11:59:43Z suehring |
---|
[1333] | 96 | ! Bugfix: call advec_ws or advec_pw for TKE only if NOT use_upstream_for_tke |
---|
| 97 | ! |
---|
[1332] | 98 | ! 1330 2014-03-24 17:29:32Z suehring |
---|
[1331] | 99 | ! In case of SGS-particle velocity advection of TKE is also allowed with |
---|
| 100 | ! dissipative 5th-order scheme. |
---|
| 101 | ! |
---|
[1321] | 102 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 103 | ! ONLY-attribute added to USE-statements, |
---|
| 104 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 105 | ! kinds are defined in new module kinds, |
---|
| 106 | ! old module precision_kind is removed, |
---|
| 107 | ! revision history before 2012 removed, |
---|
| 108 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 109 | ! all variable declaration statements |
---|
[1054] | 110 | ! |
---|
[1319] | 111 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 112 | ! module interfaces removed |
---|
| 113 | ! |
---|
[1258] | 114 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 115 | ! openacc loop vector clauses removed, independent clauses added |
---|
| 116 | ! |
---|
[1247] | 117 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
| 118 | ! enable nudging also for accelerator version |
---|
| 119 | ! |
---|
[1242] | 120 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 121 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
| 122 | ! |
---|
[1182] | 123 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 124 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 125 | ! |
---|
[1132] | 126 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 127 | ! those parts requiring global communication moved to time_integration, |
---|
| 128 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 129 | ! j_north |
---|
| 130 | ! |
---|
[1116] | 131 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 132 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 133 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 134 | ! |
---|
[1112] | 135 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 136 | ! update directives for prognostic quantities removed |
---|
| 137 | ! |
---|
[1107] | 138 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 139 | ! small changes in code formatting |
---|
| 140 | ! |
---|
[1093] | 141 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 142 | ! unused variables removed |
---|
| 143 | ! |
---|
[1054] | 144 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 145 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 146 | ! and rain water content (qr) |
---|
[979] | 147 | ! |
---|
[1053] | 148 | ! currently, only available for cache loop optimization |
---|
[1020] | 149 | ! |
---|
[1037] | 150 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 151 | ! code put under GPL (PALM 3.9) |
---|
| 152 | ! |
---|
[1020] | 153 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 154 | ! non-optimized version of prognostic_equations removed |
---|
| 155 | ! |
---|
[1017] | 156 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 157 | ! new branch prognostic_equations_acc |
---|
| 158 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 159 | ! |
---|
[1002] | 160 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 161 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 162 | ! |
---|
[979] | 163 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 164 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 165 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 166 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 167 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 168 | ! |
---|
[941] | 169 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 170 | ! temperature equation can be switched off |
---|
| 171 | ! |
---|
[736] | 172 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 173 | ! Initial revision |
---|
| 174 | ! |
---|
| 175 | ! |
---|
| 176 | ! Description: |
---|
| 177 | ! ------------ |
---|
[1682] | 178 | !> Solving the prognostic equations. |
---|
[736] | 179 | !------------------------------------------------------------------------------! |
---|
[1682] | 180 | MODULE prognostic_equations_mod |
---|
[736] | 181 | |
---|
[1691] | 182 | |
---|
[1682] | 183 | |
---|
[1320] | 184 | USE arrays_3d, & |
---|
| 185 | ONLY: diss_l_e, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qr, & |
---|
| 186 | diss_l_sa, diss_s_e, diss_s_nr, diss_s_pt, diss_s_q, & |
---|
| 187 | diss_s_qr, diss_s_sa, e, e_p, flux_s_e, flux_s_nr, flux_s_pt, & |
---|
| 188 | flux_s_q, flux_s_qr, flux_s_sa, flux_l_e, flux_l_nr, & |
---|
| 189 | flux_l_pt, flux_l_q, flux_l_qr, flux_l_sa, nr, nr_p, nrsws, & |
---|
| 190 | nrswst, pt, ptdf_x, ptdf_y, pt_init, pt_p, prho, q, q_init, & |
---|
[1374] | 191 | q_p, qsws, qswst, qr, qr_p, qrsws, qrswst, rdf, rdf_sc, & |
---|
| 192 | ref_state, rho, sa, sa_init, sa_p, saswsb, saswst, shf, tend, & |
---|
| 193 | te_m, tnr_m, tpt_m, tq_m, tqr_m, tsa_m, tswst, tu_m, tv_m, & |
---|
[1398] | 194 | tw_m, u, ug, u_init, u_p, v, vg, vpt, v_init, v_p, w, w_p |
---|
[1320] | 195 | |
---|
| 196 | USE control_parameters, & |
---|
[1361] | 197 | ONLY: call_microphysics_at_all_substeps, cloud_physics, & |
---|
[1822] | 198 | cloud_top_radiation, constant_diffusion, dp_external, & |
---|
[1320] | 199 | dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, humidity, & |
---|
[1822] | 200 | inflow_l, intermediate_timestep_count, & |
---|
[1365] | 201 | intermediate_timestep_count_max, large_scale_forcing, & |
---|
[1822] | 202 | large_scale_subsidence, microphysics_seifert, & |
---|
| 203 | microphysics_sat_adjust, neutral, nudging, ocean, outflow_l, & |
---|
| 204 | outflow_s, passive_scalar, prho_reference, prho_reference, & |
---|
| 205 | prho_reference, pt_reference, pt_reference, pt_reference, & |
---|
| 206 | scalar_advec, scalar_advec, simulated_time, sloping_surface, & |
---|
[1496] | 207 | timestep_scheme, tsc, use_subsidence_tendencies, & |
---|
| 208 | use_upstream_for_tke, wall_heatflux, & |
---|
[1320] | 209 | wall_nrflux, wall_qflux, wall_qflux, wall_qflux, wall_qrflux, & |
---|
| 210 | wall_salinityflux, ws_scheme_mom, ws_scheme_sca |
---|
[736] | 211 | |
---|
[1320] | 212 | USE cpulog, & |
---|
| 213 | ONLY: cpu_log, log_point |
---|
[736] | 214 | |
---|
[1320] | 215 | USE eqn_state_seawater_mod, & |
---|
| 216 | ONLY: eqn_state_seawater |
---|
| 217 | |
---|
| 218 | USE indices, & |
---|
| 219 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlu, nxr, nyn, nys, & |
---|
| 220 | nysv, nzb_s_inner, nzb_u_inner, nzb_v_inner, nzb_w_inner, nzt |
---|
| 221 | |
---|
| 222 | USE advec_ws, & |
---|
| 223 | ONLY: advec_s_ws, advec_s_ws_acc, advec_u_ws, advec_u_ws_acc, & |
---|
| 224 | advec_v_ws, advec_v_ws_acc, advec_w_ws, advec_w_ws_acc |
---|
| 225 | |
---|
[1517] | 226 | USE advec_s_bc_mod, & |
---|
| 227 | ONLY: advec_s_bc |
---|
| 228 | |
---|
[1320] | 229 | USE advec_s_pw_mod, & |
---|
| 230 | ONLY: advec_s_pw |
---|
| 231 | |
---|
| 232 | USE advec_s_up_mod, & |
---|
| 233 | ONLY: advec_s_up |
---|
| 234 | |
---|
| 235 | USE advec_u_pw_mod, & |
---|
| 236 | ONLY: advec_u_pw |
---|
| 237 | |
---|
| 238 | USE advec_u_up_mod, & |
---|
| 239 | ONLY: advec_u_up |
---|
| 240 | |
---|
| 241 | USE advec_v_pw_mod, & |
---|
| 242 | ONLY: advec_v_pw |
---|
| 243 | |
---|
| 244 | USE advec_v_up_mod, & |
---|
| 245 | ONLY: advec_v_up |
---|
| 246 | |
---|
| 247 | USE advec_w_pw_mod, & |
---|
| 248 | ONLY: advec_w_pw |
---|
| 249 | |
---|
| 250 | USE advec_w_up_mod, & |
---|
| 251 | ONLY: advec_w_up |
---|
| 252 | |
---|
| 253 | USE buoyancy_mod, & |
---|
| 254 | ONLY: buoyancy, buoyancy_acc |
---|
| 255 | |
---|
| 256 | USE calc_radiation_mod, & |
---|
| 257 | ONLY: calc_radiation |
---|
| 258 | |
---|
| 259 | USE coriolis_mod, & |
---|
| 260 | ONLY: coriolis, coriolis_acc |
---|
| 261 | |
---|
| 262 | USE diffusion_e_mod, & |
---|
| 263 | ONLY: diffusion_e, diffusion_e_acc |
---|
| 264 | |
---|
| 265 | USE diffusion_s_mod, & |
---|
| 266 | ONLY: diffusion_s, diffusion_s_acc |
---|
| 267 | |
---|
| 268 | USE diffusion_u_mod, & |
---|
| 269 | ONLY: diffusion_u, diffusion_u_acc |
---|
| 270 | |
---|
| 271 | USE diffusion_v_mod, & |
---|
| 272 | ONLY: diffusion_v, diffusion_v_acc |
---|
| 273 | |
---|
| 274 | USE diffusion_w_mod, & |
---|
| 275 | ONLY: diffusion_w, diffusion_w_acc |
---|
| 276 | |
---|
| 277 | USE kinds |
---|
| 278 | |
---|
[1365] | 279 | USE ls_forcing_mod, & |
---|
| 280 | ONLY: ls_advec |
---|
| 281 | |
---|
[1320] | 282 | USE microphysics_mod, & |
---|
| 283 | ONLY: microphysics_control |
---|
| 284 | |
---|
| 285 | USE nudge_mod, & |
---|
| 286 | ONLY: nudge |
---|
| 287 | |
---|
| 288 | USE plant_canopy_model_mod, & |
---|
[1826] | 289 | ONLY: cthf, plant_canopy, pcm_tendency |
---|
[1320] | 290 | |
---|
| 291 | USE production_e_mod, & |
---|
| 292 | ONLY: production_e, production_e_acc |
---|
| 293 | |
---|
[1585] | 294 | USE radiation_model_mod, & |
---|
[1691] | 295 | ONLY: radiation, radiation_scheme, radiation_tendency, & |
---|
| 296 | skip_time_do_radiation |
---|
[1585] | 297 | |
---|
[1374] | 298 | USE statistics, & |
---|
| 299 | ONLY: hom |
---|
| 300 | |
---|
[1320] | 301 | USE subsidence_mod, & |
---|
| 302 | ONLY: subsidence |
---|
| 303 | |
---|
| 304 | USE user_actions_mod, & |
---|
| 305 | ONLY: user_actions |
---|
| 306 | |
---|
| 307 | |
---|
[736] | 308 | PRIVATE |
---|
[1019] | 309 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 310 | prognostic_equations_acc |
---|
[736] | 311 | |
---|
| 312 | INTERFACE prognostic_equations_cache |
---|
| 313 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 314 | END INTERFACE prognostic_equations_cache |
---|
| 315 | |
---|
| 316 | INTERFACE prognostic_equations_vector |
---|
| 317 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 318 | END INTERFACE prognostic_equations_vector |
---|
| 319 | |
---|
[1015] | 320 | INTERFACE prognostic_equations_acc |
---|
| 321 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 322 | END INTERFACE prognostic_equations_acc |
---|
[736] | 323 | |
---|
[1015] | 324 | |
---|
[736] | 325 | CONTAINS |
---|
| 326 | |
---|
| 327 | |
---|
| 328 | !------------------------------------------------------------------------------! |
---|
[1691] | 329 | ! Description: |
---|
| 330 | ! ------------ |
---|
[1682] | 331 | !> Version with one optimized loop over all equations. It is only allowed to |
---|
| 332 | !> be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 333 | !> |
---|
| 334 | !> Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 335 | !> so communication between CPUs is not allowed (does not make sense) within |
---|
| 336 | !> these loops. |
---|
| 337 | !> |
---|
| 338 | !> (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
[736] | 339 | !------------------------------------------------------------------------------! |
---|
[1691] | 340 | |
---|
[1682] | 341 | SUBROUTINE prognostic_equations_cache |
---|
[736] | 342 | |
---|
[1682] | 343 | |
---|
[736] | 344 | IMPLICIT NONE |
---|
| 345 | |
---|
[1682] | 346 | INTEGER(iwp) :: i !< |
---|
| 347 | INTEGER(iwp) :: i_omp_start !< |
---|
| 348 | INTEGER(iwp) :: j !< |
---|
| 349 | INTEGER(iwp) :: k !< |
---|
| 350 | INTEGER(iwp) :: omp_get_thread_num !< |
---|
| 351 | INTEGER(iwp) :: tn = 0 !< |
---|
[1320] | 352 | |
---|
[1682] | 353 | LOGICAL :: loop_start !< |
---|
[736] | 354 | |
---|
| 355 | |
---|
| 356 | ! |
---|
| 357 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 358 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 359 | |
---|
| 360 | ! |
---|
| 361 | !-- Loop over all prognostic equations |
---|
| 362 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 363 | |
