[736] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[736] | 20 | ! Current revisions: |
---|
[1092] | 21 | ! ------------------ |
---|
[1518] | 22 | ! |
---|
[1517] | 23 | ! |
---|
[1485] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: prognostic_equations.f90 1518 2015-01-07 19:18:17Z raasch $ |
---|
| 27 | ! |
---|
[1518] | 28 | ! 1517 2015-01-07 19:12:25Z hoffmann |
---|
| 29 | ! advec_s_bc_mod addded, since advec_s_bc is now a module |
---|
| 30 | ! |
---|
[1517] | 31 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
[1497] | 32 | ! Renamed "radiation" -> "cloud_top_radiation" |
---|
| 33 | ! |
---|
[1496] | 34 | ! 1484 2014-10-21 10:53:05Z kanani |
---|
[1484] | 35 | ! Changes due to new module structure of the plant canopy model: |
---|
| 36 | ! parameters cthf and plant_canopy moved to module plant_canopy_model_mod. |
---|
| 37 | ! Removed double-listing of use_upstream_for_tke in ONLY-list of module |
---|
| 38 | ! control_parameters |
---|
| 39 | ! |
---|
| 40 | ! 1409 2014-05-23 12:11:32Z suehring |
---|
[1409] | 41 | ! Bugfix: i_omp_start changed for advec_u_ws at left inflow and outflow boundary. |
---|
| 42 | ! This ensures that left-hand side fluxes are also calculated for nxl in that |
---|
| 43 | ! case, even though the solution at nxl is overwritten in boundary_conds() |
---|
| 44 | ! |
---|
| 45 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
[1398] | 46 | ! Rayleigh-damping for horizontal velocity components changed: instead of damping |
---|
| 47 | ! against ug and vg, damping against u_init and v_init is used to allow for a |
---|
| 48 | ! homogenized treatment in case of nudging |
---|
| 49 | ! |
---|
| 50 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
[1381] | 51 | ! Change order of calls for scalar prognostic quantities: |
---|
| 52 | ! ls_advec -> nudging -> subsidence since initial profiles |
---|
| 53 | ! |
---|
[1380] | 54 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 55 | ! missing variables added to ONLY lists |
---|
| 56 | ! |
---|
| 57 | ! 1365 2014-04-22 15:03:56Z boeske |
---|
[1365] | 58 | ! Calls of ls_advec for large scale advection added, |
---|
| 59 | ! subroutine subsidence is only called if use_subsidence_tendencies = .F., |
---|
| 60 | ! new argument ls_index added to the calls of subsidence |
---|
| 61 | ! +ls_index |
---|
| 62 | ! |
---|
| 63 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
[1361] | 64 | ! Two-moment microphysics moved to the start of prognostic equations. This makes |
---|
| 65 | ! the 3d arrays for tend_q, tend_qr, tend_pt and tend_pt redundant. |
---|
| 66 | ! Additionally, it is allowed to call the microphysics just once during the time |
---|
| 67 | ! step (not at each sub-time step). |
---|
| 68 | ! |
---|
| 69 | ! Two-moment cloud physics added for vector and accelerator optimization. |
---|
| 70 | ! |
---|
| 71 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
[1354] | 72 | ! REAL constants provided with KIND-attribute |
---|
| 73 | ! |
---|
[1353] | 74 | ! 1337 2014-03-25 15:11:48Z heinze |
---|
| 75 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 76 | ! |
---|
| 77 | ! 1332 2014-03-25 11:59:43Z suehring |
---|
[1333] | 78 | ! Bugfix: call advec_ws or advec_pw for TKE only if NOT use_upstream_for_tke |
---|
| 79 | ! |
---|
[1332] | 80 | ! 1330 2014-03-24 17:29:32Z suehring |
---|
[1331] | 81 | ! In case of SGS-particle velocity advection of TKE is also allowed with |
---|
| 82 | ! dissipative 5th-order scheme. |
---|
| 83 | ! |
---|
[1321] | 84 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 85 | ! ONLY-attribute added to USE-statements, |
---|
| 86 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 87 | ! kinds are defined in new module kinds, |
---|
| 88 | ! old module precision_kind is removed, |
---|
| 89 | ! revision history before 2012 removed, |
---|
| 90 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 91 | ! all variable declaration statements |
---|
[1054] | 92 | ! |
---|
[1319] | 93 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 94 | ! module interfaces removed |
---|
| 95 | ! |
---|
[1258] | 96 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 97 | ! openacc loop vector clauses removed, independent clauses added |
---|
| 98 | ! |
---|
[1247] | 99 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
| 100 | ! enable nudging also for accelerator version |
---|
| 101 | ! |
---|
[1242] | 102 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 103 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
| 104 | ! |
---|
[1182] | 105 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 106 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 107 | ! |
---|
[1132] | 108 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 109 | ! those parts requiring global communication moved to time_integration, |
