[1691] | 1 | !> @file prognostic_equations.f90 |
---|
[1036] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1691] | 16 | ! Copyright 1997-2015 Leibniz Universitaet Hannover |
---|
[1036] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
[736] | 19 | ! Current revisions: |
---|
[1092] | 20 | ! ------------------ |
---|
[1692] | 21 | ! |
---|
| 22 | ! |
---|
[1485] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: prognostic_equations.f90 1692 2015-10-26 16:29:17Z maronga $ |
---|
| 26 | ! |
---|
[1692] | 27 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 28 | ! Added optional model spin-up without radiation / land surface model calls. |
---|
| 29 | ! Formatting corrections. |
---|
| 30 | ! |
---|
[1691] | 31 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 32 | ! Code annotations made doxygen readable |
---|
| 33 | ! |
---|
| 34 | ! 1585 2015-04-30 07:05:52Z maronga |
---|
[1586] | 35 | ! Added call for temperature tendency calculation due to radiative flux divergence |
---|
| 36 | ! |
---|
[1518] | 37 | ! 1517 2015-01-07 19:12:25Z hoffmann |
---|
| 38 | ! advec_s_bc_mod addded, since advec_s_bc is now a module |
---|
| 39 | ! |
---|
[1517] | 40 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
[1497] | 41 | ! Renamed "radiation" -> "cloud_top_radiation" |
---|
| 42 | ! |
---|
[1496] | 43 | ! 1484 2014-10-21 10:53:05Z kanani |
---|
[1484] | 44 | ! Changes due to new module structure of the plant canopy model: |
---|
| 45 | ! parameters cthf and plant_canopy moved to module plant_canopy_model_mod. |
---|
| 46 | ! Removed double-listing of use_upstream_for_tke in ONLY-list of module |
---|
| 47 | ! control_parameters |
---|
| 48 | ! |
---|
| 49 | ! 1409 2014-05-23 12:11:32Z suehring |
---|
[1409] | 50 | ! Bugfix: i_omp_start changed for advec_u_ws at left inflow and outflow boundary. |
---|
| 51 | ! This ensures that left-hand side fluxes are also calculated for nxl in that |
---|
| 52 | ! case, even though the solution at nxl is overwritten in boundary_conds() |
---|
| 53 | ! |
---|
| 54 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
[1398] | 55 | ! Rayleigh-damping for horizontal velocity components changed: instead of damping |
---|
| 56 | ! against ug and vg, damping against u_init and v_init is used to allow for a |
---|
| 57 | ! homogenized treatment in case of nudging |
---|
| 58 | ! |
---|
| 59 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
[1381] | 60 | ! Change order of calls for scalar prognostic quantities: |
---|
| 61 | ! ls_advec -> nudging -> subsidence since initial profiles |
---|
| 62 | ! |
---|
[1380] | 63 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 64 | ! missing variables added to ONLY lists |
---|
| 65 | ! |
---|
| 66 | ! 1365 2014-04-22 15:03:56Z boeske |
---|
[1365] | 67 | ! Calls of ls_advec for large scale advection added, |
---|
| 68 | ! subroutine subsidence is only called if use_subsidence_tendencies = .F., |
---|
| 69 | ! new argument ls_index added to the calls of subsidence |
---|
| 70 | ! +ls_index |
---|
| 71 | ! |
---|
| 72 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
[1361] | 73 | ! Two-moment microphysics moved to the start of prognostic equations. This makes |
---|
| 74 | ! the 3d arrays for tend_q, tend_qr, tend_pt and tend_pt redundant. |
---|
| 75 | ! Additionally, it is allowed to call the microphysics just once during the time |
---|
| 76 | ! step (not at each sub-time step). |
---|
| 77 | ! |
---|
| 78 | ! Two-moment cloud physics added for vector and accelerator optimization. |
---|
| 79 | ! |
---|
| 80 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
[1354] | 81 | ! REAL constants provided with KIND-attribute |
---|
| 82 | ! |
---|
[1353] | 83 | ! 1337 2014-03-25 15:11:48Z heinze |
---|
| 84 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 85 | ! |
---|
| 86 | ! 1332 2014-03-25 11:59:43Z suehring |
---|
[1333] | 87 | ! Bugfix: call advec_ws or advec_pw for TKE only if NOT use_upstream_for_tke |
---|
| 88 | ! |
---|
[1332] | 89 | ! 1330 2014-03-24 17:29:32Z suehring |
---|
[1331] | 90 | ! In case of SGS-particle velocity advection of TKE is also allowed with |
---|
| 91 | ! dissipative 5th-order scheme. |
---|
| 92 | ! |
---|
[1321] | 93 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 94 | ! ONLY-attribute added to USE-statements, |
---|
| 95 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 96 | ! kinds are defined in new module kinds, |
---|
| 97 | ! old module precision_kind is removed, |
---|
| 98 | ! revision history before 2012 removed, |
---|
| 99 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 100 | ! all variable declaration statements |
---|
[1054] | 101 | ! |
---|
[1319] | 102 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 103 | ! module interfaces removed |
---|
| 104 | ! |
---|
[1258] | 105 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 106 | ! openacc loop vector clauses removed, independent clauses added |
---|
| 107 | ! |
---|
[1247] | 108 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
| 109 | ! enable nudging also for accelerator version |
---|
| 110 | ! |
---|
[1242] | 111 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 112 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
| 113 | ! |
---|
[1182] | 114 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 115 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 116 | ! |
---|
[1132] | 117 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 118 | ! those parts requiring global communication moved to time_integration, |
---|
| 119 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 120 | ! j_north |
---|
| 121 | ! |
---|
[1116] | 122 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 123 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 124 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 125 | ! |
---|
[1112] | 126 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 127 | ! update directives for prognostic quantities removed |
---|
| 128 | ! |
---|
[1107] | 129 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 130 | ! small changes in code formatting |
---|
| 131 | ! |
---|
[1093] | 132 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 133 | ! unused variables removed |
---|
| 134 | ! |
---|
[1054] | 135 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 136 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 137 | ! and rain water content (qr) |
---|
[979] | 138 | ! |
---|
[1053] | 139 | ! currently, only available for cache loop optimization |
---|
[1020] | 140 | ! |
---|
[1037] | 141 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 142 | ! code put under GPL (PALM 3.9) |
---|
| 143 | ! |
---|
[1020] | 144 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 145 | ! non-optimized version of prognostic_equations removed |
---|
| 146 | ! |
---|
[1017] | 147 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 148 | ! new branch prognostic_equations_acc |
---|
| 149 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 150 | ! |
---|
[1002] | 151 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 152 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 153 | ! |
---|
[979] | 154 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 155 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 156 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 157 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 158 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 159 | ! |
---|
[941] | 160 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 161 | ! temperature equation can be switched off |
---|
| 162 | ! |
---|
[736] | 163 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 164 | ! Initial revision |
---|
| 165 | ! |
---|
| 166 | ! |
---|
| 167 | ! Description: |
---|
| 168 | ! ------------ |
---|
[1682] | 169 | !> Solving the prognostic equations. |
---|
[736] | 170 | !------------------------------------------------------------------------------! |
---|
[1682] | 171 | MODULE prognostic_equations_mod |
---|
[736] | 172 | |
---|
[1691] | 173 | |
---|
[1682] | 174 | |
---|
[1320] | 175 | USE arrays_3d, & |
---|
| 176 | ONLY: diss_l_e, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qr, & |
---|
| 177 | diss_l_sa, diss_s_e, diss_s_nr, diss_s_pt, diss_s_q, & |
---|
| 178 | diss_s_qr, diss_s_sa, e, e_p, flux_s_e, flux_s_nr, flux_s_pt, & |
---|
| 179 | flux_s_q, flux_s_qr, flux_s_sa, flux_l_e, flux_l_nr, & |
---|
| 180 | flux_l_pt, flux_l_q, flux_l_qr, flux_l_sa, nr, nr_p, nrsws, & |
---|
| 181 | nrswst, pt, ptdf_x, ptdf_y, pt_init, pt_p, prho, q, q_init, & |
---|
[1374] | 182 | q_p, qsws, qswst, qr, qr_p, qrsws, qrswst, rdf, rdf_sc, & |
---|
| 183 | ref_state, rho, sa, sa_init, sa_p, saswsb, saswst, shf, tend, & |
---|
| 184 | te_m, tnr_m, tpt_m, tq_m, tqr_m, tsa_m, tswst, tu_m, tv_m, & |
---|
[1398] | 185 | tw_m, u, ug, u_init, u_p, v, vg, vpt, v_init, v_p, w, w_p |
---|
[1320] | 186 | |
---|
| 187 | USE control_parameters, & |
---|
[1361] | 188 | ONLY: call_microphysics_at_all_substeps, cloud_physics, & |
---|
[1496] | 189 | cloud_top_radiation, constant_diffusion, dp_external, & |
---|
[1320] | 190 | dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, humidity, & |
---|
| 191 | icloud_scheme, inflow_l, intermediate_timestep_count, & |
---|
[1365] | 192 | intermediate_timestep_count_max, large_scale_forcing, & |
---|
| 193 | large_scale_subsidence, neutral, nudging, ocean, outflow_l, & |
---|
[1484] | 194 | outflow_s, passive_scalar, precipitation, & |
---|
[1365] | 195 | prho_reference, prho_reference, prho_reference, pt_reference, & |
---|
[1496] | 196 | pt_reference, pt_reference, scalar_advec, scalar_advec, & |
---|
| 197 | simulated_time, sloping_surface, & |
---|
| 198 | timestep_scheme, tsc, use_subsidence_tendencies, & |
---|
| 199 | use_upstream_for_tke, wall_heatflux, & |
---|
[1320] | 200 | wall_nrflux, wall_qflux, wall_qflux, wall_qflux, wall_qrflux, & |
---|
| 201 | wall_salinityflux, ws_scheme_mom, ws_scheme_sca |
---|
[736] | 202 | |
---|
[1320] | 203 | USE cpulog, & |
---|
| 204 | ONLY: cpu_log, log_point |
---|
[736] | 205 | |
---|
[1320] | 206 | USE eqn_state_seawater_mod, & |
---|
| 207 | ONLY: eqn_state_seawater |
---|
| 208 | |
---|
| 209 | USE indices, & |
---|
| 210 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlu, nxr, nyn, nys, & |
---|
| 211 | nysv, nzb_s_inner, nzb_u_inner, nzb_v_inner, nzb_w_inner, nzt |
---|
| 212 | |
---|
| 213 | USE advec_ws, & |
---|
| 214 | ONLY: advec_s_ws, advec_s_ws_acc, advec_u_ws, advec_u_ws_acc, & |
---|
| 215 | advec_v_ws, advec_v_ws_acc, advec_w_ws, advec_w_ws_acc |
---|
| 216 | |
---|
[1517] | 217 | USE advec_s_bc_mod, & |
---|
| 218 | ONLY: advec_s_bc |
---|
| 219 | |
---|
[1320] | 220 | USE advec_s_pw_mod, & |
---|
| 221 | ONLY: advec_s_pw |
---|
| 222 | |
---|
| 223 | USE advec_s_up_mod, & |
---|
| 224 | ONLY: advec_s_up |
---|
| 225 | |
---|
| 226 | USE advec_u_pw_mod, & |
---|
| 227 | ONLY: advec_u_pw |
---|
| 228 | |
---|
| 229 | USE advec_u_up_mod, & |
---|
| 230 | ONLY: advec_u_up |
---|
| 231 | |
---|
| 232 | USE advec_v_pw_mod, & |
---|
| 233 | ONLY: advec_v_pw |
---|
| 234 | |
---|
| 235 | USE advec_v_up_mod, & |
---|
| 236 | ONLY: advec_v_up |
---|
| 237 | |
---|
| 238 | USE advec_w_pw_mod, & |
---|
| 239 | ONLY: advec_w_pw |
---|
| 240 | |
---|
| 241 | USE advec_w_up_mod, & |
---|
| 242 | ONLY: advec_w_up |
---|
| 243 | |
---|
| 244 | USE buoyancy_mod, & |
---|
| 245 | ONLY: buoyancy, buoyancy_acc |
---|
| 246 | |
---|
| 247 | USE calc_precipitation_mod, & |
---|
| 248 | ONLY: calc_precipitation |
---|
| 249 | |
---|
| 250 | USE calc_radiation_mod, & |
---|
| 251 | ONLY: calc_radiation |
---|
| 252 | |
---|
| 253 | USE coriolis_mod, & |
---|
| 254 | ONLY: coriolis, coriolis_acc |
---|
| 255 | |
---|
| 256 | USE diffusion_e_mod, & |
---|
| 257 | ONLY: diffusion_e, diffusion_e_acc |
---|
| 258 | |
---|
| 259 | USE diffusion_s_mod, & |
---|
| 260 | ONLY: diffusion_s, diffusion_s_acc |
---|
| 261 | |
---|
| 262 | USE diffusion_u_mod, & |
---|
| 263 | ONLY: diffusion_u, diffusion_u_acc |
---|
| 264 | |
---|
| 265 | USE diffusion_v_mod, & |
---|
| 266 | ONLY: diffusion_v, diffusion_v_acc |
---|
| 267 | |
---|
| 268 | USE diffusion_w_mod, & |
---|
| 269 | ONLY: diffusion_w, diffusion_w_acc |
---|
| 270 | |
---|
| 271 | USE impact_of_latent_heat_mod, & |
---|
| 272 | ONLY: impact_of_latent_heat |
---|