---|
| 364 | !$ tn = omp_get_thread_num() |
---|
| 365 | loop_start = .TRUE. |
---|
| 366 | !$OMP DO |
---|
| 367 | DO i = nxl, nxr |
---|
| 368 | |
---|
| 369 | ! |
---|
| 370 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 371 | !-- later in advec_ws |
---|
| 372 | IF ( loop_start ) THEN |
---|
| 373 | loop_start = .FALSE. |
---|
| 374 | i_omp_start = i |
---|
| 375 | ENDIF |
---|
[1365] | 376 | |
---|
[736] | 377 | DO j = nys, nyn |
---|
| 378 | ! |
---|
[1822] | 379 | !-- If required, calculate cloud microphysics |
---|
| 380 | IF ( cloud_physics .AND. .NOT. microphysics_sat_adjust .AND. & |
---|
[1361] | 381 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 382 | call_microphysics_at_all_substeps ) & |
---|
| 383 | ) THEN |
---|
| 384 | CALL microphysics_control( i, j ) |
---|
| 385 | ENDIF |
---|
| 386 | ! |
---|
[736] | 387 | !-- Tendency terms for u-velocity component |
---|
| 388 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 389 | |
---|
[1337] | 390 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 391 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 392 | IF ( ws_scheme_mom ) THEN |
---|
[1409] | 393 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
[736] | 394 | ELSE |
---|
| 395 | CALL advec_u_pw( i, j ) |
---|
| 396 | ENDIF |
---|
| 397 | ELSE |
---|
| 398 | CALL advec_u_up( i, j ) |
---|
| 399 | ENDIF |
---|
[1001] | 400 | CALL diffusion_u( i, j ) |
---|
[736] | 401 | CALL coriolis( i, j, 1 ) |
---|
[940] | 402 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 403 | CALL buoyancy( i, j, pt, 1 ) |
---|
[940] | 404 | ENDIF |
---|
[736] | 405 | |
---|
| 406 | ! |
---|
| 407 | !-- Drag by plant canopy |
---|
[1826] | 408 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 1 ) |
---|
[736] | 409 | |
---|
| 410 | ! |
---|
| 411 | !-- External pressure gradient |
---|
| 412 | IF ( dp_external ) THEN |
---|
| 413 | DO k = dp_level_ind_b+1, nzt |
---|
| 414 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 415 | ENDDO |
---|
| 416 | ENDIF |
---|
| 417 | |
---|
[1241] | 418 | ! |
---|
| 419 | !-- Nudging |
---|
[1691] | 420 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
[1241] | 421 | |
---|
[736] | 422 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 423 | ! |
---|
| 424 | !-- Prognostic equation for u-velocity component |
---|
| 425 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 426 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 427 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 428 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 429 | ENDDO |
---|
| 430 | |
---|
| 431 | ! |
---|
| 432 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 433 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 434 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 435 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 436 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 437 | ENDDO |
---|
| 438 | ELSEIF ( intermediate_timestep_count < & |
---|
| 439 | intermediate_timestep_count_max ) THEN |
---|
| 440 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 441 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 442 | ENDDO |
---|
| 443 | ENDIF |
---|
| 444 | ENDIF |
---|
| 445 | |
---|
| 446 | ENDIF |
---|
| 447 | |
---|
| 448 | ! |
---|
| 449 | !-- Tendency terms for v-velocity component |
---|
| 450 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 451 | |
---|
[1337] | 452 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 453 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 454 | IF ( ws_scheme_mom ) THEN |
---|
| 455 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 456 | ELSE |
---|
| 457 | CALL advec_v_pw( i, j ) |
---|
| 458 | ENDIF |
---|
| 459 | ELSE |
---|
| 460 | CALL advec_v_up( i, j ) |
---|
| 461 | ENDIF |
---|
[1001] | 462 | CALL diffusion_v( i, j ) |
---|
[736] | 463 | CALL coriolis( i, j, 2 ) |
---|
| 464 | |
---|
| 465 | ! |
---|
| 466 | !-- Drag by plant canopy |
---|
[1826] | 467 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 2 ) |
---|
[736] | 468 | |
---|
| 469 | ! |
---|
| 470 | !-- External pressure gradient |
---|
| 471 | IF ( dp_external ) THEN |
---|
| 472 | DO k = dp_level_ind_b+1, nzt |
---|
| 473 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 474 | ENDDO |
---|
| 475 | ENDIF |
---|
| 476 | |
---|
[1241] | 477 | ! |
---|
| 478 | !-- Nudging |
---|
[1691] | 479 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
[1241] | 480 | |
---|
[736] | 481 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 482 | ! |
---|
| 483 | !-- Prognostic equation for v-velocity component |
---|
| 484 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 485 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 486 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 487 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 488 | ENDDO |
---|
| 489 | |
---|
| 490 | ! |
---|
| 491 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 492 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 493 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 494 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 495 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 496 | ENDDO |
---|
| 497 | ELSEIF ( intermediate_timestep_count < & |
---|
| 498 | intermediate_timestep_count_max ) THEN |
---|
| 499 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 500 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 501 | ENDDO |
---|
| 502 | ENDIF |
---|
| 503 | ENDIF |
---|
| 504 | |
---|
| 505 | ENDIF |
---|
| 506 | |
---|
| 507 | ! |
---|
| 508 | !-- Tendency terms for w-velocity component |
---|
[1337] | 509 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 510 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 511 | IF ( ws_scheme_mom ) THEN |
---|
| 512 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 513 | ELSE |
---|
| 514 | CALL advec_w_pw( i, j ) |
---|
| 515 | END IF |
---|
| 516 | ELSE |
---|
| 517 | CALL advec_w_up( i, j ) |
---|
| 518 | ENDIF |
---|
[1001] | 519 | CALL diffusion_w( i, j ) |
---|
[736] | 520 | CALL coriolis( i, j, 3 ) |
---|
[940] | 521 | |
---|
| 522 | IF ( .NOT. neutral ) THEN |
---|
| 523 | IF ( ocean ) THEN |
---|
[1179] | 524 | CALL buoyancy( i, j, rho, 3 ) |
---|
[736] | 525 | ELSE |
---|
[940] | 526 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 527 | CALL buoyancy( i, j, pt, 3 ) |
---|
[940] | 528 | ELSE |
---|
[1179] | 529 | CALL buoyancy( i, j, vpt, 3 ) |
---|
[940] | 530 | ENDIF |
---|
[736] | 531 | ENDIF |
---|
| 532 | ENDIF |
---|
| 533 | |
---|
| 534 | ! |
---|
| 535 | !-- Drag by plant canopy |
---|
[1826] | 536 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 3 ) |
---|
[736] | 537 | |
---|
| 538 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 539 | |
---|
| 540 | ! |
---|
| 541 | !-- Prognostic equation for w-velocity component |
---|
| 542 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 543 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 544 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 545 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 546 | ENDDO |
---|
| 547 | |
---|
| 548 | ! |
---|
| 549 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 550 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 551 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 552 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 553 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 554 | ENDDO |
---|
| 555 | ELSEIF ( intermediate_timestep_count < & |
---|
| 556 | intermediate_timestep_count_max ) THEN |
---|
| 557 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 558 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 559 | ENDDO |
---|
| 560 | ENDIF |
---|
| 561 | ENDIF |
---|
[1361] | 562 | |
---|
[736] | 563 | ! |
---|
[940] | 564 | !-- If required, compute prognostic equation for potential temperature |
---|
| 565 | IF ( .NOT. neutral ) THEN |
---|
| 566 | ! |
---|
| 567 | !-- Tendency terms for potential temperature |
---|
[1337] | 568 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 569 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 570 | IF ( ws_scheme_sca ) THEN |
---|
| 571 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 572 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 573 | ELSE |
---|
| 574 | CALL advec_s_pw( i, j, pt ) |
---|
| 575 | ENDIF |
---|
| 576 | ELSE |
---|
| 577 | CALL advec_s_up( i, j, pt ) |
---|
| 578 | ENDIF |
---|
[1001] | 579 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 580 | |
---|
| 581 | ! |
---|
[940] | 582 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 583 | !-- processes |
---|
[1496] | 584 | IF ( cloud_top_radiation ) THEN |
---|
[940] | 585 | CALL calc_radiation( i, j ) |
---|
| 586 | ENDIF |
---|
[736] | 587 | |
---|
[1106] | 588 | ! |
---|
[940] | 589 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 590 | IF ( plant_canopy .AND. cthf /= 0.0_wp ) THEN |
---|
[1826] | 591 | CALL pcm_tendency( i, j, 4 ) |
---|
[940] | 592 | ENDIF |
---|
[736] | 593 | |
---|
[940] | 594 | ! |
---|
[1365] | 595 | !-- Large scale advection |
---|
| 596 | IF ( large_scale_forcing ) THEN |
---|
| 597 | CALL ls_advec( i, j, simulated_time, 'pt' ) |
---|
| 598 | ENDIF |
---|
| 599 | |
---|
| 600 | ! |
---|
[1380] | 601 | !-- Nudging |
---|
| 602 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
| 603 | |
---|
| 604 | ! |
---|
[1106] | 605 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
[1365] | 606 | IF ( large_scale_subsidence .AND. & |
---|
| 607 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 608 | CALL subsidence( i, j, tend, pt, pt_init, 2 ) |
---|
[940] | 609 | ENDIF |
---|
[736] | 610 | |
---|
[1585] | 611 | ! |
---|
| 612 | !-- If required, add tendency due to radiative heating/cooling |
---|
[1691] | 613 | IF ( radiation .AND. radiation_scheme == 'rrtmg' .AND. & |
---|
| 614 | simulated_time > skip_time_do_radiation ) THEN |
---|
[1585] | 615 | CALL radiation_tendency ( i, j, tend ) |
---|
| 616 | ENDIF |
---|
| 617 | |
---|
| 618 | |
---|
[940] | 619 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 620 | |
---|
| 621 | ! |
---|
[940] | 622 | !-- Prognostic equation for potential temperature |
---|
| 623 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 624 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 625 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 626 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 627 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 628 | ENDDO |
---|
[736] | 629 | |
---|
| 630 | ! |
---|
[940] | 631 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 632 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 633 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 634 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 635 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 636 | ENDDO |
---|
| 637 | ELSEIF ( intermediate_timestep_count < & |
---|
| 638 | intermediate_timestep_count_max ) THEN |
---|
| 639 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 640 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 641 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 642 | ENDDO |
---|
| 643 | ENDIF |
---|
[736] | 644 | ENDIF |
---|
[940] | 645 | |
---|
[736] | 646 | ENDIF |
---|
| 647 | |
---|
| 648 | ! |
---|
| 649 | !-- If required, compute prognostic equation for salinity |
---|
| 650 | IF ( ocean ) THEN |
---|
| 651 | |
---|
| 652 | ! |
---|
| 653 | !-- Tendency-terms for salinity |
---|
[1337] | 654 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 655 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 656 | THEN |
---|
| 657 | IF ( ws_scheme_sca ) THEN |