---|
| 110 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 111 | ! j_north |
---|
| 112 | ! |
---|
[1116] | 113 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 114 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 115 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 116 | ! |
---|
[1112] | 117 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 118 | ! update directives for prognostic quantities removed |
---|
| 119 | ! |
---|
[1107] | 120 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 121 | ! small changes in code formatting |
---|
| 122 | ! |
---|
[1093] | 123 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 124 | ! unused variables removed |
---|
| 125 | ! |
---|
[1054] | 126 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 127 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 128 | ! and rain water content (qr) |
---|
[979] | 129 | ! |
---|
[1053] | 130 | ! currently, only available for cache loop optimization |
---|
[1020] | 131 | ! |
---|
[1037] | 132 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 133 | ! code put under GPL (PALM 3.9) |
---|
| 134 | ! |
---|
[1020] | 135 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 136 | ! non-optimized version of prognostic_equations removed |
---|
| 137 | ! |
---|
[1017] | 138 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 139 | ! new branch prognostic_equations_acc |
---|
| 140 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 141 | ! |
---|
[1002] | 142 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 143 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 144 | ! |
---|
[979] | 145 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 146 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 147 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 148 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 149 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 150 | ! |
---|
[941] | 151 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 152 | ! temperature equation can be switched off |
---|
| 153 | ! |
---|
[736] | 154 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 155 | ! Initial revision |
---|
| 156 | ! |
---|
| 157 | ! |
---|
| 158 | ! Description: |
---|
| 159 | ! ------------ |
---|
| 160 | ! Solving the prognostic equations. |
---|
| 161 | !------------------------------------------------------------------------------! |
---|
| 162 | |
---|
[1320] | 163 | USE arrays_3d, & |
---|
| 164 | ONLY: diss_l_e, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qr, & |
---|
| 165 | diss_l_sa, diss_s_e, diss_s_nr, diss_s_pt, diss_s_q, & |
---|
| 166 | diss_s_qr, diss_s_sa, e, e_p, flux_s_e, flux_s_nr, flux_s_pt, & |
---|
| 167 | flux_s_q, flux_s_qr, flux_s_sa, flux_l_e, flux_l_nr, & |
---|
| 168 | flux_l_pt, flux_l_q, flux_l_qr, flux_l_sa, nr, nr_p, nrsws, & |
---|
| 169 | nrswst, pt, ptdf_x, ptdf_y, pt_init, pt_p, prho, q, q_init, & |
---|
[1374] | 170 | q_p, qsws, qswst, qr, qr_p, qrsws, qrswst, rdf, rdf_sc, & |
---|
| 171 | ref_state, rho, sa, sa_init, sa_p, saswsb, saswst, shf, tend, & |
---|
| 172 | te_m, tnr_m, tpt_m, tq_m, tqr_m, tsa_m, tswst, tu_m, tv_m, & |
---|
[1398] | 173 | tw_m, u, ug, u_init, u_p, v, vg, vpt, v_init, v_p, w, w_p |
---|
[1320] | 174 | |
---|
| 175 | USE control_parameters, & |
---|
[1361] | 176 | ONLY: call_microphysics_at_all_substeps, cloud_physics, & |
---|
[1496] | 177 | cloud_top_radiation, constant_diffusion, dp_external, & |
---|
[1320] | 178 | dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, humidity, & |
---|
| 179 | icloud_scheme, inflow_l, intermediate_timestep_count, & |
---|
[1365] | 180 | intermediate_timestep_count_max, large_scale_forcing, & |
---|
| 181 | large_scale_subsidence, neutral, nudging, ocean, outflow_l, & |
---|
[1484] | 182 | outflow_s, passive_scalar, precipitation, & |
---|
[1365] | 183 | prho_reference, prho_reference, prho_reference, pt_reference, & |
---|
[1496] | 184 | pt_reference, pt_reference, scalar_advec, scalar_advec, & |
---|
| 185 | simulated_time, sloping_surface, & |
---|
| 186 | timestep_scheme, tsc, use_subsidence_tendencies, & |
---|
| 187 | use_upstream_for_tke, wall_heatflux, & |
---|
[1320] | 188 | wall_nrflux, wall_qflux, wall_qflux, wall_qflux, wall_qrflux, & |
---|
| 189 | wall_salinityflux, ws_scheme_mom, ws_scheme_sca |
---|
[736] | 190 | |
---|
[1320] | 191 | USE cpulog, & |
---|
| 192 | ONLY: cpu_log, log_point |
---|
[736] | 193 | |
---|
[1320] | 194 | USE eqn_state_seawater_mod, & |
---|
| 195 | ONLY: eqn_state_seawater |
---|
| 196 | |
---|
| 197 | USE indices, & |
---|
| 198 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlu, nxr, nyn, nys, & |
---|
| 199 | nysv, nzb_s_inner, nzb_u_inner, nzb_v_inner, nzb_w_inner, nzt |
---|
| 200 | |
---|
| 201 | USE advec_ws, & |
---|