| 273 | |
---|
| 274 | USE kinds |
---|
| 275 | |
---|
[1365] | 276 | USE ls_forcing_mod, & |
---|
| 277 | ONLY: ls_advec |
---|
| 278 | |
---|
[1320] | 279 | USE microphysics_mod, & |
---|
| 280 | ONLY: microphysics_control |
---|
| 281 | |
---|
| 282 | USE nudge_mod, & |
---|
| 283 | ONLY: nudge |
---|
| 284 | |
---|
| 285 | USE plant_canopy_model_mod, & |
---|
[1484] | 286 | ONLY: cthf, plant_canopy, plant_canopy_model |
---|
[1320] | 287 | |
---|
| 288 | USE production_e_mod, & |
---|
| 289 | ONLY: production_e, production_e_acc |
---|
| 290 | |
---|
[1585] | 291 | USE radiation_model_mod, & |
---|
[1691] | 292 | ONLY: radiation, radiation_scheme, radiation_tendency, & |
---|
| 293 | skip_time_do_radiation |
---|
[1585] | 294 | |
---|
[1374] | 295 | USE statistics, & |
---|
| 296 | ONLY: hom |
---|
| 297 | |
---|
[1320] | 298 | USE subsidence_mod, & |
---|
| 299 | ONLY: subsidence |
---|
| 300 | |
---|
| 301 | USE user_actions_mod, & |
---|
| 302 | ONLY: user_actions |
---|
| 303 | |
---|
| 304 | |
---|
[736] | 305 | PRIVATE |
---|
[1019] | 306 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 307 | prognostic_equations_acc |
---|
[736] | 308 | |
---|
| 309 | INTERFACE prognostic_equations_cache |
---|
| 310 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 311 | END INTERFACE prognostic_equations_cache |
---|
| 312 | |
---|
| 313 | INTERFACE prognostic_equations_vector |
---|
| 314 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 315 | END INTERFACE prognostic_equations_vector |
---|
| 316 | |
---|
[1015] | 317 | INTERFACE prognostic_equations_acc |
---|
| 318 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 319 | END INTERFACE prognostic_equations_acc |
---|
[736] | 320 | |
---|
[1015] | 321 | |
---|
[736] | 322 | CONTAINS |
---|
| 323 | |
---|
| 324 | |
---|
| 325 | !------------------------------------------------------------------------------! |
---|
[1691] | 326 | ! Description: |
---|
| 327 | ! ------------ |
---|
[1682] | 328 | !> Version with one optimized loop over all equations. It is only allowed to |
---|
| 329 | !> be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 330 | !> |
---|
| 331 | !> Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 332 | !> so communication between CPUs is not allowed (does not make sense) within |
---|
| 333 | !> these loops. |
---|
| 334 | !> |
---|
| 335 | !> (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
[736] | 336 | !------------------------------------------------------------------------------! |
---|
[1691] | 337 | |
---|
[1682] | 338 | SUBROUTINE prognostic_equations_cache |
---|
[736] | 339 | |
---|
[1682] | 340 | |
---|
[736] | 341 | IMPLICIT NONE |
---|
| 342 | |
---|
[1682] | 343 | INTEGER(iwp) :: i !< |
---|
| 344 | INTEGER(iwp) :: i_omp_start !< |
---|
| 345 | INTEGER(iwp) :: j !< |
---|
| 346 | INTEGER(iwp) :: k !< |
---|
| 347 | INTEGER(iwp) :: omp_get_thread_num !< |
---|
| 348 | INTEGER(iwp) :: tn = 0 !< |
---|
[1320] | 349 | |
---|
[1682] | 350 | LOGICAL :: loop_start !< |
---|
[736] | 351 | |
---|
| 352 | |
---|
| 353 | ! |
---|
| 354 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 355 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 356 | |
---|
| 357 | ! |
---|
| 358 | !-- Loop over all prognostic equations |
---|
| 359 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 360 | |
---|
| 361 | !$ tn = omp_get_thread_num() |
---|
| 362 | loop_start = .TRUE. |
---|
| 363 | !$OMP DO |
---|
| 364 | DO i = nxl, nxr |
---|
| 365 | |
---|
| 366 | ! |
---|
| 367 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 368 | !-- later in advec_ws |
---|
| 369 | IF ( loop_start ) THEN |
---|
| 370 | loop_start = .FALSE. |
---|
| 371 | i_omp_start = i |
---|
| 372 | ENDIF |
---|
[1365] | 373 | |
---|
[736] | 374 | DO j = nys, nyn |
---|
| 375 | ! |
---|
[1361] | 376 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 377 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 378 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 379 | call_microphysics_at_all_substeps ) & |
---|
| 380 | ) THEN |
---|
| 381 | CALL microphysics_control( i, j ) |
---|
| 382 | ENDIF |
---|
| 383 | ! |
---|
[736] | 384 | !-- Tendency terms for u-velocity component |
---|
| 385 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 386 | |
---|
[1337] | 387 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 388 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 389 | IF ( ws_scheme_mom ) THEN |
---|
[1409] | 390 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
[736] | 391 | ELSE |
---|
| 392 | CALL advec_u_pw( i, j ) |
---|
| 393 | ENDIF |
---|
| 394 | ELSE |
---|
| 395 | CALL advec_u_up( i, j ) |
---|
| 396 | ENDIF |
---|
[1001] | 397 | CALL diffusion_u( i, j ) |
---|
[736] | 398 | CALL coriolis( i, j, 1 ) |
---|
[940] | 399 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 400 | CALL buoyancy( i, j, pt, 1 ) |
---|
[940] | 401 | ENDIF |
---|
[736] | 402 | |
---|
| 403 | ! |
---|
| 404 | !-- Drag by plant canopy |
---|
| 405 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 406 | |
---|
| 407 | ! |
---|
| 408 | !-- External pressure gradient |
---|
| 409 | IF ( dp_external ) THEN |
---|
| 410 | DO k = dp_level_ind_b+1, nzt |
---|
| 411 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 412 | ENDDO |
---|
| 413 | ENDIF |
---|
| 414 | |
---|
[1241] | 415 | ! |
---|
| 416 | !-- Nudging |
---|
[1691] | 417 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
[1241] | 418 | |
---|
[736] | 419 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 420 | ! |
---|
| 421 | !-- Prognostic equation for u-velocity component |
---|
| 422 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 423 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 424 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 425 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 426 | ENDDO |
---|
| 427 | |
---|
| 428 | ! |
---|
| 429 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 430 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 431 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 432 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 433 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 434 | ENDDO |
---|
| 435 | ELSEIF ( intermediate_timestep_count < & |
---|
| 436 | intermediate_timestep_count_max ) THEN |
---|
| 437 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 438 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 439 | ENDDO |
---|
| 440 | ENDIF |
---|
| 441 | ENDIF |
---|
| 442 | |
---|
| 443 | ENDIF |
---|
| 444 | |
---|
| 445 | ! |
---|
| 446 | !-- Tendency terms for v-velocity component |
---|
| 447 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 448 | |
---|
[1337] | 449 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 450 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 451 | IF ( ws_scheme_mom ) THEN |
---|
| 452 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 453 | ELSE |
---|
| 454 | CALL advec_v_pw( i, j ) |
---|
| 455 | ENDIF |
---|
| 456 | ELSE |
---|
| 457 | CALL advec_v_up( i, j ) |
---|
| 458 | ENDIF |
---|
[1001] | 459 | CALL diffusion_v( i, j ) |
---|
[736] | 460 | CALL coriolis( i, j, 2 ) |
---|
| 461 | |
---|
| 462 | ! |
---|
| 463 | !-- Drag by plant canopy |
---|
| 464 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 465 | |
---|
| 466 | ! |
---|
| 467 | !-- External pressure gradient |
---|
| 468 | IF ( dp_external ) THEN |
---|
| 469 | DO k = dp_level_ind_b+1, nzt |
---|
| 470 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 471 | ENDDO |
---|
| 472 | ENDIF |
---|
| 473 | |
---|
[1241] | 474 | ! |
---|
| 475 | !-- Nudging |
---|
[1691] | 476 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
[1241] | 477 | |
---|
[736] | 478 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 479 | ! |
---|
| 480 | !-- Prognostic equation for v-velocity component |
---|
| 481 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 482 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 483 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 484 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 485 | ENDDO |
---|
| 486 | |
---|
| 487 | ! |
---|
| 488 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 489 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 490 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 491 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 492 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 493 | ENDDO |
---|
| 494 | ELSEIF ( intermediate_timestep_count < & |
---|
| 495 | intermediate_timestep_count_max ) THEN |
---|
| 496 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 497 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 498 | ENDDO |
---|
| 499 | ENDIF |
---|
| 500 | ENDIF |
---|
| 501 | |
---|
| 502 | ENDIF |
---|
| 503 | |
---|
| 504 | ! |
---|
| 505 | !-- Tendency terms for w-velocity component |
---|
[1337] | 506 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 507 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 508 | IF ( ws_scheme_mom ) THEN |
---|
| 509 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 510 | ELSE |
---|
| 511 | CALL advec_w_pw( i, j ) |
---|
| 512 | END IF |
---|
| 513 | ELSE |
---|
| 514 | CALL advec_w_up( i, j ) |
---|
| 515 | ENDIF |
---|
[1001] | 516 | CALL diffusion_w( i, j ) |
---|
[736] | 517 | CALL coriolis( i, j, 3 ) |
---|
[940] | 518 | |
---|
| 519 | IF ( .NOT. neutral ) THEN |
---|
| 520 | IF ( ocean ) THEN |
---|
[1179] | 521 | CALL buoyancy( i, j, rho, 3 ) |
---|
[736] | 522 | ELSE |
---|
[940] | 523 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 524 | CALL buoyancy( i, j, pt, 3 ) |
---|
[940] | 525 | ELSE |
---|
[1179] | 526 | CALL buoyancy( i, j, vpt, 3 ) |
---|
[940] | 527 | ENDIF |
---|
[736] | 528 | ENDIF |
---|
| 529 | ENDIF |
---|
| 530 | |
---|
| 531 | ! |
---|
| 532 | !-- Drag by plant canopy |
---|
| 533 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 534 | |
---|
| 535 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 536 | |
---|
| 537 | ! |
---|
| 538 | !-- Prognostic equation for w-velocity component |
---|
| 539 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 540 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 541 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 542 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 543 | ENDDO |
---|
| 544 | |
---|
| 545 | ! |
---|
| 546 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 547 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 548 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 549 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 550 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 551 | ENDDO |
---|
| 552 | ELSEIF ( intermediate_timestep_count < & |
---|
| 553 | intermediate_timestep_count_max ) THEN |
---|
| 554 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 555 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 556 | ENDDO |
---|
| 557 | ENDIF |
---|
| 558 | ENDIF |
---|
[1361] | 559 | |
---|
[736] | 560 | ! |
---|
[940] | 561 | !-- If required, compute prognostic equation for potential temperature |
---|
| 562 | IF ( .NOT. neutral ) THEN |
---|
| 563 | ! |
---|
| 564 | !-- Tendency terms for potential temperature |
---|
[1337] | 565 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 566 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 567 | IF ( ws_scheme_sca ) THEN |
---|
| 568 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 569 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 570 | ELSE |
---|
| 571 | CALL advec_s_pw( i, j, pt ) |
---|
| 572 | ENDIF |
---|
| 573 | ELSE |
---|
| 574 | CALL advec_s_up( i, j, pt ) |
---|
| 575 | ENDIF |
---|
[1001] | 576 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 577 | |
---|
| 578 | ! |
---|
[940] | 579 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 580 | !-- processes |
---|
[1496] | 581 | IF ( cloud_top_radiation ) THEN |
---|
[940] | 582 | CALL calc_radiation( i, j ) |
---|
| 583 | ENDIF |
---|
[736] | 584 | |
---|
[1106] | 585 | ! |
---|
[1361] | 586 | !-- If required compute impact of latent heat due to precipitation |
---|
| 587 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 588 | precipitation ) THEN |
---|
| 589 | CALL impact_of_latent_heat( i, j ) |
---|
[940] | 590 | ENDIF |
---|
[736] | 591 | |
---|
| 592 | ! |
---|