---|
| 658 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 659 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 660 | ELSE |
---|
| 661 | CALL advec_s_pw( i, j, sa ) |
---|
| 662 | ENDIF |
---|
| 663 | ELSE |
---|
| 664 | CALL advec_s_up( i, j, sa ) |
---|
| 665 | ENDIF |
---|
[1001] | 666 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 667 | |
---|
| 668 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 669 | |
---|
| 670 | ! |
---|
| 671 | !-- Prognostic equation for salinity |
---|
| 672 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 673 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 674 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 675 | - tsc(5) * rdf_sc(k) * & |
---|
| 676 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 677 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 678 | ENDDO |
---|
| 679 | |
---|
| 680 | ! |
---|
| 681 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 682 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 683 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 684 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 685 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 686 | ENDDO |
---|
| 687 | ELSEIF ( intermediate_timestep_count < & |
---|
| 688 | intermediate_timestep_count_max ) THEN |
---|
| 689 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 690 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 691 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 692 | ENDDO |
---|
| 693 | ENDIF |
---|
| 694 | ENDIF |
---|
| 695 | |
---|
| 696 | ! |
---|
| 697 | !-- Calculate density by the equation of state for seawater |
---|
| 698 | CALL eqn_state_seawater( i, j ) |
---|
| 699 | |
---|
| 700 | ENDIF |
---|
| 701 | |
---|
| 702 | ! |
---|
| 703 | !-- If required, compute prognostic equation for total water content / |
---|
| 704 | !-- scalar |
---|
| 705 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 706 | |
---|
| 707 | ! |
---|
| 708 | !-- Tendency-terms for total water content / scalar |
---|
[1337] | 709 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 710 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 711 | THEN |
---|
| 712 | IF ( ws_scheme_sca ) THEN |
---|
| 713 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 714 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 715 | ELSE |
---|
| 716 | CALL advec_s_pw( i, j, q ) |
---|
| 717 | ENDIF |
---|
| 718 | ELSE |
---|
| 719 | CALL advec_s_up( i, j, q ) |
---|
| 720 | ENDIF |
---|
[1001] | 721 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[1691] | 722 | |
---|
[736] | 723 | ! |
---|
| 724 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1826] | 725 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 5 ) |
---|
[736] | 726 | |
---|
[1053] | 727 | ! |
---|
[1365] | 728 | !-- Large scale advection |
---|
| 729 | IF ( large_scale_forcing ) THEN |
---|
| 730 | CALL ls_advec( i, j, simulated_time, 'q' ) |
---|
| 731 | ENDIF |
---|
| 732 | |
---|
| 733 | ! |
---|
[1380] | 734 | !-- Nudging |
---|
| 735 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
| 736 | |
---|
| 737 | ! |
---|
[736] | 738 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 739 | IF ( large_scale_subsidence .AND. & |
---|
| 740 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 741 | CALL subsidence( i, j, tend, q, q_init, 3 ) |
---|
[736] | 742 | ENDIF |
---|
| 743 | |
---|
| 744 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 745 | |
---|
| 746 | ! |
---|
| 747 | !-- Prognostic equation for total water content / scalar |
---|
| 748 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 749 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 750 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 751 | - tsc(5) * rdf_sc(k) * & |
---|
| 752 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 753 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 754 | ENDDO |
---|
| 755 | |
---|
| 756 | ! |
---|
| 757 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 758 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 759 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 760 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 761 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 762 | ENDDO |
---|
| 763 | ELSEIF ( intermediate_timestep_count < & |
---|
| 764 | intermediate_timestep_count_max ) THEN |
---|
| 765 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 766 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 767 | 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 768 | ENDDO |
---|
| 769 | ENDIF |
---|
| 770 | ENDIF |
---|
| 771 | |
---|
[1053] | 772 | ! |
---|
| 773 | !-- If required, calculate prognostic equations for rain water content |
---|
| 774 | !-- and rain drop concentration |
---|
[1822] | 775 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1053] | 776 | ! |
---|
| 777 | !-- Calculate prognostic equation for rain water content |
---|
[1337] | 778 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 779 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 780 | THEN |
---|
| 781 | IF ( ws_scheme_sca ) THEN |
---|
| 782 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 783 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 784 | i_omp_start, tn ) |
---|
| 785 | ELSE |
---|
| 786 | CALL advec_s_pw( i, j, qr ) |
---|
| 787 | ENDIF |
---|
| 788 | ELSE |
---|
| 789 | CALL advec_s_up( i, j, qr ) |
---|
| 790 | ENDIF |
---|
| 791 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 792 | |
---|
| 793 | ! |
---|
| 794 | !-- Prognostic equation for rain water content |
---|
| 795 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 796 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 797 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 798 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
[1337] | 799 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
[1053] | 800 | ENDDO |
---|
| 801 | ! |
---|
| 802 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 803 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 804 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 805 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 806 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 807 | ENDDO |
---|
| 808 | ELSEIF ( intermediate_timestep_count < & |
---|
| 809 | intermediate_timestep_count_max ) THEN |
---|
| 810 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 811 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 812 | 5.3125_wp * tqr_m(k,j,i) |
---|
[1053] | 813 | ENDDO |
---|
| 814 | ENDIF |
---|
| 815 | ENDIF |
---|
| 816 | |
---|
| 817 | ! |
---|
| 818 | !-- Calculate prognostic equation for rain drop concentration. |
---|
[1337] | 819 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 820 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 821 | IF ( ws_scheme_sca ) THEN |
---|
[1115] | 822 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 823 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 824 | i_omp_start, tn ) |
---|
[1053] | 825 | ELSE |
---|
| 826 | CALL advec_s_pw( i, j, nr ) |
---|
| 827 | ENDIF |
---|
| 828 | ELSE |
---|
| 829 | CALL advec_s_up( i, j, nr ) |
---|
| 830 | ENDIF |
---|
| 831 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
| 832 | |
---|
| 833 | ! |
---|
| 834 | !-- Prognostic equation for rain drop concentration |
---|
| 835 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 836 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 837 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 838 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
[1337] | 839 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
[1053] | 840 | ENDDO |
---|
| 841 | ! |
---|
| 842 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 843 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 844 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 845 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 846 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 847 | ENDDO |
---|
| 848 | ELSEIF ( intermediate_timestep_count < & |
---|
| 849 | intermediate_timestep_count_max ) THEN |
---|
| 850 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 851 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 852 | 5.3125_wp * tnr_m(k,j,i) |
---|
[1053] | 853 | ENDDO |
---|
| 854 | ENDIF |
---|
| 855 | ENDIF |
---|
| 856 | |
---|
| 857 | ENDIF |
---|
| 858 | |
---|
[1128] | 859 | ENDIF |
---|
| 860 | |
---|
[736] | 861 | ! |
---|
| 862 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 863 | !-- energy (TKE) |
---|
| 864 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 865 | |
---|
| 866 | ! |
---|
| 867 | !-- Tendency-terms for TKE |
---|
[1337] | 868 | tend(:,j,i) = 0.0_wp |
---|
[1332] | 869 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
| 870 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
[736] | 871 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 872 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 873 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 874 | ELSE |
---|
| 875 | CALL advec_s_pw( i, j, e ) |
---|
| 876 | ENDIF |
---|
| 877 | ELSE |
---|
| 878 | CALL advec_s_up( i, j, e ) |
---|
| 879 | ENDIF |
---|
[1001] | 880 | IF ( .NOT. humidity ) THEN |
---|
| 881 | IF ( ocean ) THEN |
---|
| 882 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 883 | ELSE |
---|
[1001] | 884 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 885 | ENDIF |
---|
| 886 | ELSE |
---|
[1001] | 887 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 888 | ENDIF |
---|
| 889 | CALL production_e( i, j ) |
---|
| 890 | |
---|
| 891 | ! |
---|
| 892 | !-- Additional sink term for flows through plant canopies |
---|
[1826] | 893 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 6 ) |
---|
[736] | 894 | |
---|
| 895 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 896 | |
---|
| 897 | ! |
---|
| 898 | !-- Prognostic equation for TKE. |
---|
| 899 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 900 | !-- reasons in the course of the integration. In such cases the old |
---|
| 901 | !-- TKE value is reduced by 90%. |
---|
| 902 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 903 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 904 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 905 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 906 | ENDDO |
---|
| 907 | |
---|
| 908 | ! |
---|
| 909 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 910 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 911 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 912 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 913 | te_m(k,j,i) = tend(k,j,i) |
---|
| 914 | ENDDO |
---|
| 915 | ELSEIF ( intermediate_timestep_count < & |
---|
| 916 | intermediate_timestep_count_max ) THEN |
---|
| 917 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 918 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 919 | 5.3125_wp * te_m(k,j,i) |
---|
[736] | 920 | ENDDO |
---|
| 921 | ENDIF |
---|
| 922 | ENDIF |
---|
| 923 | |
---|
| 924 | ENDIF ! TKE equation |
---|
| 925 | |
---|
| 926 | ENDDO |
---|
| 927 | ENDDO |
---|
| 928 | !$OMP END PARALLEL |
---|
| 929 | |
---|
| 930 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 931 | |
---|
| 932 | |
---|
| 933 | END SUBROUTINE prognostic_equations_cache |
---|
| 934 | |
---|
| 935 | |
---|
| 936 | !------------------------------------------------------------------------------! |
---|
[1691] | 937 | ! Description: |
---|
| 938 | ! ------------ |
---|
[1682] | 939 | !> Version for vector machines |
---|
[736] | 940 | !------------------------------------------------------------------------------! |