| 202 | ONLY: advec_s_ws, advec_s_ws_acc, advec_u_ws, advec_u_ws_acc, & |
---|
| 203 | advec_v_ws, advec_v_ws_acc, advec_w_ws, advec_w_ws_acc |
---|
| 204 | |
---|
[1517] | 205 | USE advec_s_bc_mod, & |
---|
| 206 | ONLY: advec_s_bc |
---|
| 207 | |
---|
[1320] | 208 | USE advec_s_pw_mod, & |
---|
| 209 | ONLY: advec_s_pw |
---|
| 210 | |
---|
| 211 | USE advec_s_up_mod, & |
---|
| 212 | ONLY: advec_s_up |
---|
| 213 | |
---|
| 214 | USE advec_u_pw_mod, & |
---|
| 215 | ONLY: advec_u_pw |
---|
| 216 | |
---|
| 217 | USE advec_u_up_mod, & |
---|
| 218 | ONLY: advec_u_up |
---|
| 219 | |
---|
| 220 | USE advec_v_pw_mod, & |
---|
| 221 | ONLY: advec_v_pw |
---|
| 222 | |
---|
| 223 | USE advec_v_up_mod, & |
---|
| 224 | ONLY: advec_v_up |
---|
| 225 | |
---|
| 226 | USE advec_w_pw_mod, & |
---|
| 227 | ONLY: advec_w_pw |
---|
| 228 | |
---|
| 229 | USE advec_w_up_mod, & |
---|
| 230 | ONLY: advec_w_up |
---|
| 231 | |
---|
| 232 | USE buoyancy_mod, & |
---|
| 233 | ONLY: buoyancy, buoyancy_acc |
---|
| 234 | |
---|
| 235 | USE calc_precipitation_mod, & |
---|
| 236 | ONLY: calc_precipitation |
---|
| 237 | |
---|
| 238 | USE calc_radiation_mod, & |
---|
| 239 | ONLY: calc_radiation |
---|
| 240 | |
---|
| 241 | USE coriolis_mod, & |
---|
| 242 | ONLY: coriolis, coriolis_acc |
---|
| 243 | |
---|
| 244 | USE diffusion_e_mod, & |
---|
| 245 | ONLY: diffusion_e, diffusion_e_acc |
---|
| 246 | |
---|
| 247 | USE diffusion_s_mod, & |
---|
| 248 | ONLY: diffusion_s, diffusion_s_acc |
---|
| 249 | |
---|
| 250 | USE diffusion_u_mod, & |
---|
| 251 | ONLY: diffusion_u, diffusion_u_acc |
---|
| 252 | |
---|
| 253 | USE diffusion_v_mod, & |
---|
| 254 | ONLY: diffusion_v, diffusion_v_acc |
---|
| 255 | |
---|
| 256 | USE diffusion_w_mod, & |
---|
| 257 | ONLY: diffusion_w, diffusion_w_acc |
---|
| 258 | |
---|
| 259 | USE impact_of_latent_heat_mod, & |
---|
| 260 | ONLY: impact_of_latent_heat |
---|
| 261 | |
---|
| 262 | USE kinds |
---|
| 263 | |
---|
[1365] | 264 | USE ls_forcing_mod, & |
---|
| 265 | ONLY: ls_advec |
---|
| 266 | |
---|
[1320] | 267 | USE microphysics_mod, & |
---|
| 268 | ONLY: microphysics_control |
---|
| 269 | |
---|
| 270 | USE nudge_mod, & |
---|
| 271 | ONLY: nudge |
---|
| 272 | |
---|
| 273 | USE plant_canopy_model_mod, & |
---|
[1484] | 274 | ONLY: cthf, plant_canopy, plant_canopy_model |
---|
[1320] | 275 | |
---|
| 276 | USE production_e_mod, & |
---|
| 277 | ONLY: production_e, production_e_acc |
---|
| 278 | |
---|
[1374] | 279 | USE statistics, & |
---|
| 280 | ONLY: hom |
---|
| 281 | |
---|
[1320] | 282 | USE subsidence_mod, & |
---|
| 283 | ONLY: subsidence |
---|
| 284 | |
---|
| 285 | USE user_actions_mod, & |
---|
| 286 | ONLY: user_actions |
---|
| 287 | |
---|
| 288 | |
---|
[736] | 289 | PRIVATE |
---|
[1019] | 290 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 291 | prognostic_equations_acc |
---|
[736] | 292 | |
---|
| 293 | INTERFACE prognostic_equations_cache |
---|
| 294 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 295 | END INTERFACE prognostic_equations_cache |
---|
| 296 | |
---|
| 297 | INTERFACE prognostic_equations_vector |
---|
| 298 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 299 | END INTERFACE prognostic_equations_vector |
---|
| 300 | |
---|
[1015] | 301 | INTERFACE prognostic_equations_acc |
---|
| 302 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 303 | END INTERFACE prognostic_equations_acc |
---|
[736] | 304 | |
---|
[1015] | 305 | |
---|
[736] | 306 | CONTAINS |
---|
| 307 | |
---|
| 308 | |
---|
| 309 | SUBROUTINE prognostic_equations_cache |
---|
| 310 | |
---|
| 311 | !------------------------------------------------------------------------------! |
---|
| 312 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 313 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 314 | ! |
---|
| 315 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 316 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 317 | ! these loops. |
---|
| 318 | ! |
---|
| 319 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 320 | !------------------------------------------------------------------------------! |
---|
| 321 | |
---|
| 322 | IMPLICIT NONE |
---|
| 323 | |
---|
[1320] | 324 | INTEGER(iwp) :: i !: |
---|
| 325 | INTEGER(iwp) :: i_omp_start !: |
---|
| 326 | INTEGER(iwp) :: j !: |
---|
| 327 | INTEGER(iwp) :: k !: |
---|
| 328 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
| 329 | INTEGER(iwp) :: tn = 0 !: |
---|
| 330 | |
---|
| 331 | LOGICAL :: loop_start !: |
---|
[736] | 332 | |
---|
| 333 | |
---|
| 334 | ! |
---|
| 335 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 336 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 337 | |
---|
| 338 | ! |
---|
| 339 | !-- Loop over all prognostic equations |
---|
| 340 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 341 | |
