[1691] | 1 | !> @file prognostic_equations.f90 |
---|
[1036] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1691] | 16 | ! Copyright 1997-2015 Leibniz Universitaet Hannover |
---|
[1036] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
[736] | 19 | ! Current revisions: |
---|
[1092] | 20 | ! ------------------ |
---|
[1758] | 21 | ! |
---|
| 22 | ! |
---|
[1485] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: prognostic_equations.f90 1758 2016-02-22 15:53:28Z raasch $ |
---|
| 26 | ! |
---|
[1758] | 27 | ! 1757 2016-02-22 15:49:32Z maronga |
---|
| 28 | ! |
---|
| 29 | ! |
---|
[1757] | 30 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
[1692] | 31 | ! Added optional model spin-up without radiation / land surface model calls. |
---|
| 32 | ! Formatting corrections. |
---|
| 33 | ! |
---|
[1691] | 34 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 35 | ! Code annotations made doxygen readable |
---|
| 36 | ! |
---|
| 37 | ! 1585 2015-04-30 07:05:52Z maronga |
---|
[1586] | 38 | ! Added call for temperature tendency calculation due to radiative flux divergence |
---|
| 39 | ! |
---|
[1518] | 40 | ! 1517 2015-01-07 19:12:25Z hoffmann |
---|
| 41 | ! advec_s_bc_mod addded, since advec_s_bc is now a module |
---|
| 42 | ! |
---|
[1517] | 43 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
[1497] | 44 | ! Renamed "radiation" -> "cloud_top_radiation" |
---|
| 45 | ! |
---|
[1496] | 46 | ! 1484 2014-10-21 10:53:05Z kanani |
---|
[1484] | 47 | ! Changes due to new module structure of the plant canopy model: |
---|
| 48 | ! parameters cthf and plant_canopy moved to module plant_canopy_model_mod. |
---|
| 49 | ! Removed double-listing of use_upstream_for_tke in ONLY-list of module |
---|
| 50 | ! control_parameters |
---|
| 51 | ! |
---|
| 52 | ! 1409 2014-05-23 12:11:32Z suehring |
---|
[1409] | 53 | ! Bugfix: i_omp_start changed for advec_u_ws at left inflow and outflow boundary. |
---|
| 54 | ! This ensures that left-hand side fluxes are also calculated for nxl in that |
---|
| 55 | ! case, even though the solution at nxl is overwritten in boundary_conds() |
---|
| 56 | ! |
---|
| 57 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
[1398] | 58 | ! Rayleigh-damping for horizontal velocity components changed: instead of damping |
---|
| 59 | ! against ug and vg, damping against u_init and v_init is used to allow for a |
---|
| 60 | ! homogenized treatment in case of nudging |
---|
| 61 | ! |
---|
| 62 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
[1381] | 63 | ! Change order of calls for scalar prognostic quantities: |
---|
| 64 | ! ls_advec -> nudging -> subsidence since initial profiles |
---|
| 65 | ! |
---|
[1380] | 66 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 67 | ! missing variables added to ONLY lists |
---|
| 68 | ! |
---|
| 69 | ! 1365 2014-04-22 15:03:56Z boeske |
---|
[1365] | 70 | ! Calls of ls_advec for large scale advection added, |
---|
| 71 | ! subroutine subsidence is only called if use_subsidence_tendencies = .F., |
---|
| 72 | ! new argument ls_index added to the calls of subsidence |
---|
| 73 | ! +ls_index |
---|
| 74 | ! |
---|
| 75 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
[1361] | 76 | ! Two-moment microphysics moved to the start of prognostic equations. This makes |
---|
| 77 | ! the 3d arrays for tend_q, tend_qr, tend_pt and tend_pt redundant. |
---|
| 78 | ! Additionally, it is allowed to call the microphysics just once during the time |
---|
| 79 | ! step (not at each sub-time step). |
---|
| 80 | ! |
---|
| 81 | ! Two-moment cloud physics added for vector and accelerator optimization. |
---|
| 82 | ! |
---|
| 83 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
[1354] | 84 | ! REAL constants provided with KIND-attribute |
---|
| 85 | ! |
---|
[1353] | 86 | ! 1337 2014-03-25 15:11:48Z heinze |
---|
| 87 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 88 | ! |
---|
| 89 | ! 1332 2014-03-25 11:59:43Z suehring |
---|
[1333] | 90 | ! Bugfix: call advec_ws or advec_pw for TKE only if NOT use_upstream_for_tke |
---|
| 91 | ! |
---|
[1332] | 92 | ! 1330 2014-03-24 17:29:32Z suehring |
---|
[1331] | 93 | ! In case of SGS-particle velocity advection of TKE is also allowed with |
---|
| 94 | ! dissipative 5th-order scheme. |
---|
| 95 | ! |
---|
[1321] | 96 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 97 | ! ONLY-attribute added to USE-statements, |
---|
| 98 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 99 | ! kinds are defined in new module kinds, |
---|
| 100 | ! old module precision_kind is removed, |
---|
| 101 | ! revision history before 2012 removed, |
---|
| 102 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 103 | ! all variable declaration statements |
---|
[1054] | 104 | ! |
---|
[1319] | 105 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 106 | ! module interfaces removed |
---|
| 107 | ! |
---|
[1258] | 108 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 109 | ! openacc loop vector clauses removed, independent clauses added |
---|
| 110 | ! |
---|
[1247] | 111 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
| 112 | ! enable nudging also for accelerator version |
---|
| 113 | ! |
---|
[1242] | 114 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 115 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
| 116 | ! |
---|
[1182] | 117 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 118 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 119 | ! |
---|
[1132] | 120 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 121 | ! those parts requiring global communication moved to time_integration, |
---|
| 122 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 123 | ! j_north |
---|
| 124 | ! |
---|
[1116] | 125 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 126 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 127 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 128 | ! |
---|
[1112] | 129 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 130 | ! update directives for prognostic quantities removed |
---|
| 131 | ! |
---|
[1107] | 132 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 133 | ! small changes in code formatting |
---|
| 134 | ! |
---|
[1093] | 135 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 136 | ! unused variables removed |
---|
| 137 | ! |
---|
[1054] | 138 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 139 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 140 | ! and rain water content (qr) |
---|
[979] | 141 | ! |
---|
[1053] | 142 | ! currently, only available for cache loop optimization |
---|
[1020] | 143 | ! |
---|
[1037] | 144 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 145 | ! code put under GPL (PALM 3.9) |
---|
| 146 | ! |
---|
[1020] | 147 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 148 | ! non-optimized version of prognostic_equations removed |
---|
| 149 | ! |
---|
[1017] | 150 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 151 | ! new branch prognostic_equations_acc |
---|
| 152 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 153 | ! |
---|
[1002] | 154 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 155 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 156 | ! |
---|
[979] | 157 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 158 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 159 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 160 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 161 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 162 | ! |
---|
[941] | 163 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 164 | ! temperature equation can be switched off |
---|
| 165 | ! |
---|
[736] | 166 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 167 | ! Initial revision |
---|
| 168 | ! |
---|
| 169 | ! |
---|
| 170 | ! Description: |
---|
| 171 | ! ------------ |
---|
[1682] | 172 | !> Solving the prognostic equations. |
---|
[736] | 173 | !------------------------------------------------------------------------------! |
---|
[1682] | 174 | MODULE prognostic_equations_mod |
---|
[736] | 175 | |
---|
[1691] | 176 | |
---|
[1682] | 177 | |
---|
[1320] | 178 | USE arrays_3d, & |
---|
| 179 | ONLY: diss_l_e, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qr, & |
---|
| 180 | diss_l_sa, diss_s_e, diss_s_nr, diss_s_pt, diss_s_q, & |
---|
| 181 | diss_s_qr, diss_s_sa, e, e_p, flux_s_e, flux_s_nr, flux_s_pt, & |
---|
| 182 | flux_s_q, flux_s_qr, flux_s_sa, flux_l_e, flux_l_nr, & |
---|
| 183 | flux_l_pt, flux_l_q, flux_l_qr, flux_l_sa, nr, nr_p, nrsws, & |
---|
| 184 | nrswst, pt, ptdf_x, ptdf_y, pt_init, pt_p, prho, q, q_init, & |
---|
[1374] | 185 | q_p, qsws, qswst, qr, qr_p, qrsws, qrswst, rdf, rdf_sc, & |
---|
| 186 | ref_state, rho, sa, sa_init, sa_p, saswsb, saswst, shf, tend, & |
---|
| 187 | te_m, tnr_m, tpt_m, tq_m, tqr_m, tsa_m, tswst, tu_m, tv_m, & |
---|
[1398] | 188 | tw_m, u, ug, u_init, u_p, v, vg, vpt, v_init, v_p, w, w_p |
---|
[1320] | 189 | |
---|
| 190 | USE control_parameters, & |
---|
[1361] | 191 | ONLY: call_microphysics_at_all_substeps, cloud_physics, & |
---|
[1496] | 192 | cloud_top_radiation, constant_diffusion, dp_external, & |
---|
[1320] | 193 | dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, humidity, & |
---|
| 194 | icloud_scheme, inflow_l, intermediate_timestep_count, & |
---|
[1365] | 195 | intermediate_timestep_count_max, large_scale_forcing, & |
---|
| 196 | large_scale_subsidence, neutral, nudging, ocean, outflow_l, & |
---|
[1484] | 197 | outflow_s, passive_scalar, precipitation, & |
---|
[1365] | 198 | prho_reference, prho_reference, prho_reference, pt_reference, & |
---|
[1496] | 199 | pt_reference, pt_reference, scalar_advec, scalar_advec, & |
---|
| 200 | simulated_time, sloping_surface, & |
---|
| 201 | timestep_scheme, tsc, use_subsidence_tendencies, & |
---|
| 202 | use_upstream_for_tke, wall_heatflux, & |
---|
[1320] | 203 | wall_nrflux, wall_qflux, wall_qflux, wall_qflux, wall_qrflux, & |
---|
| 204 | wall_salinityflux, ws_scheme_mom, ws_scheme_sca |
---|
[736] | 205 | |
---|
[1320] | 206 | USE cpulog, & |
---|
| 207 | ONLY: cpu_log, log_point |
---|
[736] | 208 | |
---|
[1320] | 209 | USE eqn_state_seawater_mod, & |
---|
| 210 | ONLY: eqn_state_seawater |
---|
| 211 | |
---|
| 212 | USE indices, & |
---|
| 213 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlu, nxr, nyn, nys, & |
---|
| 214 | nysv, nzb_s_inner, nzb_u_inner, nzb_v_inner, nzb_w_inner, nzt |
---|
| 215 | |
---|
| 216 | USE advec_ws, & |
---|
| 217 | ONLY: advec_s_ws, advec_s_ws_acc, advec_u_ws, advec_u_ws_acc, & |
---|
| 218 | advec_v_ws, advec_v_ws_acc, advec_w_ws, advec_w_ws_acc |
---|
| 219 | |
---|
[1517] | 220 | USE advec_s_bc_mod, & |
---|
| 221 | ONLY: advec_s_bc |
---|
| 222 | |
---|
[1320] | 223 | USE advec_s_pw_mod, & |
---|
| 224 | ONLY: advec_s_pw |
---|
| 225 | |
---|
| 226 | USE advec_s_up_mod, & |
---|
| 227 | ONLY: advec_s_up |
---|
| 228 | |
---|
| 229 | USE advec_u_pw_mod, & |
---|
| 230 | ONLY: advec_u_pw |
---|
| 231 | |
---|
| 232 | USE advec_u_up_mod, & |
---|
| 233 | ONLY: advec_u_up |
---|
| 234 | |
---|
| 235 | USE advec_v_pw_mod, & |
---|
| 236 | ONLY: advec_v_pw |
---|
| 237 | |
---|
| 238 | USE advec_v_up_mod, & |
---|
| 239 | ONLY: advec_v_up |
---|
| 240 | |
---|
| 241 | USE advec_w_pw_mod, & |
---|
| 242 | ONLY: advec_w_pw |
---|
| 243 | |
---|
| 244 | USE advec_w_up_mod, & |
---|
| 245 | ONLY: advec_w_up |
---|
| 246 | |
---|
| 247 | USE buoyancy_mod, & |
---|
| 248 | ONLY: buoyancy, buoyancy_acc |
---|
| 249 | |
---|
| 250 | USE calc_precipitation_mod, & |
---|
| 251 | ONLY: calc_precipitation |
---|
| 252 | |
---|
| 253 | USE calc_radiation_mod, & |
---|
| 254 | ONLY: calc_radiation |
---|
| 255 | |
---|
| 256 | USE coriolis_mod, & |
---|
| 257 | ONLY: coriolis, coriolis_acc |
---|
| 258 | |
---|
| 259 | USE diffusion_e_mod, & |
---|
| 260 | ONLY: diffusion_e, diffusion_e_acc |
---|
| 261 | |
---|
| 262 | USE diffusion_s_mod, & |
---|
| 263 | ONLY: diffusion_s, diffusion_s_acc |
---|
| 264 | |
---|
| 265 | USE diffusion_u_mod, & |
---|
| 266 | ONLY: diffusion_u, diffusion_u_acc |
---|
| 267 | |
---|
| 268 | USE diffusion_v_mod, & |
---|
| 269 | ONLY: diffusion_v, diffusion_v_acc |
---|
| 270 | |
---|
| 271 | USE diffusion_w_mod, & |
---|
| 272 | ONLY: diffusion_w, diffusion_w_acc |
---|
| 273 | |
---|