---|
[1691] | 941 | |
---|
[1682] | 942 | SUBROUTINE prognostic_equations_vector |
---|
[736] | 943 | |
---|
[1682] | 944 | |
---|
[736] | 945 | IMPLICIT NONE |
---|
| 946 | |
---|
[1682] | 947 | INTEGER(iwp) :: i !< |
---|
| 948 | INTEGER(iwp) :: j !< |
---|
| 949 | INTEGER(iwp) :: k !< |
---|
[736] | 950 | |
---|
[1682] | 951 | REAL(wp) :: sbt !< |
---|
[736] | 952 | |
---|
[1320] | 953 | |
---|
[736] | 954 | ! |
---|
[1822] | 955 | !-- If required, calculate cloud microphysical impacts |
---|
| 956 | IF ( cloud_physics .AND. .NOT. microphysics_sat_adjust .AND. & |
---|
[1361] | 957 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 958 | call_microphysics_at_all_substeps ) & |
---|
| 959 | ) THEN |
---|
| 960 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 961 | CALL microphysics_control |
---|
| 962 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 963 | ENDIF |
---|
| 964 | |
---|
| 965 | ! |
---|
[736] | 966 | !-- u-velocity component |
---|
| 967 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 968 | |
---|
[1337] | 969 | tend = 0.0_wp |
---|
[1001] | 970 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 971 | IF ( ws_scheme_mom ) THEN |
---|
| 972 | CALL advec_u_ws |
---|
| 973 | ELSE |
---|
| 974 | CALL advec_u_pw |
---|
| 975 | ENDIF |
---|
| 976 | ELSE |
---|
[1001] | 977 | CALL advec_u_up |
---|
[736] | 978 | ENDIF |
---|
[1001] | 979 | CALL diffusion_u |
---|
[736] | 980 | CALL coriolis( 1 ) |
---|
[940] | 981 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 982 | CALL buoyancy( pt, 1 ) |
---|
[940] | 983 | ENDIF |
---|
[736] | 984 | |
---|
| 985 | ! |
---|
| 986 | !-- Drag by plant canopy |
---|
[1826] | 987 | IF ( plant_canopy ) CALL pcm_tendency( 1 ) |
---|
[736] | 988 | |
---|
| 989 | ! |
---|
| 990 | !-- External pressure gradient |
---|
| 991 | IF ( dp_external ) THEN |
---|
| 992 | DO i = nxlu, nxr |
---|
| 993 | DO j = nys, nyn |
---|
| 994 | DO k = dp_level_ind_b+1, nzt |
---|
| 995 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 996 | ENDDO |
---|
| 997 | ENDDO |
---|
| 998 | ENDDO |
---|
| 999 | ENDIF |
---|
| 1000 | |
---|
[1241] | 1001 | ! |
---|
| 1002 | !-- Nudging |
---|
[1691] | 1003 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
[1241] | 1004 | |
---|
[736] | 1005 | CALL user_actions( 'u-tendency' ) |
---|
| 1006 | |
---|
| 1007 | ! |
---|
| 1008 | !-- Prognostic equation for u-velocity component |
---|
| 1009 | DO i = nxlu, nxr |
---|
| 1010 | DO j = nys, nyn |
---|
| 1011 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 1012 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1013 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 1014 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 1015 | ENDDO |
---|
| 1016 | ENDDO |
---|
| 1017 | ENDDO |
---|
| 1018 | |
---|
| 1019 | ! |
---|
| 1020 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1021 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1022 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1023 | DO i = nxlu, nxr |
---|
| 1024 | DO j = nys, nyn |
---|
| 1025 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1026 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1027 | ENDDO |
---|
| 1028 | ENDDO |
---|
| 1029 | ENDDO |
---|
| 1030 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1031 | intermediate_timestep_count_max ) THEN |
---|
| 1032 | DO i = nxlu, nxr |
---|
| 1033 | DO j = nys, nyn |
---|
| 1034 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 1035 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 1036 | ENDDO |
---|
| 1037 | ENDDO |
---|
| 1038 | ENDDO |
---|
| 1039 | ENDIF |
---|
| 1040 | ENDIF |
---|
| 1041 | |
---|
| 1042 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1043 | |
---|
| 1044 | ! |
---|
| 1045 | !-- v-velocity component |
---|
| 1046 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1047 | |
---|
[1337] | 1048 | tend = 0.0_wp |
---|
[1001] | 1049 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1050 | IF ( ws_scheme_mom ) THEN |
---|
| 1051 | CALL advec_v_ws |
---|
| 1052 | ELSE |
---|
| 1053 | CALL advec_v_pw |
---|
| 1054 | END IF |
---|
| 1055 | ELSE |
---|
[1001] | 1056 | CALL advec_v_up |
---|
[736] | 1057 | ENDIF |
---|
[1001] | 1058 | CALL diffusion_v |
---|
[736] | 1059 | CALL coriolis( 2 ) |
---|
| 1060 | |
---|
| 1061 | ! |
---|
| 1062 | !-- Drag by plant canopy |
---|
[1826] | 1063 | IF ( plant_canopy ) CALL pcm_tendency( 2 ) |
---|
[736] | 1064 | |
---|
| 1065 | ! |
---|
| 1066 | !-- External pressure gradient |
---|
| 1067 | IF ( dp_external ) THEN |
---|
| 1068 | DO i = nxl, nxr |
---|
| 1069 | DO j = nysv, nyn |
---|
| 1070 | DO k = dp_level_ind_b+1, nzt |
---|
| 1071 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1072 | ENDDO |
---|
| 1073 | ENDDO |
---|
| 1074 | ENDDO |
---|
| 1075 | ENDIF |
---|
| 1076 | |
---|
[1241] | 1077 | ! |
---|
| 1078 | !-- Nudging |
---|
[1691] | 1079 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
[1241] | 1080 | |
---|
[736] | 1081 | CALL user_actions( 'v-tendency' ) |
---|
| 1082 | |
---|
| 1083 | ! |
---|
| 1084 | !-- Prognostic equation for v-velocity component |
---|
| 1085 | DO i = nxl, nxr |
---|
| 1086 | DO j = nysv, nyn |
---|
| 1087 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 1088 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1089 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1090 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 1091 | ENDDO |
---|
| 1092 | ENDDO |
---|
| 1093 | ENDDO |
---|
| 1094 | |
---|
| 1095 | ! |
---|
| 1096 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1097 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1098 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1099 | DO i = nxl, nxr |
---|
| 1100 | DO j = nysv, nyn |
---|
| 1101 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1102 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1103 | ENDDO |
---|
| 1104 | ENDDO |
---|
| 1105 | ENDDO |
---|
| 1106 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1107 | intermediate_timestep_count_max ) THEN |
---|
| 1108 | DO i = nxl, nxr |
---|
| 1109 | DO j = nysv, nyn |
---|
| 1110 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 1111 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 1112 | ENDDO |
---|
| 1113 | ENDDO |
---|
| 1114 | ENDDO |
---|
| 1115 | ENDIF |
---|
| 1116 | ENDIF |
---|
| 1117 | |
---|
| 1118 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1119 | |
---|
| 1120 | ! |
---|
| 1121 | !-- w-velocity component |
---|
| 1122 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1123 | |
---|
[1353] | 1124 | tend = 0.0_wp |
---|
[1001] | 1125 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1126 | IF ( ws_scheme_mom ) THEN |
---|
| 1127 | CALL advec_w_ws |
---|
| 1128 | ELSE |
---|
| 1129 | CALL advec_w_pw |
---|
| 1130 | ENDIF |
---|
| 1131 | ELSE |
---|
[1001] | 1132 | CALL advec_w_up |
---|
[736] | 1133 | ENDIF |
---|
[1001] | 1134 | CALL diffusion_w |
---|
[736] | 1135 | CALL coriolis( 3 ) |
---|
[940] | 1136 | |
---|
| 1137 | IF ( .NOT. neutral ) THEN |
---|
| 1138 | IF ( ocean ) THEN |
---|
[1179] | 1139 | CALL buoyancy( rho, 3 ) |
---|
[736] | 1140 | ELSE |
---|
[940] | 1141 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1142 | CALL buoyancy( pt, 3 ) |
---|
[940] | 1143 | ELSE |
---|
[1179] | 1144 | CALL buoyancy( vpt, 3 ) |
---|
[940] | 1145 | ENDIF |
---|
[736] | 1146 | ENDIF |
---|
| 1147 | ENDIF |
---|
| 1148 | |
---|
| 1149 | ! |
---|
| 1150 | !-- Drag by plant canopy |
---|
[1826] | 1151 | IF ( plant_canopy ) CALL pcm_tendency( 3 ) |
---|
[736] | 1152 | |
---|
| 1153 | CALL user_actions( 'w-tendency' ) |
---|
| 1154 | |
---|
| 1155 | ! |
---|
| 1156 | !-- Prognostic equation for w-velocity component |
---|
| 1157 | DO i = nxl, nxr |
---|
| 1158 | DO j = nys, nyn |
---|
| 1159 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 1160 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1161 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1162 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 1163 | ENDDO |
---|
| 1164 | ENDDO |
---|
| 1165 | ENDDO |
---|
| 1166 | |
---|
| 1167 | ! |
---|
| 1168 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1169 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1170 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1171 | DO i = nxl, nxr |
---|
| 1172 | DO j = nys, nyn |
---|
| 1173 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1174 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1175 | ENDDO |
---|
| 1176 | ENDDO |
---|
| 1177 | ENDDO |
---|
| 1178 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1179 | intermediate_timestep_count_max ) THEN |
---|
| 1180 | DO i = nxl, nxr |
---|
| 1181 | DO j = nys, nyn |
---|
| 1182 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 1183 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 1184 | ENDDO |
---|
| 1185 | ENDDO |
---|
| 1186 | ENDDO |
---|
| 1187 | ENDIF |
---|
| 1188 | ENDIF |
---|
| 1189 | |
---|
| 1190 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1191 | |
---|
[940] | 1192 | |
---|
[736] | 1193 | ! |
---|
[940] | 1194 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1195 | IF ( .NOT. neutral ) THEN |
---|
[736] | 1196 | |
---|
[940] | 1197 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1198 | |
---|
[736] | 1199 | ! |
---|
[940] | 1200 | !-- pt-tendency terms with communication |
---|
| 1201 | sbt = tsc(2) |
---|
| 1202 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 1203 | |
---|
[940] | 1204 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 1205 | ! |
---|
[1001] | 1206 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1207 | sbt = 1.0_wp |
---|
[940] | 1208 | ENDIF |
---|
[1337] | 1209 | tend = 0.0_wp |
---|
[940] | 1210 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 1211 | |
---|
[736] | 1212 | ENDIF |
---|
[940] | 1213 | |
---|
| 1214 | ! |
---|
| 1215 | !-- pt-tendency terms with no communication |
---|
[1001] | 1216 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1217 | tend = 0.0_wp |
---|
[1001] | 1218 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 1219 | IF ( ws_scheme_sca ) THEN |
---|
| 1220 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1221 | ELSE |
---|
| 1222 | CALL advec_s_pw( pt ) |
---|
| 1223 | ENDIF |
---|
| 1224 | ELSE |
---|
[1001] | 1225 | CALL advec_s_up( pt ) |
---|
[940] | 1226 | ENDIF |
---|
[736] | 1227 | ENDIF |
---|
| 1228 | |
---|
[1001] | 1229 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1230 | |
---|
[736] | 1231 | ! |
---|
[940] | 1232 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
[1496] | 1233 | IF ( cloud_top_radiation ) THEN |
---|
[940] | 1234 | CALL calc_radiation |
---|
| 1235 | ENDIF |
---|
[736] | 1236 | |
---|
| 1237 | ! |
---|
[940] | 1238 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 1239 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[1826] | 1240 | CALL pcm_tendency( 4 ) |
---|
[940] | 1241 | ENDIF |
---|
[736] | 1242 | |
---|
[940] | 1243 | ! |
---|
[1365] | 1244 | !-- Large scale advection |
---|
| 1245 | IF ( large_scale_forcing ) THEN |
---|
| 1246 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 1247 | ENDIF |
---|
| 1248 | |
---|
| 1249 | ! |
---|
[1380] | 1250 | !-- Nudging |
---|
| 1251 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1252 | |
---|
| 1253 | ! |
---|
[940] | 1254 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1255 | IF ( large_scale_subsidence .AND. & |
---|
| 1256 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1257 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[940] | 1258 | ENDIF |
---|
[736] | 1259 | |
---|
[1585] | 1260 | ! |
---|
