[736] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[736] | 20 | ! Current revisions: |
---|
[1092] | 21 | ! ------------------ |
---|
[1586] | 22 | ! |
---|
| 23 | ! |
---|
[1485] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: prognostic_equations.f90 1586 2015-04-30 07:11:33Z maronga $ |
---|
| 27 | ! |
---|
[1586] | 28 | ! 1585 2015-04-30 07:05:52Z maronga |
---|
| 29 | ! Added call for temperature tendency calculation due to radiative flux divergence |
---|
| 30 | ! |
---|
[1518] | 31 | ! 1517 2015-01-07 19:12:25Z hoffmann |
---|
| 32 | ! advec_s_bc_mod addded, since advec_s_bc is now a module |
---|
| 33 | ! |
---|
[1517] | 34 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
[1497] | 35 | ! Renamed "radiation" -> "cloud_top_radiation" |
---|
| 36 | ! |
---|
[1496] | 37 | ! 1484 2014-10-21 10:53:05Z kanani |
---|
[1484] | 38 | ! Changes due to new module structure of the plant canopy model: |
---|
| 39 | ! parameters cthf and plant_canopy moved to module plant_canopy_model_mod. |
---|
| 40 | ! Removed double-listing of use_upstream_for_tke in ONLY-list of module |
---|
| 41 | ! control_parameters |
---|
| 42 | ! |
---|
| 43 | ! 1409 2014-05-23 12:11:32Z suehring |
---|
[1409] | 44 | ! Bugfix: i_omp_start changed for advec_u_ws at left inflow and outflow boundary. |
---|
| 45 | ! This ensures that left-hand side fluxes are also calculated for nxl in that |
---|
| 46 | ! case, even though the solution at nxl is overwritten in boundary_conds() |
---|
| 47 | ! |
---|
| 48 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
[1398] | 49 | ! Rayleigh-damping for horizontal velocity components changed: instead of damping |
---|
| 50 | ! against ug and vg, damping against u_init and v_init is used to allow for a |
---|
| 51 | ! homogenized treatment in case of nudging |
---|
| 52 | ! |
---|
| 53 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
[1381] | 54 | ! Change order of calls for scalar prognostic quantities: |
---|
| 55 | ! ls_advec -> nudging -> subsidence since initial profiles |
---|
| 56 | ! |
---|
[1380] | 57 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 58 | ! missing variables added to ONLY lists |
---|
| 59 | ! |
---|
| 60 | ! 1365 2014-04-22 15:03:56Z boeske |
---|
[1365] | 61 | ! Calls of ls_advec for large scale advection added, |
---|
| 62 | ! subroutine subsidence is only called if use_subsidence_tendencies = .F., |
---|
| 63 | ! new argument ls_index added to the calls of subsidence |
---|
| 64 | ! +ls_index |
---|
| 65 | ! |
---|
| 66 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
[1361] | 67 | ! Two-moment microphysics moved to the start of prognostic equations. This makes |
---|
| 68 | ! the 3d arrays for tend_q, tend_qr, tend_pt and tend_pt redundant. |
---|
| 69 | ! Additionally, it is allowed to call the microphysics just once during the time |
---|
| 70 | ! step (not at each sub-time step). |
---|
| 71 | ! |
---|
| 72 | ! Two-moment cloud physics added for vector and accelerator optimization. |
---|
| 73 | ! |
---|
| 74 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
[1354] | 75 | ! REAL constants provided with KIND-attribute |
---|
| 76 | ! |
---|
[1353] | 77 | ! 1337 2014-03-25 15:11:48Z heinze |
---|
| 78 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 79 | ! |
---|
| 80 | ! 1332 2014-03-25 11:59:43Z suehring |
---|
[1333] | 81 | ! Bugfix: call advec_ws or advec_pw for TKE only if NOT use_upstream_for_tke |
---|
| 82 | ! |
---|
[1332] | 83 | ! 1330 2014-03-24 17:29:32Z suehring |
---|
[1331] | 84 | ! In case of SGS-particle velocity advection of TKE is also allowed with |
---|
| 85 | ! dissipative 5th-order scheme. |
---|
| 86 | ! |
---|
[1321] | 87 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 88 | ! ONLY-attribute added to USE-statements, |
---|
| 89 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 90 | ! kinds are defined in new module kinds, |
---|
| 91 | ! old module precision_kind is removed, |
---|
| 92 | ! revision history before 2012 removed, |
---|
| 93 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 94 | ! all variable declaration statements |
---|
[1054] | 95 | ! |
---|
[1319] | 96 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 97 | ! module interfaces removed |
---|
| 98 | ! |
---|
[1258] | 99 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 100 | ! openacc loop vector clauses removed, independent clauses added |
---|
| 101 | ! |
---|
[1247] | 102 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
| 103 | ! enable nudging also for accelerator version |
---|
| 104 | ! |
---|
[1242] | 105 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 106 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
| 107 | ! |
---|
[1182] | 108 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 109 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 110 | ! |
---|
[1132] | 111 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 112 | ! those parts requiring global communication moved to time_integration, |
---|
| 113 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 114 | ! j_north |
---|
| 115 | ! |
---|
[1116] | 116 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 117 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 118 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 119 | ! |
---|
[1112] | 120 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 121 | ! update directives for prognostic quantities removed |
---|
| 122 | ! |
---|
[1107] | 123 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 124 | ! small changes in code formatting |
---|
| 125 | ! |
---|
[1093] | 126 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 127 | ! unused variables removed |
---|
| 128 | ! |
---|
[1054] | 129 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 130 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 131 | ! and rain water content (qr) |
---|
[979] | 132 | ! |
---|
[1053] | 133 | ! currently, only available for cache loop optimization |
---|
[1020] | 134 | ! |
---|
[1037] | 135 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 136 | ! code put under GPL (PALM 3.9) |
---|
| 137 | ! |
---|
[1020] | 138 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 139 | ! non-optimized version of prognostic_equations removed |
---|
| 140 | ! |
---|
[1017] | 141 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 142 | ! new branch prognostic_equations_acc |
---|
| 143 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 144 | ! |
---|
[1002] | 145 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 146 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 147 | ! |
---|
[979] | 148 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 149 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 150 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 151 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 152 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 153 | ! |
---|
[941] | 154 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 155 | ! temperature equation can be switched off |
---|
| 156 | ! |
---|
[736] | 157 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 158 | ! Initial revision |
---|
| 159 | ! |
---|
| 160 | ! |
---|
| 161 | ! Description: |
---|
| 162 | ! ------------ |
---|
| 163 | ! Solving the prognostic equations. |
---|
| 164 | !------------------------------------------------------------------------------! |
---|
| 165 | |
---|
[1320] | 166 | USE arrays_3d, & |
---|
| 167 | ONLY: diss_l_e, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qr, & |
---|
| 168 | diss_l_sa, diss_s_e, diss_s_nr, diss_s_pt, diss_s_q, & |
---|
| 169 | diss_s_qr, diss_s_sa, e, e_p, flux_s_e, flux_s_nr, flux_s_pt, & |
---|
| 170 | flux_s_q, flux_s_qr, flux_s_sa, flux_l_e, flux_l_nr, & |
---|
| 171 | flux_l_pt, flux_l_q, flux_l_qr, flux_l_sa, nr, nr_p, nrsws, & |
---|
| 172 | nrswst, pt, ptdf_x, ptdf_y, pt_init, pt_p, prho, q, q_init, & |
---|
[1374] | 173 | q_p, qsws, qswst, qr, qr_p, qrsws, qrswst, rdf, rdf_sc, & |
---|
| 174 | ref_state, rho, sa, sa_init, sa_p, saswsb, saswst, shf, tend, & |
---|
| 175 | te_m, tnr_m, tpt_m, tq_m, tqr_m, tsa_m, tswst, tu_m, tv_m, & |
---|
[1398] | 176 | tw_m, u, ug, u_init, u_p, v, vg, vpt, v_init, v_p, w, w_p |
---|
[1320] | 177 | |
---|
| 178 | USE control_parameters, & |
---|
[1361] | 179 | ONLY: call_microphysics_at_all_substeps, cloud_physics, & |
---|
[1496] | 180 | cloud_top_radiation, constant_diffusion, dp_external, & |
---|
[1320] | 181 | dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, humidity, & |
---|
| 182 | icloud_scheme, inflow_l, intermediate_timestep_count, & |
---|
[1365] | 183 | intermediate_timestep_count_max, large_scale_forcing, & |
---|
| 184 | large_scale_subsidence, neutral, nudging, ocean, outflow_l, & |
---|
[1484] | 185 | outflow_s, passive_scalar, precipitation, & |
---|
[1365] | 186 | prho_reference, prho_reference, prho_reference, pt_reference, & |
---|
[1496] | 187 | pt_reference, pt_reference, scalar_advec, scalar_advec, & |
---|
| 188 | simulated_time, sloping_surface, & |
---|
| 189 | timestep_scheme, tsc, use_subsidence_tendencies, & |
---|
| 190 | use_upstream_for_tke, wall_heatflux, & |
---|
[1320] | 191 | wall_nrflux, wall_qflux, wall_qflux, wall_qflux, wall_qrflux, & |
---|
| 192 | wall_salinityflux, ws_scheme_mom, ws_scheme_sca |
---|
[736] | 193 | |
---|
[1320] | 194 | USE cpulog, & |
---|
| 195 | ONLY: cpu_log, log_point |
---|
[736] | 196 | |
---|
[1320] | 197 | USE eqn_state_seawater_mod, & |
---|
| 198 | ONLY: eqn_state_seawater |
---|
| 199 | |
---|
| 200 | USE indices, & |
---|
| 201 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlu, nxr, nyn, nys, & |
---|
| 202 | nysv, nzb_s_inner, nzb_u_inner, nzb_v_inner, nzb_w_inner, nzt |
---|
| 203 | |
---|
| 204 | USE advec_ws, & |
---|
| 205 | ONLY: advec_s_ws, advec_s_ws_acc, advec_u_ws, advec_u_ws_acc, & |
---|
| 206 | advec_v_ws, advec_v_ws_acc, advec_w_ws, advec_w_ws_acc |
---|
| 207 | |
---|
[1517] | 208 | USE advec_s_bc_mod, & |
---|
| 209 | ONLY: advec_s_bc |
---|
| 210 | |
---|
[1320] | 211 | USE advec_s_pw_mod, & |
---|
| 212 | ONLY: advec_s_pw |
---|
| 213 | |
---|
| 214 | USE advec_s_up_mod, & |
---|
| 215 | ONLY: advec_s_up |
---|
| 216 | |
---|
| 217 | USE advec_u_pw_mod, & |
---|
| 218 | ONLY: advec_u_pw |
---|
| 219 | |
---|
| 220 | USE advec_u_up_mod, & |
---|
| 221 | ONLY: advec_u_up |
---|
| 222 | |
---|
| 223 | USE advec_v_pw_mod, & |
---|
| 224 | ONLY: advec_v_pw |
---|
| 225 | |
---|
| 226 | USE advec_v_up_mod, & |
---|
| 227 | ONLY: advec_v_up |
---|
| 228 | |
---|
| 229 | USE advec_w_pw_mod, & |
---|
| 230 | ONLY: advec_w_pw |
---|
| 231 | |
---|
| 232 | USE advec_w_up_mod, & |
---|
| 233 | ONLY: advec_w_up |
---|
| 234 | |
---|
| 235 | USE buoyancy_mod, & |
---|
| 236 | ONLY: buoyancy, buoyancy_acc |
---|
| 237 | |
---|
| 238 | USE calc_precipitation_mod, & |
---|
| 239 | ONLY: calc_precipitation |
---|
| 240 | |
---|
| 241 | USE calc_radiation_mod, & |
---|
| 242 | ONLY: calc_radiation |
---|
| 243 | |
---|
| 244 | USE coriolis_mod, & |
---|
| 245 | ONLY: coriolis, coriolis_acc |
---|
| 246 | |
---|
| 247 | USE diffusion_e_mod, & |
---|
| 248 | ONLY: diffusion_e, diffusion_e_acc |
---|
| 249 | |
---|
| 250 | USE diffusion_s_mod, & |
---|
| 251 | ONLY: diffusion_s, diffusion_s_acc |
---|
| 252 | |
---|
| 253 | USE diffusion_u_mod, & |
---|
| 254 | ONLY: diffusion_u, diffusion_u_acc |
---|
| 255 | |
---|
| 256 | USE diffusion_v_mod, & |
---|
| 257 | ONLY: diffusion_v, diffusion_v_acc |
---|
| 258 | |
---|
| 259 | USE diffusion_w_mod, & |
---|
| 260 | ONLY: diffusion_w, diffusion_w_acc |
---|
| 261 | |
---|
| 262 | USE impact_of_latent_heat_mod, & |
---|
| 263 | ONLY: impact_of_latent_heat |
---|
| 264 | |
---|
| 265 | USE kinds |
---|
| 266 | |
---|
[1365] | 267 | USE ls_forcing_mod, & |
---|
| 268 | ONLY: ls_advec |
---|
| 269 | |
---|
[1320] | 270 | USE microphysics_mod, & |
---|
| 271 | ONLY: microphysics_control |
---|
| 272 | |
---|
| 273 | USE nudge_mod, & |
---|
| 274 | ONLY: nudge |
---|
| 275 | |
---|
| 276 | USE plant_canopy_model_mod, & |
---|
[1484] | 277 | ONLY: cthf, plant_canopy, plant_canopy_model |
---|