[940] | 593 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 594 | IF ( plant_canopy .AND. cthf /= 0.0_wp ) THEN |
---|
[940] | 595 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 596 | ENDIF |
---|
[736] | 597 | |
---|
[940] | 598 | ! |
---|
[1365] | 599 | !-- Large scale advection |
---|
| 600 | IF ( large_scale_forcing ) THEN |
---|
| 601 | CALL ls_advec( i, j, simulated_time, 'pt' ) |
---|
| 602 | ENDIF |
---|
| 603 | |
---|
| 604 | ! |
---|
[1380] | 605 | !-- Nudging |
---|
| 606 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
| 607 | |
---|
| 608 | ! |
---|
[1106] | 609 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
[1365] | 610 | IF ( large_scale_subsidence .AND. & |
---|
| 611 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 612 | CALL subsidence( i, j, tend, pt, pt_init, 2 ) |
---|
[940] | 613 | ENDIF |
---|
[736] | 614 | |
---|
[1585] | 615 | ! |
---|
| 616 | !-- If required, add tendency due to radiative heating/cooling |
---|
[1691] | 617 | IF ( radiation .AND. radiation_scheme == 'rrtmg' .AND. & |
---|
| 618 | simulated_time > skip_time_do_radiation ) THEN |
---|
[1585] | 619 | CALL radiation_tendency ( i, j, tend ) |
---|
| 620 | ENDIF |
---|
| 621 | |
---|
| 622 | |
---|
[940] | 623 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 624 | |
---|
| 625 | ! |
---|
[940] | 626 | !-- Prognostic equation for potential temperature |
---|
| 627 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 628 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 629 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 630 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 631 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 632 | ENDDO |
---|
[736] | 633 | |
---|
| 634 | ! |
---|
[940] | 635 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 636 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 637 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 638 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 639 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 640 | ENDDO |
---|
| 641 | ELSEIF ( intermediate_timestep_count < & |
---|
| 642 | intermediate_timestep_count_max ) THEN |
---|
| 643 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 644 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 645 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 646 | ENDDO |
---|
| 647 | ENDIF |
---|
[736] | 648 | ENDIF |
---|
[940] | 649 | |
---|
[736] | 650 | ENDIF |
---|
| 651 | |
---|
| 652 | ! |
---|
| 653 | !-- If required, compute prognostic equation for salinity |
---|
| 654 | IF ( ocean ) THEN |
---|
| 655 | |
---|
| 656 | ! |
---|
| 657 | !-- Tendency-terms for salinity |
---|
[1337] | 658 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 659 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 660 | THEN |
---|
| 661 | IF ( ws_scheme_sca ) THEN |
---|
| 662 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 663 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 664 | ELSE |
---|
| 665 | CALL advec_s_pw( i, j, sa ) |
---|
| 666 | ENDIF |
---|
| 667 | ELSE |
---|
| 668 | CALL advec_s_up( i, j, sa ) |
---|
| 669 | ENDIF |
---|
[1001] | 670 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 671 | |
---|
| 672 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 673 | |
---|
| 674 | ! |
---|
| 675 | !-- Prognostic equation for salinity |
---|
| 676 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 677 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 678 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 679 | - tsc(5) * rdf_sc(k) * & |
---|
| 680 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 681 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 682 | ENDDO |
---|
| 683 | |
---|
| 684 | ! |
---|
| 685 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 686 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 687 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 688 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 689 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 690 | ENDDO |
---|
| 691 | ELSEIF ( intermediate_timestep_count < & |
---|
| 692 | intermediate_timestep_count_max ) THEN |
---|
| 693 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 694 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 695 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 696 | ENDDO |
---|
| 697 | ENDIF |
---|
| 698 | ENDIF |
---|
| 699 | |
---|
| 700 | ! |
---|
| 701 | !-- Calculate density by the equation of state for seawater |
---|
| 702 | CALL eqn_state_seawater( i, j ) |
---|
| 703 | |
---|
| 704 | ENDIF |
---|
| 705 | |
---|
| 706 | ! |
---|
| 707 | !-- If required, compute prognostic equation for total water content / |
---|
| 708 | !-- scalar |
---|
| 709 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 710 | |
---|
| 711 | ! |
---|
| 712 | !-- Tendency-terms for total water content / scalar |
---|
[1337] | 713 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 714 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 715 | THEN |
---|
| 716 | IF ( ws_scheme_sca ) THEN |
---|
| 717 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 718 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 719 | ELSE |
---|
| 720 | CALL advec_s_pw( i, j, q ) |
---|
| 721 | ENDIF |
---|
| 722 | ELSE |
---|
| 723 | CALL advec_s_up( i, j, q ) |
---|
| 724 | ENDIF |
---|
[1001] | 725 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[1691] | 726 | |
---|
[736] | 727 | ! |
---|
[1361] | 728 | !-- If required compute decrease of total water content due to |
---|
| 729 | !-- precipitation |
---|
| 730 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 731 | precipitation ) THEN |
---|
[1691] | 732 | CALL calc_precipitation( i, j ) |
---|
[736] | 733 | ENDIF |
---|
[1691] | 734 | |
---|
[736] | 735 | ! |
---|
| 736 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1106] | 737 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
[736] | 738 | |
---|
[1053] | 739 | ! |
---|
[1365] | 740 | !-- Large scale advection |
---|
| 741 | IF ( large_scale_forcing ) THEN |
---|
| 742 | CALL ls_advec( i, j, simulated_time, 'q' ) |
---|
| 743 | ENDIF |
---|
| 744 | |
---|
| 745 | ! |
---|
[1380] | 746 | !-- Nudging |
---|
| 747 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
| 748 | |
---|
| 749 | ! |
---|
[736] | 750 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 751 | IF ( large_scale_subsidence .AND. & |
---|
| 752 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 753 | CALL subsidence( i, j, tend, q, q_init, 3 ) |
---|
[736] | 754 | ENDIF |
---|
| 755 | |
---|
| 756 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 757 | |
---|
| 758 | ! |
---|
| 759 | !-- Prognostic equation for total water content / scalar |
---|
| 760 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 761 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 762 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 763 | - tsc(5) * rdf_sc(k) * & |
---|
| 764 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 765 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 766 | ENDDO |
---|
| 767 | |
---|
| 768 | ! |
---|
| 769 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 770 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 771 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 772 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 773 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 774 | ENDDO |
---|
| 775 | ELSEIF ( intermediate_timestep_count < & |
---|
| 776 | intermediate_timestep_count_max ) THEN |
---|
| 777 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 778 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 779 | 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 780 | ENDDO |
---|
| 781 | ENDIF |
---|
| 782 | ENDIF |
---|
| 783 | |
---|
[1053] | 784 | ! |
---|
| 785 | !-- If required, calculate prognostic equations for rain water content |
---|
| 786 | !-- and rain drop concentration |
---|
[1115] | 787 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 788 | precipitation ) THEN |
---|
[1053] | 789 | ! |
---|
| 790 | !-- Calculate prognostic equation for rain water content |
---|
[1337] | 791 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 792 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 793 | THEN |
---|
| 794 | IF ( ws_scheme_sca ) THEN |
---|
| 795 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 796 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 797 | i_omp_start, tn ) |
---|
| 798 | ELSE |
---|
| 799 | CALL advec_s_pw( i, j, qr ) |
---|
| 800 | ENDIF |
---|
| 801 | ELSE |
---|
| 802 | CALL advec_s_up( i, j, qr ) |
---|
| 803 | ENDIF |
---|
| 804 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 805 | |
---|
[1115] | 806 | CALL user_actions( i, j, 'qr-tendency' ) |
---|
[1053] | 807 | ! |
---|
| 808 | !-- Prognostic equation for rain water content |
---|
| 809 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 810 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 811 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 812 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
[1337] | 813 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
[1053] | 814 | ENDDO |
---|
| 815 | ! |
---|
| 816 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 817 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 818 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 819 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 820 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 821 | ENDDO |
---|
| 822 | ELSEIF ( intermediate_timestep_count < & |
---|
| 823 | intermediate_timestep_count_max ) THEN |
---|
| 824 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 825 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 826 | 5.3125_wp * tqr_m(k,j,i) |
---|
[1053] | 827 | ENDDO |
---|
| 828 | ENDIF |
---|
| 829 | ENDIF |
---|
| 830 | |
---|
| 831 | ! |
---|
| 832 | !-- Calculate prognostic equation for rain drop concentration. |
---|
[1337] | 833 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 834 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 835 | IF ( ws_scheme_sca ) THEN |
---|
[1115] | 836 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 837 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 838 | i_omp_start, tn ) |
---|
[1053] | 839 | ELSE |
---|
| 840 | CALL advec_s_pw( i, j, nr ) |
---|
| 841 | ENDIF |
---|
| 842 | ELSE |
---|
| 843 | CALL advec_s_up( i, j, nr ) |
---|
| 844 | ENDIF |
---|
| 845 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
| 846 | |
---|
[1115] | 847 | CALL user_actions( i, j, 'nr-tendency' ) |
---|
[1053] | 848 | ! |
---|
| 849 | !-- Prognostic equation for rain drop concentration |
---|
| 850 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 851 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 852 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 853 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
[1337] | 854 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
[1053] | 855 | ENDDO |
---|
| 856 | ! |
---|
| 857 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 858 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 859 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 860 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 861 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 862 | ENDDO |
---|
| 863 | ELSEIF ( intermediate_timestep_count < & |
---|
| 864 | intermediate_timestep_count_max ) THEN |
---|
| 865 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 866 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 867 | 5.3125_wp * tnr_m(k,j,i) |
---|
[1053] | 868 | ENDDO |
---|
| 869 | ENDIF |
---|
| 870 | ENDIF |
---|
| 871 | |
---|
| 872 | ENDIF |
---|
| 873 | |
---|
[1128] | 874 | ENDIF |
---|
| 875 | |
---|
[736] | 876 | ! |
---|
| 877 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 878 | !-- energy (TKE) |
---|
| 879 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 880 | |
---|
| 881 | ! |
---|
| 882 | !-- Tendency-terms for TKE |
---|
[1337] | 883 | tend(:,j,i) = 0.0_wp |
---|
[1332] | 884 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
| 885 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
[736] | 886 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 887 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 888 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 889 | ELSE |
---|