---|
| 342 | !$ tn = omp_get_thread_num() |
---|
| 343 | loop_start = .TRUE. |
---|
| 344 | !$OMP DO |
---|
| 345 | DO i = nxl, nxr |
---|
| 346 | |
---|
| 347 | ! |
---|
| 348 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 349 | !-- later in advec_ws |
---|
| 350 | IF ( loop_start ) THEN |
---|
| 351 | loop_start = .FALSE. |
---|
| 352 | i_omp_start = i |
---|
| 353 | ENDIF |
---|
[1365] | 354 | |
---|
[736] | 355 | DO j = nys, nyn |
---|
| 356 | ! |
---|
[1361] | 357 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 358 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 359 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 360 | call_microphysics_at_all_substeps ) & |
---|
| 361 | ) THEN |
---|
| 362 | CALL microphysics_control( i, j ) |
---|
| 363 | ENDIF |
---|
| 364 | ! |
---|
[736] | 365 | !-- Tendency terms for u-velocity component |
---|
| 366 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 367 | |
---|
[1337] | 368 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 369 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 370 | IF ( ws_scheme_mom ) THEN |
---|
[1409] | 371 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
[736] | 372 | ELSE |
---|
| 373 | CALL advec_u_pw( i, j ) |
---|
| 374 | ENDIF |
---|
| 375 | ELSE |
---|
| 376 | CALL advec_u_up( i, j ) |
---|
| 377 | ENDIF |
---|
[1001] | 378 | CALL diffusion_u( i, j ) |
---|
[736] | 379 | CALL coriolis( i, j, 1 ) |
---|
[940] | 380 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 381 | CALL buoyancy( i, j, pt, 1 ) |
---|
[940] | 382 | ENDIF |
---|
[736] | 383 | |
---|
| 384 | ! |
---|
| 385 | !-- Drag by plant canopy |
---|
| 386 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 387 | |
---|
| 388 | ! |
---|
| 389 | !-- External pressure gradient |
---|
| 390 | IF ( dp_external ) THEN |
---|
| 391 | DO k = dp_level_ind_b+1, nzt |
---|
| 392 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 393 | ENDDO |
---|
| 394 | ENDIF |
---|
| 395 | |
---|
[1241] | 396 | ! |
---|
| 397 | !-- Nudging |
---|
| 398 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
| 399 | |
---|
[736] | 400 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 401 | ! |
---|
| 402 | !-- Prognostic equation for u-velocity component |
---|
| 403 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 404 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 405 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 406 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 407 | ENDDO |
---|
| 408 | |
---|
| 409 | ! |
---|
| 410 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 411 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 412 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 413 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 414 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 415 | ENDDO |
---|
| 416 | ELSEIF ( intermediate_timestep_count < & |
---|
| 417 | intermediate_timestep_count_max ) THEN |
---|
| 418 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 419 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 420 | ENDDO |
---|
| 421 | ENDIF |
---|
| 422 | ENDIF |
---|
| 423 | |
---|
| 424 | ENDIF |
---|
| 425 | |
---|
| 426 | ! |
---|
| 427 | !-- Tendency terms for v-velocity component |
---|
| 428 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 429 | |
---|
[1337] | 430 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 431 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 432 | IF ( ws_scheme_mom ) THEN |
---|
| 433 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 434 | ELSE |
---|
| 435 | CALL advec_v_pw( i, j ) |
---|
| 436 | ENDIF |
---|
| 437 | ELSE |
---|
| 438 | CALL advec_v_up( i, j ) |
---|
| 439 | ENDIF |
---|
[1001] | 440 | CALL diffusion_v( i, j ) |
---|
[736] | 441 | CALL coriolis( i, j, 2 ) |
---|
| 442 | |
---|
| 443 | ! |
---|
| 444 | !-- Drag by plant canopy |
---|
| 445 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 446 | |
---|
| 447 | ! |
---|
| 448 | !-- External pressure gradient |
---|
| 449 | IF ( dp_external ) THEN |
---|
| 450 | DO k = dp_level_ind_b+1, nzt |
---|
| 451 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 452 | ENDDO |
---|
| 453 | ENDIF |
---|
| 454 | |
---|
[1241] | 455 | ! |
---|
| 456 | !-- Nudging |
---|
| 457 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
| 458 | |
---|
[736] | 459 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 460 | ! |
---|
| 461 | !-- Prognostic equation for v-velocity component |
---|
| 462 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 463 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 464 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 465 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 466 | ENDDO |
---|
| 467 | |
---|
| 468 | ! |
---|