| 1261 | !-- If required, add tendency due to radiative heating/cooling |
---|
[1691] | 1262 | IF ( radiation .AND. radiation_scheme == 'rrtmg' .AND. & |
---|
| 1263 | simulated_time > skip_time_do_radiation ) THEN |
---|
| 1264 | CALL radiation_tendency ( tend ) |
---|
[1585] | 1265 | ENDIF |
---|
| 1266 | |
---|
[940] | 1267 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 1268 | |
---|
| 1269 | ! |
---|
[940] | 1270 | !-- Prognostic equation for potential temperature |
---|
| 1271 | DO i = nxl, nxr |
---|
| 1272 | DO j = nys, nyn |
---|
| 1273 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1274 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1275 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1276 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1277 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 1278 | ENDDO |
---|
[736] | 1279 | ENDDO |
---|
| 1280 | ENDDO |
---|
| 1281 | |
---|
| 1282 | ! |
---|
[940] | 1283 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1284 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1285 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1286 | DO i = nxl, nxr |
---|
| 1287 | DO j = nys, nyn |
---|
| 1288 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1289 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1290 | ENDDO |
---|
[736] | 1291 | ENDDO |
---|
| 1292 | ENDDO |
---|
[940] | 1293 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1294 | intermediate_timestep_count_max ) THEN |
---|
| 1295 | DO i = nxl, nxr |
---|
| 1296 | DO j = nys, nyn |
---|
| 1297 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1298 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1299 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 1300 | ENDDO |
---|
[736] | 1301 | ENDDO |
---|
| 1302 | ENDDO |
---|
[940] | 1303 | ENDIF |
---|
[736] | 1304 | ENDIF |
---|
[940] | 1305 | |
---|
| 1306 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1307 | |
---|
[736] | 1308 | ENDIF |
---|
| 1309 | |
---|
| 1310 | ! |
---|
| 1311 | !-- If required, compute prognostic equation for salinity |
---|
| 1312 | IF ( ocean ) THEN |
---|
| 1313 | |
---|
| 1314 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1315 | |
---|
| 1316 | ! |
---|
| 1317 | !-- sa-tendency terms with communication |
---|
| 1318 | sbt = tsc(2) |
---|
| 1319 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1320 | |
---|
| 1321 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1322 | ! |
---|
[1001] | 1323 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1324 | sbt = 1.0_wp |
---|
[736] | 1325 | ENDIF |
---|
[1337] | 1326 | tend = 0.0_wp |
---|
[736] | 1327 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1328 | |
---|
[736] | 1329 | ENDIF |
---|
| 1330 | |
---|
| 1331 | ! |
---|
| 1332 | !-- sa-tendency terms with no communication |
---|
[1001] | 1333 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1353] | 1334 | tend = 0.0_wp |
---|
[1001] | 1335 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1336 | IF ( ws_scheme_sca ) THEN |
---|
| 1337 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1338 | ELSE |
---|
| 1339 | CALL advec_s_pw( sa ) |
---|
| 1340 | ENDIF |
---|
| 1341 | ELSE |
---|
[1001] | 1342 | CALL advec_s_up( sa ) |
---|
[736] | 1343 | ENDIF |
---|
| 1344 | ENDIF |
---|
[1001] | 1345 | |
---|
| 1346 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1347 | |
---|
| 1348 | CALL user_actions( 'sa-tendency' ) |
---|
| 1349 | |
---|
| 1350 | ! |
---|
| 1351 | !-- Prognostic equation for salinity |
---|
| 1352 | DO i = nxl, nxr |
---|
| 1353 | DO j = nys, nyn |
---|
| 1354 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1355 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1356 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1357 | - tsc(5) * rdf_sc(k) * & |
---|
| 1358 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 1359 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 1360 | ENDDO |
---|
| 1361 | ENDDO |
---|
| 1362 | ENDDO |
---|
| 1363 | |
---|
| 1364 | ! |
---|
| 1365 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1366 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1367 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1368 | DO i = nxl, nxr |
---|
| 1369 | DO j = nys, nyn |
---|
| 1370 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1371 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1372 | ENDDO |
---|
| 1373 | ENDDO |
---|
| 1374 | ENDDO |
---|
| 1375 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1376 | intermediate_timestep_count_max ) THEN |
---|
| 1377 | DO i = nxl, nxr |
---|
| 1378 | DO j = nys, nyn |
---|
| 1379 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1380 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1381 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 1382 | ENDDO |
---|
| 1383 | ENDDO |
---|
| 1384 | ENDDO |
---|
| 1385 | ENDIF |
---|
| 1386 | ENDIF |
---|
| 1387 | |
---|
| 1388 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1389 | |
---|
| 1390 | ! |
---|
| 1391 | !-- Calculate density by the equation of state for seawater |
---|
| 1392 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1393 | CALL eqn_state_seawater |
---|
| 1394 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1395 | |
---|
| 1396 | ENDIF |
---|
| 1397 | |
---|
| 1398 | ! |
---|
| 1399 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1400 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1401 | |
---|
| 1402 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1403 | |
---|
| 1404 | ! |
---|
| 1405 | !-- Scalar/q-tendency terms with communication |
---|
| 1406 | sbt = tsc(2) |
---|
| 1407 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1408 | |
---|
| 1409 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1410 | ! |
---|
[1001] | 1411 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1412 | sbt = 1.0_wp |
---|
[736] | 1413 | ENDIF |
---|
[1337] | 1414 | tend = 0.0_wp |
---|
[736] | 1415 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1416 | |
---|
[736] | 1417 | ENDIF |
---|
| 1418 | |
---|
| 1419 | ! |
---|
| 1420 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1421 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1422 | tend = 0.0_wp |
---|
[1001] | 1423 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1424 | IF ( ws_scheme_sca ) THEN |
---|
| 1425 | CALL advec_s_ws( q, 'q' ) |
---|
| 1426 | ELSE |
---|
| 1427 | CALL advec_s_pw( q ) |
---|
| 1428 | ENDIF |
---|
| 1429 | ELSE |
---|
[1001] | 1430 | CALL advec_s_up( q ) |
---|
[736] | 1431 | ENDIF |
---|
| 1432 | ENDIF |
---|
[1001] | 1433 | |
---|
| 1434 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1435 | |
---|
| 1436 | ! |
---|
| 1437 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1826] | 1438 | IF ( plant_canopy ) CALL pcm_tendency( 5 ) |
---|
[1365] | 1439 | |
---|
[736] | 1440 | ! |
---|
[1365] | 1441 | !-- Large scale advection |
---|
| 1442 | IF ( large_scale_forcing ) THEN |
---|
| 1443 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 1444 | ENDIF |
---|
| 1445 | |
---|
| 1446 | ! |
---|
[1380] | 1447 | !-- Nudging |
---|
| 1448 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1449 | |
---|
| 1450 | ! |
---|
[736] | 1451 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1452 | IF ( large_scale_subsidence .AND. & |
---|
| 1453 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1454 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[736] | 1455 | ENDIF |
---|
| 1456 | |
---|
| 1457 | CALL user_actions( 'q-tendency' ) |
---|
| 1458 | |
---|
| 1459 | ! |
---|
| 1460 | !-- Prognostic equation for total water content / scalar |
---|
| 1461 | DO i = nxl, nxr |
---|
| 1462 | DO j = nys, nyn |
---|
| 1463 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1464 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1465 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1466 | - tsc(5) * rdf_sc(k) * & |
---|
| 1467 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 1468 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 1469 | ENDDO |
---|
| 1470 | ENDDO |
---|
| 1471 | ENDDO |
---|
| 1472 | |
---|
| 1473 | ! |
---|
| 1474 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1475 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1476 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1477 | DO i = nxl, nxr |
---|
| 1478 | DO j = nys, nyn |
---|
| 1479 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1480 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1481 | ENDDO |
---|
| 1482 | ENDDO |
---|
| 1483 | ENDDO |
---|
| 1484 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1485 | intermediate_timestep_count_max ) THEN |
---|
| 1486 | DO i = nxl, nxr |
---|
| 1487 | DO j = nys, nyn |
---|
| 1488 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1489 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 1490 | ENDDO |
---|
| 1491 | ENDDO |
---|
| 1492 | ENDDO |
---|
| 1493 | ENDIF |
---|
| 1494 | ENDIF |
---|
| 1495 | |
---|
| 1496 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1497 | |
---|
[1361] | 1498 | ! |
---|
| 1499 | !-- If required, calculate prognostic equations for rain water content |
---|
| 1500 | !-- and rain drop concentration |
---|
[1822] | 1501 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1361] | 1502 | |
---|
| 1503 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 1504 | |
---|
| 1505 | ! |
---|
| 1506 | !-- Calculate prognostic equation for rain water content |
---|
| 1507 | sbt = tsc(2) |
---|
| 1508 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1509 | |
---|
| 1510 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1511 | ! |
---|
| 1512 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1513 | sbt = 1.0_wp |
---|
| 1514 | ENDIF |
---|
| 1515 | tend = 0.0_wp |
---|
| 1516 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 1517 | |
---|
| 1518 | ENDIF |
---|
| 1519 | |
---|
| 1520 | ! |
---|
| 1521 | !-- qr-tendency terms with no communication |
---|
| 1522 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1523 | tend = 0.0_wp |
---|
| 1524 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1525 | IF ( ws_scheme_sca ) THEN |
---|
| 1526 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 1527 | ELSE |
---|
| 1528 | CALL advec_s_pw( qr ) |
---|
| 1529 | ENDIF |
---|
| 1530 | ELSE |
---|
| 1531 | CALL advec_s_up( qr ) |
---|
| 1532 | ENDIF |
---|
| 1533 | ENDIF |
---|
| 1534 | |
---|
| 1535 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 1536 | |
---|
[1826] | 1537 | CALL user_actions( 'qr-tendency' ) |
---|
| 1538 | |
---|
[1361] | 1539 | ! |
---|
| 1540 | !-- Prognostic equation for rain water content |
---|
| 1541 | DO i = nxl, nxr |
---|
| 1542 | DO j = nys, nyn |
---|
| 1543 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1544 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1545 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 1546 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 1547 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 1548 | ENDDO |
---|
| 1549 | ENDDO |
---|
| 1550 | ENDDO |
---|
| 1551 | |
---|
| 1552 | ! |
---|
| 1553 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1554 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1555 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1556 | DO i = nxl, nxr |
---|
| 1557 | DO j = nys, nyn |
---|
| 1558 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1559 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 1560 | ENDDO |
---|
| 1561 | ENDDO |
---|
| 1562 | ENDDO |
---|
| 1563 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1564 | intermediate_timestep_count_max ) THEN |
---|
| 1565 | DO i = nxl, nxr |