| 274 | USE impact_of_latent_heat_mod, & |
---|
| 275 | ONLY: impact_of_latent_heat |
---|
| 276 | |
---|
| 277 | USE kinds |
---|
| 278 | |
---|
[1365] | 279 | USE ls_forcing_mod, & |
---|
| 280 | ONLY: ls_advec |
---|
| 281 | |
---|
[1320] | 282 | USE microphysics_mod, & |
---|
| 283 | ONLY: microphysics_control |
---|
| 284 | |
---|
| 285 | USE nudge_mod, & |
---|
| 286 | ONLY: nudge |
---|
| 287 | |
---|
| 288 | USE plant_canopy_model_mod, & |
---|
[1484] | 289 | ONLY: cthf, plant_canopy, plant_canopy_model |
---|
[1320] | 290 | |
---|
| 291 | USE production_e_mod, & |
---|
| 292 | ONLY: production_e, production_e_acc |
---|
| 293 | |
---|
[1585] | 294 | USE radiation_model_mod, & |
---|
[1691] | 295 | ONLY: radiation, radiation_scheme, radiation_tendency, & |
---|
| 296 | skip_time_do_radiation |
---|
[1585] | 297 | |
---|
[1374] | 298 | USE statistics, & |
---|
| 299 | ONLY: hom |
---|
| 300 | |
---|
[1320] | 301 | USE subsidence_mod, & |
---|
| 302 | ONLY: subsidence |
---|
| 303 | |
---|
| 304 | USE user_actions_mod, & |
---|
| 305 | ONLY: user_actions |
---|
| 306 | |
---|
| 307 | |
---|
[736] | 308 | PRIVATE |
---|
[1019] | 309 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 310 | prognostic_equations_acc |
---|
[736] | 311 | |
---|
| 312 | INTERFACE prognostic_equations_cache |
---|
| 313 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 314 | END INTERFACE prognostic_equations_cache |
---|
| 315 | |
---|
| 316 | INTERFACE prognostic_equations_vector |
---|
| 317 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 318 | END INTERFACE prognostic_equations_vector |
---|
| 319 | |
---|
[1015] | 320 | INTERFACE prognostic_equations_acc |
---|
| 321 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 322 | END INTERFACE prognostic_equations_acc |
---|
[736] | 323 | |
---|
[1015] | 324 | |
---|
[736] | 325 | CONTAINS |
---|
| 326 | |
---|
| 327 | |
---|
| 328 | !------------------------------------------------------------------------------! |
---|
[1691] | 329 | ! Description: |
---|
| 330 | ! ------------ |
---|
[1682] | 331 | !> Version with one optimized loop over all equations. It is only allowed to |
---|
| 332 | !> be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 333 | !> |
---|
| 334 | !> Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 335 | !> so communication between CPUs is not allowed (does not make sense) within |
---|
| 336 | !> these loops. |
---|
| 337 | !> |
---|
| 338 | !> (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
[736] | 339 | !------------------------------------------------------------------------------! |
---|
[1691] | 340 | |
---|
[1682] | 341 | SUBROUTINE prognostic_equations_cache |
---|
[736] | 342 | |
---|
[1682] | 343 | |
---|
[736] | 344 | IMPLICIT NONE |
---|
| 345 | |
---|
[1682] | 346 | INTEGER(iwp) :: i !< |
---|
| 347 | INTEGER(iwp) :: i_omp_start !< |
---|
| 348 | INTEGER(iwp) :: j !< |
---|
| 349 | INTEGER(iwp) :: k !< |
---|
| 350 | INTEGER(iwp) :: omp_get_thread_num !< |
---|
| 351 | INTEGER(iwp) :: tn = 0 !< |
---|
[1320] | 352 | |
---|
[1682] | 353 | LOGICAL :: loop_start !< |
---|
[736] | 354 | |
---|
| 355 | |
---|
| 356 | ! |
---|
| 357 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 358 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 359 | |
---|
| 360 | ! |
---|
| 361 | !-- Loop over all prognostic equations |
---|
| 362 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 363 | |
---|
| 364 | !$ tn = omp_get_thread_num() |
---|
| 365 | loop_start = .TRUE. |
---|
| 366 | !$OMP DO |
---|
| 367 | DO i = nxl, nxr |
---|
| 368 | |
---|
| 369 | ! |
---|
| 370 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 371 | !-- later in advec_ws |
---|
| 372 | IF ( loop_start ) THEN |
---|
| 373 | loop_start = .FALSE. |
---|
| 374 | i_omp_start = i |
---|
| 375 | ENDIF |
---|
[1365] | 376 | |
---|
[736] | 377 | DO j = nys, nyn |
---|
| 378 | ! |
---|
[1361] | 379 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 380 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 381 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 382 | call_microphysics_at_all_substeps ) & |
---|
| 383 | ) THEN |
---|
| 384 | CALL microphysics_control( i, j ) |
---|
| 385 | ENDIF |
---|
| 386 | ! |
---|
[736] | 387 | !-- Tendency terms for u-velocity component |
---|
| 388 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 389 | |
---|
[1337] | 390 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 391 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 392 | IF ( ws_scheme_mom ) THEN |
---|
[1409] | 393 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
[736] | 394 | ELSE |
---|
| 395 | CALL advec_u_pw( i, j ) |
---|
| 396 | ENDIF |
---|
| 397 | ELSE |
---|
| 398 | CALL advec_u_up( i, j ) |
---|
| 399 | ENDIF |
---|
[1001] | 400 | CALL diffusion_u( i, j ) |
---|
[736] | 401 | CALL coriolis( i, j, 1 ) |
---|
[940] | 402 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 403 | CALL buoyancy( i, j, pt, 1 ) |
---|
[940] | 404 | ENDIF |
---|
[736] | 405 | |
---|
| 406 | ! |
---|
| 407 | !-- Drag by plant canopy |
---|
| 408 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 409 | |
---|
| 410 | ! |
---|
| 411 | !-- External pressure gradient |
---|
| 412 | IF ( dp_external ) THEN |
---|
| 413 | DO k = dp_level_ind_b+1, nzt |
---|
| 414 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 415 | ENDDO |
---|
| 416 | ENDIF |
---|
| 417 | |
---|
[1241] | 418 | ! |
---|
| 419 | !-- Nudging |
---|
[1691] | 420 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
[1241] | 421 | |
---|
[736] | 422 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 423 | ! |
---|
| 424 | !-- Prognostic equation for u-velocity component |
---|
| 425 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 426 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 427 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 428 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 429 | ENDDO |
---|
| 430 | |
---|
| 431 | ! |
---|
| 432 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 433 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 434 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 435 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 436 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 437 | ENDDO |
---|
| 438 | ELSEIF ( intermediate_timestep_count < & |
---|
| 439 | intermediate_timestep_count_max ) THEN |
---|
| 440 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 441 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 442 | ENDDO |
---|
| 443 | ENDIF |
---|
| 444 | ENDIF |
---|
| 445 | |
---|
| 446 | ENDIF |
---|
| 447 | |
---|
| 448 | ! |
---|
| 449 | !-- Tendency terms for v-velocity component |
---|
| 450 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 451 | |
---|
[1337] | 452 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 453 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 454 | IF ( ws_scheme_mom ) THEN |
---|
| 455 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 456 | ELSE |
---|
| 457 | CALL advec_v_pw( i, j ) |
---|
| 458 | ENDIF |
---|
| 459 | ELSE |
---|
| 460 | CALL advec_v_up( i, j ) |
---|
| 461 | ENDIF |
---|
[1001] | 462 | CALL diffusion_v( i, j ) |
---|
[736] | 463 | CALL coriolis( i, j, 2 ) |
---|
| 464 | |
---|
| 465 | ! |
---|
| 466 | !-- Drag by plant canopy |
---|
| 467 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 468 | |
---|
| 469 | ! |
---|
| 470 | !-- External pressure gradient |
---|
| 471 | IF ( dp_external ) THEN |
---|
| 472 | DO k = dp_level_ind_b+1, nzt |
---|
| 473 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 474 | ENDDO |
---|
| 475 | ENDIF |
---|
| 476 | |
---|
[1241] | 477 | ! |
---|
| 478 | !-- Nudging |
---|
[1691] | 479 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
[1241] | 480 | |
---|
[736] | 481 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 482 | ! |
---|
| 483 | !-- Prognostic equation for v-velocity component |
---|
| 484 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 485 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 486 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 487 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 488 | ENDDO |
---|
| 489 | |
---|
| 490 | ! |
---|
| 491 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 492 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 493 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 494 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 495 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 496 | ENDDO |
---|
| 497 | ELSEIF ( intermediate_timestep_count < & |
---|
| 498 | intermediate_timestep_count_max ) THEN |
---|
| 499 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 500 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 501 | ENDDO |
---|
| 502 | ENDIF |
---|
| 503 | ENDIF |
---|
| 504 | |
---|
| 505 | ENDIF |
---|
| 506 | |
---|
| 507 | ! |
---|
| 508 | !-- Tendency terms for w-velocity component |
---|
[1337] | 509 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 510 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 511 | IF ( ws_scheme_mom ) THEN |
---|
| 512 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 513 | ELSE |
---|
| 514 | CALL advec_w_pw( i, j ) |
---|
| 515 | END IF |
---|
| 516 | ELSE |
---|
| 517 | CALL advec_w_up( i, j ) |
---|
| 518 | ENDIF |
---|
[1001] | 519 | CALL diffusion_w( i, j ) |
---|
[736] | 520 | CALL coriolis( i, j, 3 ) |
---|
[940] | 521 | |
---|
| 522 | IF ( .NOT. neutral ) THEN |
---|
| 523 | IF ( ocean ) THEN |
---|
[1179] | 524 | CALL buoyancy( i, j, rho, 3 ) |
---|
[736] | 525 | ELSE |
---|
[940] | 526 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 527 | CALL buoyancy( i, j, pt, 3 ) |
---|
[940] | 528 | ELSE |
---|
[1179] | 529 | CALL buoyancy( i, j, vpt, 3 ) |
---|
[940] | 530 | ENDIF |
---|
[736] | 531 | ENDIF |
---|
| 532 | ENDIF |
---|
| 533 | |
---|
| 534 | ! |
---|
| 535 | !-- Drag by plant canopy |
---|
| 536 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 537 | |
---|
| 538 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 539 | |
---|
| 540 | ! |
---|
| 541 | !-- Prognostic equation for w-velocity component |
---|
| 542 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 543 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 544 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 545 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 546 | ENDDO |
---|
| 547 | |
---|
| 548 | ! |
---|
| 549 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 550 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 551 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 552 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 553 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 554 | ENDDO |
---|
| 555 | ELSEIF ( intermediate_timestep_count < & |
---|
| 556 | intermediate_timestep_count_max ) THEN |
---|
| 557 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 558 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 559 | ENDDO |
---|
| 560 | ENDIF |
---|
| 561 | ENDIF |
---|
[1361] | 562 | |
---|
[736] | 563 | ! |
---|
[940] | 564 | !-- If required, compute prognostic equation for potential temperature |
---|
| 565 | IF ( .NOT. neutral ) THEN |
---|
| 566 | ! |
---|
| 567 | !-- Tendency terms for potential temperature |
---|
[1337] | 568 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 569 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 570 | IF ( ws_scheme_sca ) THEN |
---|
| 571 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 572 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 573 | ELSE |
---|
| 574 | CALL advec_s_pw( i, j, pt ) |
---|
| 575 | ENDIF |
---|
| 576 | ELSE |
---|
| 577 | CALL advec_s_up( i, j, pt ) |
---|
| 578 | ENDIF |
---|
[1001] | 579 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 580 | |
---|
| 581 | ! |
---|
[940] | 582 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 583 | !-- processes |
---|
[1496] | 584 | IF ( cloud_top_radiation ) THEN |
---|
[940] | 585 | CALL calc_radiation( i, j ) |
---|
| 586 | ENDIF |
---|
[736] | 587 | |
---|
[1106] | 588 | ! |
---|
[1361] | 589 | !-- If required compute impact of latent heat due to precipitation |
---|
| 590 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 591 | precipitation ) THEN |
---|
| 592 | CALL impact_of_latent_heat( i, j ) |
---|
[940] | 593 | ENDIF |
---|