| 890 | CALL advec_s_pw( i, j, e ) |
---|
| 891 | ENDIF |
---|
| 892 | ELSE |
---|
| 893 | CALL advec_s_up( i, j, e ) |
---|
| 894 | ENDIF |
---|
[1001] | 895 | IF ( .NOT. humidity ) THEN |
---|
| 896 | IF ( ocean ) THEN |
---|
| 897 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 898 | ELSE |
---|
[1001] | 899 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 900 | ENDIF |
---|
| 901 | ELSE |
---|
[1001] | 902 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 903 | ENDIF |
---|
| 904 | CALL production_e( i, j ) |
---|
| 905 | |
---|
| 906 | ! |
---|
| 907 | !-- Additional sink term for flows through plant canopies |
---|
| 908 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 909 | |
---|
| 910 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 911 | |
---|
| 912 | ! |
---|
| 913 | !-- Prognostic equation for TKE. |
---|
| 914 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 915 | !-- reasons in the course of the integration. In such cases the old |
---|
| 916 | !-- TKE value is reduced by 90%. |
---|
| 917 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 918 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 919 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 920 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 921 | ENDDO |
---|
| 922 | |
---|
| 923 | ! |
---|
| 924 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 925 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 926 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 927 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 928 | te_m(k,j,i) = tend(k,j,i) |
---|
| 929 | ENDDO |
---|
| 930 | ELSEIF ( intermediate_timestep_count < & |
---|
| 931 | intermediate_timestep_count_max ) THEN |
---|
| 932 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 933 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 934 | 5.3125_wp * te_m(k,j,i) |
---|
[736] | 935 | ENDDO |
---|
| 936 | ENDIF |
---|
| 937 | ENDIF |
---|
| 938 | |
---|
| 939 | ENDIF ! TKE equation |
---|
| 940 | |
---|
| 941 | ENDDO |
---|
| 942 | ENDDO |
---|
| 943 | !$OMP END PARALLEL |
---|
| 944 | |
---|
| 945 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 946 | |
---|
| 947 | |
---|
| 948 | END SUBROUTINE prognostic_equations_cache |
---|
| 949 | |
---|
| 950 | |
---|
| 951 | !------------------------------------------------------------------------------! |
---|
[1691] | 952 | ! Description: |
---|
| 953 | ! ------------ |
---|
[1682] | 954 | !> Version for vector machines |
---|
[736] | 955 | !------------------------------------------------------------------------------! |
---|
[1691] | 956 | |
---|
[1682] | 957 | SUBROUTINE prognostic_equations_vector |
---|
[736] | 958 | |
---|
[1682] | 959 | |
---|
[736] | 960 | IMPLICIT NONE |
---|
| 961 | |
---|
[1682] | 962 | INTEGER(iwp) :: i !< |
---|
| 963 | INTEGER(iwp) :: j !< |
---|
| 964 | INTEGER(iwp) :: k !< |
---|
[736] | 965 | |
---|
[1682] | 966 | REAL(wp) :: sbt !< |
---|
[736] | 967 | |
---|
[1320] | 968 | |
---|
[736] | 969 | ! |
---|
[1361] | 970 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 971 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 972 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 973 | call_microphysics_at_all_substeps ) & |
---|
| 974 | ) THEN |
---|
| 975 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 976 | CALL microphysics_control |
---|
| 977 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 978 | ENDIF |
---|
| 979 | |
---|
| 980 | ! |
---|
[736] | 981 | !-- u-velocity component |
---|
| 982 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 983 | |
---|
[1337] | 984 | tend = 0.0_wp |
---|
[1001] | 985 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 986 | IF ( ws_scheme_mom ) THEN |
---|
| 987 | CALL advec_u_ws |
---|
| 988 | ELSE |
---|
| 989 | CALL advec_u_pw |
---|
| 990 | ENDIF |
---|
| 991 | ELSE |
---|
[1001] | 992 | CALL advec_u_up |
---|
[736] | 993 | ENDIF |
---|
[1001] | 994 | CALL diffusion_u |
---|
[736] | 995 | CALL coriolis( 1 ) |
---|
[940] | 996 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 997 | CALL buoyancy( pt, 1 ) |
---|
[940] | 998 | ENDIF |
---|
[736] | 999 | |
---|
| 1000 | ! |
---|
| 1001 | !-- Drag by plant canopy |
---|
| 1002 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1003 | |
---|
| 1004 | ! |
---|
| 1005 | !-- External pressure gradient |
---|
| 1006 | IF ( dp_external ) THEN |
---|
| 1007 | DO i = nxlu, nxr |
---|
| 1008 | DO j = nys, nyn |
---|
| 1009 | DO k = dp_level_ind_b+1, nzt |
---|
| 1010 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1011 | ENDDO |
---|
| 1012 | ENDDO |
---|
| 1013 | ENDDO |
---|
| 1014 | ENDIF |
---|
| 1015 | |
---|
[1241] | 1016 | ! |
---|
| 1017 | !-- Nudging |
---|
[1691] | 1018 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
[1241] | 1019 | |
---|
[736] | 1020 | CALL user_actions( 'u-tendency' ) |
---|
| 1021 | |
---|
| 1022 | ! |
---|
| 1023 | !-- Prognostic equation for u-velocity component |
---|
| 1024 | DO i = nxlu, nxr |
---|
| 1025 | DO j = nys, nyn |
---|
| 1026 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 1027 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1028 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 1029 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 1030 | ENDDO |
---|
| 1031 | ENDDO |
---|
| 1032 | ENDDO |
---|
| 1033 | |
---|
| 1034 | ! |
---|
| 1035 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1036 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1037 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1038 | DO i = nxlu, nxr |
---|
| 1039 | DO j = nys, nyn |
---|
| 1040 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1041 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1042 | ENDDO |
---|
| 1043 | ENDDO |
---|
| 1044 | ENDDO |
---|
| 1045 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1046 | intermediate_timestep_count_max ) THEN |
---|
| 1047 | DO i = nxlu, nxr |
---|
| 1048 | DO j = nys, nyn |
---|
| 1049 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 1050 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 1051 | ENDDO |
---|
| 1052 | ENDDO |
---|
| 1053 | ENDDO |
---|
| 1054 | ENDIF |
---|
| 1055 | ENDIF |
---|
| 1056 | |
---|
| 1057 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1058 | |
---|
| 1059 | ! |
---|
| 1060 | !-- v-velocity component |
---|
| 1061 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1062 | |
---|
[1337] | 1063 | tend = 0.0_wp |
---|
[1001] | 1064 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1065 | IF ( ws_scheme_mom ) THEN |
---|
| 1066 | CALL advec_v_ws |
---|
| 1067 | ELSE |
---|
| 1068 | CALL advec_v_pw |
---|
| 1069 | END IF |
---|
| 1070 | ELSE |
---|
[1001] | 1071 | CALL advec_v_up |
---|
[736] | 1072 | ENDIF |
---|
[1001] | 1073 | CALL diffusion_v |
---|
[736] | 1074 | CALL coriolis( 2 ) |
---|
| 1075 | |
---|
| 1076 | ! |
---|
| 1077 | !-- Drag by plant canopy |
---|
| 1078 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1079 | |
---|
| 1080 | ! |
---|
| 1081 | !-- External pressure gradient |
---|
| 1082 | IF ( dp_external ) THEN |
---|
| 1083 | DO i = nxl, nxr |
---|
| 1084 | DO j = nysv, nyn |
---|
| 1085 | DO k = dp_level_ind_b+1, nzt |
---|
| 1086 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1087 | ENDDO |
---|
| 1088 | ENDDO |
---|
| 1089 | ENDDO |
---|
| 1090 | ENDIF |
---|
| 1091 | |
---|
[1241] | 1092 | ! |
---|
| 1093 | !-- Nudging |
---|
[1691] | 1094 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
[1241] | 1095 | |
---|
[736] | 1096 | CALL user_actions( 'v-tendency' ) |
---|
| 1097 | |
---|
| 1098 | ! |
---|
| 1099 | !-- Prognostic equation for v-velocity component |
---|
| 1100 | DO i = nxl, nxr |
---|
| 1101 | DO j = nysv, nyn |
---|
| 1102 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 1103 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1104 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1105 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 1106 | ENDDO |
---|
| 1107 | ENDDO |
---|
| 1108 | ENDDO |
---|
| 1109 | |
---|
| 1110 | ! |
---|
| 1111 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1112 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1113 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1114 | DO i = nxl, nxr |
---|
| 1115 | DO j = nysv, nyn |
---|
| 1116 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1117 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1118 | ENDDO |
---|
| 1119 | ENDDO |
---|
| 1120 | ENDDO |
---|
| 1121 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1122 | intermediate_timestep_count_max ) THEN |
---|
| 1123 | DO i = nxl, nxr |
---|
| 1124 | DO j = nysv, nyn |
---|
| 1125 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 1126 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 1127 | ENDDO |
---|
| 1128 | ENDDO |
---|
| 1129 | ENDDO |
---|
| 1130 | ENDIF |
---|
| 1131 | ENDIF |
---|
| 1132 | |
---|
| 1133 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1134 | |
---|
| 1135 | ! |
---|
| 1136 | !-- w-velocity component |
---|
| 1137 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1138 | |
---|
[1353] | 1139 | tend = 0.0_wp |
---|
[1001] | 1140 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1141 | IF ( ws_scheme_mom ) THEN |
---|
| 1142 | CALL advec_w_ws |
---|
| 1143 | ELSE |
---|
| 1144 | CALL advec_w_pw |
---|
| 1145 | ENDIF |
---|
| 1146 | ELSE |
---|
[1001] | 1147 | CALL advec_w_up |
---|
[736] | 1148 | ENDIF |
---|
[1001] | 1149 | CALL diffusion_w |
---|
[736] | 1150 | CALL coriolis( 3 ) |
---|
[940] | 1151 | |
---|
| 1152 | IF ( .NOT. neutral ) THEN |
---|
| 1153 | IF ( ocean ) THEN |
---|
[1179] | 1154 | CALL buoyancy( rho, 3 ) |
---|
[736] | 1155 | ELSE |
---|
[940] | 1156 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1157 | CALL buoyancy( pt, 3 ) |
---|
[940] | 1158 | ELSE |
---|
[1179] | 1159 | CALL buoyancy( vpt, 3 ) |
---|
[940] | 1160 | ENDIF |
---|
[736] | 1161 | ENDIF |
---|
| 1162 | ENDIF |
---|
| 1163 | |
---|
| 1164 | ! |
---|
| 1165 | !-- Drag by plant canopy |
---|
| 1166 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1167 | |
---|
| 1168 | CALL user_actions( 'w-tendency' ) |
---|
| 1169 | |
---|
| 1170 | ! |
---|
| 1171 | !-- Prognostic equation for w-velocity component |
---|
| 1172 | DO i = nxl, nxr |
---|
| 1173 | DO j = nys, nyn |
---|
| 1174 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 1175 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1176 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1177 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 1178 | ENDDO |
---|
| 1179 | ENDDO |
---|
| 1180 | ENDDO |
---|
| 1181 | |
---|
| 1182 | ! |
---|
| 1183 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1184 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1185 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1186 | DO i = nxl, nxr |
---|
| 1187 | DO j = nys, nyn |
---|
| 1188 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1189 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1190 | ENDDO |
---|
| 1191 | ENDDO |
---|
| 1192 | ENDDO |
---|
| 1193 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1194 | intermediate_timestep_count_max ) THEN |
---|
| 1195 | DO i = nxl, nxr |
---|
| 1196 | DO j = nys, nyn |
---|
| 1197 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 1198 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 1199 | ENDDO |
---|
| 1200 | ENDDO |
---|
| 1201 | ENDDO |
---|
| 1202 | ENDIF |
---|
| 1203 | ENDIF |
---|
| 1204 | |
---|
| 1205 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1206 | |
---|
[940] | 1207 | |
---|
[736] | 1208 | ! |
---|
[940] | 1209 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1210 | IF ( .NOT. neutral ) THEN |
---|
[736] | 1211 | |
---|
[940] | 1212 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1213 | |
---|
[736] | 1214 | ! |
---|
[940] | 1215 | !-- pt-tendency terms with communication |
---|
| 1216 | sbt = tsc(2) |
---|
| 1217 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 1218 | |
---|
[940] | 1219 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 1220 | ! |
---|
[1001] | 1221 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1222 | sbt = 1.0_wp |
---|
[940] | 1223 | ENDIF |
---|
[1337] | 1224 | tend = 0.0_wp |
---|
[940] | 1225 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 1226 | |
---|
[736] | 1227 | ENDIF |
---|