| 469 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 470 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 471 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 472 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 473 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 474 | ENDDO |
---|
| 475 | ELSEIF ( intermediate_timestep_count < & |
---|
| 476 | intermediate_timestep_count_max ) THEN |
---|
| 477 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 478 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 479 | ENDDO |
---|
| 480 | ENDIF |
---|
| 481 | ENDIF |
---|
| 482 | |
---|
| 483 | ENDIF |
---|
| 484 | |
---|
| 485 | ! |
---|
| 486 | !-- Tendency terms for w-velocity component |
---|
[1337] | 487 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 488 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 489 | IF ( ws_scheme_mom ) THEN |
---|
| 490 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 491 | ELSE |
---|
| 492 | CALL advec_w_pw( i, j ) |
---|
| 493 | END IF |
---|
| 494 | ELSE |
---|
| 495 | CALL advec_w_up( i, j ) |
---|
| 496 | ENDIF |
---|
[1001] | 497 | CALL diffusion_w( i, j ) |
---|
[736] | 498 | CALL coriolis( i, j, 3 ) |
---|
[940] | 499 | |
---|
| 500 | IF ( .NOT. neutral ) THEN |
---|
| 501 | IF ( ocean ) THEN |
---|
[1179] | 502 | CALL buoyancy( i, j, rho, 3 ) |
---|
[736] | 503 | ELSE |
---|
[940] | 504 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 505 | CALL buoyancy( i, j, pt, 3 ) |
---|
[940] | 506 | ELSE |
---|
[1179] | 507 | CALL buoyancy( i, j, vpt, 3 ) |
---|
[940] | 508 | ENDIF |
---|
[736] | 509 | ENDIF |
---|
| 510 | ENDIF |
---|
| 511 | |
---|
| 512 | ! |
---|
| 513 | !-- Drag by plant canopy |
---|
| 514 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 515 | |
---|
| 516 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 517 | |
---|
| 518 | ! |
---|
| 519 | !-- Prognostic equation for w-velocity component |
---|
| 520 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 521 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 522 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 523 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 524 | ENDDO |
---|
| 525 | |
---|
| 526 | ! |
---|
| 527 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 528 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 529 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 530 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 531 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 532 | ENDDO |
---|
| 533 | ELSEIF ( intermediate_timestep_count < & |
---|
| 534 | intermediate_timestep_count_max ) THEN |
---|
| 535 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 536 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 537 | ENDDO |
---|
| 538 | ENDIF |
---|
| 539 | ENDIF |
---|
[1361] | 540 | |
---|
[736] | 541 | ! |
---|
[940] | 542 | !-- If required, compute prognostic equation for potential temperature |
---|
| 543 | IF ( .NOT. neutral ) THEN |
---|
| 544 | ! |
---|
| 545 | !-- Tendency terms for potential temperature |
---|
[1337] | 546 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 547 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 548 | IF ( ws_scheme_sca ) THEN |
---|
| 549 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 550 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 551 | ELSE |
---|
| 552 | CALL advec_s_pw( i, j, pt ) |
---|
| 553 | ENDIF |
---|
| 554 | ELSE |
---|
| 555 | CALL advec_s_up( i, j, pt ) |
---|
| 556 | ENDIF |
---|
[1001] | 557 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 558 | |
---|
| 559 | ! |
---|
[940] | 560 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 561 | !-- processes |
---|
[1496] | 562 | IF ( cloud_top_radiation ) THEN |
---|
[940] | 563 | CALL calc_radiation( i, j ) |
---|
| 564 | ENDIF |
---|
[736] | 565 | |
---|
[1106] | 566 | ! |
---|
[1361] | 567 | !-- If required compute impact of latent heat due to precipitation |
---|
| 568 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 569 | precipitation ) THEN |
---|
| 570 | CALL impact_of_latent_heat( i, j ) |
---|
[940] | 571 | ENDIF |
---|
[736] | 572 | |
---|
| 573 | ! |
---|
[940] | 574 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 575 | IF ( plant_canopy .AND. cthf /= 0.0_wp ) THEN |
---|
[940] | 576 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 577 | ENDIF |
---|
[736] | 578 | |
---|
[940] | 579 | ! |
---|
[1365] | 580 | !-- Large scale advection |
---|
| 581 | IF ( large_scale_forcing ) THEN |
---|
| 582 | CALL ls_advec( i, j, simulated_time, 'pt' ) |
---|
| 583 | ENDIF |
---|
| 584 | |
---|
| 585 | ! |
---|
[1380] | 586 | !-- Nudging |
---|
| 587 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
| 588 | |
---|
| 589 | ! |
---|
[1106] | 590 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
[1365] | 591 | IF ( large_scale_subsidence .AND. & |