[736] | 594 | |
---|
| 595 | ! |
---|
[940] | 596 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 597 | IF ( plant_canopy .AND. cthf /= 0.0_wp ) THEN |
---|
[940] | 598 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 599 | ENDIF |
---|
[736] | 600 | |
---|
[940] | 601 | ! |
---|
[1365] | 602 | !-- Large scale advection |
---|
| 603 | IF ( large_scale_forcing ) THEN |
---|
| 604 | CALL ls_advec( i, j, simulated_time, 'pt' ) |
---|
| 605 | ENDIF |
---|
| 606 | |
---|
| 607 | ! |
---|
[1380] | 608 | !-- Nudging |
---|
| 609 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
| 610 | |
---|
| 611 | ! |
---|
[1106] | 612 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
[1365] | 613 | IF ( large_scale_subsidence .AND. & |
---|
| 614 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 615 | CALL subsidence( i, j, tend, pt, pt_init, 2 ) |
---|
[940] | 616 | ENDIF |
---|
[736] | 617 | |
---|
[1585] | 618 | ! |
---|
| 619 | !-- If required, add tendency due to radiative heating/cooling |
---|
[1691] | 620 | IF ( radiation .AND. radiation_scheme == 'rrtmg' .AND. & |
---|
| 621 | simulated_time > skip_time_do_radiation ) THEN |
---|
[1585] | 622 | CALL radiation_tendency ( i, j, tend ) |
---|
| 623 | ENDIF |
---|
| 624 | |
---|
| 625 | |
---|
[940] | 626 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 627 | |
---|
| 628 | ! |
---|
[940] | 629 | !-- Prognostic equation for potential temperature |
---|
| 630 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 631 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 632 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 633 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 634 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 635 | ENDDO |
---|
[736] | 636 | |
---|
| 637 | ! |
---|
[940] | 638 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 639 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 640 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 641 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 642 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 643 | ENDDO |
---|
| 644 | ELSEIF ( intermediate_timestep_count < & |
---|
| 645 | intermediate_timestep_count_max ) THEN |
---|
| 646 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 647 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 648 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 649 | ENDDO |
---|
| 650 | ENDIF |
---|
[736] | 651 | ENDIF |
---|
[940] | 652 | |
---|
[736] | 653 | ENDIF |
---|
| 654 | |
---|
| 655 | ! |
---|
| 656 | !-- If required, compute prognostic equation for salinity |
---|
| 657 | IF ( ocean ) THEN |
---|
| 658 | |
---|
| 659 | ! |
---|
| 660 | !-- Tendency-terms for salinity |
---|
[1337] | 661 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 662 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 663 | THEN |
---|
| 664 | IF ( ws_scheme_sca ) THEN |
---|
| 665 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 666 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 667 | ELSE |
---|
| 668 | CALL advec_s_pw( i, j, sa ) |
---|
| 669 | ENDIF |
---|
| 670 | ELSE |
---|
| 671 | CALL advec_s_up( i, j, sa ) |
---|
| 672 | ENDIF |
---|
[1001] | 673 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 674 | |
---|
| 675 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 676 | |
---|
| 677 | ! |
---|
| 678 | !-- Prognostic equation for salinity |
---|
| 679 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 680 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 681 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 682 | - tsc(5) * rdf_sc(k) * & |
---|
| 683 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 684 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 685 | ENDDO |
---|
| 686 | |
---|
| 687 | ! |
---|
| 688 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 689 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 690 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 691 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 692 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 693 | ENDDO |
---|
| 694 | ELSEIF ( intermediate_timestep_count < & |
---|
| 695 | intermediate_timestep_count_max ) THEN |
---|
| 696 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 697 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 698 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 699 | ENDDO |
---|
| 700 | ENDIF |
---|
| 701 | ENDIF |
---|
| 702 | |
---|
| 703 | ! |
---|
| 704 | !-- Calculate density by the equation of state for seawater |
---|
| 705 | CALL eqn_state_seawater( i, j ) |
---|
| 706 | |
---|
| 707 | ENDIF |
---|
| 708 | |
---|
| 709 | ! |
---|
| 710 | !-- If required, compute prognostic equation for total water content / |
---|
| 711 | !-- scalar |
---|
| 712 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 713 | |
---|
| 714 | ! |
---|
| 715 | !-- Tendency-terms for total water content / scalar |
---|
[1337] | 716 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 717 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 718 | THEN |
---|
| 719 | IF ( ws_scheme_sca ) THEN |
---|
| 720 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 721 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 722 | ELSE |
---|
| 723 | CALL advec_s_pw( i, j, q ) |
---|
| 724 | ENDIF |
---|
| 725 | ELSE |
---|
| 726 | CALL advec_s_up( i, j, q ) |
---|
| 727 | ENDIF |
---|
[1001] | 728 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[1691] | 729 | |
---|
[736] | 730 | ! |
---|
[1361] | 731 | !-- If required compute decrease of total water content due to |
---|
| 732 | !-- precipitation |
---|
| 733 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 734 | precipitation ) THEN |
---|
[1691] | 735 | CALL calc_precipitation( i, j ) |
---|
[736] | 736 | ENDIF |
---|
[1691] | 737 | |
---|
[736] | 738 | ! |
---|
| 739 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1106] | 740 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
[736] | 741 | |
---|
[1053] | 742 | ! |
---|
[1365] | 743 | !-- Large scale advection |
---|
| 744 | IF ( large_scale_forcing ) THEN |
---|
| 745 | CALL ls_advec( i, j, simulated_time, 'q' ) |
---|
| 746 | ENDIF |
---|
| 747 | |
---|
| 748 | ! |
---|
[1380] | 749 | !-- Nudging |
---|
| 750 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
| 751 | |
---|
| 752 | ! |
---|
[736] | 753 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 754 | IF ( large_scale_subsidence .AND. & |
---|
| 755 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 756 | CALL subsidence( i, j, tend, q, q_init, 3 ) |
---|
[736] | 757 | ENDIF |
---|
| 758 | |
---|
| 759 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 760 | |
---|
| 761 | ! |
---|
| 762 | !-- Prognostic equation for total water content / scalar |
---|
| 763 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 764 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 765 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 766 | - tsc(5) * rdf_sc(k) * & |
---|
| 767 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 768 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 769 | ENDDO |
---|
| 770 | |
---|
| 771 | ! |
---|
| 772 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 773 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 774 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 775 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 776 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 777 | ENDDO |
---|
| 778 | ELSEIF ( intermediate_timestep_count < & |
---|
| 779 | intermediate_timestep_count_max ) THEN |
---|
| 780 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 781 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 782 | 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 783 | ENDDO |
---|
| 784 | ENDIF |
---|
| 785 | ENDIF |
---|
| 786 | |
---|
[1053] | 787 | ! |
---|
| 788 | !-- If required, calculate prognostic equations for rain water content |
---|
| 789 | !-- and rain drop concentration |
---|
[1115] | 790 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 791 | precipitation ) THEN |
---|
[1053] | 792 | ! |
---|
| 793 | !-- Calculate prognostic equation for rain water content |
---|
[1337] | 794 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 795 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 796 | THEN |
---|
| 797 | IF ( ws_scheme_sca ) THEN |
---|
| 798 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 799 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 800 | i_omp_start, tn ) |
---|
| 801 | ELSE |
---|
| 802 | CALL advec_s_pw( i, j, qr ) |
---|
| 803 | ENDIF |
---|
| 804 | ELSE |
---|
| 805 | CALL advec_s_up( i, j, qr ) |
---|
| 806 | ENDIF |
---|
| 807 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 808 | |
---|
[1115] | 809 | CALL user_actions( i, j, 'qr-tendency' ) |
---|
[1053] | 810 | ! |
---|
| 811 | !-- Prognostic equation for rain water content |
---|
| 812 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 813 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 814 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 815 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
[1337] | 816 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
[1053] | 817 | ENDDO |
---|
| 818 | ! |
---|
| 819 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 820 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 821 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 822 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 823 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 824 | ENDDO |
---|
| 825 | ELSEIF ( intermediate_timestep_count < & |
---|
| 826 | intermediate_timestep_count_max ) THEN |
---|
| 827 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 828 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 829 | 5.3125_wp * tqr_m(k,j,i) |
---|
[1053] | 830 | ENDDO |
---|
| 831 | ENDIF |
---|
| 832 | ENDIF |
---|
| 833 | |
---|
| 834 | ! |
---|
| 835 | !-- Calculate prognostic equation for rain drop concentration. |
---|
[1337] | 836 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 837 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 838 | IF ( ws_scheme_sca ) THEN |
---|
[1115] | 839 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 840 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 841 | i_omp_start, tn ) |
---|
[1053] | 842 | ELSE |
---|
| 843 | CALL advec_s_pw( i, j, nr ) |
---|
| 844 | ENDIF |
---|
| 845 | ELSE |
---|
| 846 | CALL advec_s_up( i, j, nr ) |
---|
| 847 | ENDIF |
---|
| 848 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
| 849 | |
---|
[1115] | 850 | CALL user_actions( i, j, 'nr-tendency' ) |
---|
[1053] | 851 | ! |
---|
| 852 | !-- Prognostic equation for rain drop concentration |
---|
| 853 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 854 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 855 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 856 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
[1337] | 857 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
[1053] | 858 | ENDDO |
---|
| 859 | ! |
---|
| 860 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 861 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 862 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 863 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 864 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 865 | ENDDO |
---|
| 866 | ELSEIF ( intermediate_timestep_count < & |
---|
| 867 | intermediate_timestep_count_max ) THEN |
---|
| 868 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 869 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 870 | 5.3125_wp * tnr_m(k,j,i) |
---|
[1053] | 871 | ENDDO |
---|
| 872 | ENDIF |
---|
| 873 | ENDIF |
---|
| 874 | |
---|
| 875 | ENDIF |
---|
| 876 | |
---|
[1128] | 877 | ENDIF |
---|
| 878 | |
---|
[736] | 879 | ! |
---|
| 880 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 881 | !-- energy (TKE) |
---|
| 882 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 883 | |
---|
| 884 | ! |
---|
| 885 | !-- Tendency-terms for TKE |
---|
[1337] | 886 | tend(:,j,i) = 0.0_wp |
---|
[1332] | 887 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
| 888 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
[736] | 889 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 890 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 891 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 892 | ELSE |