[1320] | 278 | |
---|
| 279 | USE production_e_mod, & |
---|
| 280 | ONLY: production_e, production_e_acc |
---|
| 281 | |
---|
[1585] | 282 | USE radiation_model_mod, & |
---|
| 283 | ONLY: radiation, radiation_scheme, radiation_tendency |
---|
| 284 | |
---|
[1374] | 285 | USE statistics, & |
---|
| 286 | ONLY: hom |
---|
| 287 | |
---|
[1320] | 288 | USE subsidence_mod, & |
---|
| 289 | ONLY: subsidence |
---|
| 290 | |
---|
| 291 | USE user_actions_mod, & |
---|
| 292 | ONLY: user_actions |
---|
| 293 | |
---|
| 294 | |
---|
[736] | 295 | PRIVATE |
---|
[1019] | 296 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 297 | prognostic_equations_acc |
---|
[736] | 298 | |
---|
| 299 | INTERFACE prognostic_equations_cache |
---|
| 300 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 301 | END INTERFACE prognostic_equations_cache |
---|
| 302 | |
---|
| 303 | INTERFACE prognostic_equations_vector |
---|
| 304 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 305 | END INTERFACE prognostic_equations_vector |
---|
| 306 | |
---|
[1015] | 307 | INTERFACE prognostic_equations_acc |
---|
| 308 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 309 | END INTERFACE prognostic_equations_acc |
---|
[736] | 310 | |
---|
[1015] | 311 | |
---|
[736] | 312 | CONTAINS |
---|
| 313 | |
---|
| 314 | |
---|
| 315 | SUBROUTINE prognostic_equations_cache |
---|
| 316 | |
---|
| 317 | !------------------------------------------------------------------------------! |
---|
| 318 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 319 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 320 | ! |
---|
| 321 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 322 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 323 | ! these loops. |
---|
| 324 | ! |
---|
| 325 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 326 | !------------------------------------------------------------------------------! |
---|
| 327 | |
---|
| 328 | IMPLICIT NONE |
---|
| 329 | |
---|
[1320] | 330 | INTEGER(iwp) :: i !: |
---|
| 331 | INTEGER(iwp) :: i_omp_start !: |
---|
| 332 | INTEGER(iwp) :: j !: |
---|
| 333 | INTEGER(iwp) :: k !: |
---|
| 334 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
| 335 | INTEGER(iwp) :: tn = 0 !: |
---|
| 336 | |
---|
| 337 | LOGICAL :: loop_start !: |
---|
[736] | 338 | |
---|
| 339 | |
---|
| 340 | ! |
---|
| 341 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 342 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 343 | |
---|
| 344 | ! |
---|
| 345 | !-- Loop over all prognostic equations |
---|
| 346 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 347 | |
---|
| 348 | !$ tn = omp_get_thread_num() |
---|
| 349 | loop_start = .TRUE. |
---|
| 350 | !$OMP DO |
---|
| 351 | DO i = nxl, nxr |
---|
| 352 | |
---|
| 353 | ! |
---|
| 354 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 355 | !-- later in advec_ws |
---|
| 356 | IF ( loop_start ) THEN |
---|
| 357 | loop_start = .FALSE. |
---|
| 358 | i_omp_start = i |
---|
| 359 | ENDIF |
---|
[1365] | 360 | |
---|
[736] | 361 | DO j = nys, nyn |
---|
| 362 | ! |
---|
[1361] | 363 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 364 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 365 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 366 | call_microphysics_at_all_substeps ) & |
---|
| 367 | ) THEN |
---|
| 368 | CALL microphysics_control( i, j ) |
---|
| 369 | ENDIF |
---|
| 370 | ! |
---|
[736] | 371 | !-- Tendency terms for u-velocity component |
---|
| 372 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 373 | |
---|
[1337] | 374 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 375 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 376 | IF ( ws_scheme_mom ) THEN |
---|
[1409] | 377 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
[736] | 378 | ELSE |
---|
| 379 | CALL advec_u_pw( i, j ) |
---|
| 380 | ENDIF |
---|
| 381 | ELSE |
---|
| 382 | CALL advec_u_up( i, j ) |
---|
| 383 | ENDIF |
---|
[1001] | 384 | CALL diffusion_u( i, j ) |
---|
[736] | 385 | CALL coriolis( i, j, 1 ) |
---|
[940] | 386 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 387 | CALL buoyancy( i, j, pt, 1 ) |
---|
[940] | 388 | ENDIF |
---|
[736] | 389 | |
---|
| 390 | ! |
---|
| 391 | !-- Drag by plant canopy |
---|
| 392 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 393 | |
---|
| 394 | ! |
---|
| 395 | !-- External pressure gradient |
---|
| 396 | IF ( dp_external ) THEN |
---|
| 397 | DO k = dp_level_ind_b+1, nzt |
---|
| 398 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 399 | ENDDO |
---|
| 400 | ENDIF |
---|
| 401 | |
---|
[1241] | 402 | ! |
---|
| 403 | !-- Nudging |
---|
| 404 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
| 405 | |
---|
[736] | 406 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 407 | ! |
---|
| 408 | !-- Prognostic equation for u-velocity component |
---|
| 409 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 410 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 411 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 412 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 413 | ENDDO |
---|
| 414 | |
---|
| 415 | ! |
---|
| 416 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 417 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 418 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 419 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 420 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 421 | ENDDO |
---|
| 422 | ELSEIF ( intermediate_timestep_count < & |
---|
| 423 | intermediate_timestep_count_max ) THEN |
---|
| 424 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 425 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 426 | ENDDO |
---|
| 427 | ENDIF |
---|
| 428 | ENDIF |
---|
| 429 | |
---|
| 430 | ENDIF |
---|
| 431 | |
---|
| 432 | ! |
---|
| 433 | !-- Tendency terms for v-velocity component |
---|
| 434 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 435 | |
---|
[1337] | 436 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 437 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 438 | IF ( ws_scheme_mom ) THEN |
---|
| 439 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 440 | ELSE |
---|
| 441 | CALL advec_v_pw( i, j ) |
---|
| 442 | ENDIF |
---|
| 443 | ELSE |
---|
| 444 | CALL advec_v_up( i, j ) |
---|
| 445 | ENDIF |
---|
[1001] | 446 | CALL diffusion_v( i, j ) |
---|
[736] | 447 | CALL coriolis( i, j, 2 ) |
---|
| 448 | |
---|
| 449 | ! |
---|
| 450 | !-- Drag by plant canopy |
---|
| 451 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 452 | |
---|
| 453 | ! |
---|
| 454 | !-- External pressure gradient |
---|
| 455 | IF ( dp_external ) THEN |
---|
| 456 | DO k = dp_level_ind_b+1, nzt |
---|
| 457 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 458 | ENDDO |
---|
| 459 | ENDIF |
---|
| 460 | |
---|
[1241] | 461 | ! |
---|
| 462 | !-- Nudging |
---|
| 463 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
| 464 | |
---|
[736] | 465 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 466 | ! |
---|
| 467 | !-- Prognostic equation for v-velocity component |
---|
| 468 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 469 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 470 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 471 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 472 | ENDDO |
---|
| 473 | |
---|
| 474 | ! |
---|
| 475 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 476 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 477 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 478 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 479 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 480 | ENDDO |
---|
| 481 | ELSEIF ( intermediate_timestep_count < & |
---|
| 482 | intermediate_timestep_count_max ) THEN |
---|
| 483 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 484 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 485 | ENDDO |
---|
| 486 | ENDIF |
---|
| 487 | ENDIF |
---|
| 488 | |
---|
| 489 | ENDIF |
---|
| 490 | |
---|
| 491 | ! |
---|
| 492 | !-- Tendency terms for w-velocity component |
---|
[1337] | 493 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 494 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 495 | IF ( ws_scheme_mom ) THEN |
---|
| 496 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 497 | ELSE |
---|
| 498 | CALL advec_w_pw( i, j ) |
---|
| 499 | END IF |
---|
| 500 | ELSE |
---|
| 501 | CALL advec_w_up( i, j ) |
---|
| 502 | ENDIF |
---|
[1001] | 503 | CALL diffusion_w( i, j ) |
---|
[736] | 504 | CALL coriolis( i, j, 3 ) |
---|
[940] | 505 | |
---|
| 506 | IF ( .NOT. neutral ) THEN |
---|
| 507 | IF ( ocean ) THEN |
---|
[1179] | 508 | CALL buoyancy( i, j, rho, 3 ) |
---|
[736] | 509 | ELSE |
---|
[940] | 510 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 511 | CALL buoyancy( i, j, pt, 3 ) |
---|
[940] | 512 | ELSE |
---|
[1179] | 513 | CALL buoyancy( i, j, vpt, 3 ) |
---|
[940] | 514 | ENDIF |
---|
[736] | 515 | ENDIF |
---|
| 516 | ENDIF |
---|
| 517 | |
---|
| 518 | ! |
---|
| 519 | !-- Drag by plant canopy |
---|
| 520 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 521 | |
---|
| 522 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 523 | |
---|
| 524 | ! |
---|
| 525 | !-- Prognostic equation for w-velocity component |
---|
| 526 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 527 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 528 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 529 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 530 | ENDDO |
---|
| 531 | |
---|
| 532 | ! |
---|
| 533 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 534 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 535 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 536 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 537 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 538 | ENDDO |
---|
| 539 | ELSEIF ( intermediate_timestep_count < & |
---|
| 540 | intermediate_timestep_count_max ) THEN |
---|
| 541 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 542 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 543 | ENDDO |
---|
| 544 | ENDIF |
---|
| 545 | ENDIF |
---|
[1361] | 546 | |
---|
[736] | 547 | ! |
---|
[940] | 548 | !-- If required, compute prognostic equation for potential temperature |
---|
| 549 | IF ( .NOT. neutral ) THEN |
---|
| 550 | ! |
---|
| 551 | !-- Tendency terms for potential temperature |
---|
[1337] | 552 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 553 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 554 | IF ( ws_scheme_sca ) THEN |
---|
| 555 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 556 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 557 | ELSE |
---|
| 558 | CALL advec_s_pw( i, j, pt ) |
---|
| 559 | ENDIF |
---|
| 560 | ELSE |
---|
| 561 | CALL advec_s_up( i, j, pt ) |
---|
| 562 | ENDIF |
---|
[1001] | 563 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 564 | |
---|
| 565 | ! |
---|
[940] | 566 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 567 | !-- processes |
---|
[1496] | 568 | IF ( cloud_top_radiation ) THEN |
---|
[940] | 569 | CALL calc_radiation( i, j ) |
---|
| 570 | ENDIF |
---|
[736] | 571 | |
---|
[1106] | 572 | ! |
---|
[1361] | 573 | !-- If required compute impact of latent heat due to precipitation |
---|
| 574 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 575 | precipitation ) THEN |
---|
| 576 | CALL impact_of_latent_heat( i, j ) |
---|
[940] | 577 | ENDIF |
---|
[736] | 578 | |
---|
| 579 | ! |
---|
[940] | 580 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 581 | IF ( plant_canopy .AND. cthf /= 0.0_wp ) THEN |
---|
[940] | 582 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 583 | ENDIF |
---|
[736] | 584 | |
---|
[940] | 585 | ! |
---|
[1365] | 586 | !-- Large scale advection |
---|
| 587 | IF ( large_scale_forcing ) THEN |
---|
| 588 | CALL ls_advec( i, j, simulated_time, 'pt' ) |
---|
| 589 | ENDIF |
---|
| 590 | |
---|
| 591 | ! |
---|
[1380] | 592 | !-- Nudging |
---|
| 593 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
| 594 | |
---|