---|
| 592 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 593 | CALL subsidence( i, j, tend, pt, pt_init, 2 ) |
---|
[940] | 594 | ENDIF |
---|
[736] | 595 | |
---|
[940] | 596 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 597 | |
---|
| 598 | ! |
---|
[940] | 599 | !-- Prognostic equation for potential temperature |
---|
| 600 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 601 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 602 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 603 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 604 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 605 | ENDDO |
---|
[736] | 606 | |
---|
| 607 | ! |
---|
[940] | 608 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 609 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 610 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 611 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 612 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 613 | ENDDO |
---|
| 614 | ELSEIF ( intermediate_timestep_count < & |
---|
| 615 | intermediate_timestep_count_max ) THEN |
---|
| 616 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 617 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 618 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 619 | ENDDO |
---|
| 620 | ENDIF |
---|
[736] | 621 | ENDIF |
---|
[940] | 622 | |
---|
[736] | 623 | ENDIF |
---|
| 624 | |
---|
| 625 | ! |
---|
| 626 | !-- If required, compute prognostic equation for salinity |
---|
| 627 | IF ( ocean ) THEN |
---|
| 628 | |
---|
| 629 | ! |
---|
| 630 | !-- Tendency-terms for salinity |
---|
[1337] | 631 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 632 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 633 | THEN |
---|
| 634 | IF ( ws_scheme_sca ) THEN |
---|
| 635 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 636 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 637 | ELSE |
---|
| 638 | CALL advec_s_pw( i, j, sa ) |
---|
| 639 | ENDIF |
---|
| 640 | ELSE |
---|
| 641 | CALL advec_s_up( i, j, sa ) |
---|
| 642 | ENDIF |
---|
[1001] | 643 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 644 | |
---|
| 645 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 646 | |
---|
| 647 | ! |
---|
| 648 | !-- Prognostic equation for salinity |
---|
| 649 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 650 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 651 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 652 | - tsc(5) * rdf_sc(k) * & |
---|
| 653 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 654 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 655 | ENDDO |
---|
| 656 | |
---|
| 657 | ! |
---|
| 658 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 659 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 660 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 661 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 662 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 663 | ENDDO |
---|
| 664 | ELSEIF ( intermediate_timestep_count < & |
---|
| 665 | intermediate_timestep_count_max ) THEN |
---|
| 666 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 667 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 668 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 669 | ENDDO |
---|
| 670 | ENDIF |
---|
| 671 | ENDIF |
---|
| 672 | |
---|
| 673 | ! |
---|
| 674 | !-- Calculate density by the equation of state for seawater |
---|
| 675 | CALL eqn_state_seawater( i, j ) |
---|
| 676 | |
---|
| 677 | ENDIF |
---|
| 678 | |
---|
| 679 | ! |
---|
| 680 | !-- If required, compute prognostic equation for total water content / |
---|
| 681 | !-- scalar |
---|
| 682 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 683 | |
---|
| 684 | ! |
---|
| 685 | !-- Tendency-terms for total water content / scalar |
---|
[1337] | 686 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 687 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 688 | THEN |
---|
| 689 | IF ( ws_scheme_sca ) THEN |
---|
| 690 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 691 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 692 | ELSE |
---|
| 693 | CALL advec_s_pw( i, j, q ) |
---|
| 694 | ENDIF |
---|
| 695 | ELSE |
---|
| 696 | CALL advec_s_up( i, j, q ) |
---|
| 697 | ENDIF |
---|
[1001] | 698 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[1053] | 699 | |
---|
[736] | 700 | ! |
---|
[1361] | 701 | !-- If required compute decrease of total water content due to |
---|
| 702 | !-- precipitation |
---|
| 703 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 704 | precipitation ) THEN |
---|
| 705 | CALL calc_precipitation( i, j ) |
---|
[736] | 706 | ENDIF |
---|
| 707 | ! |
---|
| 708 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1106] | 709 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