---|
| 893 | CALL advec_s_pw( i, j, e ) |
---|
| 894 | ENDIF |
---|
| 895 | ELSE |
---|
| 896 | CALL advec_s_up( i, j, e ) |
---|
| 897 | ENDIF |
---|
[1001] | 898 | IF ( .NOT. humidity ) THEN |
---|
| 899 | IF ( ocean ) THEN |
---|
| 900 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 901 | ELSE |
---|
[1001] | 902 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 903 | ENDIF |
---|
| 904 | ELSE |
---|
[1001] | 905 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 906 | ENDIF |
---|
| 907 | CALL production_e( i, j ) |
---|
| 908 | |
---|
| 909 | ! |
---|
| 910 | !-- Additional sink term for flows through plant canopies |
---|
| 911 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 912 | |
---|
| 913 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 914 | |
---|
| 915 | ! |
---|
| 916 | !-- Prognostic equation for TKE. |
---|
| 917 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 918 | !-- reasons in the course of the integration. In such cases the old |
---|
| 919 | !-- TKE value is reduced by 90%. |
---|
| 920 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 921 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 922 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 923 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 924 | ENDDO |
---|
| 925 | |
---|
| 926 | ! |
---|
| 927 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 928 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 929 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 930 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 931 | te_m(k,j,i) = tend(k,j,i) |
---|
| 932 | ENDDO |
---|
| 933 | ELSEIF ( intermediate_timestep_count < & |
---|
| 934 | intermediate_timestep_count_max ) THEN |
---|
| 935 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 936 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 937 | 5.3125_wp * te_m(k,j,i) |
---|
[736] | 938 | ENDDO |
---|
| 939 | ENDIF |
---|
| 940 | ENDIF |
---|
| 941 | |
---|
| 942 | ENDIF ! TKE equation |
---|
| 943 | |
---|
| 944 | ENDDO |
---|
| 945 | ENDDO |
---|
| 946 | !$OMP END PARALLEL |
---|
| 947 | |
---|
| 948 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 949 | |
---|
| 950 | |
---|
| 951 | END SUBROUTINE prognostic_equations_cache |
---|
| 952 | |
---|
| 953 | |
---|
| 954 | !------------------------------------------------------------------------------! |
---|
[1691] | 955 | ! Description: |
---|
| 956 | ! ------------ |
---|
[1682] | 957 | !> Version for vector machines |
---|
[736] | 958 | !------------------------------------------------------------------------------! |
---|
[1691] | 959 | |
---|
[1682] | 960 | SUBROUTINE prognostic_equations_vector |
---|
[736] | 961 | |
---|
[1682] | 962 | |
---|
[736] | 963 | IMPLICIT NONE |
---|
| 964 | |
---|
[1682] | 965 | INTEGER(iwp) :: i !< |
---|
| 966 | INTEGER(iwp) :: j !< |
---|
| 967 | INTEGER(iwp) :: k !< |
---|
[736] | 968 | |
---|
[1682] | 969 | REAL(wp) :: sbt !< |
---|
[736] | 970 | |
---|
[1320] | 971 | |
---|
[736] | 972 | ! |
---|
[1361] | 973 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 974 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 975 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 976 | call_microphysics_at_all_substeps ) & |
---|
| 977 | ) THEN |
---|
| 978 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 979 | CALL microphysics_control |
---|
| 980 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 981 | ENDIF |
---|
| 982 | |
---|
| 983 | ! |
---|
[736] | 984 | !-- u-velocity component |
---|
| 985 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 986 | |
---|
[1337] | 987 | tend = 0.0_wp |
---|
[1001] | 988 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 989 | IF ( ws_scheme_mom ) THEN |
---|
| 990 | CALL advec_u_ws |
---|
| 991 | ELSE |
---|
| 992 | CALL advec_u_pw |
---|
| 993 | ENDIF |
---|
| 994 | ELSE |
---|
[1001] | 995 | CALL advec_u_up |
---|
[736] | 996 | ENDIF |
---|
[1001] | 997 | CALL diffusion_u |
---|
[736] | 998 | CALL coriolis( 1 ) |
---|
[940] | 999 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 1000 | CALL buoyancy( pt, 1 ) |
---|
[940] | 1001 | ENDIF |
---|
[736] | 1002 | |
---|
| 1003 | ! |
---|
| 1004 | !-- Drag by plant canopy |
---|
| 1005 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1006 | |
---|
| 1007 | ! |
---|
| 1008 | !-- External pressure gradient |
---|
| 1009 | IF ( dp_external ) THEN |
---|
| 1010 | DO i = nxlu, nxr |
---|
| 1011 | DO j = nys, nyn |
---|
| 1012 | DO k = dp_level_ind_b+1, nzt |
---|
| 1013 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1014 | ENDDO |
---|
| 1015 | ENDDO |
---|
| 1016 | ENDDO |
---|
| 1017 | ENDIF |
---|
| 1018 | |
---|
[1241] | 1019 | ! |
---|
| 1020 | !-- Nudging |
---|
[1691] | 1021 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
[1241] | 1022 | |
---|
[736] | 1023 | CALL user_actions( 'u-tendency' ) |
---|
| 1024 | |
---|
| 1025 | ! |
---|
| 1026 | !-- Prognostic equation for u-velocity component |
---|
| 1027 | DO i = nxlu, nxr |
---|
| 1028 | DO j = nys, nyn |
---|
| 1029 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 1030 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1031 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 1032 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 1033 | ENDDO |
---|
| 1034 | ENDDO |
---|
| 1035 | ENDDO |
---|
| 1036 | |
---|
| 1037 | ! |
---|
| 1038 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1039 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1040 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1041 | DO i = nxlu, nxr |
---|
| 1042 | DO j = nys, nyn |
---|
| 1043 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1044 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1045 | ENDDO |
---|
| 1046 | ENDDO |
---|
| 1047 | ENDDO |
---|
| 1048 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1049 | intermediate_timestep_count_max ) THEN |
---|
| 1050 | DO i = nxlu, nxr |
---|
| 1051 | DO j = nys, nyn |
---|
| 1052 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 1053 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 1054 | ENDDO |
---|
| 1055 | ENDDO |
---|
| 1056 | ENDDO |
---|
| 1057 | ENDIF |
---|
| 1058 | ENDIF |
---|
| 1059 | |
---|
| 1060 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1061 | |
---|
| 1062 | ! |
---|
| 1063 | !-- v-velocity component |
---|
| 1064 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1065 | |
---|
[1337] | 1066 | tend = 0.0_wp |
---|
[1001] | 1067 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1068 | IF ( ws_scheme_mom ) THEN |
---|
| 1069 | CALL advec_v_ws |
---|
| 1070 | ELSE |
---|
| 1071 | CALL advec_v_pw |
---|
| 1072 | END IF |
---|
| 1073 | ELSE |
---|
[1001] | 1074 | CALL advec_v_up |
---|
[736] | 1075 | ENDIF |
---|
[1001] | 1076 | CALL diffusion_v |
---|
[736] | 1077 | CALL coriolis( 2 ) |
---|
| 1078 | |
---|
| 1079 | ! |
---|
| 1080 | !-- Drag by plant canopy |
---|
| 1081 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1082 | |
---|
| 1083 | ! |
---|
| 1084 | !-- External pressure gradient |
---|
| 1085 | IF ( dp_external ) THEN |
---|
| 1086 | DO i = nxl, nxr |
---|
| 1087 | DO j = nysv, nyn |
---|
| 1088 | DO k = dp_level_ind_b+1, nzt |
---|
| 1089 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1090 | ENDDO |
---|
| 1091 | ENDDO |
---|
| 1092 | ENDDO |
---|
| 1093 | ENDIF |
---|
| 1094 | |
---|
[1241] | 1095 | ! |
---|
| 1096 | !-- Nudging |
---|
[1691] | 1097 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
[1241] | 1098 | |
---|
[736] | 1099 | CALL user_actions( 'v-tendency' ) |
---|
| 1100 | |
---|
| 1101 | ! |
---|
| 1102 | !-- Prognostic equation for v-velocity component |
---|
| 1103 | DO i = nxl, nxr |
---|
| 1104 | DO j = nysv, nyn |
---|
| 1105 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 1106 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1107 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1108 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 1109 | ENDDO |
---|
| 1110 | ENDDO |
---|
| 1111 | ENDDO |
---|
| 1112 | |
---|
| 1113 | ! |
---|
| 1114 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1115 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1116 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1117 | DO i = nxl, nxr |
---|
| 1118 | DO j = nysv, nyn |
---|
| 1119 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1120 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1121 | ENDDO |
---|
| 1122 | ENDDO |
---|
| 1123 | ENDDO |
---|
| 1124 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1125 | intermediate_timestep_count_max ) THEN |
---|
| 1126 | DO i = nxl, nxr |
---|
| 1127 | DO j = nysv, nyn |
---|
| 1128 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 1129 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 1130 | ENDDO |
---|
| 1131 | ENDDO |
---|
| 1132 | ENDDO |
---|
| 1133 | ENDIF |
---|
| 1134 | ENDIF |
---|
| 1135 | |
---|
| 1136 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1137 | |
---|
| 1138 | ! |
---|
| 1139 | !-- w-velocity component |
---|
| 1140 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1141 | |
---|
[1353] | 1142 | tend = 0.0_wp |
---|
[1001] | 1143 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1144 | IF ( ws_scheme_mom ) THEN |
---|
| 1145 | CALL advec_w_ws |
---|
| 1146 | ELSE |
---|
| 1147 | CALL advec_w_pw |
---|
| 1148 | ENDIF |
---|
| 1149 | ELSE |
---|
[1001] | 1150 | CALL advec_w_up |
---|
[736] | 1151 | ENDIF |
---|
[1001] | 1152 | CALL diffusion_w |
---|
[736] | 1153 | CALL coriolis( 3 ) |
---|
[940] | 1154 | |
---|
| 1155 | IF ( .NOT. neutral ) THEN |
---|
| 1156 | IF ( ocean ) THEN |
---|
[1179] | 1157 | CALL buoyancy( rho, 3 ) |
---|
[736] | 1158 | ELSE |
---|
[940] | 1159 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1160 | CALL buoyancy( pt, 3 ) |
---|
[940] | 1161 | ELSE |
---|
[1179] | 1162 | CALL buoyancy( vpt, 3 ) |
---|
[940] | 1163 | ENDIF |
---|
[736] | 1164 | ENDIF |
---|
| 1165 | ENDIF |
---|
| 1166 | |
---|
| 1167 | ! |
---|
| 1168 | !-- Drag by plant canopy |
---|
| 1169 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1170 | |
---|
| 1171 | CALL user_actions( 'w-tendency' ) |
---|
| 1172 | |
---|
| 1173 | ! |
---|
| 1174 | !-- Prognostic equation for w-velocity component |
---|
| 1175 | DO i = nxl, nxr |
---|
| 1176 | DO j = nys, nyn |
---|
| 1177 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 1178 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1179 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1180 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 1181 | ENDDO |
---|
| 1182 | ENDDO |
---|
| 1183 | ENDDO |
---|
| 1184 | |
---|
| 1185 | ! |
---|
| 1186 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1187 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1188 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1189 | DO i = nxl, nxr |
---|
| 1190 | DO j = nys, nyn |
---|
| 1191 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1192 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1193 | ENDDO |
---|
| 1194 | ENDDO |
---|
| 1195 | ENDDO |
---|
| 1196 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1197 | intermediate_timestep_count_max ) THEN |
---|
| 1198 | DO i = nxl, nxr |
---|
| 1199 | DO j = nys, nyn |
---|
| 1200 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 1201 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 1202 | ENDDO |
---|
| 1203 | ENDDO |
---|
| 1204 | ENDDO |
---|
| 1205 | ENDIF |
---|
| 1206 | ENDIF |
---|
| 1207 | |
---|
| 1208 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1209 | |
---|
[940] | 1210 | |
---|
[736] | 1211 | ! |
---|
[940] | 1212 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1213 | IF ( .NOT. neutral ) THEN |
---|
[736] | 1214 | |
---|
[940] | 1215 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1216 | |
---|
[736] | 1217 | ! |
---|
[940] | 1218 | !-- pt-tendency terms with communication |
---|
| 1219 | sbt = tsc(2) |
---|
| 1220 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 1221 | |
---|
[940] | 1222 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 1223 | ! |
---|
[1001] | 1224 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1225 | sbt = 1.0_wp |
---|
[940] | 1226 | ENDIF |
---|
[1337] | 1227 | tend = 0.0_wp |
---|
[940] | 1228 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 1229 | |