[940] | 1228 | |
---|
| 1229 | ! |
---|
| 1230 | !-- pt-tendency terms with no communication |
---|
[1001] | 1231 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1232 | tend = 0.0_wp |
---|
[1001] | 1233 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 1234 | IF ( ws_scheme_sca ) THEN |
---|
| 1235 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1236 | ELSE |
---|
| 1237 | CALL advec_s_pw( pt ) |
---|
| 1238 | ENDIF |
---|
| 1239 | ELSE |
---|
[1001] | 1240 | CALL advec_s_up( pt ) |
---|
[940] | 1241 | ENDIF |
---|
[736] | 1242 | ENDIF |
---|
| 1243 | |
---|
[1001] | 1244 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1245 | |
---|
[736] | 1246 | ! |
---|
[940] | 1247 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
[1496] | 1248 | IF ( cloud_top_radiation ) THEN |
---|
[940] | 1249 | CALL calc_radiation |
---|
| 1250 | ENDIF |
---|
[736] | 1251 | |
---|
| 1252 | ! |
---|
[940] | 1253 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 1254 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[940] | 1255 | CALL impact_of_latent_heat |
---|
| 1256 | ENDIF |
---|
[736] | 1257 | |
---|
| 1258 | ! |
---|
[940] | 1259 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 1260 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[940] | 1261 | CALL plant_canopy_model( 4 ) |
---|
| 1262 | ENDIF |
---|
[736] | 1263 | |
---|
[940] | 1264 | ! |
---|
[1365] | 1265 | !-- Large scale advection |
---|
| 1266 | IF ( large_scale_forcing ) THEN |
---|
| 1267 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 1268 | ENDIF |
---|
| 1269 | |
---|
| 1270 | ! |
---|
[1380] | 1271 | !-- Nudging |
---|
| 1272 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1273 | |
---|
| 1274 | ! |
---|
[940] | 1275 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1276 | IF ( large_scale_subsidence .AND. & |
---|
| 1277 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1278 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[940] | 1279 | ENDIF |
---|
[736] | 1280 | |
---|
[1585] | 1281 | ! |
---|
| 1282 | !-- If required, add tendency due to radiative heating/cooling |
---|
[1691] | 1283 | IF ( radiation .AND. radiation_scheme == 'rrtmg' .AND. & |
---|
| 1284 | simulated_time > skip_time_do_radiation ) THEN |
---|
| 1285 | CALL radiation_tendency ( tend ) |
---|
[1585] | 1286 | ENDIF |
---|
| 1287 | |
---|
[940] | 1288 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 1289 | |
---|
| 1290 | ! |
---|
[940] | 1291 | !-- Prognostic equation for potential temperature |
---|
| 1292 | DO i = nxl, nxr |
---|
| 1293 | DO j = nys, nyn |
---|
| 1294 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1295 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1296 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1297 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1298 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 1299 | ENDDO |
---|
[736] | 1300 | ENDDO |
---|
| 1301 | ENDDO |
---|
| 1302 | |
---|
| 1303 | ! |
---|
[940] | 1304 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1305 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1306 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1307 | DO i = nxl, nxr |
---|
| 1308 | DO j = nys, nyn |
---|
| 1309 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1310 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1311 | ENDDO |
---|
[736] | 1312 | ENDDO |
---|
| 1313 | ENDDO |
---|
[940] | 1314 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1315 | intermediate_timestep_count_max ) THEN |
---|
| 1316 | DO i = nxl, nxr |
---|
| 1317 | DO j = nys, nyn |
---|
| 1318 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1319 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1320 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 1321 | ENDDO |
---|
[736] | 1322 | ENDDO |
---|
| 1323 | ENDDO |
---|
[940] | 1324 | ENDIF |
---|
[736] | 1325 | ENDIF |
---|
[940] | 1326 | |
---|
| 1327 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1328 | |
---|
[736] | 1329 | ENDIF |
---|
| 1330 | |
---|
| 1331 | ! |
---|
| 1332 | !-- If required, compute prognostic equation for salinity |
---|
| 1333 | IF ( ocean ) THEN |
---|
| 1334 | |
---|
| 1335 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1336 | |
---|
| 1337 | ! |
---|
| 1338 | !-- sa-tendency terms with communication |
---|
| 1339 | sbt = tsc(2) |
---|
| 1340 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1341 | |
---|
| 1342 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1343 | ! |
---|
[1001] | 1344 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1345 | sbt = 1.0_wp |
---|
[736] | 1346 | ENDIF |
---|
[1337] | 1347 | tend = 0.0_wp |
---|
[736] | 1348 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1349 | |
---|
[736] | 1350 | ENDIF |
---|
| 1351 | |
---|
| 1352 | ! |
---|
| 1353 | !-- sa-tendency terms with no communication |
---|
[1001] | 1354 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1353] | 1355 | tend = 0.0_wp |
---|
[1001] | 1356 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1357 | IF ( ws_scheme_sca ) THEN |
---|
| 1358 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1359 | ELSE |
---|
| 1360 | CALL advec_s_pw( sa ) |
---|
| 1361 | ENDIF |
---|
| 1362 | ELSE |
---|
[1001] | 1363 | CALL advec_s_up( sa ) |
---|
[736] | 1364 | ENDIF |
---|
| 1365 | ENDIF |
---|
[1001] | 1366 | |
---|
| 1367 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1368 | |
---|
| 1369 | CALL user_actions( 'sa-tendency' ) |
---|
| 1370 | |
---|
| 1371 | ! |
---|
| 1372 | !-- Prognostic equation for salinity |
---|
| 1373 | DO i = nxl, nxr |
---|
| 1374 | DO j = nys, nyn |
---|
| 1375 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1376 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1377 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1378 | - tsc(5) * rdf_sc(k) * & |
---|
| 1379 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 1380 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 1381 | ENDDO |
---|
| 1382 | ENDDO |
---|
| 1383 | ENDDO |
---|
| 1384 | |
---|
| 1385 | ! |
---|
| 1386 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1387 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1388 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1389 | DO i = nxl, nxr |
---|
| 1390 | DO j = nys, nyn |
---|
| 1391 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1392 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1393 | ENDDO |
---|
| 1394 | ENDDO |
---|
| 1395 | ENDDO |
---|
| 1396 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1397 | intermediate_timestep_count_max ) THEN |
---|
| 1398 | DO i = nxl, nxr |
---|
| 1399 | DO j = nys, nyn |
---|
| 1400 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1401 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1402 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 1403 | ENDDO |
---|
| 1404 | ENDDO |
---|
| 1405 | ENDDO |
---|
| 1406 | ENDIF |
---|
| 1407 | ENDIF |
---|
| 1408 | |
---|
| 1409 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1410 | |
---|
| 1411 | ! |
---|
| 1412 | !-- Calculate density by the equation of state for seawater |
---|
| 1413 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1414 | CALL eqn_state_seawater |
---|
| 1415 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1416 | |
---|
| 1417 | ENDIF |
---|
| 1418 | |
---|
| 1419 | ! |
---|
| 1420 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1421 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1422 | |
---|
| 1423 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1424 | |
---|
| 1425 | ! |
---|
| 1426 | !-- Scalar/q-tendency terms with communication |
---|
| 1427 | sbt = tsc(2) |
---|
| 1428 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1429 | |
---|
| 1430 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1431 | ! |
---|
[1001] | 1432 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1433 | sbt = 1.0_wp |
---|
[736] | 1434 | ENDIF |
---|
[1337] | 1435 | tend = 0.0_wp |
---|
[736] | 1436 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1437 | |
---|
[736] | 1438 | ENDIF |
---|
| 1439 | |
---|
| 1440 | ! |
---|
| 1441 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1442 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1443 | tend = 0.0_wp |
---|
[1001] | 1444 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1445 | IF ( ws_scheme_sca ) THEN |
---|
| 1446 | CALL advec_s_ws( q, 'q' ) |
---|
| 1447 | ELSE |
---|
| 1448 | CALL advec_s_pw( q ) |
---|
| 1449 | ENDIF |
---|
| 1450 | ELSE |
---|
[1001] | 1451 | CALL advec_s_up( q ) |
---|
[736] | 1452 | ENDIF |
---|
| 1453 | ENDIF |
---|
[1001] | 1454 | |
---|
| 1455 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1456 | |
---|
| 1457 | ! |
---|
| 1458 | !-- If required compute decrease of total water content due to |
---|
| 1459 | !-- precipitation |
---|
[1361] | 1460 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[736] | 1461 | CALL calc_precipitation |
---|
| 1462 | ENDIF |
---|
| 1463 | |
---|
| 1464 | ! |
---|
| 1465 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1466 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
[1365] | 1467 | |
---|
[736] | 1468 | ! |
---|
[1365] | 1469 | !-- Large scale advection |
---|
| 1470 | IF ( large_scale_forcing ) THEN |
---|
| 1471 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 1472 | ENDIF |
---|
| 1473 | |
---|
| 1474 | ! |
---|
[1380] | 1475 | !-- Nudging |
---|
| 1476 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1477 | |
---|
| 1478 | ! |
---|
[736] | 1479 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1480 | IF ( large_scale_subsidence .AND. & |
---|
| 1481 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1482 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[736] | 1483 | ENDIF |
---|
| 1484 | |
---|
| 1485 | CALL user_actions( 'q-tendency' ) |
---|
| 1486 | |
---|
| 1487 | ! |
---|
| 1488 | !-- Prognostic equation for total water content / scalar |
---|
| 1489 | DO i = nxl, nxr |
---|
| 1490 | DO j = nys, nyn |
---|
| 1491 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1492 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1493 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1494 | - tsc(5) * rdf_sc(k) * & |
---|
| 1495 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 1496 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 1497 | ENDDO |
---|
| 1498 | ENDDO |
---|
| 1499 | ENDDO |
---|
| 1500 | |
---|
| 1501 | ! |
---|
| 1502 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1503 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1504 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1505 | DO i = nxl, nxr |
---|
| 1506 | DO j = nys, nyn |
---|
| 1507 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1508 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1509 | ENDDO |
---|
| 1510 | ENDDO |
---|
| 1511 | ENDDO |
---|
| 1512 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1513 | intermediate_timestep_count_max ) THEN |
---|
| 1514 | DO i = nxl, nxr |
---|
| 1515 | DO j = nys, nyn |
---|
| 1516 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1517 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 1518 | ENDDO |
---|
| 1519 | ENDDO |
---|
| 1520 | ENDDO |
---|
| 1521 | ENDIF |
---|
| 1522 | ENDIF |
---|
| 1523 | |
---|
| 1524 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1525 | |
---|
[1361] | 1526 | ! |
---|
| 1527 | !-- If required, calculate prognostic equations for rain water content |
---|
| 1528 | !-- and rain drop concentration |
---|
| 1529 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 1530 | |
---|
| 1531 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 1532 | |
---|
| 1533 | ! |
---|
| 1534 | !-- Calculate prognostic equation for rain water content |
---|
| 1535 | sbt = tsc(2) |
---|
| 1536 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1537 | |
---|
| 1538 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1539 | ! |
---|
| 1540 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1541 | sbt = 1.0_wp |
---|
| 1542 | ENDIF |
---|
| 1543 | tend = 0.0_wp |
---|
| 1544 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 1545 | |
---|
| 1546 | ENDIF |
---|
| 1547 | |
---|
| 1548 | ! |
---|
| 1549 | !-- qr-tendency terms with no communication |
---|
| 1550 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1551 | tend = 0.0_wp |
---|