| 595 | ! |
---|
[1106] | 596 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
[1365] | 597 | IF ( large_scale_subsidence .AND. & |
---|
| 598 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 599 | CALL subsidence( i, j, tend, pt, pt_init, 2 ) |
---|
[940] | 600 | ENDIF |
---|
[736] | 601 | |
---|
[1585] | 602 | ! |
---|
| 603 | !-- If required, add tendency due to radiative heating/cooling |
---|
| 604 | IF ( radiation .AND. radiation_scheme == 'rrtmg' ) THEN |
---|
| 605 | CALL radiation_tendency ( i, j, tend ) |
---|
| 606 | ENDIF |
---|
| 607 | |
---|
| 608 | |
---|
[940] | 609 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 610 | |
---|
| 611 | ! |
---|
[940] | 612 | !-- Prognostic equation for potential temperature |
---|
| 613 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 614 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 615 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 616 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 617 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 618 | ENDDO |
---|
[736] | 619 | |
---|
| 620 | ! |
---|
[940] | 621 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 622 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 623 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 624 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 625 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 626 | ENDDO |
---|
| 627 | ELSEIF ( intermediate_timestep_count < & |
---|
| 628 | intermediate_timestep_count_max ) THEN |
---|
| 629 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 630 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 631 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 632 | ENDDO |
---|
| 633 | ENDIF |
---|
[736] | 634 | ENDIF |
---|
[940] | 635 | |
---|
[736] | 636 | ENDIF |
---|
| 637 | |
---|
| 638 | ! |
---|
| 639 | !-- If required, compute prognostic equation for salinity |
---|
| 640 | IF ( ocean ) THEN |
---|
| 641 | |
---|
| 642 | ! |
---|
| 643 | !-- Tendency-terms for salinity |
---|
[1337] | 644 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 645 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 646 | THEN |
---|
| 647 | IF ( ws_scheme_sca ) THEN |
---|
| 648 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 649 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 650 | ELSE |
---|
| 651 | CALL advec_s_pw( i, j, sa ) |
---|
| 652 | ENDIF |
---|
| 653 | ELSE |
---|
| 654 | CALL advec_s_up( i, j, sa ) |
---|
| 655 | ENDIF |
---|
[1001] | 656 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 657 | |
---|
| 658 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 659 | |
---|
| 660 | ! |
---|
| 661 | !-- Prognostic equation for salinity |
---|
| 662 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 663 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 664 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 665 | - tsc(5) * rdf_sc(k) * & |
---|
| 666 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 667 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 668 | ENDDO |
---|
| 669 | |
---|
| 670 | ! |
---|
| 671 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 672 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 673 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 674 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 675 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 676 | ENDDO |
---|
| 677 | ELSEIF ( intermediate_timestep_count < & |
---|
| 678 | intermediate_timestep_count_max ) THEN |
---|
| 679 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 680 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 681 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 682 | ENDDO |
---|
| 683 | ENDIF |
---|
| 684 | ENDIF |
---|
| 685 | |
---|
| 686 | ! |
---|
| 687 | !-- Calculate density by the equation of state for seawater |
---|
| 688 | CALL eqn_state_seawater( i, j ) |
---|
| 689 | |
---|
| 690 | ENDIF |
---|
| 691 | |
---|
| 692 | ! |
---|
| 693 | !-- If required, compute prognostic equation for total water content / |
---|
| 694 | !-- scalar |
---|
| 695 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 696 | |
---|
| 697 | ! |
---|
| 698 | !-- Tendency-terms for total water content / scalar |
---|
[1337] | 699 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 700 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 701 | THEN |
---|
| 702 | IF ( ws_scheme_sca ) THEN |
---|
| 703 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 704 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 705 | ELSE |
---|
| 706 | CALL advec_s_pw( i, j, q ) |
---|
| 707 | ENDIF |
---|
| 708 | ELSE |
---|
| 709 | CALL advec_s_up( i, j, q ) |
---|
| 710 | ENDIF |
---|
[1001] | 711 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[1053] | 712 | |
---|
[736] | 713 | ! |
---|
[1361] | 714 | !-- If required compute decrease of total water content due to |
---|
| 715 | !-- precipitation |
---|
| 716 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 717 | precipitation ) THEN |
---|
| 718 | CALL calc_precipitation( i, j ) |
---|
[736] | 719 | ENDIF |
---|
| 720 | ! |
---|
| 721 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1106] | 722 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
[736] | 723 | |
---|
[1053] | 724 | ! |
---|
[1365] | 725 | !-- Large scale advection |
---|
| 726 | IF ( large_scale_forcing ) THEN |
---|
| 727 | CALL ls_advec( i, j, simulated_time, 'q' ) |
---|
| 728 | ENDIF |
---|
| 729 | |
---|
| 730 | ! |
---|
[1380] | 731 | !-- Nudging |
---|
| 732 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
| 733 | |
---|
| 734 | ! |
---|
[736] | 735 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 736 | IF ( large_scale_subsidence .AND. & |
---|
| 737 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 738 | CALL subsidence( i, j, tend, q, q_init, 3 ) |
---|
[736] | 739 | ENDIF |
---|
| 740 | |
---|
| 741 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 742 | |
---|
| 743 | ! |
---|
| 744 | !-- Prognostic equation for total water content / scalar |
---|
| 745 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 746 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 747 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 748 | - tsc(5) * rdf_sc(k) * & |
---|
| 749 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 750 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 751 | ENDDO |
---|
| 752 | |
---|
| 753 | ! |
---|
| 754 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 755 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 756 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 757 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 758 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 759 | ENDDO |
---|
| 760 | ELSEIF ( intermediate_timestep_count < & |
---|
| 761 | intermediate_timestep_count_max ) THEN |
---|
| 762 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 763 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 764 | 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 765 | ENDDO |
---|
| 766 | ENDIF |
---|
| 767 | ENDIF |
---|
| 768 | |
---|
[1053] | 769 | ! |
---|
| 770 | !-- If required, calculate prognostic equations for rain water content |
---|
| 771 | !-- and rain drop concentration |
---|
[1115] | 772 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 773 | precipitation ) THEN |
---|
[1053] | 774 | ! |
---|
| 775 | !-- Calculate prognostic equation for rain water content |
---|
[1337] | 776 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 777 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 778 | THEN |
---|
| 779 | IF ( ws_scheme_sca ) THEN |
---|
| 780 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 781 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 782 | i_omp_start, tn ) |
---|
| 783 | ELSE |
---|
| 784 | CALL advec_s_pw( i, j, qr ) |
---|
| 785 | ENDIF |
---|
| 786 | ELSE |
---|
| 787 | CALL advec_s_up( i, j, qr ) |
---|
| 788 | ENDIF |
---|
| 789 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 790 | |
---|
[1115] | 791 | CALL user_actions( i, j, 'qr-tendency' ) |
---|
[1053] | 792 | ! |
---|
| 793 | !-- Prognostic equation for rain water content |
---|
| 794 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 795 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 796 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 797 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
[1337] | 798 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
[1053] | 799 | ENDDO |
---|
| 800 | ! |
---|
| 801 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 802 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 803 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 804 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 805 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 806 | ENDDO |
---|
| 807 | ELSEIF ( intermediate_timestep_count < & |
---|
| 808 | intermediate_timestep_count_max ) THEN |
---|
| 809 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 810 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 811 | 5.3125_wp * tqr_m(k,j,i) |
---|
[1053] | 812 | ENDDO |
---|
| 813 | ENDIF |
---|
| 814 | ENDIF |
---|
| 815 | |
---|
| 816 | ! |
---|
| 817 | !-- Calculate prognostic equation for rain drop concentration. |
---|
[1337] | 818 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 819 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 820 | IF ( ws_scheme_sca ) THEN |
---|
[1115] | 821 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 822 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 823 | i_omp_start, tn ) |
---|
[1053] | 824 | ELSE |
---|
| 825 | CALL advec_s_pw( i, j, nr ) |
---|
| 826 | ENDIF |
---|
| 827 | ELSE |
---|
| 828 | CALL advec_s_up( i, j, nr ) |
---|
| 829 | ENDIF |
---|
| 830 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
| 831 | |
---|
[1115] | 832 | CALL user_actions( i, j, 'nr-tendency' ) |
---|
[1053] | 833 | ! |
---|
| 834 | !-- Prognostic equation for rain drop concentration |
---|
| 835 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 836 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 837 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 838 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
[1337] | 839 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
[1053] | 840 | ENDDO |
---|
| 841 | ! |
---|
| 842 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 843 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 844 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 845 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 846 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 847 | ENDDO |
---|
| 848 | ELSEIF ( intermediate_timestep_count < & |
---|
| 849 | intermediate_timestep_count_max ) THEN |
---|
| 850 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 851 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 852 | 5.3125_wp * tnr_m(k,j,i) |
---|
[1053] | 853 | ENDDO |
---|
| 854 | ENDIF |
---|
| 855 | ENDIF |
---|
| 856 | |
---|
| 857 | ENDIF |
---|
| 858 | |
---|
[1128] | 859 | ENDIF |
---|
| 860 | |
---|
[736] | 861 | ! |
---|
| 862 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 863 | !-- energy (TKE) |
---|
| 864 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 865 | |
---|
| 866 | ! |
---|
| 867 | !-- Tendency-terms for TKE |
---|
[1337] | 868 | tend(:,j,i) = 0.0_wp |
---|
[1332] | 869 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
| 870 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
[736] | 871 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 872 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 873 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 874 | ELSE |
---|
| 875 | CALL advec_s_pw( i, j, e ) |
---|
| 876 | ENDIF |
---|
| 877 | ELSE |
---|
| 878 | CALL advec_s_up( i, j, e ) |
---|
| 879 | ENDIF |
---|
[1001] | 880 | IF ( .NOT. humidity ) THEN |
---|
| 881 | IF ( ocean ) THEN |
---|
| 882 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 883 | ELSE |
---|
[1001] | 884 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 885 | ENDIF |
---|
| 886 | ELSE |
---|