---|
[736] | 1230 | ENDIF |
---|
[940] | 1231 | |
---|
| 1232 | ! |
---|
| 1233 | !-- pt-tendency terms with no communication |
---|
[1001] | 1234 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1235 | tend = 0.0_wp |
---|
[1001] | 1236 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 1237 | IF ( ws_scheme_sca ) THEN |
---|
| 1238 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1239 | ELSE |
---|
| 1240 | CALL advec_s_pw( pt ) |
---|
| 1241 | ENDIF |
---|
| 1242 | ELSE |
---|
[1001] | 1243 | CALL advec_s_up( pt ) |
---|
[940] | 1244 | ENDIF |
---|
[736] | 1245 | ENDIF |
---|
| 1246 | |
---|
[1001] | 1247 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1248 | |
---|
[736] | 1249 | ! |
---|
[940] | 1250 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
[1496] | 1251 | IF ( cloud_top_radiation ) THEN |
---|
[940] | 1252 | CALL calc_radiation |
---|
| 1253 | ENDIF |
---|
[736] | 1254 | |
---|
| 1255 | ! |
---|
[940] | 1256 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 1257 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[940] | 1258 | CALL impact_of_latent_heat |
---|
| 1259 | ENDIF |
---|
[736] | 1260 | |
---|
| 1261 | ! |
---|
[940] | 1262 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 1263 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[940] | 1264 | CALL plant_canopy_model( 4 ) |
---|
| 1265 | ENDIF |
---|
[736] | 1266 | |
---|
[940] | 1267 | ! |
---|
[1365] | 1268 | !-- Large scale advection |
---|
| 1269 | IF ( large_scale_forcing ) THEN |
---|
| 1270 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 1271 | ENDIF |
---|
| 1272 | |
---|
| 1273 | ! |
---|
[1380] | 1274 | !-- Nudging |
---|
| 1275 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1276 | |
---|
| 1277 | ! |
---|
[940] | 1278 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1279 | IF ( large_scale_subsidence .AND. & |
---|
| 1280 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1281 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[940] | 1282 | ENDIF |
---|
[736] | 1283 | |
---|
[1585] | 1284 | ! |
---|
| 1285 | !-- If required, add tendency due to radiative heating/cooling |
---|
[1691] | 1286 | IF ( radiation .AND. radiation_scheme == 'rrtmg' .AND. & |
---|
| 1287 | simulated_time > skip_time_do_radiation ) THEN |
---|
| 1288 | CALL radiation_tendency ( tend ) |
---|
[1585] | 1289 | ENDIF |
---|
| 1290 | |
---|
[940] | 1291 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 1292 | |
---|
| 1293 | ! |
---|
[940] | 1294 | !-- Prognostic equation for potential temperature |
---|
| 1295 | DO i = nxl, nxr |
---|
| 1296 | DO j = nys, nyn |
---|
| 1297 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1298 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1299 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1300 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1301 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 1302 | ENDDO |
---|
[736] | 1303 | ENDDO |
---|
| 1304 | ENDDO |
---|
| 1305 | |
---|
| 1306 | ! |
---|
[940] | 1307 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1308 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1309 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1310 | DO i = nxl, nxr |
---|
| 1311 | DO j = nys, nyn |
---|
| 1312 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1313 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1314 | ENDDO |
---|
[736] | 1315 | ENDDO |
---|
| 1316 | ENDDO |
---|
[940] | 1317 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1318 | intermediate_timestep_count_max ) THEN |
---|
| 1319 | DO i = nxl, nxr |
---|
| 1320 | DO j = nys, nyn |
---|
| 1321 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1322 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1323 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 1324 | ENDDO |
---|
[736] | 1325 | ENDDO |
---|
| 1326 | ENDDO |
---|
[940] | 1327 | ENDIF |
---|
[736] | 1328 | ENDIF |
---|
[940] | 1329 | |
---|
| 1330 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1331 | |
---|
[736] | 1332 | ENDIF |
---|
| 1333 | |
---|
| 1334 | ! |
---|
| 1335 | !-- If required, compute prognostic equation for salinity |
---|
| 1336 | IF ( ocean ) THEN |
---|
| 1337 | |
---|
| 1338 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1339 | |
---|
| 1340 | ! |
---|
| 1341 | !-- sa-tendency terms with communication |
---|
| 1342 | sbt = tsc(2) |
---|
| 1343 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1344 | |
---|
| 1345 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1346 | ! |
---|
[1001] | 1347 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1348 | sbt = 1.0_wp |
---|
[736] | 1349 | ENDIF |
---|
[1337] | 1350 | tend = 0.0_wp |
---|
[736] | 1351 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1352 | |
---|
[736] | 1353 | ENDIF |
---|
| 1354 | |
---|
| 1355 | ! |
---|
| 1356 | !-- sa-tendency terms with no communication |
---|
[1001] | 1357 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1353] | 1358 | tend = 0.0_wp |
---|
[1001] | 1359 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1360 | IF ( ws_scheme_sca ) THEN |
---|
| 1361 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1362 | ELSE |
---|
| 1363 | CALL advec_s_pw( sa ) |
---|
| 1364 | ENDIF |
---|
| 1365 | ELSE |
---|
[1001] | 1366 | CALL advec_s_up( sa ) |
---|
[736] | 1367 | ENDIF |
---|
| 1368 | ENDIF |
---|
[1001] | 1369 | |
---|
| 1370 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1371 | |
---|
| 1372 | CALL user_actions( 'sa-tendency' ) |
---|
| 1373 | |
---|
| 1374 | ! |
---|
| 1375 | !-- Prognostic equation for salinity |
---|
| 1376 | DO i = nxl, nxr |
---|
| 1377 | DO j = nys, nyn |
---|
| 1378 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1379 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1380 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1381 | - tsc(5) * rdf_sc(k) * & |
---|
| 1382 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 1383 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 1384 | ENDDO |
---|
| 1385 | ENDDO |
---|
| 1386 | ENDDO |
---|
| 1387 | |
---|
| 1388 | ! |
---|
| 1389 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1390 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1391 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1392 | DO i = nxl, nxr |
---|
| 1393 | DO j = nys, nyn |
---|
| 1394 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1395 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1396 | ENDDO |
---|
| 1397 | ENDDO |
---|
| 1398 | ENDDO |
---|
| 1399 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1400 | intermediate_timestep_count_max ) THEN |
---|
| 1401 | DO i = nxl, nxr |
---|
| 1402 | DO j = nys, nyn |
---|
| 1403 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1404 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1405 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 1406 | ENDDO |
---|
| 1407 | ENDDO |
---|
| 1408 | ENDDO |
---|
| 1409 | ENDIF |
---|
| 1410 | ENDIF |
---|
| 1411 | |
---|
| 1412 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1413 | |
---|
| 1414 | ! |
---|
| 1415 | !-- Calculate density by the equation of state for seawater |
---|
| 1416 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1417 | CALL eqn_state_seawater |
---|
| 1418 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1419 | |
---|
| 1420 | ENDIF |
---|
| 1421 | |
---|
| 1422 | ! |
---|
| 1423 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1424 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1425 | |
---|
| 1426 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1427 | |
---|
| 1428 | ! |
---|
| 1429 | !-- Scalar/q-tendency terms with communication |
---|
| 1430 | sbt = tsc(2) |
---|
| 1431 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1432 | |
---|
| 1433 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1434 | ! |
---|
[1001] | 1435 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1436 | sbt = 1.0_wp |
---|
[736] | 1437 | ENDIF |
---|
[1337] | 1438 | tend = 0.0_wp |
---|
[736] | 1439 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1440 | |
---|
[736] | 1441 | ENDIF |
---|
| 1442 | |
---|
| 1443 | ! |
---|
| 1444 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1445 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1446 | tend = 0.0_wp |
---|
[1001] | 1447 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1448 | IF ( ws_scheme_sca ) THEN |
---|
| 1449 | CALL advec_s_ws( q, 'q' ) |
---|
| 1450 | ELSE |
---|
| 1451 | CALL advec_s_pw( q ) |
---|
| 1452 | ENDIF |
---|
| 1453 | ELSE |
---|
[1001] | 1454 | CALL advec_s_up( q ) |
---|
[736] | 1455 | ENDIF |
---|
| 1456 | ENDIF |
---|
[1001] | 1457 | |
---|
| 1458 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1459 | |
---|
| 1460 | ! |
---|
| 1461 | !-- If required compute decrease of total water content due to |
---|
| 1462 | !-- precipitation |
---|
[1361] | 1463 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[736] | 1464 | CALL calc_precipitation |
---|
| 1465 | ENDIF |
---|
| 1466 | |
---|
| 1467 | ! |
---|
| 1468 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1469 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
[1365] | 1470 | |
---|
[736] | 1471 | ! |
---|
[1365] | 1472 | !-- Large scale advection |
---|
| 1473 | IF ( large_scale_forcing ) THEN |
---|
| 1474 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 1475 | ENDIF |
---|
| 1476 | |
---|
| 1477 | ! |
---|
[1380] | 1478 | !-- Nudging |
---|
| 1479 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1480 | |
---|
| 1481 | ! |
---|
[736] | 1482 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1483 | IF ( large_scale_subsidence .AND. & |
---|
| 1484 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1485 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[736] | 1486 | ENDIF |
---|
| 1487 | |
---|
| 1488 | CALL user_actions( 'q-tendency' ) |
---|
| 1489 | |
---|
| 1490 | ! |
---|
| 1491 | !-- Prognostic equation for total water content / scalar |
---|
| 1492 | DO i = nxl, nxr |
---|
| 1493 | DO j = nys, nyn |
---|
| 1494 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1495 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1496 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1497 | - tsc(5) * rdf_sc(k) * & |
---|
| 1498 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 1499 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 1500 | ENDDO |
---|
| 1501 | ENDDO |
---|
| 1502 | ENDDO |
---|
| 1503 | |
---|
| 1504 | ! |
---|
| 1505 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1506 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1507 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1508 | DO i = nxl, nxr |
---|
| 1509 | DO j = nys, nyn |
---|
| 1510 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1511 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1512 | ENDDO |
---|
| 1513 | ENDDO |
---|
| 1514 | ENDDO |
---|
| 1515 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1516 | intermediate_timestep_count_max ) THEN |
---|
| 1517 | DO i = nxl, nxr |
---|
| 1518 | DO j = nys, nyn |
---|
| 1519 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1520 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 1521 | ENDDO |
---|
| 1522 | ENDDO |
---|
| 1523 | ENDDO |
---|
| 1524 | ENDIF |
---|
| 1525 | ENDIF |
---|
| 1526 | |
---|
| 1527 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1528 | |
---|
[1361] | 1529 | ! |
---|
| 1530 | !-- If required, calculate prognostic equations for rain water content |
---|
| 1531 | !-- and rain drop concentration |
---|
| 1532 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 1533 | |
---|
| 1534 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 1535 | |
---|
| 1536 | ! |
---|
| 1537 | !-- Calculate prognostic equation for rain water content |
---|
| 1538 | sbt = tsc(2) |
---|
| 1539 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1540 | |
---|
| 1541 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1542 | ! |
---|
| 1543 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1544 | sbt = 1.0_wp |
---|
| 1545 | ENDIF |
---|
| 1546 | tend = 0.0_wp |
---|
| 1547 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 1548 | |
---|
| 1549 | ENDIF |
---|
| 1550 | |
---|
| 1551 | ! |
---|
| 1552 | !-- qr-tendency terms with no communication |
---|
| 1553 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1554 | tend = 0.0_wp |