[736] | 710 | |
---|
[1053] | 711 | ! |
---|
[1365] | 712 | !-- Large scale advection |
---|
| 713 | IF ( large_scale_forcing ) THEN |
---|
| 714 | CALL ls_advec( i, j, simulated_time, 'q' ) |
---|
| 715 | ENDIF |
---|
| 716 | |
---|
| 717 | ! |
---|
[1380] | 718 | !-- Nudging |
---|
| 719 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
| 720 | |
---|
| 721 | ! |
---|
[736] | 722 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 723 | IF ( large_scale_subsidence .AND. & |
---|
| 724 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 725 | CALL subsidence( i, j, tend, q, q_init, 3 ) |
---|
[736] | 726 | ENDIF |
---|
| 727 | |
---|
| 728 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 729 | |
---|
| 730 | ! |
---|
| 731 | !-- Prognostic equation for total water content / scalar |
---|
| 732 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 733 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 734 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 735 | - tsc(5) * rdf_sc(k) * & |
---|
| 736 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 737 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 738 | ENDDO |
---|
| 739 | |
---|
| 740 | ! |
---|
| 741 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 742 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 743 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 744 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 745 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 746 | ENDDO |
---|
| 747 | ELSEIF ( intermediate_timestep_count < & |
---|
| 748 | intermediate_timestep_count_max ) THEN |
---|
| 749 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 750 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 751 | 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 752 | ENDDO |
---|
| 753 | ENDIF |
---|
| 754 | ENDIF |
---|
| 755 | |
---|
[1053] | 756 | ! |
---|
| 757 | !-- If required, calculate prognostic equations for rain water content |
---|
| 758 | !-- and rain drop concentration |
---|
[1115] | 759 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 760 | precipitation ) THEN |
---|
[1053] | 761 | ! |
---|
| 762 | !-- Calculate prognostic equation for rain water content |
---|
[1337] | 763 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 764 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 765 | THEN |
---|
| 766 | IF ( ws_scheme_sca ) THEN |
---|
| 767 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 768 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 769 | i_omp_start, tn ) |
---|
| 770 | ELSE |
---|
| 771 | CALL advec_s_pw( i, j, qr ) |
---|
| 772 | ENDIF |
---|
| 773 | ELSE |
---|
| 774 | CALL advec_s_up( i, j, qr ) |
---|
| 775 | ENDIF |
---|
| 776 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 777 | |
---|
[1115] | 778 | CALL user_actions( i, j, 'qr-tendency' ) |
---|
[1053] | 779 | ! |
---|
| 780 | !-- Prognostic equation for rain water content |
---|
| 781 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 782 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 783 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 784 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
[1337] | 785 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
[1053] | 786 | ENDDO |
---|
| 787 | ! |
---|
| 788 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 789 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 790 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 791 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 792 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 793 | ENDDO |
---|
| 794 | ELSEIF ( intermediate_timestep_count < & |
---|
| 795 | intermediate_timestep_count_max ) THEN |
---|
| 796 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 797 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 798 | 5.3125_wp * tqr_m(k,j,i) |
---|
[1053] | 799 | ENDDO |
---|
| 800 | ENDIF |
---|
| 801 | ENDIF |
---|
| 802 | |
---|
| 803 | ! |
---|
| 804 | !-- Calculate prognostic equation for rain drop concentration. |
---|
[1337] | 805 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 806 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 807 | IF ( ws_scheme_sca ) THEN |
---|
[1115] | 808 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 809 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 810 | i_omp_start, tn ) |
---|
[1053] | 811 | ELSE |
---|
| 812 | CALL advec_s_pw( i, j, nr ) |
---|
| 813 | ENDIF |
---|
| 814 | ELSE |
---|
| 815 | CALL advec_s_up( i, j, nr ) |
---|
| 816 | ENDIF |
---|
| 817 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
| 818 | |
---|
[1115] | 819 | CALL user_actions( i, j, 'nr-tendency' ) |
---|
[1053] | 820 | ! |
---|
| 821 | !-- Prognostic equation for rain drop concentration |
---|