[1001] | 887 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 888 | ENDIF |
---|
| 889 | CALL production_e( i, j ) |
---|
| 890 | |
---|
| 891 | ! |
---|
| 892 | !-- Additional sink term for flows through plant canopies |
---|
| 893 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 894 | |
---|
| 895 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 896 | |
---|
| 897 | ! |
---|
| 898 | !-- Prognostic equation for TKE. |
---|
| 899 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 900 | !-- reasons in the course of the integration. In such cases the old |
---|
| 901 | !-- TKE value is reduced by 90%. |
---|
| 902 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 903 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 904 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 905 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 906 | ENDDO |
---|
| 907 | |
---|
| 908 | ! |
---|
| 909 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 910 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 911 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 912 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 913 | te_m(k,j,i) = tend(k,j,i) |
---|
| 914 | ENDDO |
---|
| 915 | ELSEIF ( intermediate_timestep_count < & |
---|
| 916 | intermediate_timestep_count_max ) THEN |
---|
| 917 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 918 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 919 | 5.3125_wp * te_m(k,j,i) |
---|
[736] | 920 | ENDDO |
---|
| 921 | ENDIF |
---|
| 922 | ENDIF |
---|
| 923 | |
---|
| 924 | ENDIF ! TKE equation |
---|
| 925 | |
---|
| 926 | ENDDO |
---|
| 927 | ENDDO |
---|
| 928 | !$OMP END PARALLEL |
---|
| 929 | |
---|
| 930 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 931 | |
---|
| 932 | |
---|
| 933 | END SUBROUTINE prognostic_equations_cache |
---|
| 934 | |
---|
| 935 | |
---|
| 936 | SUBROUTINE prognostic_equations_vector |
---|
| 937 | |
---|
| 938 | !------------------------------------------------------------------------------! |
---|
| 939 | ! Version for vector machines |
---|
| 940 | !------------------------------------------------------------------------------! |
---|
| 941 | |
---|
| 942 | IMPLICIT NONE |
---|
| 943 | |
---|
[1320] | 944 | INTEGER(iwp) :: i !: |
---|
| 945 | INTEGER(iwp) :: j !: |
---|
| 946 | INTEGER(iwp) :: k !: |
---|
[736] | 947 | |
---|
[1320] | 948 | REAL(wp) :: sbt !: |
---|
[736] | 949 | |
---|
[1320] | 950 | |
---|
[736] | 951 | ! |
---|
[1361] | 952 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 953 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 954 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 955 | call_microphysics_at_all_substeps ) & |
---|
| 956 | ) THEN |
---|
| 957 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 958 | CALL microphysics_control |
---|
| 959 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 960 | ENDIF |
---|
| 961 | |
---|
| 962 | ! |
---|
[736] | 963 | !-- u-velocity component |
---|
| 964 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 965 | |
---|
[1337] | 966 | tend = 0.0_wp |
---|
[1001] | 967 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 968 | IF ( ws_scheme_mom ) THEN |
---|
| 969 | CALL advec_u_ws |
---|
| 970 | ELSE |
---|
| 971 | CALL advec_u_pw |
---|
| 972 | ENDIF |
---|
| 973 | ELSE |
---|
[1001] | 974 | CALL advec_u_up |
---|
[736] | 975 | ENDIF |
---|
[1001] | 976 | CALL diffusion_u |
---|
[736] | 977 | CALL coriolis( 1 ) |
---|
[940] | 978 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 979 | CALL buoyancy( pt, 1 ) |
---|
[940] | 980 | ENDIF |
---|
[736] | 981 | |
---|
| 982 | ! |
---|
| 983 | !-- Drag by plant canopy |
---|
| 984 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 985 | |
---|
| 986 | ! |
---|
| 987 | !-- External pressure gradient |
---|
| 988 | IF ( dp_external ) THEN |
---|
| 989 | DO i = nxlu, nxr |
---|
| 990 | DO j = nys, nyn |
---|
| 991 | DO k = dp_level_ind_b+1, nzt |
---|
| 992 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 993 | ENDDO |
---|
| 994 | ENDDO |
---|
| 995 | ENDDO |
---|
| 996 | ENDIF |
---|
| 997 | |
---|
[1241] | 998 | ! |
---|
| 999 | !-- Nudging |
---|
| 1000 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 1001 | |
---|
[736] | 1002 | CALL user_actions( 'u-tendency' ) |
---|
| 1003 | |
---|
| 1004 | ! |
---|
| 1005 | !-- Prognostic equation for u-velocity component |
---|
| 1006 | DO i = nxlu, nxr |
---|
| 1007 | DO j = nys, nyn |
---|
| 1008 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 1009 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1010 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 1011 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 1012 | ENDDO |
---|
| 1013 | ENDDO |
---|
| 1014 | ENDDO |
---|
| 1015 | |
---|
| 1016 | ! |
---|
| 1017 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1018 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1019 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1020 | DO i = nxlu, nxr |
---|
| 1021 | DO j = nys, nyn |
---|
| 1022 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1023 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1024 | ENDDO |
---|
| 1025 | ENDDO |
---|
| 1026 | ENDDO |
---|
| 1027 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1028 | intermediate_timestep_count_max ) THEN |
---|
| 1029 | DO i = nxlu, nxr |
---|
| 1030 | DO j = nys, nyn |
---|
| 1031 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 1032 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 1033 | ENDDO |
---|
| 1034 | ENDDO |
---|
| 1035 | ENDDO |
---|
| 1036 | ENDIF |
---|
| 1037 | ENDIF |
---|
| 1038 | |
---|
| 1039 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1040 | |
---|
| 1041 | ! |
---|
| 1042 | !-- v-velocity component |
---|
| 1043 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1044 | |
---|
[1337] | 1045 | tend = 0.0_wp |
---|
[1001] | 1046 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1047 | IF ( ws_scheme_mom ) THEN |
---|
| 1048 | CALL advec_v_ws |
---|
| 1049 | ELSE |
---|
| 1050 | CALL advec_v_pw |
---|
| 1051 | END IF |
---|
| 1052 | ELSE |
---|
[1001] | 1053 | CALL advec_v_up |
---|
[736] | 1054 | ENDIF |
---|
[1001] | 1055 | CALL diffusion_v |
---|
[736] | 1056 | CALL coriolis( 2 ) |
---|
| 1057 | |
---|
| 1058 | ! |
---|
| 1059 | !-- Drag by plant canopy |
---|
| 1060 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1061 | |
---|
| 1062 | ! |
---|
| 1063 | !-- External pressure gradient |
---|
| 1064 | IF ( dp_external ) THEN |
---|
| 1065 | DO i = nxl, nxr |
---|
| 1066 | DO j = nysv, nyn |
---|
| 1067 | DO k = dp_level_ind_b+1, nzt |
---|
| 1068 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1069 | ENDDO |
---|
| 1070 | ENDDO |
---|
| 1071 | ENDDO |
---|
| 1072 | ENDIF |
---|
| 1073 | |
---|
[1241] | 1074 | ! |
---|
| 1075 | !-- Nudging |
---|
| 1076 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1077 | |
---|
[736] | 1078 | CALL user_actions( 'v-tendency' ) |
---|
| 1079 | |
---|
| 1080 | ! |
---|
| 1081 | !-- Prognostic equation for v-velocity component |
---|
| 1082 | DO i = nxl, nxr |
---|
| 1083 | DO j = nysv, nyn |
---|
| 1084 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 1085 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1086 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1087 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 1088 | ENDDO |
---|
| 1089 | ENDDO |
---|
| 1090 | ENDDO |
---|
| 1091 | |
---|
| 1092 | ! |
---|
| 1093 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1094 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1095 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1096 | DO i = nxl, nxr |
---|
| 1097 | DO j = nysv, nyn |
---|
| 1098 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1099 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1100 | ENDDO |
---|
| 1101 | ENDDO |
---|
| 1102 | ENDDO |
---|
| 1103 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1104 | intermediate_timestep_count_max ) THEN |
---|
| 1105 | DO i = nxl, nxr |
---|
| 1106 | DO j = nysv, nyn |
---|
| 1107 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 1108 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 1109 | ENDDO |
---|
| 1110 | ENDDO |
---|
| 1111 | ENDDO |
---|
| 1112 | ENDIF |
---|
| 1113 | ENDIF |
---|
| 1114 | |
---|
| 1115 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1116 | |
---|
| 1117 | ! |
---|
| 1118 | !-- w-velocity component |
---|
| 1119 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1120 | |
---|
[1353] | 1121 | tend = 0.0_wp |
---|
[1001] | 1122 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1123 | IF ( ws_scheme_mom ) THEN |
---|
| 1124 | CALL advec_w_ws |
---|
| 1125 | ELSE |
---|
| 1126 | CALL advec_w_pw |
---|
| 1127 | ENDIF |
---|
| 1128 | ELSE |
---|
[1001] | 1129 | CALL advec_w_up |
---|
[736] | 1130 | ENDIF |
---|
[1001] | 1131 | CALL diffusion_w |
---|
[736] | 1132 | CALL coriolis( 3 ) |
---|
[940] | 1133 | |
---|
| 1134 | IF ( .NOT. neutral ) THEN |
---|
| 1135 | IF ( ocean ) THEN |
---|
[1179] | 1136 | CALL buoyancy( rho, 3 ) |
---|
[736] | 1137 | ELSE |
---|
[940] | 1138 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1139 | CALL buoyancy( pt, 3 ) |
---|
[940] | 1140 | ELSE |
---|
[1179] | 1141 | CALL buoyancy( vpt, 3 ) |
---|
[940] | 1142 | ENDIF |
---|
[736] | 1143 | ENDIF |
---|
| 1144 | ENDIF |
---|
| 1145 | |
---|
| 1146 | ! |
---|
| 1147 | !-- Drag by plant canopy |
---|
| 1148 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1149 | |
---|
| 1150 | CALL user_actions( 'w-tendency' ) |
---|
| 1151 | |
---|
| 1152 | ! |
---|
| 1153 | !-- Prognostic equation for w-velocity component |
---|
| 1154 | DO i = nxl, nxr |
---|
| 1155 | DO j = nys, nyn |
---|
| 1156 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 1157 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1158 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1159 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 1160 | ENDDO |
---|
| 1161 | ENDDO |
---|
| 1162 | ENDDO |
---|
| 1163 | |
---|
| 1164 | ! |
---|
| 1165 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1166 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1167 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1168 | DO i = nxl, nxr |
---|
| 1169 | DO j = nys, nyn |
---|
| 1170 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1171 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1172 | ENDDO |
---|
| 1173 | ENDDO |
---|
| 1174 | ENDDO |
---|
| 1175 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1176 | intermediate_timestep_count_max ) THEN |
---|
| 1177 | DO i = nxl, nxr |
---|
| 1178 | DO j = nys, nyn |
---|
| 1179 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 1180 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 1181 | ENDDO |
---|
| 1182 | ENDDO |
---|
| 1183 | ENDDO |
---|
| 1184 | ENDIF |
---|
| 1185 | ENDIF |
---|
| 1186 | |
---|
| 1187 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1188 | |
---|
[940] | 1189 | |
---|
[736] | 1190 | ! |
---|
[940] | 1191 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1192 | IF ( .NOT. neutral ) THEN |
---|
[736] | 1193 | |
---|
[940] | 1194 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1195 | |
---|
[736] | 1196 | ! |
---|
[940] | 1197 | !-- pt-tendency terms with communication |
---|
| 1198 | sbt = tsc(2) |
---|
| 1199 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 1200 | |
---|
[940] | 1201 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 1202 | ! |
---|
[1001] | 1203 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1204 | sbt = 1.0_wp |
---|
[940] | 1205 | ENDIF |
---|
[1337] | 1206 | tend = 0.0_wp |
---|
[940] | 1207 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 1208 | |
---|
[736] | 1209 | ENDIF |
---|
[940] | 1210 | |
---|
| 1211 | ! |
---|
| 1212 | !-- pt-tendency terms with no communication |
---|
[1001] | 1213 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1214 | tend = 0.0_wp |
---|
[1001] | 1215 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 1216 | IF ( ws_scheme_sca ) THEN |
---|
| 1217 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1218 | ELSE |
---|