---|
| 1566 | DO j = nys, nyn |
---|
| 1567 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1568 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1569 | tqr_m(k,j,i) |
---|
| 1570 | ENDDO |
---|
| 1571 | ENDDO |
---|
| 1572 | ENDDO |
---|
| 1573 | ENDIF |
---|
| 1574 | ENDIF |
---|
| 1575 | |
---|
| 1576 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 1577 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 1578 | |
---|
| 1579 | ! |
---|
| 1580 | !-- Calculate prognostic equation for rain drop concentration |
---|
| 1581 | sbt = tsc(2) |
---|
| 1582 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1583 | |
---|
| 1584 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1585 | ! |
---|
| 1586 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1587 | sbt = 1.0_wp |
---|
| 1588 | ENDIF |
---|
| 1589 | tend = 0.0_wp |
---|
| 1590 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 1591 | |
---|
| 1592 | ENDIF |
---|
| 1593 | |
---|
| 1594 | ! |
---|
| 1595 | !-- nr-tendency terms with no communication |
---|
| 1596 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1597 | tend = 0.0_wp |
---|
| 1598 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1599 | IF ( ws_scheme_sca ) THEN |
---|
| 1600 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 1601 | ELSE |
---|
| 1602 | CALL advec_s_pw( nr ) |
---|
| 1603 | ENDIF |
---|
| 1604 | ELSE |
---|
| 1605 | CALL advec_s_up( nr ) |
---|
| 1606 | ENDIF |
---|
| 1607 | ENDIF |
---|
| 1608 | |
---|
| 1609 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 1610 | |
---|
| 1611 | ! |
---|
| 1612 | !-- Prognostic equation for rain drop concentration |
---|
| 1613 | DO i = nxl, nxr |
---|
| 1614 | DO j = nys, nyn |
---|
| 1615 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1616 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1617 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 1618 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 1619 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 1620 | ENDDO |
---|
| 1621 | ENDDO |
---|
| 1622 | ENDDO |
---|
| 1623 | |
---|
| 1624 | ! |
---|
| 1625 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1626 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1627 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1628 | DO i = nxl, nxr |
---|
| 1629 | DO j = nys, nyn |
---|
| 1630 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1631 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 1632 | ENDDO |
---|
| 1633 | ENDDO |
---|
| 1634 | ENDDO |
---|
| 1635 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1636 | intermediate_timestep_count_max ) THEN |
---|
| 1637 | DO i = nxl, nxr |
---|
| 1638 | DO j = nys, nyn |
---|
| 1639 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1640 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1641 | tnr_m(k,j,i) |
---|
| 1642 | ENDDO |
---|
| 1643 | ENDDO |
---|
| 1644 | ENDDO |
---|
| 1645 | ENDIF |
---|
| 1646 | ENDIF |
---|
| 1647 | |
---|
| 1648 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 1649 | |
---|
| 1650 | ENDIF |
---|
| 1651 | |
---|
[736] | 1652 | ENDIF |
---|
| 1653 | |
---|
| 1654 | ! |
---|
| 1655 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1656 | !-- energy (TKE) |
---|
| 1657 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1658 | |
---|
| 1659 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1660 | |
---|
| 1661 | sbt = tsc(2) |
---|
| 1662 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1663 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1664 | |
---|
| 1665 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1666 | ! |
---|
[1001] | 1667 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1668 | sbt = 1.0_wp |
---|
[736] | 1669 | ENDIF |
---|
[1337] | 1670 | tend = 0.0_wp |
---|
[736] | 1671 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1672 | |
---|
[736] | 1673 | ENDIF |
---|
| 1674 | ENDIF |
---|
| 1675 | |
---|
| 1676 | ! |
---|
| 1677 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1678 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1679 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 1680 | tend = 0.0_wp |
---|
[736] | 1681 | CALL advec_s_up( e ) |
---|
| 1682 | ELSE |
---|
[1337] | 1683 | tend = 0.0_wp |
---|
[1001] | 1684 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1685 | IF ( ws_scheme_sca ) THEN |
---|
| 1686 | CALL advec_s_ws( e, 'e' ) |
---|
| 1687 | ELSE |
---|
| 1688 | CALL advec_s_pw( e ) |
---|
| 1689 | ENDIF |
---|
| 1690 | ELSE |
---|
[1001] | 1691 | CALL advec_s_up( e ) |
---|
[736] | 1692 | ENDIF |
---|
| 1693 | ENDIF |
---|
[1001] | 1694 | ENDIF |
---|
| 1695 | |
---|
| 1696 | IF ( .NOT. humidity ) THEN |
---|
| 1697 | IF ( ocean ) THEN |
---|
| 1698 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1699 | ELSE |
---|
[1001] | 1700 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1701 | ENDIF |
---|
[1001] | 1702 | ELSE |
---|
| 1703 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1704 | ENDIF |
---|
[1001] | 1705 | |
---|
[736] | 1706 | CALL production_e |
---|
| 1707 | |
---|
| 1708 | ! |
---|
| 1709 | !-- Additional sink term for flows through plant canopies |
---|
[1826] | 1710 | IF ( plant_canopy ) CALL pcm_tendency( 6 ) |
---|
[736] | 1711 | CALL user_actions( 'e-tendency' ) |
---|
| 1712 | |
---|
| 1713 | ! |
---|
| 1714 | !-- Prognostic equation for TKE. |
---|
| 1715 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1716 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1717 | !-- value is reduced by 90%. |
---|
| 1718 | DO i = nxl, nxr |
---|
| 1719 | DO j = nys, nyn |
---|
| 1720 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1721 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1722 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 1723 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 1724 | ENDDO |
---|
| 1725 | ENDDO |
---|
| 1726 | ENDDO |
---|
| 1727 | |
---|
| 1728 | ! |
---|
| 1729 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1730 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1731 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1732 | DO i = nxl, nxr |
---|
| 1733 | DO j = nys, nyn |
---|
| 1734 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1735 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1736 | ENDDO |
---|
| 1737 | ENDDO |
---|
| 1738 | ENDDO |
---|
| 1739 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1740 | intermediate_timestep_count_max ) THEN |
---|
| 1741 | DO i = nxl, nxr |
---|
| 1742 | DO j = nys, nyn |
---|
| 1743 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1744 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[736] | 1745 | ENDDO |
---|
| 1746 | ENDDO |
---|
| 1747 | ENDDO |
---|
| 1748 | ENDIF |
---|
| 1749 | ENDIF |
---|
| 1750 | |
---|
| 1751 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1752 | |
---|
| 1753 | ENDIF |
---|
| 1754 | |
---|
| 1755 | END SUBROUTINE prognostic_equations_vector |
---|
| 1756 | |
---|
| 1757 | |
---|
[1015] | 1758 | !------------------------------------------------------------------------------! |
---|
[1691] | 1759 | ! Description: |
---|
| 1760 | ! ------------ |
---|
[1682] | 1761 | !> Version for accelerator boards |
---|
[1015] | 1762 | !------------------------------------------------------------------------------! |
---|
[1691] | 1763 | |
---|
[1682] | 1764 | SUBROUTINE prognostic_equations_acc |
---|
[1015] | 1765 | |
---|
[1682] | 1766 | |
---|
[1015] | 1767 | IMPLICIT NONE |
---|
| 1768 | |
---|
[1682] | 1769 | INTEGER(iwp) :: i !< |
---|
| 1770 | INTEGER(iwp) :: j !< |
---|
| 1771 | INTEGER(iwp) :: k !< |
---|
| 1772 | INTEGER(iwp) :: runge_step !< |
---|
[1015] | 1773 | |
---|
[1682] | 1774 | REAL(wp) :: sbt !< |
---|
[1320] | 1775 | |
---|
[1015] | 1776 | ! |
---|
| 1777 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1778 | runge_step = 0 |
---|
| 1779 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1780 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1781 | runge_step = 1 |
---|
| 1782 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1783 | intermediate_timestep_count_max ) THEN |
---|
| 1784 | runge_step = 2 |
---|
| 1785 | ENDIF |
---|
| 1786 | ENDIF |
---|
| 1787 | |
---|
| 1788 | ! |
---|
[1361] | 1789 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
[1822] | 1790 | IF ( cloud_physics .AND. .NOT. microphysics_sat_adjust .AND. & |
---|
[1361] | 1791 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 1792 | call_microphysics_at_all_substeps ) & |
---|
| 1793 | ) THEN |
---|
| 1794 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 1795 | CALL microphysics_control |
---|
| 1796 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 1797 | ENDIF |
---|
| 1798 | |
---|
| 1799 | ! |
---|
[1015] | 1800 | !-- u-velocity component |
---|
[1374] | 1801 | !++ Statistics still not completely ported to accelerators |
---|
[1179] | 1802 | !$acc update device( hom, ref_state ) |
---|
[1015] | 1803 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1804 | |
---|
| 1805 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1806 | IF ( ws_scheme_mom ) THEN |
---|
| 1807 | CALL advec_u_ws_acc |
---|
| 1808 | ELSE |
---|
[1337] | 1809 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1810 | CALL advec_u_pw |
---|
| 1811 | ENDIF |
---|
| 1812 | ELSE |
---|
| 1813 | CALL advec_u_up |
---|
| 1814 | ENDIF |
---|
| 1815 | CALL diffusion_u_acc |
---|
| 1816 | CALL coriolis_acc( 1 ) |
---|
| 1817 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 1818 | CALL buoyancy( pt, 1 ) |
---|
[1015] | 1819 | ENDIF |
---|
| 1820 | |
---|
| 1821 | ! |
---|
| 1822 | !-- Drag by plant canopy |
---|
[1826] | 1823 | IF ( plant_canopy ) CALL pcm_tendency( 1 ) |
---|
[1015] | 1824 | |
---|
| 1825 | ! |
---|
| 1826 | !-- External pressure gradient |
---|
| 1827 | IF ( dp_external ) THEN |
---|
[1128] | 1828 | DO i = i_left, i_right |
---|
| 1829 | DO j = j_south, j_north |
---|
[1015] | 1830 | DO k = dp_level_ind_b+1, nzt |
---|
| 1831 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1832 | ENDDO |
---|
| 1833 | ENDDO |
---|
| 1834 | ENDDO |
---|
| 1835 | ENDIF |
---|
| 1836 | |
---|
[1246] | 1837 | ! |
---|
| 1838 | !-- Nudging |
---|
[1691] | 1839 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
[1246] | 1840 | |
---|
[1015] | 1841 | CALL user_actions( 'u-tendency' ) |
---|
| 1842 | |
---|
| 1843 | ! |
---|
| 1844 | !-- Prognostic equation for u-velocity component |
---|
[1398] | 1845 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, u_init, u_p ) |
---|
[1257] | 1846 | !$acc loop independent |
---|
[1128] | 1847 | DO i = i_left, i_right |
---|
[1257] | 1848 | !$acc loop independent |
---|
[1128] | 1849 | DO j = j_south, j_north |
---|
[1257] | 1850 | !$acc loop independent |
---|
[1015] | 1851 | DO k = 1, nzt |
---|
| 1852 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1853 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1854 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 1855 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[1015] | 1856 | ! |
---|
| 1857 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1858 | IF ( runge_step == 1 ) THEN |
---|
| 1859 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1860 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1861 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[1015] | 1862 | ENDIF |
---|
| 1863 | ENDIF |
---|
| 1864 | ENDDO |
---|
| 1865 | ENDDO |
---|
| 1866 | ENDDO |
---|
| 1867 | !$acc end kernels |
---|
| 1868 | |
---|
| 1869 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1870 | |
---|
| 1871 | ! |
---|
| 1872 | !-- v-velocity component |
---|