---|
| 1555 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1556 | IF ( ws_scheme_sca ) THEN |
---|
| 1557 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 1558 | ELSE |
---|
| 1559 | CALL advec_s_pw( qr ) |
---|
| 1560 | ENDIF |
---|
| 1561 | ELSE |
---|
| 1562 | CALL advec_s_up( qr ) |
---|
| 1563 | ENDIF |
---|
| 1564 | ENDIF |
---|
| 1565 | |
---|
| 1566 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 1567 | |
---|
| 1568 | CALL user_actions( 'qr-tendency' ) |
---|
| 1569 | |
---|
| 1570 | ! |
---|
| 1571 | !-- Prognostic equation for rain water content |
---|
| 1572 | DO i = nxl, nxr |
---|
| 1573 | DO j = nys, nyn |
---|
| 1574 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1575 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1576 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 1577 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 1578 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 1579 | ENDDO |
---|
| 1580 | ENDDO |
---|
| 1581 | ENDDO |
---|
| 1582 | |
---|
| 1583 | ! |
---|
| 1584 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1585 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1586 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1587 | DO i = nxl, nxr |
---|
| 1588 | DO j = nys, nyn |
---|
| 1589 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1590 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 1591 | ENDDO |
---|
| 1592 | ENDDO |
---|
| 1593 | ENDDO |
---|
| 1594 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1595 | intermediate_timestep_count_max ) THEN |
---|
| 1596 | DO i = nxl, nxr |
---|
| 1597 | DO j = nys, nyn |
---|
| 1598 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1599 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1600 | tqr_m(k,j,i) |
---|
| 1601 | ENDDO |
---|
| 1602 | ENDDO |
---|
| 1603 | ENDDO |
---|
| 1604 | ENDIF |
---|
| 1605 | ENDIF |
---|
| 1606 | |
---|
| 1607 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 1608 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 1609 | |
---|
| 1610 | ! |
---|
| 1611 | !-- Calculate prognostic equation for rain drop concentration |
---|
| 1612 | sbt = tsc(2) |
---|
| 1613 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1614 | |
---|
| 1615 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1616 | ! |
---|
| 1617 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1618 | sbt = 1.0_wp |
---|
| 1619 | ENDIF |
---|
| 1620 | tend = 0.0_wp |
---|
| 1621 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 1622 | |
---|
| 1623 | ENDIF |
---|
| 1624 | |
---|
| 1625 | ! |
---|
| 1626 | !-- nr-tendency terms with no communication |
---|
| 1627 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1628 | tend = 0.0_wp |
---|
| 1629 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1630 | IF ( ws_scheme_sca ) THEN |
---|
| 1631 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 1632 | ELSE |
---|
| 1633 | CALL advec_s_pw( nr ) |
---|
| 1634 | ENDIF |
---|
| 1635 | ELSE |
---|
| 1636 | CALL advec_s_up( nr ) |
---|
| 1637 | ENDIF |
---|
| 1638 | ENDIF |
---|
| 1639 | |
---|
| 1640 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 1641 | |
---|
| 1642 | CALL user_actions( 'nr-tendency' ) |
---|
| 1643 | |
---|
| 1644 | ! |
---|
| 1645 | !-- Prognostic equation for rain drop concentration |
---|
| 1646 | DO i = nxl, nxr |
---|
| 1647 | DO j = nys, nyn |
---|
| 1648 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1649 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1650 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 1651 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 1652 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 1653 | ENDDO |
---|
| 1654 | ENDDO |
---|
| 1655 | ENDDO |
---|
| 1656 | |
---|
| 1657 | ! |
---|
| 1658 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1659 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1660 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1661 | DO i = nxl, nxr |
---|
| 1662 | DO j = nys, nyn |
---|
| 1663 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1664 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 1665 | ENDDO |
---|
| 1666 | ENDDO |
---|
| 1667 | ENDDO |
---|
| 1668 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1669 | intermediate_timestep_count_max ) THEN |
---|
| 1670 | DO i = nxl, nxr |
---|
| 1671 | DO j = nys, nyn |
---|
| 1672 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1673 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1674 | tnr_m(k,j,i) |
---|
| 1675 | ENDDO |
---|
| 1676 | ENDDO |
---|
| 1677 | ENDDO |
---|
| 1678 | ENDIF |
---|
| 1679 | ENDIF |
---|
| 1680 | |
---|
| 1681 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 1682 | |
---|
| 1683 | ENDIF |
---|
| 1684 | |
---|
[736] | 1685 | ENDIF |
---|
| 1686 | |
---|
| 1687 | ! |
---|
| 1688 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1689 | !-- energy (TKE) |
---|
| 1690 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1691 | |
---|
| 1692 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1693 | |
---|
| 1694 | sbt = tsc(2) |
---|
| 1695 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1696 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1697 | |
---|
| 1698 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1699 | ! |
---|
[1001] | 1700 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1701 | sbt = 1.0_wp |
---|
[736] | 1702 | ENDIF |
---|
[1337] | 1703 | tend = 0.0_wp |
---|
[736] | 1704 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1705 | |
---|
[736] | 1706 | ENDIF |
---|
| 1707 | ENDIF |
---|
| 1708 | |
---|
| 1709 | ! |
---|
| 1710 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1711 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1712 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 1713 | tend = 0.0_wp |
---|
[736] | 1714 | CALL advec_s_up( e ) |
---|
| 1715 | ELSE |
---|
[1337] | 1716 | tend = 0.0_wp |
---|
[1001] | 1717 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1718 | IF ( ws_scheme_sca ) THEN |
---|
| 1719 | CALL advec_s_ws( e, 'e' ) |
---|
| 1720 | ELSE |
---|
| 1721 | CALL advec_s_pw( e ) |
---|
| 1722 | ENDIF |
---|
| 1723 | ELSE |
---|
[1001] | 1724 | CALL advec_s_up( e ) |
---|
[736] | 1725 | ENDIF |
---|
| 1726 | ENDIF |
---|
[1001] | 1727 | ENDIF |
---|
| 1728 | |
---|
| 1729 | IF ( .NOT. humidity ) THEN |
---|
| 1730 | IF ( ocean ) THEN |
---|
| 1731 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1732 | ELSE |
---|
[1001] | 1733 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1734 | ENDIF |
---|
[1001] | 1735 | ELSE |
---|
| 1736 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1737 | ENDIF |
---|
[1001] | 1738 | |
---|
[736] | 1739 | CALL production_e |
---|
| 1740 | |
---|
| 1741 | ! |
---|
| 1742 | !-- Additional sink term for flows through plant canopies |
---|
| 1743 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1744 | CALL user_actions( 'e-tendency' ) |
---|
| 1745 | |
---|
| 1746 | ! |
---|
| 1747 | !-- Prognostic equation for TKE. |
---|
| 1748 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1749 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1750 | !-- value is reduced by 90%. |
---|
| 1751 | DO i = nxl, nxr |
---|
| 1752 | DO j = nys, nyn |
---|
| 1753 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1754 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1755 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 1756 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 1757 | ENDDO |
---|
| 1758 | ENDDO |
---|
| 1759 | ENDDO |
---|
| 1760 | |
---|
| 1761 | ! |
---|
| 1762 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1763 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1764 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1765 | DO i = nxl, nxr |
---|
| 1766 | DO j = nys, nyn |
---|
| 1767 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1768 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1769 | ENDDO |
---|
| 1770 | ENDDO |
---|
| 1771 | ENDDO |
---|
| 1772 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1773 | intermediate_timestep_count_max ) THEN |
---|
| 1774 | DO i = nxl, nxr |
---|
| 1775 | DO j = nys, nyn |
---|
| 1776 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1777 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[736] | 1778 | ENDDO |
---|
| 1779 | ENDDO |
---|
| 1780 | ENDDO |
---|
| 1781 | ENDIF |
---|
| 1782 | ENDIF |
---|
| 1783 | |
---|
| 1784 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1785 | |
---|
| 1786 | ENDIF |
---|
| 1787 | |
---|
| 1788 | END SUBROUTINE prognostic_equations_vector |
---|
| 1789 | |
---|
| 1790 | |
---|
[1015] | 1791 | !------------------------------------------------------------------------------! |
---|
[1691] | 1792 | ! Description: |
---|
| 1793 | ! ------------ |
---|
[1682] | 1794 | !> Version for accelerator boards |
---|
[1015] | 1795 | !------------------------------------------------------------------------------! |
---|
[1691] | 1796 | |
---|
[1682] | 1797 | SUBROUTINE prognostic_equations_acc |
---|
[1015] | 1798 | |
---|
[1682] | 1799 | |
---|
[1015] | 1800 | IMPLICIT NONE |
---|
| 1801 | |
---|
[1682] | 1802 | INTEGER(iwp) :: i !< |
---|
| 1803 | INTEGER(iwp) :: j !< |
---|
| 1804 | INTEGER(iwp) :: k !< |
---|
| 1805 | INTEGER(iwp) :: runge_step !< |
---|
[1015] | 1806 | |
---|
[1682] | 1807 | REAL(wp) :: sbt !< |
---|
[1320] | 1808 | |
---|
[1015] | 1809 | ! |
---|
| 1810 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1811 | runge_step = 0 |
---|
| 1812 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1813 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1814 | runge_step = 1 |
---|
| 1815 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1816 | intermediate_timestep_count_max ) THEN |
---|
| 1817 | runge_step = 2 |
---|
| 1818 | ENDIF |
---|
| 1819 | ENDIF |
---|
| 1820 | |
---|
| 1821 | ! |
---|
[1361] | 1822 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 1823 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 1824 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 1825 | call_microphysics_at_all_substeps ) & |
---|
| 1826 | ) THEN |
---|
| 1827 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 1828 | CALL microphysics_control |
---|
| 1829 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 1830 | ENDIF |
---|
| 1831 | |
---|
| 1832 | ! |
---|
[1015] | 1833 | !-- u-velocity component |
---|
[1374] | 1834 | !++ Statistics still not completely ported to accelerators |
---|
[1179] | 1835 | !$acc update device( hom, ref_state ) |
---|
[1015] | 1836 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1837 | |
---|
| 1838 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1839 | IF ( ws_scheme_mom ) THEN |
---|
| 1840 | CALL advec_u_ws_acc |
---|
| 1841 | ELSE |
---|
[1337] | 1842 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1843 | CALL advec_u_pw |
---|
| 1844 | ENDIF |
---|
| 1845 | ELSE |
---|
| 1846 | CALL advec_u_up |
---|
| 1847 | ENDIF |
---|
| 1848 | CALL diffusion_u_acc |
---|
| 1849 | CALL coriolis_acc( 1 ) |
---|
| 1850 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 1851 | CALL buoyancy( pt, 1 ) |
---|
[1015] | 1852 | ENDIF |
---|
| 1853 | |
---|
| 1854 | ! |
---|
| 1855 | !-- Drag by plant canopy |
---|
| 1856 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1857 | |
---|
| 1858 | ! |
---|
| 1859 | !-- External pressure gradient |
---|
| 1860 | IF ( dp_external ) THEN |
---|
[1128] | 1861 | DO i = i_left, i_right |
---|
| 1862 | DO j = j_south, j_north |
---|
[1015] | 1863 | DO k = dp_level_ind_b+1, nzt |
---|
| 1864 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1865 | ENDDO |
---|
| 1866 | ENDDO |
---|
| 1867 | ENDDO |
---|
| 1868 | ENDIF |
---|
| 1869 | |
---|
[1246] | 1870 | ! |
---|
| 1871 | !-- Nudging |
---|
[1691] | 1872 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
[1246] | 1873 | |
---|
[1015] | 1874 | CALL user_actions( 'u-tendency' ) |
---|
| 1875 | |
---|
| 1876 | ! |
---|
| 1877 | !-- Prognostic equation for u-velocity component |
---|
[1398] | 1878 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, u_init, u_p ) |
---|
[1257] | 1879 | !$acc loop independent |
---|
[1128] | 1880 | DO i = i_left, i_right |
---|
[1257] | 1881 | !$acc loop independent |
---|
[1128] | 1882 | DO j = j_south, j_north |
---|
[1257] | 1883 | !$acc loop independent |
---|