| 1219 | CALL advec_s_pw( pt ) |
---|
| 1220 | ENDIF |
---|
| 1221 | ELSE |
---|
[1001] | 1222 | CALL advec_s_up( pt ) |
---|
[940] | 1223 | ENDIF |
---|
[736] | 1224 | ENDIF |
---|
| 1225 | |
---|
[1001] | 1226 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1227 | |
---|
[736] | 1228 | ! |
---|
[940] | 1229 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
[1496] | 1230 | IF ( cloud_top_radiation ) THEN |
---|
[940] | 1231 | CALL calc_radiation |
---|
| 1232 | ENDIF |
---|
[736] | 1233 | |
---|
| 1234 | ! |
---|
[940] | 1235 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 1236 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[940] | 1237 | CALL impact_of_latent_heat |
---|
| 1238 | ENDIF |
---|
[736] | 1239 | |
---|
| 1240 | ! |
---|
[940] | 1241 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 1242 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[940] | 1243 | CALL plant_canopy_model( 4 ) |
---|
| 1244 | ENDIF |
---|
[736] | 1245 | |
---|
[940] | 1246 | ! |
---|
[1365] | 1247 | !-- Large scale advection |
---|
| 1248 | IF ( large_scale_forcing ) THEN |
---|
| 1249 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 1250 | ENDIF |
---|
| 1251 | |
---|
| 1252 | ! |
---|
[1380] | 1253 | !-- Nudging |
---|
| 1254 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1255 | |
---|
| 1256 | ! |
---|
[940] | 1257 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1258 | IF ( large_scale_subsidence .AND. & |
---|
| 1259 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1260 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[940] | 1261 | ENDIF |
---|
[736] | 1262 | |
---|
[1585] | 1263 | ! |
---|
| 1264 | !-- If required, add tendency due to radiative heating/cooling |
---|
| 1265 | IF ( radiation .AND. radiation_scheme == 'rrtmg' ) THEN |
---|
| 1266 | CALL radiation_tendency ( tend ) |
---|
| 1267 | ENDIF |
---|
| 1268 | |
---|
[940] | 1269 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 1270 | |
---|
| 1271 | ! |
---|
[940] | 1272 | !-- Prognostic equation for potential temperature |
---|
| 1273 | DO i = nxl, nxr |
---|
| 1274 | DO j = nys, nyn |
---|
| 1275 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1276 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1277 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1278 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1279 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 1280 | ENDDO |
---|
[736] | 1281 | ENDDO |
---|
| 1282 | ENDDO |
---|
| 1283 | |
---|
| 1284 | ! |
---|
[940] | 1285 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1286 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1287 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1288 | DO i = nxl, nxr |
---|
| 1289 | DO j = nys, nyn |
---|
| 1290 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1291 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1292 | ENDDO |
---|
[736] | 1293 | ENDDO |
---|
| 1294 | ENDDO |
---|
[940] | 1295 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1296 | intermediate_timestep_count_max ) THEN |
---|
| 1297 | DO i = nxl, nxr |
---|
| 1298 | DO j = nys, nyn |
---|
| 1299 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1300 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1301 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 1302 | ENDDO |
---|
[736] | 1303 | ENDDO |
---|
| 1304 | ENDDO |
---|
[940] | 1305 | ENDIF |
---|
[736] | 1306 | ENDIF |
---|
[940] | 1307 | |
---|
| 1308 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1309 | |
---|
[736] | 1310 | ENDIF |
---|
| 1311 | |
---|
| 1312 | ! |
---|
| 1313 | !-- If required, compute prognostic equation for salinity |
---|
| 1314 | IF ( ocean ) THEN |
---|
| 1315 | |
---|
| 1316 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1317 | |
---|
| 1318 | ! |
---|
| 1319 | !-- sa-tendency terms with communication |
---|
| 1320 | sbt = tsc(2) |
---|
| 1321 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1322 | |
---|
| 1323 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1324 | ! |
---|
[1001] | 1325 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1326 | sbt = 1.0_wp |
---|
[736] | 1327 | ENDIF |
---|
[1337] | 1328 | tend = 0.0_wp |
---|
[736] | 1329 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1330 | |
---|
[736] | 1331 | ENDIF |
---|
| 1332 | |
---|
| 1333 | ! |
---|
| 1334 | !-- sa-tendency terms with no communication |
---|
[1001] | 1335 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1353] | 1336 | tend = 0.0_wp |
---|
[1001] | 1337 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1338 | IF ( ws_scheme_sca ) THEN |
---|
| 1339 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1340 | ELSE |
---|
| 1341 | CALL advec_s_pw( sa ) |
---|
| 1342 | ENDIF |
---|
| 1343 | ELSE |
---|
[1001] | 1344 | CALL advec_s_up( sa ) |
---|
[736] | 1345 | ENDIF |
---|
| 1346 | ENDIF |
---|
[1001] | 1347 | |
---|
| 1348 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1349 | |
---|
| 1350 | CALL user_actions( 'sa-tendency' ) |
---|
| 1351 | |
---|
| 1352 | ! |
---|
| 1353 | !-- Prognostic equation for salinity |
---|
| 1354 | DO i = nxl, nxr |
---|
| 1355 | DO j = nys, nyn |
---|
| 1356 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1357 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1358 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1359 | - tsc(5) * rdf_sc(k) * & |
---|
| 1360 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 1361 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 1362 | ENDDO |
---|
| 1363 | ENDDO |
---|
| 1364 | ENDDO |
---|
| 1365 | |
---|
| 1366 | ! |
---|
| 1367 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1368 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1369 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1370 | DO i = nxl, nxr |
---|
| 1371 | DO j = nys, nyn |
---|
| 1372 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1373 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1374 | ENDDO |
---|
| 1375 | ENDDO |
---|
| 1376 | ENDDO |
---|
| 1377 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1378 | intermediate_timestep_count_max ) THEN |
---|
| 1379 | DO i = nxl, nxr |
---|
| 1380 | DO j = nys, nyn |
---|
| 1381 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1382 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1383 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 1384 | ENDDO |
---|
| 1385 | ENDDO |
---|
| 1386 | ENDDO |
---|
| 1387 | ENDIF |
---|
| 1388 | ENDIF |
---|
| 1389 | |
---|
| 1390 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1391 | |
---|
| 1392 | ! |
---|
| 1393 | !-- Calculate density by the equation of state for seawater |
---|
| 1394 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1395 | CALL eqn_state_seawater |
---|
| 1396 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1397 | |
---|
| 1398 | ENDIF |
---|
| 1399 | |
---|
| 1400 | ! |
---|
| 1401 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1402 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1403 | |
---|
| 1404 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1405 | |
---|
| 1406 | ! |
---|
| 1407 | !-- Scalar/q-tendency terms with communication |
---|
| 1408 | sbt = tsc(2) |
---|
| 1409 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1410 | |
---|
| 1411 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1412 | ! |
---|
[1001] | 1413 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1414 | sbt = 1.0_wp |
---|
[736] | 1415 | ENDIF |
---|
[1337] | 1416 | tend = 0.0_wp |
---|
[736] | 1417 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1418 | |
---|
[736] | 1419 | ENDIF |
---|
| 1420 | |
---|
| 1421 | ! |
---|
| 1422 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1423 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1424 | tend = 0.0_wp |
---|
[1001] | 1425 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1426 | IF ( ws_scheme_sca ) THEN |
---|
| 1427 | CALL advec_s_ws( q, 'q' ) |
---|
| 1428 | ELSE |
---|
| 1429 | CALL advec_s_pw( q ) |
---|
| 1430 | ENDIF |
---|
| 1431 | ELSE |
---|
[1001] | 1432 | CALL advec_s_up( q ) |
---|
[736] | 1433 | ENDIF |
---|
| 1434 | ENDIF |
---|
[1001] | 1435 | |
---|
| 1436 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1437 | |
---|
| 1438 | ! |
---|
| 1439 | !-- If required compute decrease of total water content due to |
---|
| 1440 | !-- precipitation |
---|
[1361] | 1441 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[736] | 1442 | CALL calc_precipitation |
---|
| 1443 | ENDIF |
---|
| 1444 | |
---|
| 1445 | ! |
---|
| 1446 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1447 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
[1365] | 1448 | |
---|
[736] | 1449 | ! |
---|
[1365] | 1450 | !-- Large scale advection |
---|
| 1451 | IF ( large_scale_forcing ) THEN |
---|
| 1452 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 1453 | ENDIF |
---|
| 1454 | |
---|
| 1455 | ! |
---|
[1380] | 1456 | !-- Nudging |
---|
| 1457 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1458 | |
---|
| 1459 | ! |
---|
[736] | 1460 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1461 | IF ( large_scale_subsidence .AND. & |
---|
| 1462 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1463 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[736] | 1464 | ENDIF |
---|
| 1465 | |
---|
| 1466 | CALL user_actions( 'q-tendency' ) |
---|
| 1467 | |
---|
| 1468 | ! |
---|
| 1469 | !-- Prognostic equation for total water content / scalar |
---|
| 1470 | DO i = nxl, nxr |
---|
| 1471 | DO j = nys, nyn |
---|
| 1472 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1473 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1474 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1475 | - tsc(5) * rdf_sc(k) * & |
---|
| 1476 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 1477 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 1478 | ENDDO |
---|
| 1479 | ENDDO |
---|
| 1480 | ENDDO |
---|
| 1481 | |
---|
| 1482 | ! |
---|
| 1483 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1484 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1485 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1486 | DO i = nxl, nxr |
---|
| 1487 | DO j = nys, nyn |
---|
| 1488 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1489 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1490 | ENDDO |
---|
| 1491 | ENDDO |
---|
| 1492 | ENDDO |
---|
| 1493 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1494 | intermediate_timestep_count_max ) THEN |
---|
| 1495 | DO i = nxl, nxr |
---|
| 1496 | DO j = nys, nyn |
---|
| 1497 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1498 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 1499 | ENDDO |
---|
| 1500 | ENDDO |
---|
| 1501 | ENDDO |
---|
| 1502 | ENDIF |
---|
| 1503 | ENDIF |
---|
| 1504 | |
---|
| 1505 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1506 | |
---|
[1361] | 1507 | ! |
---|
| 1508 | !-- If required, calculate prognostic equations for rain water content |
---|
| 1509 | !-- and rain drop concentration |
---|
| 1510 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 1511 | |
---|
| 1512 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 1513 | |
---|
| 1514 | ! |
---|
| 1515 | !-- Calculate prognostic equation for rain water content |
---|
| 1516 | sbt = tsc(2) |
---|
| 1517 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1518 | |
---|
| 1519 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1520 | ! |
---|
| 1521 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1522 | sbt = 1.0_wp |
---|
| 1523 | ENDIF |
---|
| 1524 | tend = 0.0_wp |
---|
| 1525 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 1526 | |
---|
| 1527 | ENDIF |
---|
| 1528 | |
---|
| 1529 | ! |
---|
| 1530 | !-- qr-tendency terms with no communication |
---|
| 1531 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1532 | tend = 0.0_wp |
---|
| 1533 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1534 | IF ( ws_scheme_sca ) THEN |
---|
| 1535 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 1536 | ELSE |
---|
| 1537 | CALL advec_s_pw( qr ) |
---|
| 1538 | ENDIF |
---|
| 1539 | ELSE |