| 1873 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1874 | |
---|
| 1875 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1876 | IF ( ws_scheme_mom ) THEN |
---|
| 1877 | CALL advec_v_ws_acc |
---|
| 1878 | ELSE |
---|
[1337] | 1879 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1880 | CALL advec_v_pw |
---|
| 1881 | END IF |
---|
| 1882 | ELSE |
---|
| 1883 | CALL advec_v_up |
---|
| 1884 | ENDIF |
---|
| 1885 | CALL diffusion_v_acc |
---|
| 1886 | CALL coriolis_acc( 2 ) |
---|
| 1887 | |
---|
| 1888 | ! |
---|
| 1889 | !-- Drag by plant canopy |
---|
[1826] | 1890 | IF ( plant_canopy ) CALL pcm_tendency( 2 ) |
---|
[1015] | 1891 | |
---|
| 1892 | ! |
---|
| 1893 | !-- External pressure gradient |
---|
| 1894 | IF ( dp_external ) THEN |
---|
[1128] | 1895 | DO i = i_left, i_right |
---|
| 1896 | DO j = j_south, j_north |
---|
[1015] | 1897 | DO k = dp_level_ind_b+1, nzt |
---|
| 1898 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1899 | ENDDO |
---|
| 1900 | ENDDO |
---|
| 1901 | ENDDO |
---|
| 1902 | ENDIF |
---|
| 1903 | |
---|
[1246] | 1904 | ! |
---|
| 1905 | !-- Nudging |
---|
[1691] | 1906 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
[1246] | 1907 | |
---|
[1015] | 1908 | CALL user_actions( 'v-tendency' ) |
---|
| 1909 | |
---|
| 1910 | ! |
---|
| 1911 | !-- Prognostic equation for v-velocity component |
---|
[1398] | 1912 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, v_init, v_p ) |
---|
[1257] | 1913 | !$acc loop independent |
---|
[1128] | 1914 | DO i = i_left, i_right |
---|
[1257] | 1915 | !$acc loop independent |
---|
[1128] | 1916 | DO j = j_south, j_north |
---|
[1257] | 1917 | !$acc loop independent |
---|
[1015] | 1918 | DO k = 1, nzt |
---|
| 1919 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1920 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1921 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1922 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[1015] | 1923 | ! |
---|
| 1924 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1925 | IF ( runge_step == 1 ) THEN |
---|
| 1926 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1927 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1928 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[1015] | 1929 | ENDIF |
---|
| 1930 | ENDIF |
---|
| 1931 | ENDDO |
---|
| 1932 | ENDDO |
---|
| 1933 | ENDDO |
---|
| 1934 | !$acc end kernels |
---|
| 1935 | |
---|
| 1936 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1937 | |
---|
| 1938 | ! |
---|
| 1939 | !-- w-velocity component |
---|
| 1940 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1941 | |
---|
| 1942 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1943 | IF ( ws_scheme_mom ) THEN |
---|
| 1944 | CALL advec_w_ws_acc |
---|
| 1945 | ELSE |
---|
[1337] | 1946 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1947 | CALL advec_w_pw |
---|
| 1948 | ENDIF |
---|
| 1949 | ELSE |
---|
| 1950 | CALL advec_w_up |
---|
| 1951 | ENDIF |
---|
| 1952 | CALL diffusion_w_acc |
---|
| 1953 | CALL coriolis_acc( 3 ) |
---|
| 1954 | |
---|
| 1955 | IF ( .NOT. neutral ) THEN |
---|
| 1956 | IF ( ocean ) THEN |
---|
[1179] | 1957 | CALL buoyancy( rho, 3 ) |
---|
[1015] | 1958 | ELSE |
---|
| 1959 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1960 | CALL buoyancy_acc( pt, 3 ) |
---|
[1015] | 1961 | ELSE |
---|
[1179] | 1962 | CALL buoyancy( vpt, 3 ) |
---|
[1015] | 1963 | ENDIF |
---|
| 1964 | ENDIF |
---|
| 1965 | ENDIF |
---|
| 1966 | |
---|
| 1967 | ! |
---|
| 1968 | !-- Drag by plant canopy |
---|
[1826] | 1969 | IF ( plant_canopy ) CALL pcm_tendency( 3 ) |
---|
[1015] | 1970 | |
---|
| 1971 | CALL user_actions( 'w-tendency' ) |
---|
| 1972 | |
---|
| 1973 | ! |
---|
| 1974 | !-- Prognostic equation for w-velocity component |
---|
| 1975 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
[1257] | 1976 | !$acc loop independent |
---|
[1128] | 1977 | DO i = i_left, i_right |
---|
[1257] | 1978 | !$acc loop independent |
---|
[1128] | 1979 | DO j = j_south, j_north |
---|
[1257] | 1980 | !$acc loop independent |
---|
[1015] | 1981 | DO k = 1, nzt-1 |
---|
| 1982 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 1983 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1984 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1985 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1986 | ! |
---|
| 1987 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1988 | IF ( runge_step == 1 ) THEN |
---|
| 1989 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1990 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1991 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[1015] | 1992 | ENDIF |
---|
| 1993 | ENDIF |
---|
| 1994 | ENDDO |
---|
| 1995 | ENDDO |
---|
| 1996 | ENDDO |
---|
| 1997 | !$acc end kernels |
---|
| 1998 | |
---|
| 1999 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 2000 | |
---|
| 2001 | |
---|
| 2002 | ! |
---|
| 2003 | !-- If required, compute prognostic equation for potential temperature |
---|
| 2004 | IF ( .NOT. neutral ) THEN |
---|
| 2005 | |
---|
| 2006 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 2007 | |
---|
| 2008 | ! |
---|
| 2009 | !-- pt-tendency terms with communication |
---|
| 2010 | sbt = tsc(2) |
---|
| 2011 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2012 | |
---|
| 2013 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2014 | ! |
---|
| 2015 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 2016 | sbt = 1.0_wp |
---|
[1015] | 2017 | ENDIF |
---|
[1337] | 2018 | tend = 0.0_wp |
---|
[1015] | 2019 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 2020 | |
---|
| 2021 | ENDIF |
---|
| 2022 | |
---|
| 2023 | ! |
---|
| 2024 | !-- pt-tendency terms with no communication |
---|
| 2025 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2026 | tend = 0.0_wp |
---|
[1015] | 2027 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2028 | IF ( ws_scheme_sca ) THEN |
---|
| 2029 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 2030 | ELSE |
---|
[1337] | 2031 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2032 | CALL advec_s_pw( pt ) |
---|
| 2033 | ENDIF |
---|
| 2034 | ELSE |
---|
| 2035 | CALL advec_s_up( pt ) |
---|
| 2036 | ENDIF |
---|
| 2037 | ENDIF |
---|
| 2038 | |
---|
| 2039 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 2040 | |
---|
| 2041 | ! |
---|
| 2042 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
[1496] | 2043 | IF ( cloud_top_radiation ) THEN |
---|
[1015] | 2044 | CALL calc_radiation |
---|
| 2045 | ENDIF |
---|
| 2046 | |
---|
| 2047 | ! |
---|
| 2048 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 2049 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[1826] | 2050 | CALL pcm_tendency( 4 ) |
---|
[1015] | 2051 | ENDIF |
---|
| 2052 | |
---|
| 2053 | ! |
---|
[1365] | 2054 | !-- Large scale advection |
---|
| 2055 | IF ( large_scale_forcing ) THEN |
---|
| 2056 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 2057 | ENDIF |
---|
| 2058 | |
---|
| 2059 | ! |
---|
[1380] | 2060 | !-- Nudging |
---|
| 2061 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 2062 | |
---|
| 2063 | ! |
---|
[1015] | 2064 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2065 | IF ( large_scale_subsidence .AND. & |
---|
| 2066 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2067 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[1015] | 2068 | ENDIF |
---|
| 2069 | |
---|
[1691] | 2070 | IF ( radiation .AND. radiation_scheme == 'rrtmg' .AND. & |
---|
| 2071 | simulated_time > skip_time_do_radiation ) THEN |
---|
| 2072 | CALL radiation_tendency ( tend ) |
---|
| 2073 | ENDIF |
---|
| 2074 | |
---|
[1015] | 2075 | CALL user_actions( 'pt-tendency' ) |
---|
| 2076 | |
---|
| 2077 | ! |
---|
| 2078 | !-- Prognostic equation for potential temperature |
---|
| 2079 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 2080 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
[1257] | 2081 | !$acc loop independent |
---|
[1128] | 2082 | DO i = i_left, i_right |
---|
[1257] | 2083 | !$acc loop independent |
---|
[1128] | 2084 | DO j = j_south, j_north |
---|
[1257] | 2085 | !$acc loop independent |
---|
[1015] | 2086 | DO k = 1, nzt |
---|
| 2087 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2088 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2089 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 2090 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 2091 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 2092 | ! |
---|
| 2093 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2094 | IF ( runge_step == 1 ) THEN |
---|
| 2095 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 2096 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2097 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tpt_m(k,j,i) |
---|
[1015] | 2098 | ENDIF |
---|
| 2099 | ENDIF |
---|
| 2100 | ENDDO |
---|
| 2101 | ENDDO |
---|
| 2102 | ENDDO |
---|
| 2103 | !$acc end kernels |
---|
| 2104 | |
---|
| 2105 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 2106 | |
---|
| 2107 | ENDIF |
---|
| 2108 | |
---|
| 2109 | ! |
---|
| 2110 | !-- If required, compute prognostic equation for salinity |
---|
| 2111 | IF ( ocean ) THEN |
---|
| 2112 | |
---|
| 2113 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 2114 | |
---|
| 2115 | ! |
---|
| 2116 | !-- sa-tendency terms with communication |
---|
| 2117 | sbt = tsc(2) |
---|
| 2118 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2119 | |
---|
| 2120 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2121 | ! |
---|
| 2122 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2123 | sbt = 1.0_wp |
---|
[1015] | 2124 | ENDIF |
---|
[1337] | 2125 | tend = 0.0_wp |
---|
[1015] | 2126 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 2127 | |
---|
| 2128 | ENDIF |
---|
| 2129 | |
---|
| 2130 | ! |
---|
| 2131 | !-- sa-tendency terms with no communication |
---|
| 2132 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2133 | tend = 0.0_wp |
---|
[1015] | 2134 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2135 | IF ( ws_scheme_sca ) THEN |
---|
| 2136 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 2137 | ELSE |
---|
| 2138 | CALL advec_s_pw( sa ) |
---|
| 2139 | ENDIF |
---|
| 2140 | ELSE |
---|
| 2141 | CALL advec_s_up( sa ) |
---|
| 2142 | ENDIF |
---|
| 2143 | ENDIF |
---|
| 2144 | |
---|
| 2145 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 2146 | |
---|
| 2147 | CALL user_actions( 'sa-tendency' ) |
---|
| 2148 | |
---|
| 2149 | ! |
---|
| 2150 | !-- Prognostic equation for salinity |
---|
[1128] | 2151 | DO i = i_left, i_right |
---|
| 2152 | DO j = j_south, j_north |
---|
[1015] | 2153 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2154 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2155 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 2156 | - tsc(5) * rdf_sc(k) * & |
---|
| 2157 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 2158 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[1015] | 2159 | ! |
---|
| 2160 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2161 | IF ( runge_step == 1 ) THEN |
---|
| 2162 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 2163 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2164 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tsa_m(k,j,i) |
---|
[1015] | 2165 | ENDIF |
---|
| 2166 | ENDDO |
---|
| 2167 | ENDDO |
---|
| 2168 | ENDDO |
---|
| 2169 | |
---|
| 2170 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 2171 | |
---|
| 2172 | ! |
---|
| 2173 | !-- Calculate density by the equation of state for seawater |
---|
| 2174 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 2175 | CALL eqn_state_seawater |