| 1552 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1553 | IF ( ws_scheme_sca ) THEN |
---|
| 1554 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 1555 | ELSE |
---|
| 1556 | CALL advec_s_pw( qr ) |
---|
| 1557 | ENDIF |
---|
| 1558 | ELSE |
---|
| 1559 | CALL advec_s_up( qr ) |
---|
| 1560 | ENDIF |
---|
| 1561 | ENDIF |
---|
| 1562 | |
---|
| 1563 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 1564 | |
---|
| 1565 | CALL user_actions( 'qr-tendency' ) |
---|
| 1566 | |
---|
| 1567 | ! |
---|
| 1568 | !-- Prognostic equation for rain water content |
---|
| 1569 | DO i = nxl, nxr |
---|
| 1570 | DO j = nys, nyn |
---|
| 1571 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1572 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1573 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 1574 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 1575 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 1576 | ENDDO |
---|
| 1577 | ENDDO |
---|
| 1578 | ENDDO |
---|
| 1579 | |
---|
| 1580 | ! |
---|
| 1581 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1582 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1583 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1584 | DO i = nxl, nxr |
---|
| 1585 | DO j = nys, nyn |
---|
| 1586 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1587 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 1588 | ENDDO |
---|
| 1589 | ENDDO |
---|
| 1590 | ENDDO |
---|
| 1591 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1592 | intermediate_timestep_count_max ) THEN |
---|
| 1593 | DO i = nxl, nxr |
---|
| 1594 | DO j = nys, nyn |
---|
| 1595 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1596 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1597 | tqr_m(k,j,i) |
---|
| 1598 | ENDDO |
---|
| 1599 | ENDDO |
---|
| 1600 | ENDDO |
---|
| 1601 | ENDIF |
---|
| 1602 | ENDIF |
---|
| 1603 | |
---|
| 1604 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 1605 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 1606 | |
---|
| 1607 | ! |
---|
| 1608 | !-- Calculate prognostic equation for rain drop concentration |
---|
| 1609 | sbt = tsc(2) |
---|
| 1610 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1611 | |
---|
| 1612 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1613 | ! |
---|
| 1614 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1615 | sbt = 1.0_wp |
---|
| 1616 | ENDIF |
---|
| 1617 | tend = 0.0_wp |
---|
| 1618 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 1619 | |
---|
| 1620 | ENDIF |
---|
| 1621 | |
---|
| 1622 | ! |
---|
| 1623 | !-- nr-tendency terms with no communication |
---|
| 1624 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1625 | tend = 0.0_wp |
---|
| 1626 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1627 | IF ( ws_scheme_sca ) THEN |
---|
| 1628 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 1629 | ELSE |
---|
| 1630 | CALL advec_s_pw( nr ) |
---|
| 1631 | ENDIF |
---|
| 1632 | ELSE |
---|
| 1633 | CALL advec_s_up( nr ) |
---|
| 1634 | ENDIF |
---|
| 1635 | ENDIF |
---|
| 1636 | |
---|
| 1637 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 1638 | |
---|
| 1639 | CALL user_actions( 'nr-tendency' ) |
---|
| 1640 | |
---|
| 1641 | ! |
---|
| 1642 | !-- Prognostic equation for rain drop concentration |
---|
| 1643 | DO i = nxl, nxr |
---|
| 1644 | DO j = nys, nyn |
---|
| 1645 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1646 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1647 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 1648 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 1649 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 1650 | ENDDO |
---|
| 1651 | ENDDO |
---|
| 1652 | ENDDO |
---|
| 1653 | |
---|
| 1654 | ! |
---|
| 1655 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1656 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1657 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1658 | DO i = nxl, nxr |
---|
| 1659 | DO j = nys, nyn |
---|
| 1660 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1661 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 1662 | ENDDO |
---|
| 1663 | ENDDO |
---|
| 1664 | ENDDO |
---|
| 1665 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1666 | intermediate_timestep_count_max ) THEN |
---|
| 1667 | DO i = nxl, nxr |
---|
| 1668 | DO j = nys, nyn |
---|
| 1669 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1670 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1671 | tnr_m(k,j,i) |
---|
| 1672 | ENDDO |
---|
| 1673 | ENDDO |
---|
| 1674 | ENDDO |
---|
| 1675 | ENDIF |
---|
| 1676 | ENDIF |
---|
| 1677 | |
---|
| 1678 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 1679 | |
---|
| 1680 | ENDIF |
---|
| 1681 | |
---|
[736] | 1682 | ENDIF |
---|
| 1683 | |
---|
| 1684 | ! |
---|
| 1685 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1686 | !-- energy (TKE) |
---|
| 1687 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1688 | |
---|
| 1689 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1690 | |
---|
| 1691 | sbt = tsc(2) |
---|
| 1692 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1693 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1694 | |
---|
| 1695 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1696 | ! |
---|
[1001] | 1697 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1698 | sbt = 1.0_wp |
---|
[736] | 1699 | ENDIF |
---|
[1337] | 1700 | tend = 0.0_wp |
---|
[736] | 1701 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1702 | |
---|
[736] | 1703 | ENDIF |
---|
| 1704 | ENDIF |
---|
| 1705 | |
---|
| 1706 | ! |
---|
| 1707 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1708 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1709 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 1710 | tend = 0.0_wp |
---|
[736] | 1711 | CALL advec_s_up( e ) |
---|
| 1712 | ELSE |
---|
[1337] | 1713 | tend = 0.0_wp |
---|
[1001] | 1714 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1715 | IF ( ws_scheme_sca ) THEN |
---|
| 1716 | CALL advec_s_ws( e, 'e' ) |
---|
| 1717 | ELSE |
---|
| 1718 | CALL advec_s_pw( e ) |
---|
| 1719 | ENDIF |
---|
| 1720 | ELSE |
---|
[1001] | 1721 | CALL advec_s_up( e ) |
---|
[736] | 1722 | ENDIF |
---|
| 1723 | ENDIF |
---|
[1001] | 1724 | ENDIF |
---|
| 1725 | |
---|
| 1726 | IF ( .NOT. humidity ) THEN |
---|
| 1727 | IF ( ocean ) THEN |
---|
| 1728 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1729 | ELSE |
---|
[1001] | 1730 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1731 | ENDIF |
---|
[1001] | 1732 | ELSE |
---|
| 1733 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1734 | ENDIF |
---|
[1001] | 1735 | |
---|
[736] | 1736 | CALL production_e |
---|
| 1737 | |
---|
| 1738 | ! |
---|
| 1739 | !-- Additional sink term for flows through plant canopies |
---|
| 1740 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1741 | CALL user_actions( 'e-tendency' ) |
---|
| 1742 | |
---|
| 1743 | ! |
---|
| 1744 | !-- Prognostic equation for TKE. |
---|
| 1745 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1746 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1747 | !-- value is reduced by 90%. |
---|
| 1748 | DO i = nxl, nxr |
---|
| 1749 | DO j = nys, nyn |
---|
| 1750 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1751 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1752 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 1753 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 1754 | ENDDO |
---|
| 1755 | ENDDO |
---|
| 1756 | ENDDO |
---|
| 1757 | |
---|
| 1758 | ! |
---|
| 1759 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1760 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1761 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1762 | DO i = nxl, nxr |
---|
| 1763 | DO j = nys, nyn |
---|
| 1764 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1765 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1766 | ENDDO |
---|
| 1767 | ENDDO |
---|
| 1768 | ENDDO |
---|
| 1769 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1770 | intermediate_timestep_count_max ) THEN |
---|
| 1771 | DO i = nxl, nxr |
---|
| 1772 | DO j = nys, nyn |
---|
| 1773 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1774 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[736] | 1775 | ENDDO |
---|
| 1776 | ENDDO |
---|
| 1777 | ENDDO |
---|
| 1778 | ENDIF |
---|
| 1779 | ENDIF |
---|
| 1780 | |
---|
| 1781 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1782 | |
---|
| 1783 | ENDIF |
---|
| 1784 | |
---|
| 1785 | END SUBROUTINE prognostic_equations_vector |
---|
| 1786 | |
---|
| 1787 | |
---|
[1015] | 1788 | !------------------------------------------------------------------------------! |
---|
[1691] | 1789 | ! Description: |
---|
| 1790 | ! ------------ |
---|
[1682] | 1791 | !> Version for accelerator boards |
---|
[1015] | 1792 | !------------------------------------------------------------------------------! |
---|
[1691] | 1793 | |
---|
[1682] | 1794 | SUBROUTINE prognostic_equations_acc |
---|
[1015] | 1795 | |
---|
[1682] | 1796 | |
---|
[1015] | 1797 | IMPLICIT NONE |
---|
| 1798 | |
---|
[1682] | 1799 | INTEGER(iwp) :: i !< |
---|
| 1800 | INTEGER(iwp) :: j !< |
---|
| 1801 | INTEGER(iwp) :: k !< |
---|
| 1802 | INTEGER(iwp) :: runge_step !< |
---|
[1015] | 1803 | |
---|
[1682] | 1804 | REAL(wp) :: sbt !< |
---|
[1320] | 1805 | |
---|
[1015] | 1806 | ! |
---|
| 1807 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1808 | runge_step = 0 |
---|
| 1809 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1810 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1811 | runge_step = 1 |
---|
| 1812 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1813 | intermediate_timestep_count_max ) THEN |
---|
| 1814 | runge_step = 2 |
---|
| 1815 | ENDIF |
---|
| 1816 | ENDIF |
---|
| 1817 | |
---|
| 1818 | ! |
---|
[1361] | 1819 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 1820 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 1821 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 1822 | call_microphysics_at_all_substeps ) & |
---|
| 1823 | ) THEN |
---|
| 1824 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 1825 | CALL microphysics_control |
---|
| 1826 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 1827 | ENDIF |
---|
| 1828 | |
---|
| 1829 | ! |
---|
[1015] | 1830 | !-- u-velocity component |
---|
[1374] | 1831 | !++ Statistics still not completely ported to accelerators |
---|
[1179] | 1832 | !$acc update device( hom, ref_state ) |
---|
[1015] | 1833 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1834 | |
---|
| 1835 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1836 | IF ( ws_scheme_mom ) THEN |
---|
| 1837 | CALL advec_u_ws_acc |
---|
| 1838 | ELSE |
---|
[1337] | 1839 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1840 | CALL advec_u_pw |
---|
| 1841 | ENDIF |
---|
| 1842 | ELSE |
---|
| 1843 | CALL advec_u_up |
---|
| 1844 | ENDIF |
---|
| 1845 | CALL diffusion_u_acc |
---|
| 1846 | CALL coriolis_acc( 1 ) |
---|
| 1847 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 1848 | CALL buoyancy( pt, 1 ) |
---|
[1015] | 1849 | ENDIF |
---|
| 1850 | |
---|
| 1851 | ! |
---|
| 1852 | !-- Drag by plant canopy |
---|
| 1853 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1854 | |
---|
| 1855 | ! |
---|
| 1856 | !-- External pressure gradient |
---|
| 1857 | IF ( dp_external ) THEN |
---|
[1128] | 1858 | DO i = i_left, i_right |
---|
| 1859 | DO j = j_south, j_north |
---|
[1015] | 1860 | DO k = dp_level_ind_b+1, nzt |
---|
| 1861 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1862 | ENDDO |
---|
| 1863 | ENDDO |
---|
| 1864 | ENDDO |
---|
| 1865 | ENDIF |
---|
| 1866 | |
---|
[1246] | 1867 | ! |
---|
| 1868 | !-- Nudging |
---|
[1691] | 1869 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
[1246] | 1870 | |
---|
[1015] | 1871 | CALL user_actions( 'u-tendency' ) |
---|
| 1872 | |
---|
| 1873 | ! |
---|
| 1874 | !-- Prognostic equation for u-velocity component |
---|
[1398] | 1875 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, u_init, u_p ) |
---|
[1257] | 1876 | !$acc loop independent |
---|
[1128] | 1877 | DO i = i_left, i_right |
---|
[1257] | 1878 | !$acc loop independent |
---|
[1128] | 1879 | DO j = j_south, j_north |
---|
[1257] | 1880 | !$acc loop independent |
---|
[1015] | 1881 | DO k = 1, nzt |