---|
| 1540 | CALL advec_s_up( qr ) |
---|
| 1541 | ENDIF |
---|
| 1542 | ENDIF |
---|
| 1543 | |
---|
| 1544 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 1545 | |
---|
| 1546 | CALL user_actions( 'qr-tendency' ) |
---|
| 1547 | |
---|
| 1548 | ! |
---|
| 1549 | !-- Prognostic equation for rain water content |
---|
| 1550 | DO i = nxl, nxr |
---|
| 1551 | DO j = nys, nyn |
---|
| 1552 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1553 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1554 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 1555 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 1556 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 1557 | ENDDO |
---|
| 1558 | ENDDO |
---|
| 1559 | ENDDO |
---|
| 1560 | |
---|
| 1561 | ! |
---|
| 1562 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1563 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1564 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1565 | DO i = nxl, nxr |
---|
| 1566 | DO j = nys, nyn |
---|
| 1567 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1568 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 1569 | ENDDO |
---|
| 1570 | ENDDO |
---|
| 1571 | ENDDO |
---|
| 1572 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1573 | intermediate_timestep_count_max ) THEN |
---|
| 1574 | DO i = nxl, nxr |
---|
| 1575 | DO j = nys, nyn |
---|
| 1576 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1577 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1578 | tqr_m(k,j,i) |
---|
| 1579 | ENDDO |
---|
| 1580 | ENDDO |
---|
| 1581 | ENDDO |
---|
| 1582 | ENDIF |
---|
| 1583 | ENDIF |
---|
| 1584 | |
---|
| 1585 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 1586 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 1587 | |
---|
| 1588 | ! |
---|
| 1589 | !-- Calculate prognostic equation for rain drop concentration |
---|
| 1590 | sbt = tsc(2) |
---|
| 1591 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1592 | |
---|
| 1593 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1594 | ! |
---|
| 1595 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1596 | sbt = 1.0_wp |
---|
| 1597 | ENDIF |
---|
| 1598 | tend = 0.0_wp |
---|
| 1599 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 1600 | |
---|
| 1601 | ENDIF |
---|
| 1602 | |
---|
| 1603 | ! |
---|
| 1604 | !-- nr-tendency terms with no communication |
---|
| 1605 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1606 | tend = 0.0_wp |
---|
| 1607 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1608 | IF ( ws_scheme_sca ) THEN |
---|
| 1609 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 1610 | ELSE |
---|
| 1611 | CALL advec_s_pw( nr ) |
---|
| 1612 | ENDIF |
---|
| 1613 | ELSE |
---|
| 1614 | CALL advec_s_up( nr ) |
---|
| 1615 | ENDIF |
---|
| 1616 | ENDIF |
---|
| 1617 | |
---|
| 1618 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 1619 | |
---|
| 1620 | CALL user_actions( 'nr-tendency' ) |
---|
| 1621 | |
---|
| 1622 | ! |
---|
| 1623 | !-- Prognostic equation for rain drop concentration |
---|
| 1624 | DO i = nxl, nxr |
---|
| 1625 | DO j = nys, nyn |
---|
| 1626 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1627 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1628 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 1629 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 1630 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 1631 | ENDDO |
---|
| 1632 | ENDDO |
---|
| 1633 | ENDDO |
---|
| 1634 | |
---|
| 1635 | ! |
---|
| 1636 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1637 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1638 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1639 | DO i = nxl, nxr |
---|
| 1640 | DO j = nys, nyn |
---|
| 1641 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1642 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 1643 | ENDDO |
---|
| 1644 | ENDDO |
---|
| 1645 | ENDDO |
---|
| 1646 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1647 | intermediate_timestep_count_max ) THEN |
---|
| 1648 | DO i = nxl, nxr |
---|
| 1649 | DO j = nys, nyn |
---|
| 1650 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1651 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1652 | tnr_m(k,j,i) |
---|
| 1653 | ENDDO |
---|
| 1654 | ENDDO |
---|
| 1655 | ENDDO |
---|
| 1656 | ENDIF |
---|
| 1657 | ENDIF |
---|
| 1658 | |
---|
| 1659 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 1660 | |
---|
| 1661 | ENDIF |
---|
| 1662 | |
---|
[736] | 1663 | ENDIF |
---|
| 1664 | |
---|
| 1665 | ! |
---|
| 1666 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1667 | !-- energy (TKE) |
---|
| 1668 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1669 | |
---|
| 1670 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1671 | |
---|
| 1672 | sbt = tsc(2) |
---|
| 1673 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1674 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1675 | |
---|
| 1676 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1677 | ! |
---|
[1001] | 1678 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1679 | sbt = 1.0_wp |
---|
[736] | 1680 | ENDIF |
---|
[1337] | 1681 | tend = 0.0_wp |
---|
[736] | 1682 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1683 | |
---|
[736] | 1684 | ENDIF |
---|
| 1685 | ENDIF |
---|
| 1686 | |
---|
| 1687 | ! |
---|
| 1688 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1689 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1690 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 1691 | tend = 0.0_wp |
---|
[736] | 1692 | CALL advec_s_up( e ) |
---|
| 1693 | ELSE |
---|
[1337] | 1694 | tend = 0.0_wp |
---|
[1001] | 1695 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1696 | IF ( ws_scheme_sca ) THEN |
---|
| 1697 | CALL advec_s_ws( e, 'e' ) |
---|
| 1698 | ELSE |
---|
| 1699 | CALL advec_s_pw( e ) |
---|
| 1700 | ENDIF |
---|
| 1701 | ELSE |
---|
[1001] | 1702 | CALL advec_s_up( e ) |
---|
[736] | 1703 | ENDIF |
---|
| 1704 | ENDIF |
---|
[1001] | 1705 | ENDIF |
---|
| 1706 | |
---|
| 1707 | IF ( .NOT. humidity ) THEN |
---|
| 1708 | IF ( ocean ) THEN |
---|
| 1709 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1710 | ELSE |
---|
[1001] | 1711 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1712 | ENDIF |
---|
[1001] | 1713 | ELSE |
---|
| 1714 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1715 | ENDIF |
---|
[1001] | 1716 | |
---|
[736] | 1717 | CALL production_e |
---|
| 1718 | |
---|
| 1719 | ! |
---|
| 1720 | !-- Additional sink term for flows through plant canopies |
---|
| 1721 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1722 | CALL user_actions( 'e-tendency' ) |
---|
| 1723 | |
---|
| 1724 | ! |
---|
| 1725 | !-- Prognostic equation for TKE. |
---|
| 1726 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1727 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1728 | !-- value is reduced by 90%. |
---|
| 1729 | DO i = nxl, nxr |
---|
| 1730 | DO j = nys, nyn |
---|
| 1731 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1732 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1733 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 1734 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 1735 | ENDDO |
---|
| 1736 | ENDDO |
---|
| 1737 | ENDDO |
---|
| 1738 | |
---|
| 1739 | ! |
---|
| 1740 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1741 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1742 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1743 | DO i = nxl, nxr |
---|
| 1744 | DO j = nys, nyn |
---|
| 1745 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1746 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1747 | ENDDO |
---|
| 1748 | ENDDO |
---|
| 1749 | ENDDO |
---|
| 1750 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1751 | intermediate_timestep_count_max ) THEN |
---|
| 1752 | DO i = nxl, nxr |
---|
| 1753 | DO j = nys, nyn |
---|
| 1754 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1755 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[736] | 1756 | ENDDO |
---|
| 1757 | ENDDO |
---|
| 1758 | ENDDO |
---|
| 1759 | ENDIF |
---|
| 1760 | ENDIF |
---|
| 1761 | |
---|
| 1762 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1763 | |
---|
| 1764 | ENDIF |
---|
| 1765 | |
---|
| 1766 | END SUBROUTINE prognostic_equations_vector |
---|
| 1767 | |
---|
| 1768 | |
---|
[1015] | 1769 | SUBROUTINE prognostic_equations_acc |
---|
| 1770 | |
---|
| 1771 | !------------------------------------------------------------------------------! |
---|
| 1772 | ! Version for accelerator boards |
---|
| 1773 | !------------------------------------------------------------------------------! |
---|
| 1774 | |
---|
| 1775 | IMPLICIT NONE |
---|
| 1776 | |
---|
[1320] | 1777 | INTEGER(iwp) :: i !: |
---|
| 1778 | INTEGER(iwp) :: j !: |
---|
| 1779 | INTEGER(iwp) :: k !: |
---|
| 1780 | INTEGER(iwp) :: runge_step !: |
---|
[1015] | 1781 | |
---|
[1320] | 1782 | REAL(wp) :: sbt !: |
---|
| 1783 | |
---|
[1015] | 1784 | ! |
---|
| 1785 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1786 | runge_step = 0 |
---|
| 1787 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1788 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1789 | runge_step = 1 |
---|
| 1790 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1791 | intermediate_timestep_count_max ) THEN |
---|
| 1792 | runge_step = 2 |
---|
| 1793 | ENDIF |
---|
| 1794 | ENDIF |
---|
| 1795 | |
---|
| 1796 | ! |
---|
[1361] | 1797 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 1798 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 1799 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 1800 | call_microphysics_at_all_substeps ) & |
---|
| 1801 | ) THEN |
---|
| 1802 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 1803 | CALL microphysics_control |
---|
| 1804 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 1805 | ENDIF |
---|
| 1806 | |
---|
| 1807 | ! |
---|
[1015] | 1808 | !-- u-velocity component |
---|
[1374] | 1809 | !++ Statistics still not completely ported to accelerators |
---|
[1179] | 1810 | !$acc update device( hom, ref_state ) |
---|
[1015] | 1811 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1812 | |
---|
| 1813 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1814 | IF ( ws_scheme_mom ) THEN |
---|
| 1815 | CALL advec_u_ws_acc |
---|
| 1816 | ELSE |
---|
[1337] | 1817 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1818 | CALL advec_u_pw |
---|
| 1819 | ENDIF |
---|
| 1820 | ELSE |
---|
| 1821 | CALL advec_u_up |
---|
| 1822 | ENDIF |
---|
| 1823 | CALL diffusion_u_acc |
---|
| 1824 | CALL coriolis_acc( 1 ) |
---|
| 1825 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 1826 | CALL buoyancy( pt, 1 ) |
---|
[1015] | 1827 | ENDIF |
---|
| 1828 | |
---|
| 1829 | ! |
---|
| 1830 | !-- Drag by plant canopy |
---|
| 1831 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1832 | |
---|
| 1833 | ! |
---|
| 1834 | !-- External pressure gradient |
---|
| 1835 | IF ( dp_external ) THEN |
---|
[1128] | 1836 | DO i = i_left, i_right |
---|
| 1837 | DO j = j_south, j_north |
---|
[1015] | 1838 | DO k = dp_level_ind_b+1, nzt |
---|
| 1839 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1840 | ENDDO |
---|
| 1841 | ENDDO |
---|
| 1842 | ENDDO |
---|
| 1843 | ENDIF |
---|
| 1844 | |
---|
[1246] | 1845 | ! |
---|
| 1846 | !-- Nudging |
---|
| 1847 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 1848 | |
---|
[1015] | 1849 | CALL user_actions( 'u-tendency' ) |
---|
| 1850 | |
---|
| 1851 | ! |
---|
| 1852 | !-- Prognostic equation for u-velocity component |
---|
[1398] | 1853 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, u_init, u_p ) |
---|
[1257] | 1854 | !$acc loop independent |
---|
[1128] | 1855 | DO i = i_left, i_right |
---|
[1257] | 1856 | !$acc loop independent |
---|
[1128] | 1857 | DO j = j_south, j_north |
---|
[1257] | 1858 | !$acc loop independent |
---|
[1015] | 1859 | DO k = 1, nzt |
---|
| 1860 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1861 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1862 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 1863 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[1015] | 1864 | ! |