---|
| 2176 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 2177 | |
---|
| 2178 | ENDIF |
---|
| 2179 | |
---|
| 2180 | ! |
---|
| 2181 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 2182 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 2183 | |
---|
| 2184 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 2185 | |
---|
| 2186 | ! |
---|
| 2187 | !-- Scalar/q-tendency terms with communication |
---|
| 2188 | sbt = tsc(2) |
---|
| 2189 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2190 | |
---|
| 2191 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2192 | ! |
---|
| 2193 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2194 | sbt = 1.0_wp |
---|
[1015] | 2195 | ENDIF |
---|
[1337] | 2196 | tend = 0.0_wp |
---|
[1015] | 2197 | CALL advec_s_bc( q, 'q' ) |
---|
| 2198 | |
---|
| 2199 | ENDIF |
---|
| 2200 | |
---|
| 2201 | ! |
---|
| 2202 | !-- Scalar/q-tendency terms with no communication |
---|
| 2203 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2204 | tend = 0.0_wp |
---|
[1015] | 2205 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2206 | IF ( ws_scheme_sca ) THEN |
---|
| 2207 | CALL advec_s_ws( q, 'q' ) |
---|
| 2208 | ELSE |
---|
| 2209 | CALL advec_s_pw( q ) |
---|
| 2210 | ENDIF |
---|
| 2211 | ELSE |
---|
| 2212 | CALL advec_s_up( q ) |
---|
| 2213 | ENDIF |
---|
| 2214 | ENDIF |
---|
| 2215 | |
---|
| 2216 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 2217 | |
---|
| 2218 | ! |
---|
| 2219 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1826] | 2220 | IF ( plant_canopy ) CALL pcm_tendency( 5 ) |
---|
[1015] | 2221 | |
---|
| 2222 | ! |
---|
[1365] | 2223 | !-- Large scale advection |
---|
| 2224 | IF ( large_scale_forcing ) THEN |
---|
| 2225 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 2226 | ENDIF |
---|
| 2227 | |
---|
| 2228 | ! |
---|
[1380] | 2229 | !-- Nudging |
---|
| 2230 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 2231 | |
---|
| 2232 | ! |
---|
[1015] | 2233 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2234 | IF ( large_scale_subsidence .AND. & |
---|
| 2235 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2236 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[1015] | 2237 | ENDIF |
---|
| 2238 | |
---|
| 2239 | CALL user_actions( 'q-tendency' ) |
---|
| 2240 | |
---|
| 2241 | ! |
---|
| 2242 | !-- Prognostic equation for total water content / scalar |
---|
[1128] | 2243 | DO i = i_left, i_right |
---|
| 2244 | DO j = j_south, j_north |
---|
[1015] | 2245 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2246 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2247 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 2248 | - tsc(5) * rdf_sc(k) * & |
---|
| 2249 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 2250 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[1015] | 2251 | ! |
---|
| 2252 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2253 | IF ( runge_step == 1 ) THEN |
---|
| 2254 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 2255 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2256 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[1015] | 2257 | ENDIF |
---|
| 2258 | ENDDO |
---|
| 2259 | ENDDO |
---|
| 2260 | ENDDO |
---|
| 2261 | |
---|
| 2262 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 2263 | |
---|
[1361] | 2264 | ! |
---|
| 2265 | !-- If required, calculate prognostic equations for rain water content |
---|
| 2266 | !-- and rain drop concentration |
---|
[1822] | 2267 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1361] | 2268 | |
---|
| 2269 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 2270 | ! |
---|
| 2271 | !-- qr-tendency terms with communication |
---|
| 2272 | sbt = tsc(2) |
---|
| 2273 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2274 | |
---|
| 2275 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2276 | ! |
---|
| 2277 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2278 | sbt = 1.0_wp |
---|
| 2279 | ENDIF |
---|
| 2280 | tend = 0.0_wp |
---|
| 2281 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 2282 | |
---|
| 2283 | ENDIF |
---|
| 2284 | |
---|
| 2285 | ! |
---|
| 2286 | !-- qr-tendency terms with no communication |
---|
| 2287 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2288 | tend = 0.0_wp |
---|
| 2289 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2290 | IF ( ws_scheme_sca ) THEN |
---|
| 2291 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 2292 | ELSE |
---|
| 2293 | CALL advec_s_pw( qr ) |
---|
| 2294 | ENDIF |
---|
| 2295 | ELSE |
---|
| 2296 | CALL advec_s_up( qr ) |
---|
| 2297 | ENDIF |
---|
| 2298 | ENDIF |
---|
| 2299 | |
---|
| 2300 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 2301 | |
---|
| 2302 | ! |
---|
| 2303 | !-- Prognostic equation for rain water content |
---|
| 2304 | DO i = i_left, i_right |
---|
| 2305 | DO j = j_south, j_north |
---|
| 2306 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2307 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2308 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 2309 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 2310 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 2311 | ! |
---|
| 2312 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2313 | IF ( runge_step == 1 ) THEN |
---|
| 2314 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 2315 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2316 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2317 | tqr_m(k,j,i) |
---|
| 2318 | ENDIF |
---|
| 2319 | ENDDO |
---|
| 2320 | ENDDO |
---|
| 2321 | ENDDO |
---|
| 2322 | |
---|
| 2323 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 2324 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 2325 | |
---|
| 2326 | ! |
---|
| 2327 | !-- nr-tendency terms with communication |
---|
| 2328 | sbt = tsc(2) |
---|
| 2329 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2330 | |
---|
| 2331 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2332 | ! |
---|
| 2333 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2334 | sbt = 1.0_wp |
---|
| 2335 | ENDIF |
---|
| 2336 | tend = 0.0_wp |
---|
| 2337 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 2338 | |
---|
| 2339 | ENDIF |
---|
| 2340 | |
---|
| 2341 | ! |
---|
| 2342 | !-- nr-tendency terms with no communication |
---|
| 2343 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2344 | tend = 0.0_wp |
---|
| 2345 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2346 | IF ( ws_scheme_sca ) THEN |
---|
| 2347 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 2348 | ELSE |
---|
| 2349 | CALL advec_s_pw( nr ) |
---|
| 2350 | ENDIF |
---|
| 2351 | ELSE |
---|
| 2352 | CALL advec_s_up( nr ) |
---|
| 2353 | ENDIF |
---|
| 2354 | ENDIF |
---|
| 2355 | |
---|
| 2356 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 2357 | |
---|
| 2358 | ! |
---|
| 2359 | !-- Prognostic equation for rain drop concentration |
---|
| 2360 | DO i = i_left, i_right |
---|
| 2361 | DO j = j_south, j_north |
---|
| 2362 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2363 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2364 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 2365 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 2366 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 2367 | ! |
---|
| 2368 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2369 | IF ( runge_step == 1 ) THEN |
---|
| 2370 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 2371 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2372 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2373 | tnr_m(k,j,i) |
---|
| 2374 | ENDIF |
---|
| 2375 | ENDDO |
---|
| 2376 | ENDDO |
---|
| 2377 | ENDDO |
---|
| 2378 | |
---|
| 2379 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 2380 | |
---|
| 2381 | ENDIF |
---|
| 2382 | |
---|
[1015] | 2383 | ENDIF |
---|
| 2384 | |
---|
| 2385 | ! |
---|
| 2386 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 2387 | !-- energy (TKE) |
---|
| 2388 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 2389 | |
---|
| 2390 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 2391 | |
---|
| 2392 | sbt = tsc(2) |
---|
| 2393 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 2394 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2395 | |
---|
| 2396 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2397 | ! |
---|
| 2398 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2399 | sbt = 1.0_wp |
---|
[1015] | 2400 | ENDIF |
---|
[1337] | 2401 | tend = 0.0_wp |
---|
[1015] | 2402 | CALL advec_s_bc( e, 'e' ) |
---|
| 2403 | |
---|
| 2404 | ENDIF |
---|
| 2405 | ENDIF |
---|
| 2406 | |
---|
| 2407 | ! |
---|
| 2408 | !-- TKE-tendency terms with no communication |
---|
| 2409 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 2410 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 2411 | tend = 0.0_wp |
---|
[1015] | 2412 | CALL advec_s_up( e ) |
---|
| 2413 | ELSE |
---|
| 2414 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2415 | IF ( ws_scheme_sca ) THEN |
---|
| 2416 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 2417 | ELSE |
---|
[1337] | 2418 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2419 | CALL advec_s_pw( e ) |
---|
| 2420 | ENDIF |
---|
| 2421 | ELSE |
---|
[1337] | 2422 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2423 | CALL advec_s_up( e ) |
---|
| 2424 | ENDIF |
---|
| 2425 | ENDIF |
---|
| 2426 | ENDIF |
---|
| 2427 | |
---|
| 2428 | IF ( .NOT. humidity ) THEN |
---|
| 2429 | IF ( ocean ) THEN |
---|
| 2430 | CALL diffusion_e( prho, prho_reference ) |
---|
| 2431 | ELSE |
---|
| 2432 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 2433 | ENDIF |
---|
| 2434 | ELSE |
---|
| 2435 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 2436 | ENDIF |
---|
| 2437 | |
---|
| 2438 | CALL production_e_acc |
---|
| 2439 | |
---|
| 2440 | ! |
---|
| 2441 | !-- Additional sink term for flows through plant canopies |
---|
[1826] | 2442 | IF ( plant_canopy ) CALL pcm_tendency( 6 ) |
---|
[1015] | 2443 | CALL user_actions( 'e-tendency' ) |
---|
| 2444 | |
---|
| 2445 | ! |
---|
| 2446 | !-- Prognostic equation for TKE. |
---|
| 2447 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2448 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2449 | !-- value is reduced by 90%. |
---|
| 2450 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
[1257] | 2451 | !$acc loop independent |
---|
[1128] | 2452 | DO i = i_left, i_right |
---|
[1257] | 2453 | !$acc loop independent |
---|
[1128] | 2454 | DO j = j_south, j_north |
---|
[1257] | 2455 | !$acc loop independent |
---|
[1015] | 2456 | DO k = 1, nzt |
---|
| 2457 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2458 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2459 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 2460 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[1015] | 2461 | ! |
---|
| 2462 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2463 | IF ( runge_step == 1 ) THEN |
---|
| 2464 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2465 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2466 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[1015] | 2467 | ENDIF |
---|
| 2468 | ENDIF |
---|
| 2469 | ENDDO |
---|
| 2470 | ENDDO |
---|
| 2471 | ENDDO |
---|
| 2472 | !$acc end kernels |
---|
| 2473 | |
---|
| 2474 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2475 | |
---|
| 2476 | ENDIF |
---|
| 2477 | |
---|
| 2478 | END SUBROUTINE prognostic_equations_acc |
---|
| 2479 | |
---|
| 2480 | |
---|
[736] | 2481 | END MODULE prognostic_equations_mod |
---|