---|
| 1882 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1883 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1884 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 1885 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[1015] | 1886 | ! |
---|
| 1887 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1888 | IF ( runge_step == 1 ) THEN |
---|
| 1889 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1890 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1891 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[1015] | 1892 | ENDIF |
---|
| 1893 | ENDIF |
---|
| 1894 | ENDDO |
---|
| 1895 | ENDDO |
---|
| 1896 | ENDDO |
---|
| 1897 | !$acc end kernels |
---|
| 1898 | |
---|
| 1899 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1900 | |
---|
| 1901 | ! |
---|
| 1902 | !-- v-velocity component |
---|
| 1903 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1904 | |
---|
| 1905 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1906 | IF ( ws_scheme_mom ) THEN |
---|
| 1907 | CALL advec_v_ws_acc |
---|
| 1908 | ELSE |
---|
[1337] | 1909 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1910 | CALL advec_v_pw |
---|
| 1911 | END IF |
---|
| 1912 | ELSE |
---|
| 1913 | CALL advec_v_up |
---|
| 1914 | ENDIF |
---|
| 1915 | CALL diffusion_v_acc |
---|
| 1916 | CALL coriolis_acc( 2 ) |
---|
| 1917 | |
---|
| 1918 | ! |
---|
| 1919 | !-- Drag by plant canopy |
---|
| 1920 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1921 | |
---|
| 1922 | ! |
---|
| 1923 | !-- External pressure gradient |
---|
| 1924 | IF ( dp_external ) THEN |
---|
[1128] | 1925 | DO i = i_left, i_right |
---|
| 1926 | DO j = j_south, j_north |
---|
[1015] | 1927 | DO k = dp_level_ind_b+1, nzt |
---|
| 1928 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1929 | ENDDO |
---|
| 1930 | ENDDO |
---|
| 1931 | ENDDO |
---|
| 1932 | ENDIF |
---|
| 1933 | |
---|
[1246] | 1934 | ! |
---|
| 1935 | !-- Nudging |
---|
[1691] | 1936 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
[1246] | 1937 | |
---|
[1015] | 1938 | CALL user_actions( 'v-tendency' ) |
---|
| 1939 | |
---|
| 1940 | ! |
---|
| 1941 | !-- Prognostic equation for v-velocity component |
---|
[1398] | 1942 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, v_init, v_p ) |
---|
[1257] | 1943 | !$acc loop independent |
---|
[1128] | 1944 | DO i = i_left, i_right |
---|
[1257] | 1945 | !$acc loop independent |
---|
[1128] | 1946 | DO j = j_south, j_north |
---|
[1257] | 1947 | !$acc loop independent |
---|
[1015] | 1948 | DO k = 1, nzt |
---|
| 1949 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1950 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1951 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1952 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[1015] | 1953 | ! |
---|
| 1954 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1955 | IF ( runge_step == 1 ) THEN |
---|
| 1956 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1957 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1958 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[1015] | 1959 | ENDIF |
---|
| 1960 | ENDIF |
---|
| 1961 | ENDDO |
---|
| 1962 | ENDDO |
---|
| 1963 | ENDDO |
---|
| 1964 | !$acc end kernels |
---|
| 1965 | |
---|
| 1966 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1967 | |
---|
| 1968 | ! |
---|
| 1969 | !-- w-velocity component |
---|
| 1970 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1971 | |
---|
| 1972 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1973 | IF ( ws_scheme_mom ) THEN |
---|
| 1974 | CALL advec_w_ws_acc |
---|
| 1975 | ELSE |
---|
[1337] | 1976 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1977 | CALL advec_w_pw |
---|
| 1978 | ENDIF |
---|
| 1979 | ELSE |
---|
| 1980 | CALL advec_w_up |
---|
| 1981 | ENDIF |
---|
| 1982 | CALL diffusion_w_acc |
---|
| 1983 | CALL coriolis_acc( 3 ) |
---|
| 1984 | |
---|
| 1985 | IF ( .NOT. neutral ) THEN |
---|
| 1986 | IF ( ocean ) THEN |
---|
[1179] | 1987 | CALL buoyancy( rho, 3 ) |
---|
[1015] | 1988 | ELSE |
---|
| 1989 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1990 | CALL buoyancy_acc( pt, 3 ) |
---|
[1015] | 1991 | ELSE |
---|
[1179] | 1992 | CALL buoyancy( vpt, 3 ) |
---|
[1015] | 1993 | ENDIF |
---|
| 1994 | ENDIF |
---|
| 1995 | ENDIF |
---|
| 1996 | |
---|
| 1997 | ! |
---|
| 1998 | !-- Drag by plant canopy |
---|
| 1999 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 2000 | |
---|
| 2001 | CALL user_actions( 'w-tendency' ) |
---|
| 2002 | |
---|
| 2003 | ! |
---|
| 2004 | !-- Prognostic equation for w-velocity component |
---|
| 2005 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
[1257] | 2006 | !$acc loop independent |
---|
[1128] | 2007 | DO i = i_left, i_right |
---|
[1257] | 2008 | !$acc loop independent |
---|
[1128] | 2009 | DO j = j_south, j_north |
---|
[1257] | 2010 | !$acc loop independent |
---|
[1015] | 2011 | DO k = 1, nzt-1 |
---|
| 2012 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 2013 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 2014 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 2015 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 2016 | ! |
---|
| 2017 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2018 | IF ( runge_step == 1 ) THEN |
---|
| 2019 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 2020 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2021 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[1015] | 2022 | ENDIF |
---|
| 2023 | ENDIF |
---|
| 2024 | ENDDO |
---|
| 2025 | ENDDO |
---|
| 2026 | ENDDO |
---|
| 2027 | !$acc end kernels |
---|
| 2028 | |
---|
| 2029 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 2030 | |
---|
| 2031 | |
---|
| 2032 | ! |
---|
| 2033 | !-- If required, compute prognostic equation for potential temperature |
---|
| 2034 | IF ( .NOT. neutral ) THEN |
---|
| 2035 | |
---|
| 2036 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 2037 | |
---|
| 2038 | ! |
---|
| 2039 | !-- pt-tendency terms with communication |
---|
| 2040 | sbt = tsc(2) |
---|
| 2041 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2042 | |
---|
| 2043 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2044 | ! |
---|
| 2045 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 2046 | sbt = 1.0_wp |
---|
[1015] | 2047 | ENDIF |
---|
[1337] | 2048 | tend = 0.0_wp |
---|
[1015] | 2049 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 2050 | |
---|
| 2051 | ENDIF |
---|
| 2052 | |
---|
| 2053 | ! |
---|
| 2054 | !-- pt-tendency terms with no communication |
---|
| 2055 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2056 | tend = 0.0_wp |
---|
[1015] | 2057 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2058 | IF ( ws_scheme_sca ) THEN |
---|
| 2059 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 2060 | ELSE |
---|
[1337] | 2061 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2062 | CALL advec_s_pw( pt ) |
---|
| 2063 | ENDIF |
---|
| 2064 | ELSE |
---|
| 2065 | CALL advec_s_up( pt ) |
---|
| 2066 | ENDIF |
---|
| 2067 | ENDIF |
---|
| 2068 | |
---|
| 2069 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 2070 | |
---|
| 2071 | ! |
---|
| 2072 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
[1496] | 2073 | IF ( cloud_top_radiation ) THEN |
---|
[1015] | 2074 | CALL calc_radiation |
---|
| 2075 | ENDIF |
---|
| 2076 | |
---|
| 2077 | ! |
---|
| 2078 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 2079 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2080 | CALL impact_of_latent_heat |
---|
| 2081 | ENDIF |
---|
| 2082 | |
---|
| 2083 | ! |
---|
| 2084 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 2085 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[1015] | 2086 | CALL plant_canopy_model( 4 ) |
---|
| 2087 | ENDIF |
---|
| 2088 | |
---|
| 2089 | ! |
---|
[1365] | 2090 | !-- Large scale advection |
---|
| 2091 | IF ( large_scale_forcing ) THEN |
---|
| 2092 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 2093 | ENDIF |
---|
| 2094 | |
---|
| 2095 | ! |
---|
[1380] | 2096 | !-- Nudging |
---|
| 2097 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 2098 | |
---|
| 2099 | ! |
---|
[1015] | 2100 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2101 | IF ( large_scale_subsidence .AND. & |
---|
| 2102 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2103 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[1015] | 2104 | ENDIF |
---|
| 2105 | |
---|
[1691] | 2106 | IF ( radiation .AND. radiation_scheme == 'rrtmg' .AND. & |
---|
| 2107 | simulated_time > skip_time_do_radiation ) THEN |
---|
| 2108 | CALL radiation_tendency ( tend ) |
---|
| 2109 | ENDIF |
---|
| 2110 | |
---|
[1015] | 2111 | CALL user_actions( 'pt-tendency' ) |
---|
| 2112 | |
---|
| 2113 | ! |
---|
| 2114 | !-- Prognostic equation for potential temperature |
---|
| 2115 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 2116 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
[1257] | 2117 | !$acc loop independent |
---|
[1128] | 2118 | DO i = i_left, i_right |
---|
[1257] | 2119 | !$acc loop independent |
---|
[1128] | 2120 | DO j = j_south, j_north |
---|
[1257] | 2121 | !$acc loop independent |
---|
[1015] | 2122 | DO k = 1, nzt |
---|
| 2123 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2124 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2125 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 2126 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 2127 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 2128 | ! |
---|
| 2129 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2130 | IF ( runge_step == 1 ) THEN |
---|
| 2131 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 2132 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2133 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tpt_m(k,j,i) |
---|
[1015] | 2134 | ENDIF |
---|
| 2135 | ENDIF |
---|
| 2136 | ENDDO |
---|
| 2137 | ENDDO |
---|
| 2138 | ENDDO |
---|
| 2139 | !$acc end kernels |
---|
| 2140 | |
---|
| 2141 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 2142 | |
---|
| 2143 | ENDIF |
---|
| 2144 | |
---|
| 2145 | ! |
---|
| 2146 | !-- If required, compute prognostic equation for salinity |
---|
| 2147 | IF ( ocean ) THEN |
---|
| 2148 | |
---|
| 2149 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 2150 | |
---|
| 2151 | ! |
---|
| 2152 | !-- sa-tendency terms with communication |
---|
| 2153 | sbt = tsc(2) |
---|
| 2154 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2155 | |
---|
| 2156 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2157 | ! |
---|
| 2158 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2159 | sbt = 1.0_wp |
---|
[1015] | 2160 | ENDIF |
---|
[1337] | 2161 | tend = 0.0_wp |
---|
[1015] | 2162 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 2163 | |
---|
| 2164 | ENDIF |
---|
| 2165 | |
---|
| 2166 | ! |
---|
| 2167 | !-- sa-tendency terms with no communication |
---|
| 2168 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2169 | tend = 0.0_wp |
---|
[1015] | 2170 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2171 | IF ( ws_scheme_sca ) THEN |
---|
| 2172 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 2173 | ELSE |
---|
| 2174 | CALL advec_s_pw( sa ) |
---|
| 2175 | ENDIF |
---|
| 2176 | ELSE |
---|
| 2177 | CALL advec_s_up( sa ) |
---|
| 2178 | ENDIF |
---|
| 2179 | ENDIF |
---|
| 2180 | |
---|
| 2181 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 2182 | |
---|
| 2183 | CALL user_actions( 'sa-tendency' ) |
---|
| 2184 | |
---|
| 2185 | ! |
---|
| 2186 | !-- Prognostic equation for salinity |
---|
[1128] | 2187 | DO i = i_left, i_right |
---|
| 2188 | DO j = j_south, j_north |
---|
[1015] | 2189 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2190 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2191 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 2192 | - tsc(5) * rdf_sc(k) * & |
---|
| 2193 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 2194 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[1015] | 2195 | ! |
---|
| 2196 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2197 | IF ( runge_step == 1 ) THEN |
---|
| 2198 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 2199 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2200 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tsa_m(k,j,i) |
---|