[1015] | 1884 | DO k = 1, nzt |
---|
| 1885 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1886 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1887 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 1888 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[1015] | 1889 | ! |
---|
| 1890 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1891 | IF ( runge_step == 1 ) THEN |
---|
| 1892 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1893 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1894 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[1015] | 1895 | ENDIF |
---|
| 1896 | ENDIF |
---|
| 1897 | ENDDO |
---|
| 1898 | ENDDO |
---|
| 1899 | ENDDO |
---|
| 1900 | !$acc end kernels |
---|
| 1901 | |
---|
| 1902 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1903 | |
---|
| 1904 | ! |
---|
| 1905 | !-- v-velocity component |
---|
| 1906 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1907 | |
---|
| 1908 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1909 | IF ( ws_scheme_mom ) THEN |
---|
| 1910 | CALL advec_v_ws_acc |
---|
| 1911 | ELSE |
---|
[1337] | 1912 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1913 | CALL advec_v_pw |
---|
| 1914 | END IF |
---|
| 1915 | ELSE |
---|
| 1916 | CALL advec_v_up |
---|
| 1917 | ENDIF |
---|
| 1918 | CALL diffusion_v_acc |
---|
| 1919 | CALL coriolis_acc( 2 ) |
---|
| 1920 | |
---|
| 1921 | ! |
---|
| 1922 | !-- Drag by plant canopy |
---|
| 1923 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1924 | |
---|
| 1925 | ! |
---|
| 1926 | !-- External pressure gradient |
---|
| 1927 | IF ( dp_external ) THEN |
---|
[1128] | 1928 | DO i = i_left, i_right |
---|
| 1929 | DO j = j_south, j_north |
---|
[1015] | 1930 | DO k = dp_level_ind_b+1, nzt |
---|
| 1931 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1932 | ENDDO |
---|
| 1933 | ENDDO |
---|
| 1934 | ENDDO |
---|
| 1935 | ENDIF |
---|
| 1936 | |
---|
[1246] | 1937 | ! |
---|
| 1938 | !-- Nudging |
---|
[1691] | 1939 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
[1246] | 1940 | |
---|
[1015] | 1941 | CALL user_actions( 'v-tendency' ) |
---|
| 1942 | |
---|
| 1943 | ! |
---|
| 1944 | !-- Prognostic equation for v-velocity component |
---|
[1398] | 1945 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, v_init, v_p ) |
---|
[1257] | 1946 | !$acc loop independent |
---|
[1128] | 1947 | DO i = i_left, i_right |
---|
[1257] | 1948 | !$acc loop independent |
---|
[1128] | 1949 | DO j = j_south, j_north |
---|
[1257] | 1950 | !$acc loop independent |
---|
[1015] | 1951 | DO k = 1, nzt |
---|
| 1952 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1953 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1954 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1955 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[1015] | 1956 | ! |
---|
| 1957 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1958 | IF ( runge_step == 1 ) THEN |
---|
| 1959 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1960 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1961 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[1015] | 1962 | ENDIF |
---|
| 1963 | ENDIF |
---|
| 1964 | ENDDO |
---|
| 1965 | ENDDO |
---|
| 1966 | ENDDO |
---|
| 1967 | !$acc end kernels |
---|
| 1968 | |
---|
| 1969 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1970 | |
---|
| 1971 | ! |
---|
| 1972 | !-- w-velocity component |
---|
| 1973 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1974 | |
---|
| 1975 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1976 | IF ( ws_scheme_mom ) THEN |
---|
| 1977 | CALL advec_w_ws_acc |
---|
| 1978 | ELSE |
---|
[1337] | 1979 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1980 | CALL advec_w_pw |
---|
| 1981 | ENDIF |
---|
| 1982 | ELSE |
---|
| 1983 | CALL advec_w_up |
---|
| 1984 | ENDIF |
---|
| 1985 | CALL diffusion_w_acc |
---|
| 1986 | CALL coriolis_acc( 3 ) |
---|
| 1987 | |
---|
| 1988 | IF ( .NOT. neutral ) THEN |
---|
| 1989 | IF ( ocean ) THEN |
---|
[1179] | 1990 | CALL buoyancy( rho, 3 ) |
---|
[1015] | 1991 | ELSE |
---|
| 1992 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1993 | CALL buoyancy_acc( pt, 3 ) |
---|
[1015] | 1994 | ELSE |
---|
[1179] | 1995 | CALL buoyancy( vpt, 3 ) |
---|
[1015] | 1996 | ENDIF |
---|
| 1997 | ENDIF |
---|
| 1998 | ENDIF |
---|
| 1999 | |
---|
| 2000 | ! |
---|
| 2001 | !-- Drag by plant canopy |
---|
| 2002 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 2003 | |
---|
| 2004 | CALL user_actions( 'w-tendency' ) |
---|
| 2005 | |
---|
| 2006 | ! |
---|
| 2007 | !-- Prognostic equation for w-velocity component |
---|
| 2008 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
[1257] | 2009 | !$acc loop independent |
---|
[1128] | 2010 | DO i = i_left, i_right |
---|
[1257] | 2011 | !$acc loop independent |
---|
[1128] | 2012 | DO j = j_south, j_north |
---|
[1257] | 2013 | !$acc loop independent |
---|
[1015] | 2014 | DO k = 1, nzt-1 |
---|
| 2015 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 2016 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 2017 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 2018 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 2019 | ! |
---|
| 2020 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2021 | IF ( runge_step == 1 ) THEN |
---|
| 2022 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 2023 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2024 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[1015] | 2025 | ENDIF |
---|
| 2026 | ENDIF |
---|
| 2027 | ENDDO |
---|
| 2028 | ENDDO |
---|
| 2029 | ENDDO |
---|
| 2030 | !$acc end kernels |
---|
| 2031 | |
---|
| 2032 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 2033 | |
---|
| 2034 | |
---|
| 2035 | ! |
---|
| 2036 | !-- If required, compute prognostic equation for potential temperature |
---|
| 2037 | IF ( .NOT. neutral ) THEN |
---|
| 2038 | |
---|
| 2039 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 2040 | |
---|
| 2041 | ! |
---|
| 2042 | !-- pt-tendency terms with communication |
---|
| 2043 | sbt = tsc(2) |
---|
| 2044 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2045 | |
---|
| 2046 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2047 | ! |
---|
| 2048 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 2049 | sbt = 1.0_wp |
---|
[1015] | 2050 | ENDIF |
---|
[1337] | 2051 | tend = 0.0_wp |
---|
[1015] | 2052 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 2053 | |
---|
| 2054 | ENDIF |
---|
| 2055 | |
---|
| 2056 | ! |
---|
| 2057 | !-- pt-tendency terms with no communication |
---|
| 2058 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2059 | tend = 0.0_wp |
---|
[1015] | 2060 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2061 | IF ( ws_scheme_sca ) THEN |
---|
| 2062 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 2063 | ELSE |
---|
[1337] | 2064 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2065 | CALL advec_s_pw( pt ) |
---|
| 2066 | ENDIF |
---|
| 2067 | ELSE |
---|
| 2068 | CALL advec_s_up( pt ) |
---|
| 2069 | ENDIF |
---|
| 2070 | ENDIF |
---|
| 2071 | |
---|
| 2072 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 2073 | |
---|
| 2074 | ! |
---|
| 2075 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
[1496] | 2076 | IF ( cloud_top_radiation ) THEN |
---|
[1015] | 2077 | CALL calc_radiation |
---|
| 2078 | ENDIF |
---|
| 2079 | |
---|
| 2080 | ! |
---|
| 2081 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 2082 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2083 | CALL impact_of_latent_heat |
---|
| 2084 | ENDIF |
---|
| 2085 | |
---|
| 2086 | ! |
---|
| 2087 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 2088 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[1015] | 2089 | CALL plant_canopy_model( 4 ) |
---|
| 2090 | ENDIF |
---|
| 2091 | |
---|
| 2092 | ! |
---|
[1365] | 2093 | !-- Large scale advection |
---|
| 2094 | IF ( large_scale_forcing ) THEN |
---|
| 2095 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 2096 | ENDIF |
---|
| 2097 | |
---|
| 2098 | ! |
---|
[1380] | 2099 | !-- Nudging |
---|
| 2100 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 2101 | |
---|
| 2102 | ! |
---|
[1015] | 2103 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2104 | IF ( large_scale_subsidence .AND. & |
---|
| 2105 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2106 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[1015] | 2107 | ENDIF |
---|
| 2108 | |
---|
[1691] | 2109 | IF ( radiation .AND. radiation_scheme == 'rrtmg' .AND. & |
---|
| 2110 | simulated_time > skip_time_do_radiation ) THEN |
---|
| 2111 | CALL radiation_tendency ( tend ) |
---|
| 2112 | ENDIF |
---|
| 2113 | |
---|
[1015] | 2114 | CALL user_actions( 'pt-tendency' ) |
---|
| 2115 | |
---|
| 2116 | ! |
---|
| 2117 | !-- Prognostic equation for potential temperature |
---|
| 2118 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 2119 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
[1257] | 2120 | !$acc loop independent |
---|
[1128] | 2121 | DO i = i_left, i_right |
---|
[1257] | 2122 | !$acc loop independent |
---|
[1128] | 2123 | DO j = j_south, j_north |
---|
[1257] | 2124 | !$acc loop independent |
---|
[1015] | 2125 | DO k = 1, nzt |
---|
| 2126 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2127 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2128 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 2129 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 2130 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 2131 | ! |
---|
| 2132 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2133 | IF ( runge_step == 1 ) THEN |
---|
| 2134 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 2135 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2136 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tpt_m(k,j,i) |
---|
[1015] | 2137 | ENDIF |
---|
| 2138 | ENDIF |
---|
| 2139 | ENDDO |
---|
| 2140 | ENDDO |
---|
| 2141 | ENDDO |
---|
| 2142 | !$acc end kernels |
---|
| 2143 | |
---|
| 2144 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 2145 | |
---|
| 2146 | ENDIF |
---|
| 2147 | |
---|
| 2148 | ! |
---|
| 2149 | !-- If required, compute prognostic equation for salinity |
---|
| 2150 | IF ( ocean ) THEN |
---|
| 2151 | |
---|
| 2152 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 2153 | |
---|
| 2154 | ! |
---|
| 2155 | !-- sa-tendency terms with communication |
---|
| 2156 | sbt = tsc(2) |
---|
| 2157 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2158 | |
---|
| 2159 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2160 | ! |
---|
| 2161 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2162 | sbt = 1.0_wp |
---|
[1015] | 2163 | ENDIF |
---|
[1337] | 2164 | tend = 0.0_wp |
---|
[1015] | 2165 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 2166 | |
---|
| 2167 | ENDIF |
---|
| 2168 | |
---|
| 2169 | ! |
---|
| 2170 | !-- sa-tendency terms with no communication |
---|
| 2171 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2172 | tend = 0.0_wp |
---|
[1015] | 2173 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2174 | IF ( ws_scheme_sca ) THEN |
---|
| 2175 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 2176 | ELSE |
---|
| 2177 | CALL advec_s_pw( sa ) |
---|
| 2178 | ENDIF |
---|
| 2179 | ELSE |
---|
| 2180 | CALL advec_s_up( sa ) |
---|
| 2181 | ENDIF |
---|
| 2182 | ENDIF |
---|
| 2183 | |
---|
| 2184 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 2185 | |
---|
| 2186 | CALL user_actions( 'sa-tendency' ) |
---|
| 2187 | |
---|
| 2188 | ! |
---|
| 2189 | !-- Prognostic equation for salinity |
---|
[1128] | 2190 | DO i = i_left, i_right |
---|
| 2191 | DO j = j_south, j_north |
---|
[1015] | 2192 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2193 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2194 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 2195 | - tsc(5) * rdf_sc(k) * & |
---|
| 2196 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 2197 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[1015] | 2198 | ! |
---|
| 2199 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2200 | IF ( runge_step == 1 ) THEN |
---|
| 2201 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 2202 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2203 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tsa_m(k,j,i) |