---|
| 1865 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1866 | IF ( runge_step == 1 ) THEN |
---|
| 1867 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1868 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1869 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[1015] | 1870 | ENDIF |
---|
| 1871 | ENDIF |
---|
| 1872 | ENDDO |
---|
| 1873 | ENDDO |
---|
| 1874 | ENDDO |
---|
| 1875 | !$acc end kernels |
---|
| 1876 | |
---|
| 1877 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1878 | |
---|
| 1879 | ! |
---|
| 1880 | !-- v-velocity component |
---|
| 1881 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1882 | |
---|
| 1883 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1884 | IF ( ws_scheme_mom ) THEN |
---|
| 1885 | CALL advec_v_ws_acc |
---|
| 1886 | ELSE |
---|
[1337] | 1887 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1888 | CALL advec_v_pw |
---|
| 1889 | END IF |
---|
| 1890 | ELSE |
---|
| 1891 | CALL advec_v_up |
---|
| 1892 | ENDIF |
---|
| 1893 | CALL diffusion_v_acc |
---|
| 1894 | CALL coriolis_acc( 2 ) |
---|
| 1895 | |
---|
| 1896 | ! |
---|
| 1897 | !-- Drag by plant canopy |
---|
| 1898 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1899 | |
---|
| 1900 | ! |
---|
| 1901 | !-- External pressure gradient |
---|
| 1902 | IF ( dp_external ) THEN |
---|
[1128] | 1903 | DO i = i_left, i_right |
---|
| 1904 | DO j = j_south, j_north |
---|
[1015] | 1905 | DO k = dp_level_ind_b+1, nzt |
---|
| 1906 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1907 | ENDDO |
---|
| 1908 | ENDDO |
---|
| 1909 | ENDDO |
---|
| 1910 | ENDIF |
---|
| 1911 | |
---|
[1246] | 1912 | ! |
---|
| 1913 | !-- Nudging |
---|
| 1914 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1915 | |
---|
[1015] | 1916 | CALL user_actions( 'v-tendency' ) |
---|
| 1917 | |
---|
| 1918 | ! |
---|
| 1919 | !-- Prognostic equation for v-velocity component |
---|
[1398] | 1920 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, v_init, v_p ) |
---|
[1257] | 1921 | !$acc loop independent |
---|
[1128] | 1922 | DO i = i_left, i_right |
---|
[1257] | 1923 | !$acc loop independent |
---|
[1128] | 1924 | DO j = j_south, j_north |
---|
[1257] | 1925 | !$acc loop independent |
---|
[1015] | 1926 | DO k = 1, nzt |
---|
| 1927 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1928 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1929 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1930 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[1015] | 1931 | ! |
---|
| 1932 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1933 | IF ( runge_step == 1 ) THEN |
---|
| 1934 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1935 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1936 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[1015] | 1937 | ENDIF |
---|
| 1938 | ENDIF |
---|
| 1939 | ENDDO |
---|
| 1940 | ENDDO |
---|
| 1941 | ENDDO |
---|
| 1942 | !$acc end kernels |
---|
| 1943 | |
---|
| 1944 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1945 | |
---|
| 1946 | ! |
---|
| 1947 | !-- w-velocity component |
---|
| 1948 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1949 | |
---|
| 1950 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1951 | IF ( ws_scheme_mom ) THEN |
---|
| 1952 | CALL advec_w_ws_acc |
---|
| 1953 | ELSE |
---|
[1337] | 1954 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1955 | CALL advec_w_pw |
---|
| 1956 | ENDIF |
---|
| 1957 | ELSE |
---|
| 1958 | CALL advec_w_up |
---|
| 1959 | ENDIF |
---|
| 1960 | CALL diffusion_w_acc |
---|
| 1961 | CALL coriolis_acc( 3 ) |
---|
| 1962 | |
---|
| 1963 | IF ( .NOT. neutral ) THEN |
---|
| 1964 | IF ( ocean ) THEN |
---|
[1179] | 1965 | CALL buoyancy( rho, 3 ) |
---|
[1015] | 1966 | ELSE |
---|
| 1967 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1968 | CALL buoyancy_acc( pt, 3 ) |
---|
[1015] | 1969 | ELSE |
---|
[1179] | 1970 | CALL buoyancy( vpt, 3 ) |
---|
[1015] | 1971 | ENDIF |
---|
| 1972 | ENDIF |
---|
| 1973 | ENDIF |
---|
| 1974 | |
---|
| 1975 | ! |
---|
| 1976 | !-- Drag by plant canopy |
---|
| 1977 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1978 | |
---|
| 1979 | CALL user_actions( 'w-tendency' ) |
---|
| 1980 | |
---|
| 1981 | ! |
---|
| 1982 | !-- Prognostic equation for w-velocity component |
---|
| 1983 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
[1257] | 1984 | !$acc loop independent |
---|
[1128] | 1985 | DO i = i_left, i_right |
---|
[1257] | 1986 | !$acc loop independent |
---|
[1128] | 1987 | DO j = j_south, j_north |
---|
[1257] | 1988 | !$acc loop independent |
---|
[1015] | 1989 | DO k = 1, nzt-1 |
---|
| 1990 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 1991 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1992 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1993 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1994 | ! |
---|
| 1995 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1996 | IF ( runge_step == 1 ) THEN |
---|
| 1997 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1998 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1999 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[1015] | 2000 | ENDIF |
---|
| 2001 | ENDIF |
---|
| 2002 | ENDDO |
---|
| 2003 | ENDDO |
---|
| 2004 | ENDDO |
---|
| 2005 | !$acc end kernels |
---|
| 2006 | |
---|
| 2007 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 2008 | |
---|
| 2009 | |
---|
| 2010 | ! |
---|
| 2011 | !-- If required, compute prognostic equation for potential temperature |
---|
| 2012 | IF ( .NOT. neutral ) THEN |
---|
| 2013 | |
---|
| 2014 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 2015 | |
---|
| 2016 | ! |
---|
| 2017 | !-- pt-tendency terms with communication |
---|
| 2018 | sbt = tsc(2) |
---|
| 2019 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2020 | |
---|
| 2021 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2022 | ! |
---|
| 2023 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 2024 | sbt = 1.0_wp |
---|
[1015] | 2025 | ENDIF |
---|
[1337] | 2026 | tend = 0.0_wp |
---|
[1015] | 2027 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 2028 | |
---|
| 2029 | ENDIF |
---|
| 2030 | |
---|
| 2031 | ! |
---|
| 2032 | !-- pt-tendency terms with no communication |
---|
| 2033 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2034 | tend = 0.0_wp |
---|
[1015] | 2035 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2036 | IF ( ws_scheme_sca ) THEN |
---|
| 2037 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 2038 | ELSE |
---|
[1337] | 2039 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2040 | CALL advec_s_pw( pt ) |
---|
| 2041 | ENDIF |
---|
| 2042 | ELSE |
---|
| 2043 | CALL advec_s_up( pt ) |
---|
| 2044 | ENDIF |
---|
| 2045 | ENDIF |
---|
| 2046 | |
---|
| 2047 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 2048 | |
---|
| 2049 | ! |
---|
| 2050 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
[1496] | 2051 | IF ( cloud_top_radiation ) THEN |
---|
[1015] | 2052 | CALL calc_radiation |
---|
| 2053 | ENDIF |
---|
| 2054 | |
---|
| 2055 | ! |
---|
| 2056 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 2057 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2058 | CALL impact_of_latent_heat |
---|
| 2059 | ENDIF |
---|
| 2060 | |
---|
| 2061 | ! |
---|
| 2062 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 2063 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[1015] | 2064 | CALL plant_canopy_model( 4 ) |
---|
| 2065 | ENDIF |
---|
| 2066 | |
---|
| 2067 | ! |
---|
[1365] | 2068 | !-- Large scale advection |
---|
| 2069 | IF ( large_scale_forcing ) THEN |
---|
| 2070 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 2071 | ENDIF |
---|
| 2072 | |
---|
| 2073 | ! |
---|
[1380] | 2074 | !-- Nudging |
---|
| 2075 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 2076 | |
---|
| 2077 | ! |
---|
[1015] | 2078 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2079 | IF ( large_scale_subsidence .AND. & |
---|
| 2080 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2081 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[1015] | 2082 | ENDIF |
---|
| 2083 | |
---|
| 2084 | CALL user_actions( 'pt-tendency' ) |
---|
| 2085 | |
---|
| 2086 | ! |
---|
| 2087 | !-- Prognostic equation for potential temperature |
---|
| 2088 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 2089 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
[1257] | 2090 | !$acc loop independent |
---|
[1128] | 2091 | DO i = i_left, i_right |
---|
[1257] | 2092 | !$acc loop independent |
---|
[1128] | 2093 | DO j = j_south, j_north |
---|
[1257] | 2094 | !$acc loop independent |
---|
[1015] | 2095 | DO k = 1, nzt |
---|
| 2096 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2097 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2098 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 2099 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 2100 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 2101 | ! |
---|
| 2102 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2103 | IF ( runge_step == 1 ) THEN |
---|
| 2104 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 2105 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2106 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tpt_m(k,j,i) |
---|
[1015] | 2107 | ENDIF |
---|
| 2108 | ENDIF |
---|
| 2109 | ENDDO |
---|
| 2110 | ENDDO |
---|
| 2111 | ENDDO |
---|
| 2112 | !$acc end kernels |
---|
| 2113 | |
---|
| 2114 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 2115 | |
---|
| 2116 | ENDIF |
---|
| 2117 | |
---|
| 2118 | ! |
---|
| 2119 | !-- If required, compute prognostic equation for salinity |
---|
| 2120 | IF ( ocean ) THEN |
---|
| 2121 | |
---|
| 2122 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 2123 | |
---|
| 2124 | ! |
---|
| 2125 | !-- sa-tendency terms with communication |
---|
| 2126 | sbt = tsc(2) |
---|
| 2127 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2128 | |
---|
| 2129 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2130 | ! |
---|
| 2131 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2132 | sbt = 1.0_wp |
---|
[1015] | 2133 | ENDIF |
---|
[1337] | 2134 | tend = 0.0_wp |
---|
[1015] | 2135 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 2136 | |
---|
| 2137 | ENDIF |
---|
| 2138 | |
---|
| 2139 | ! |
---|
| 2140 | !-- sa-tendency terms with no communication |
---|
| 2141 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2142 | tend = 0.0_wp |
---|
[1015] | 2143 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2144 | IF ( ws_scheme_sca ) THEN |
---|
| 2145 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 2146 | ELSE |
---|
| 2147 | CALL advec_s_pw( sa ) |
---|
| 2148 | ENDIF |
---|
| 2149 | ELSE |
---|
| 2150 | CALL advec_s_up( sa ) |
---|
| 2151 | ENDIF |
---|
| 2152 | ENDIF |
---|
| 2153 | |
---|
| 2154 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 2155 | |
---|
| 2156 | CALL user_actions( 'sa-tendency' ) |
---|
| 2157 | |
---|
| 2158 | ! |
---|
| 2159 | !-- Prognostic equation for salinity |
---|
[1128] | 2160 | DO i = i_left, i_right |
---|
| 2161 | DO j = j_south, j_north |
---|
[1015] | 2162 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2163 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2164 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 2165 | - tsc(5) * rdf_sc(k) * & |
---|
| 2166 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 2167 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[1015] | 2168 | ! |
---|
| 2169 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2170 | IF ( runge_step == 1 ) THEN |
---|
| 2171 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 2172 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2173 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tsa_m(k,j,i) |
---|
[1015] | 2174 | ENDIF |
---|
| 2175 | ENDDO |
---|
| 2176 | ENDDO |
---|
| 2177 | ENDDO |
---|
| 2178 | |
---|
| 2179 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 2180 | |
---|
| 2181 | ! |
---|