[1015] | 2201 | ENDIF |
---|
| 2202 | ENDDO |
---|
| 2203 | ENDDO |
---|
| 2204 | ENDDO |
---|
| 2205 | |
---|
| 2206 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 2207 | |
---|
| 2208 | ! |
---|
| 2209 | !-- Calculate density by the equation of state for seawater |
---|
| 2210 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 2211 | CALL eqn_state_seawater |
---|
| 2212 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 2213 | |
---|
| 2214 | ENDIF |
---|
| 2215 | |
---|
| 2216 | ! |
---|
| 2217 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 2218 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 2219 | |
---|
| 2220 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 2221 | |
---|
| 2222 | ! |
---|
| 2223 | !-- Scalar/q-tendency terms with communication |
---|
| 2224 | sbt = tsc(2) |
---|
| 2225 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2226 | |
---|
| 2227 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2228 | ! |
---|
| 2229 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2230 | sbt = 1.0_wp |
---|
[1015] | 2231 | ENDIF |
---|
[1337] | 2232 | tend = 0.0_wp |
---|
[1015] | 2233 | CALL advec_s_bc( q, 'q' ) |
---|
| 2234 | |
---|
| 2235 | ENDIF |
---|
| 2236 | |
---|
| 2237 | ! |
---|
| 2238 | !-- Scalar/q-tendency terms with no communication |
---|
| 2239 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2240 | tend = 0.0_wp |
---|
[1015] | 2241 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2242 | IF ( ws_scheme_sca ) THEN |
---|
| 2243 | CALL advec_s_ws( q, 'q' ) |
---|
| 2244 | ELSE |
---|
| 2245 | CALL advec_s_pw( q ) |
---|
| 2246 | ENDIF |
---|
| 2247 | ELSE |
---|
| 2248 | CALL advec_s_up( q ) |
---|
| 2249 | ENDIF |
---|
| 2250 | ENDIF |
---|
| 2251 | |
---|
| 2252 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 2253 | |
---|
| 2254 | ! |
---|
| 2255 | !-- If required compute decrease of total water content due to |
---|
| 2256 | !-- precipitation |
---|
[1361] | 2257 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2258 | CALL calc_precipitation |
---|
| 2259 | ENDIF |
---|
| 2260 | |
---|
| 2261 | ! |
---|
| 2262 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 2263 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 2264 | |
---|
| 2265 | ! |
---|
[1365] | 2266 | !-- Large scale advection |
---|
| 2267 | IF ( large_scale_forcing ) THEN |
---|
| 2268 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 2269 | ENDIF |
---|
| 2270 | |
---|
| 2271 | ! |
---|
[1380] | 2272 | !-- Nudging |
---|
| 2273 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 2274 | |
---|
| 2275 | ! |
---|
[1015] | 2276 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2277 | IF ( large_scale_subsidence .AND. & |
---|
| 2278 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2279 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[1015] | 2280 | ENDIF |
---|
| 2281 | |
---|
| 2282 | CALL user_actions( 'q-tendency' ) |
---|
| 2283 | |
---|
| 2284 | ! |
---|
| 2285 | !-- Prognostic equation for total water content / scalar |
---|
[1128] | 2286 | DO i = i_left, i_right |
---|
| 2287 | DO j = j_south, j_north |
---|
[1015] | 2288 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2289 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2290 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 2291 | - tsc(5) * rdf_sc(k) * & |
---|
| 2292 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 2293 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[1015] | 2294 | ! |
---|
| 2295 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2296 | IF ( runge_step == 1 ) THEN |
---|
| 2297 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 2298 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2299 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[1015] | 2300 | ENDIF |
---|
| 2301 | ENDDO |
---|
| 2302 | ENDDO |
---|
| 2303 | ENDDO |
---|
| 2304 | |
---|
| 2305 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 2306 | |
---|
[1361] | 2307 | ! |
---|
| 2308 | !-- If required, calculate prognostic equations for rain water content |
---|
| 2309 | !-- and rain drop concentration |
---|
| 2310 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 2311 | |
---|
| 2312 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 2313 | ! |
---|
| 2314 | !-- qr-tendency terms with communication |
---|
| 2315 | sbt = tsc(2) |
---|
| 2316 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2317 | |
---|
| 2318 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2319 | ! |
---|
| 2320 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2321 | sbt = 1.0_wp |
---|
| 2322 | ENDIF |
---|
| 2323 | tend = 0.0_wp |
---|
| 2324 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 2325 | |
---|
| 2326 | ENDIF |
---|
| 2327 | |
---|
| 2328 | ! |
---|
| 2329 | !-- qr-tendency terms with no communication |
---|
| 2330 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2331 | tend = 0.0_wp |
---|
| 2332 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2333 | IF ( ws_scheme_sca ) THEN |
---|
| 2334 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 2335 | ELSE |
---|
| 2336 | CALL advec_s_pw( qr ) |
---|
| 2337 | ENDIF |
---|
| 2338 | ELSE |
---|
| 2339 | CALL advec_s_up( qr ) |
---|
| 2340 | ENDIF |
---|
| 2341 | ENDIF |
---|
| 2342 | |
---|
| 2343 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 2344 | |
---|
| 2345 | CALL user_actions( 'qr-tendency' ) |
---|
| 2346 | |
---|
| 2347 | ! |
---|
| 2348 | !-- Prognostic equation for rain water content |
---|
| 2349 | DO i = i_left, i_right |
---|
| 2350 | DO j = j_south, j_north |
---|
| 2351 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2352 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2353 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 2354 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 2355 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 2356 | ! |
---|
| 2357 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2358 | IF ( runge_step == 1 ) THEN |
---|
| 2359 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 2360 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2361 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2362 | tqr_m(k,j,i) |
---|
| 2363 | ENDIF |
---|
| 2364 | ENDDO |
---|
| 2365 | ENDDO |
---|
| 2366 | ENDDO |
---|
| 2367 | |
---|
| 2368 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 2369 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 2370 | |
---|
| 2371 | ! |
---|
| 2372 | !-- nr-tendency terms with communication |
---|
| 2373 | sbt = tsc(2) |
---|
| 2374 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2375 | |
---|
| 2376 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2377 | ! |
---|
| 2378 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2379 | sbt = 1.0_wp |
---|
| 2380 | ENDIF |
---|
| 2381 | tend = 0.0_wp |
---|
| 2382 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 2383 | |
---|
| 2384 | ENDIF |
---|
| 2385 | |
---|
| 2386 | ! |
---|
| 2387 | !-- nr-tendency terms with no communication |
---|
| 2388 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2389 | tend = 0.0_wp |
---|
| 2390 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2391 | IF ( ws_scheme_sca ) THEN |
---|
| 2392 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 2393 | ELSE |
---|
| 2394 | CALL advec_s_pw( nr ) |
---|
| 2395 | ENDIF |
---|
| 2396 | ELSE |
---|
| 2397 | CALL advec_s_up( nr ) |
---|
| 2398 | ENDIF |
---|
| 2399 | ENDIF |
---|
| 2400 | |
---|
| 2401 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 2402 | |
---|
| 2403 | CALL user_actions( 'nr-tendency' ) |
---|
| 2404 | |
---|
| 2405 | ! |
---|
| 2406 | !-- Prognostic equation for rain drop concentration |
---|
| 2407 | DO i = i_left, i_right |
---|
| 2408 | DO j = j_south, j_north |
---|
| 2409 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2410 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2411 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 2412 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 2413 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 2414 | ! |
---|
| 2415 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2416 | IF ( runge_step == 1 ) THEN |
---|
| 2417 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 2418 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2419 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2420 | tnr_m(k,j,i) |
---|
| 2421 | ENDIF |
---|
| 2422 | ENDDO |
---|
| 2423 | ENDDO |
---|
| 2424 | ENDDO |
---|
| 2425 | |
---|
| 2426 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 2427 | |
---|
| 2428 | ENDIF |
---|
| 2429 | |
---|
[1015] | 2430 | ENDIF |
---|
| 2431 | |
---|
| 2432 | ! |
---|
| 2433 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 2434 | !-- energy (TKE) |
---|
| 2435 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 2436 | |
---|
| 2437 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 2438 | |
---|
| 2439 | sbt = tsc(2) |
---|
| 2440 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 2441 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2442 | |
---|
| 2443 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2444 | ! |
---|
| 2445 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2446 | sbt = 1.0_wp |
---|
[1015] | 2447 | ENDIF |
---|
[1337] | 2448 | tend = 0.0_wp |
---|
[1015] | 2449 | CALL advec_s_bc( e, 'e' ) |
---|
| 2450 | |
---|
| 2451 | ENDIF |
---|
| 2452 | ENDIF |
---|
| 2453 | |
---|
| 2454 | ! |
---|
| 2455 | !-- TKE-tendency terms with no communication |
---|
| 2456 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 2457 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 2458 | tend = 0.0_wp |
---|
[1015] | 2459 | CALL advec_s_up( e ) |
---|
| 2460 | ELSE |
---|
| 2461 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2462 | IF ( ws_scheme_sca ) THEN |
---|
| 2463 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 2464 | ELSE |
---|
[1337] | 2465 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2466 | CALL advec_s_pw( e ) |
---|
| 2467 | ENDIF |
---|
| 2468 | ELSE |
---|
[1337] | 2469 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2470 | CALL advec_s_up( e ) |
---|
| 2471 | ENDIF |
---|
| 2472 | ENDIF |
---|
| 2473 | ENDIF |
---|
| 2474 | |
---|
| 2475 | IF ( .NOT. humidity ) THEN |
---|
| 2476 | IF ( ocean ) THEN |
---|
| 2477 | CALL diffusion_e( prho, prho_reference ) |
---|
| 2478 | ELSE |
---|
| 2479 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 2480 | ENDIF |
---|
| 2481 | ELSE |
---|
| 2482 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 2483 | ENDIF |
---|
| 2484 | |
---|
| 2485 | CALL production_e_acc |
---|
| 2486 | |
---|
| 2487 | ! |
---|
| 2488 | !-- Additional sink term for flows through plant canopies |
---|
| 2489 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 2490 | CALL user_actions( 'e-tendency' ) |
---|
| 2491 | |
---|
| 2492 | ! |
---|
| 2493 | !-- Prognostic equation for TKE. |
---|
| 2494 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2495 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2496 | !-- value is reduced by 90%. |
---|
| 2497 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
[1257] | 2498 | !$acc loop independent |
---|
[1128] | 2499 | DO i = i_left, i_right |
---|
[1257] | 2500 | !$acc loop independent |
---|
[1128] | 2501 | DO j = j_south, j_north |
---|
[1257] | 2502 | !$acc loop independent |
---|
[1015] | 2503 | DO k = 1, nzt |
---|
| 2504 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2505 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2506 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 2507 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[1015] | 2508 | ! |
---|
| 2509 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2510 | IF ( runge_step == 1 ) THEN |
---|
| 2511 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2512 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2513 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[1015] | 2514 | ENDIF |
---|
| 2515 | ENDIF |
---|
| 2516 | ENDDO |
---|
| 2517 | ENDDO |
---|
| 2518 | ENDDO |
---|
| 2519 | !$acc end kernels |
---|
| 2520 | |
---|
| 2521 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2522 | |
---|
| 2523 | ENDIF |
---|
| 2524 | |
---|
| 2525 | END SUBROUTINE prognostic_equations_acc |
---|
| 2526 | |
---|
| 2527 | |
---|
[736] | 2528 | END MODULE prognostic_equations_mod |
---|