---|
[1015] | 2204 | ENDIF |
---|
| 2205 | ENDDO |
---|
| 2206 | ENDDO |
---|
| 2207 | ENDDO |
---|
| 2208 | |
---|
| 2209 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 2210 | |
---|
| 2211 | ! |
---|
| 2212 | !-- Calculate density by the equation of state for seawater |
---|
| 2213 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 2214 | CALL eqn_state_seawater |
---|
| 2215 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 2216 | |
---|
| 2217 | ENDIF |
---|
| 2218 | |
---|
| 2219 | ! |
---|
| 2220 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 2221 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 2222 | |
---|
| 2223 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 2224 | |
---|
| 2225 | ! |
---|
| 2226 | !-- Scalar/q-tendency terms with communication |
---|
| 2227 | sbt = tsc(2) |
---|
| 2228 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2229 | |
---|
| 2230 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2231 | ! |
---|
| 2232 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2233 | sbt = 1.0_wp |
---|
[1015] | 2234 | ENDIF |
---|
[1337] | 2235 | tend = 0.0_wp |
---|
[1015] | 2236 | CALL advec_s_bc( q, 'q' ) |
---|
| 2237 | |
---|
| 2238 | ENDIF |
---|
| 2239 | |
---|
| 2240 | ! |
---|
| 2241 | !-- Scalar/q-tendency terms with no communication |
---|
| 2242 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2243 | tend = 0.0_wp |
---|
[1015] | 2244 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2245 | IF ( ws_scheme_sca ) THEN |
---|
| 2246 | CALL advec_s_ws( q, 'q' ) |
---|
| 2247 | ELSE |
---|
| 2248 | CALL advec_s_pw( q ) |
---|
| 2249 | ENDIF |
---|
| 2250 | ELSE |
---|
| 2251 | CALL advec_s_up( q ) |
---|
| 2252 | ENDIF |
---|
| 2253 | ENDIF |
---|
| 2254 | |
---|
| 2255 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 2256 | |
---|
| 2257 | ! |
---|
| 2258 | !-- If required compute decrease of total water content due to |
---|
| 2259 | !-- precipitation |
---|
[1361] | 2260 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2261 | CALL calc_precipitation |
---|
| 2262 | ENDIF |
---|
| 2263 | |
---|
| 2264 | ! |
---|
| 2265 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 2266 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 2267 | |
---|
| 2268 | ! |
---|
[1365] | 2269 | !-- Large scale advection |
---|
| 2270 | IF ( large_scale_forcing ) THEN |
---|
| 2271 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 2272 | ENDIF |
---|
| 2273 | |
---|
| 2274 | ! |
---|
[1380] | 2275 | !-- Nudging |
---|
| 2276 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 2277 | |
---|
| 2278 | ! |
---|
[1015] | 2279 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2280 | IF ( large_scale_subsidence .AND. & |
---|
| 2281 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2282 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[1015] | 2283 | ENDIF |
---|
| 2284 | |
---|
| 2285 | CALL user_actions( 'q-tendency' ) |
---|
| 2286 | |
---|
| 2287 | ! |
---|
| 2288 | !-- Prognostic equation for total water content / scalar |
---|
[1128] | 2289 | DO i = i_left, i_right |
---|
| 2290 | DO j = j_south, j_north |
---|
[1015] | 2291 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2292 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2293 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 2294 | - tsc(5) * rdf_sc(k) * & |
---|
| 2295 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 2296 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[1015] | 2297 | ! |
---|
| 2298 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2299 | IF ( runge_step == 1 ) THEN |
---|
| 2300 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 2301 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2302 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[1015] | 2303 | ENDIF |
---|
| 2304 | ENDDO |
---|
| 2305 | ENDDO |
---|
| 2306 | ENDDO |
---|
| 2307 | |
---|
| 2308 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 2309 | |
---|
[1361] | 2310 | ! |
---|
| 2311 | !-- If required, calculate prognostic equations for rain water content |
---|
| 2312 | !-- and rain drop concentration |
---|
| 2313 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 2314 | |
---|
| 2315 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 2316 | ! |
---|
| 2317 | !-- qr-tendency terms with communication |
---|
| 2318 | sbt = tsc(2) |
---|
| 2319 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2320 | |
---|
| 2321 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2322 | ! |
---|
| 2323 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2324 | sbt = 1.0_wp |
---|
| 2325 | ENDIF |
---|
| 2326 | tend = 0.0_wp |
---|
| 2327 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 2328 | |
---|
| 2329 | ENDIF |
---|
| 2330 | |
---|
| 2331 | ! |
---|
| 2332 | !-- qr-tendency terms with no communication |
---|
| 2333 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2334 | tend = 0.0_wp |
---|
| 2335 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2336 | IF ( ws_scheme_sca ) THEN |
---|
| 2337 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 2338 | ELSE |
---|
| 2339 | CALL advec_s_pw( qr ) |
---|
| 2340 | ENDIF |
---|
| 2341 | ELSE |
---|
| 2342 | CALL advec_s_up( qr ) |
---|
| 2343 | ENDIF |
---|
| 2344 | ENDIF |
---|
| 2345 | |
---|
| 2346 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 2347 | |
---|
| 2348 | CALL user_actions( 'qr-tendency' ) |
---|
| 2349 | |
---|
| 2350 | ! |
---|
| 2351 | !-- Prognostic equation for rain water content |
---|
| 2352 | DO i = i_left, i_right |
---|
| 2353 | DO j = j_south, j_north |
---|
| 2354 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2355 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2356 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 2357 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 2358 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 2359 | ! |
---|
| 2360 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2361 | IF ( runge_step == 1 ) THEN |
---|
| 2362 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 2363 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2364 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2365 | tqr_m(k,j,i) |
---|
| 2366 | ENDIF |
---|
| 2367 | ENDDO |
---|
| 2368 | ENDDO |
---|
| 2369 | ENDDO |
---|
| 2370 | |
---|
| 2371 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 2372 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 2373 | |
---|
| 2374 | ! |
---|
| 2375 | !-- nr-tendency terms with communication |
---|
| 2376 | sbt = tsc(2) |
---|
| 2377 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2378 | |
---|
| 2379 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2380 | ! |
---|
| 2381 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2382 | sbt = 1.0_wp |
---|
| 2383 | ENDIF |
---|
| 2384 | tend = 0.0_wp |
---|
| 2385 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 2386 | |
---|
| 2387 | ENDIF |
---|
| 2388 | |
---|
| 2389 | ! |
---|
| 2390 | !-- nr-tendency terms with no communication |
---|
| 2391 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2392 | tend = 0.0_wp |
---|
| 2393 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2394 | IF ( ws_scheme_sca ) THEN |
---|
| 2395 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 2396 | ELSE |
---|
| 2397 | CALL advec_s_pw( nr ) |
---|
| 2398 | ENDIF |
---|
| 2399 | ELSE |
---|
| 2400 | CALL advec_s_up( nr ) |
---|
| 2401 | ENDIF |
---|
| 2402 | ENDIF |
---|
| 2403 | |
---|
| 2404 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 2405 | |
---|
| 2406 | CALL user_actions( 'nr-tendency' ) |
---|
| 2407 | |
---|
| 2408 | ! |
---|
| 2409 | !-- Prognostic equation for rain drop concentration |
---|
| 2410 | DO i = i_left, i_right |
---|
| 2411 | DO j = j_south, j_north |
---|
| 2412 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2413 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2414 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 2415 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 2416 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 2417 | ! |
---|
| 2418 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2419 | IF ( runge_step == 1 ) THEN |
---|
| 2420 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 2421 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2422 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2423 | tnr_m(k,j,i) |
---|
| 2424 | ENDIF |
---|
| 2425 | ENDDO |
---|
| 2426 | ENDDO |
---|
| 2427 | ENDDO |
---|
| 2428 | |
---|
| 2429 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 2430 | |
---|
| 2431 | ENDIF |
---|
| 2432 | |
---|
[1015] | 2433 | ENDIF |
---|
| 2434 | |
---|
| 2435 | ! |
---|
| 2436 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 2437 | !-- energy (TKE) |
---|
| 2438 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 2439 | |
---|
| 2440 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 2441 | |
---|
| 2442 | sbt = tsc(2) |
---|
| 2443 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 2444 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2445 | |
---|
| 2446 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2447 | ! |
---|
| 2448 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2449 | sbt = 1.0_wp |
---|
[1015] | 2450 | ENDIF |
---|
[1337] | 2451 | tend = 0.0_wp |
---|
[1015] | 2452 | CALL advec_s_bc( e, 'e' ) |
---|
| 2453 | |
---|
| 2454 | ENDIF |
---|
| 2455 | ENDIF |
---|
| 2456 | |
---|
| 2457 | ! |
---|
| 2458 | !-- TKE-tendency terms with no communication |
---|
| 2459 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 2460 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 2461 | tend = 0.0_wp |
---|
[1015] | 2462 | CALL advec_s_up( e ) |
---|
| 2463 | ELSE |
---|
| 2464 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2465 | IF ( ws_scheme_sca ) THEN |
---|
| 2466 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 2467 | ELSE |
---|
[1337] | 2468 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2469 | CALL advec_s_pw( e ) |
---|
| 2470 | ENDIF |
---|
| 2471 | ELSE |
---|
[1337] | 2472 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2473 | CALL advec_s_up( e ) |
---|
| 2474 | ENDIF |
---|
| 2475 | ENDIF |
---|
| 2476 | ENDIF |
---|
| 2477 | |
---|
| 2478 | IF ( .NOT. humidity ) THEN |
---|
| 2479 | IF ( ocean ) THEN |
---|
| 2480 | CALL diffusion_e( prho, prho_reference ) |
---|
| 2481 | ELSE |
---|
| 2482 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 2483 | ENDIF |
---|
| 2484 | ELSE |
---|
| 2485 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 2486 | ENDIF |
---|
| 2487 | |
---|
| 2488 | CALL production_e_acc |
---|
| 2489 | |
---|
| 2490 | ! |
---|
| 2491 | !-- Additional sink term for flows through plant canopies |
---|
| 2492 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 2493 | CALL user_actions( 'e-tendency' ) |
---|
| 2494 | |
---|
| 2495 | ! |
---|
| 2496 | !-- Prognostic equation for TKE. |
---|
| 2497 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2498 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2499 | !-- value is reduced by 90%. |
---|
| 2500 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
[1257] | 2501 | !$acc loop independent |
---|
[1128] | 2502 | DO i = i_left, i_right |
---|
[1257] | 2503 | !$acc loop independent |
---|
[1128] | 2504 | DO j = j_south, j_north |
---|
[1257] | 2505 | !$acc loop independent |
---|
[1015] | 2506 | DO k = 1, nzt |
---|
| 2507 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2508 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2509 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 2510 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[1015] | 2511 | ! |
---|
| 2512 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2513 | IF ( runge_step == 1 ) THEN |
---|
| 2514 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2515 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2516 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[1015] | 2517 | ENDIF |
---|
| 2518 | ENDIF |
---|
| 2519 | ENDDO |
---|
| 2520 | ENDDO |
---|
| 2521 | ENDDO |
---|
| 2522 | !$acc end kernels |
---|
| 2523 | |
---|
| 2524 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2525 | |
---|
| 2526 | ENDIF |
---|
| 2527 | |
---|
| 2528 | END SUBROUTINE prognostic_equations_acc |
---|
| 2529 | |
---|
| 2530 | |
---|
[736] | 2531 | END MODULE prognostic_equations_mod |
---|