| 2182 | !-- Calculate density by the equation of state for seawater |
---|
| 2183 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 2184 | CALL eqn_state_seawater |
---|
| 2185 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 2186 | |
---|
| 2187 | ENDIF |
---|
| 2188 | |
---|
| 2189 | ! |
---|
| 2190 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 2191 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 2192 | |
---|
| 2193 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 2194 | |
---|
| 2195 | ! |
---|
| 2196 | !-- Scalar/q-tendency terms with communication |
---|
| 2197 | sbt = tsc(2) |
---|
| 2198 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2199 | |
---|
| 2200 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2201 | ! |
---|
| 2202 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2203 | sbt = 1.0_wp |
---|
[1015] | 2204 | ENDIF |
---|
[1337] | 2205 | tend = 0.0_wp |
---|
[1015] | 2206 | CALL advec_s_bc( q, 'q' ) |
---|
| 2207 | |
---|
| 2208 | ENDIF |
---|
| 2209 | |
---|
| 2210 | ! |
---|
| 2211 | !-- Scalar/q-tendency terms with no communication |
---|
| 2212 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2213 | tend = 0.0_wp |
---|
[1015] | 2214 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2215 | IF ( ws_scheme_sca ) THEN |
---|
| 2216 | CALL advec_s_ws( q, 'q' ) |
---|
| 2217 | ELSE |
---|
| 2218 | CALL advec_s_pw( q ) |
---|
| 2219 | ENDIF |
---|
| 2220 | ELSE |
---|
| 2221 | CALL advec_s_up( q ) |
---|
| 2222 | ENDIF |
---|
| 2223 | ENDIF |
---|
| 2224 | |
---|
| 2225 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 2226 | |
---|
| 2227 | ! |
---|
| 2228 | !-- If required compute decrease of total water content due to |
---|
| 2229 | !-- precipitation |
---|
[1361] | 2230 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2231 | CALL calc_precipitation |
---|
| 2232 | ENDIF |
---|
| 2233 | |
---|
| 2234 | ! |
---|
| 2235 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 2236 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 2237 | |
---|
| 2238 | ! |
---|
[1365] | 2239 | !-- Large scale advection |
---|
| 2240 | IF ( large_scale_forcing ) THEN |
---|
| 2241 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 2242 | ENDIF |
---|
| 2243 | |
---|
| 2244 | ! |
---|
[1380] | 2245 | !-- Nudging |
---|
| 2246 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 2247 | |
---|
| 2248 | ! |
---|
[1015] | 2249 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2250 | IF ( large_scale_subsidence .AND. & |
---|
| 2251 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2252 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[1015] | 2253 | ENDIF |
---|
| 2254 | |
---|
| 2255 | CALL user_actions( 'q-tendency' ) |
---|
| 2256 | |
---|
| 2257 | ! |
---|
| 2258 | !-- Prognostic equation for total water content / scalar |
---|
[1128] | 2259 | DO i = i_left, i_right |
---|
| 2260 | DO j = j_south, j_north |
---|
[1015] | 2261 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2262 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2263 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 2264 | - tsc(5) * rdf_sc(k) * & |
---|
| 2265 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 2266 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[1015] | 2267 | ! |
---|
| 2268 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2269 | IF ( runge_step == 1 ) THEN |
---|
| 2270 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 2271 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2272 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[1015] | 2273 | ENDIF |
---|
| 2274 | ENDDO |
---|
| 2275 | ENDDO |
---|
| 2276 | ENDDO |
---|
| 2277 | |
---|
| 2278 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 2279 | |
---|
[1361] | 2280 | ! |
---|
| 2281 | !-- If required, calculate prognostic equations for rain water content |
---|
| 2282 | !-- and rain drop concentration |
---|
| 2283 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 2284 | |
---|
| 2285 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 2286 | ! |
---|
| 2287 | !-- qr-tendency terms with communication |
---|
| 2288 | sbt = tsc(2) |
---|
| 2289 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2290 | |
---|
| 2291 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2292 | ! |
---|
| 2293 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2294 | sbt = 1.0_wp |
---|
| 2295 | ENDIF |
---|
| 2296 | tend = 0.0_wp |
---|
| 2297 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 2298 | |
---|
| 2299 | ENDIF |
---|
| 2300 | |
---|
| 2301 | ! |
---|
| 2302 | !-- qr-tendency terms with no communication |
---|
| 2303 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2304 | tend = 0.0_wp |
---|
| 2305 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2306 | IF ( ws_scheme_sca ) THEN |
---|
| 2307 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 2308 | ELSE |
---|
| 2309 | CALL advec_s_pw( qr ) |
---|
| 2310 | ENDIF |
---|
| 2311 | ELSE |
---|
| 2312 | CALL advec_s_up( qr ) |
---|
| 2313 | ENDIF |
---|
| 2314 | ENDIF |
---|
| 2315 | |
---|
| 2316 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 2317 | |
---|
| 2318 | CALL user_actions( 'qr-tendency' ) |
---|
| 2319 | |
---|
| 2320 | ! |
---|
| 2321 | !-- Prognostic equation for rain water content |
---|
| 2322 | DO i = i_left, i_right |
---|
| 2323 | DO j = j_south, j_north |
---|
| 2324 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2325 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2326 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 2327 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 2328 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 2329 | ! |
---|
| 2330 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2331 | IF ( runge_step == 1 ) THEN |
---|
| 2332 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 2333 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2334 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2335 | tqr_m(k,j,i) |
---|
| 2336 | ENDIF |
---|
| 2337 | ENDDO |
---|
| 2338 | ENDDO |
---|
| 2339 | ENDDO |
---|
| 2340 | |
---|
| 2341 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 2342 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 2343 | |
---|
| 2344 | ! |
---|
| 2345 | !-- nr-tendency terms with communication |
---|
| 2346 | sbt = tsc(2) |
---|
| 2347 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2348 | |
---|
| 2349 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2350 | ! |
---|
| 2351 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2352 | sbt = 1.0_wp |
---|
| 2353 | ENDIF |
---|
| 2354 | tend = 0.0_wp |
---|
| 2355 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 2356 | |
---|
| 2357 | ENDIF |
---|
| 2358 | |
---|
| 2359 | ! |
---|
| 2360 | !-- nr-tendency terms with no communication |
---|
| 2361 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2362 | tend = 0.0_wp |
---|
| 2363 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2364 | IF ( ws_scheme_sca ) THEN |
---|
| 2365 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 2366 | ELSE |
---|
| 2367 | CALL advec_s_pw( nr ) |
---|
| 2368 | ENDIF |
---|
| 2369 | ELSE |
---|
| 2370 | CALL advec_s_up( nr ) |
---|
| 2371 | ENDIF |
---|
| 2372 | ENDIF |
---|
| 2373 | |
---|
| 2374 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 2375 | |
---|
| 2376 | CALL user_actions( 'nr-tendency' ) |
---|
| 2377 | |
---|
| 2378 | ! |
---|
| 2379 | !-- Prognostic equation for rain drop concentration |
---|
| 2380 | DO i = i_left, i_right |
---|
| 2381 | DO j = j_south, j_north |
---|
| 2382 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2383 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2384 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 2385 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 2386 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 2387 | ! |
---|
| 2388 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2389 | IF ( runge_step == 1 ) THEN |
---|
| 2390 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 2391 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2392 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2393 | tnr_m(k,j,i) |
---|
| 2394 | ENDIF |
---|
| 2395 | ENDDO |
---|
| 2396 | ENDDO |
---|
| 2397 | ENDDO |
---|
| 2398 | |
---|
| 2399 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 2400 | |
---|
| 2401 | ENDIF |
---|
| 2402 | |
---|
[1015] | 2403 | ENDIF |
---|
| 2404 | |
---|
| 2405 | ! |
---|
| 2406 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 2407 | !-- energy (TKE) |
---|
| 2408 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 2409 | |
---|
| 2410 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 2411 | |
---|
| 2412 | sbt = tsc(2) |
---|
| 2413 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 2414 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2415 | |
---|
| 2416 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2417 | ! |
---|
| 2418 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2419 | sbt = 1.0_wp |
---|
[1015] | 2420 | ENDIF |
---|
[1337] | 2421 | tend = 0.0_wp |
---|
[1015] | 2422 | CALL advec_s_bc( e, 'e' ) |
---|
| 2423 | |
---|
| 2424 | ENDIF |
---|
| 2425 | ENDIF |
---|
| 2426 | |
---|
| 2427 | ! |
---|
| 2428 | !-- TKE-tendency terms with no communication |
---|
| 2429 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 2430 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 2431 | tend = 0.0_wp |
---|
[1015] | 2432 | CALL advec_s_up( e ) |
---|
| 2433 | ELSE |
---|
| 2434 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2435 | IF ( ws_scheme_sca ) THEN |
---|
| 2436 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 2437 | ELSE |
---|
[1337] | 2438 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2439 | CALL advec_s_pw( e ) |
---|
| 2440 | ENDIF |
---|
| 2441 | ELSE |
---|
[1337] | 2442 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2443 | CALL advec_s_up( e ) |
---|
| 2444 | ENDIF |
---|
| 2445 | ENDIF |
---|
| 2446 | ENDIF |
---|
| 2447 | |
---|
| 2448 | IF ( .NOT. humidity ) THEN |
---|
| 2449 | IF ( ocean ) THEN |
---|
| 2450 | CALL diffusion_e( prho, prho_reference ) |
---|
| 2451 | ELSE |
---|
| 2452 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 2453 | ENDIF |
---|
| 2454 | ELSE |
---|
| 2455 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 2456 | ENDIF |
---|
| 2457 | |
---|
| 2458 | CALL production_e_acc |
---|
| 2459 | |
---|
| 2460 | ! |
---|
| 2461 | !-- Additional sink term for flows through plant canopies |
---|
| 2462 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 2463 | CALL user_actions( 'e-tendency' ) |
---|
| 2464 | |
---|
| 2465 | ! |
---|
| 2466 | !-- Prognostic equation for TKE. |
---|
| 2467 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2468 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2469 | !-- value is reduced by 90%. |
---|
| 2470 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
[1257] | 2471 | !$acc loop independent |
---|
[1128] | 2472 | DO i = i_left, i_right |
---|
[1257] | 2473 | !$acc loop independent |
---|
[1128] | 2474 | DO j = j_south, j_north |
---|
[1257] | 2475 | !$acc loop independent |
---|
[1015] | 2476 | DO k = 1, nzt |
---|
| 2477 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2478 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2479 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 2480 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[1015] | 2481 | ! |
---|
| 2482 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2483 | IF ( runge_step == 1 ) THEN |
---|
| 2484 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2485 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2486 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[1015] | 2487 | ENDIF |
---|
| 2488 | ENDIF |
---|
| 2489 | ENDDO |
---|
| 2490 | ENDDO |
---|
| 2491 | ENDDO |
---|
| 2492 | !$acc end kernels |
---|
| 2493 | |
---|
| 2494 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2495 | |
---|
| 2496 | ENDIF |
---|
| 2497 | |
---|
| 2498 | END SUBROUTINE prognostic_equations_acc |
---|
| 2499 | |
---|
| 2500 | |
---|
[736] | 2501 | END MODULE prognostic_equations_mod |
---|