| 822 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 823 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 824 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 825 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
[1337] | 826 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
[1053] | 827 | ENDDO |
---|
| 828 | ! |
---|
| 829 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 830 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 831 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 832 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 833 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 834 | ENDDO |
---|
| 835 | ELSEIF ( intermediate_timestep_count < & |
---|
| 836 | intermediate_timestep_count_max ) THEN |
---|
| 837 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 838 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 839 | 5.3125_wp * tnr_m(k,j,i) |
---|
[1053] | 840 | ENDDO |
---|
| 841 | ENDIF |
---|
| 842 | ENDIF |
---|
| 843 | |
---|
| 844 | ENDIF |
---|
| 845 | |
---|
[1128] | 846 | ENDIF |
---|
| 847 | |
---|
[736] | 848 | ! |
---|
| 849 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 850 | !-- energy (TKE) |
---|
| 851 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 852 | |
---|
| 853 | ! |
---|
| 854 | !-- Tendency-terms for TKE |
---|
[1337] | 855 | tend(:,j,i) = 0.0_wp |
---|
[1332] | 856 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
| 857 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
[736] | 858 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 859 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 860 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 861 | ELSE |
---|
| 862 | CALL advec_s_pw( i, j, e ) |
---|
| 863 | ENDIF |
---|
| 864 | ELSE |
---|
| 865 | CALL advec_s_up( i, j, e ) |
---|
| 866 | ENDIF |
---|
[1001] | 867 | IF ( .NOT. humidity ) THEN |
---|
| 868 | IF ( ocean ) THEN |
---|
| 869 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 870 | ELSE |
---|
[1001] | 871 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 872 | ENDIF |
---|
| 873 | ELSE |
---|
[1001] | 874 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 875 | ENDIF |
---|
| 876 | CALL production_e( i, j ) |
---|
| 877 | |
---|
| 878 | ! |
---|
| 879 | !-- Additional sink term for flows through plant canopies |
---|
| 880 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 881 | |
---|
| 882 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 883 | |
---|
| 884 | ! |
---|
| 885 | !-- Prognostic equation for TKE. |
---|
| 886 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 887 | !-- reasons in the course of the integration. In such cases the old |
---|
| 888 | !-- TKE value is reduced by 90%. |
---|
| 889 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 890 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 891 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 892 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 893 | ENDDO |
---|
| 894 | |
---|
| 895 | ! |
---|
| 896 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 897 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 898 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 899 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 900 | te_m(k,j,i) = tend(k,j,i) |
---|
| 901 | ENDDO |
---|
| 902 | ELSEIF ( intermediate_timestep_count < & |
---|
| 903 | intermediate_timestep_count_max ) THEN |
---|
| 904 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 905 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 906 | 5.3125_wp * te_m(k,j,i) |
---|
[736] | 907 | ENDDO |
---|
| 908 | ENDIF |
---|
| 909 | ENDIF |
---|
| 910 | |
---|
| 911 | ENDIF ! TKE equation |
---|
| 912 | |
---|
| 913 | ENDDO |
---|
| 914 | ENDDO |
---|
| 915 | !$OMP END PARALLEL |
---|
| 916 | |
---|
| 917 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 918 | |
---|
| 919 | |
---|
| 920 | END SUBROUTINE prognostic_equations_cache |
---|
| 921 | |
---|
| 922 | |
---|
| 923 | SUBROUTINE prognostic_equations_vector |
---|
| 924 | |
---|
| 925 | !------------------------------------------------------------------------------! |
---|
| 926 | ! Version for vector machines |
---|
| 927 | !------------------------------------------------------------------------------! |
---|
| 928 | |
---|
| 929 | IMPLICIT NONE |
---|
| 930 | |
---|
[1320] | 931 | INTEGER(iwp) :: i !: |
---|
| 932 | INTEGER(iwp) :: j !: |
---|
| 933 | INTEGER(iwp) :: k !: |
---|
[736] | 934 | |
---|
[1320] | 935 | REAL(wp) :: sbt !: |
---|
[736] | 936 | |
---|
[1320] | 937 | |
---|
[736] | 938 | ! |
---|
[1361] | 939 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 940 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 941 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 942 | call_microphysics_at_all_substeps ) & |
---|
| 943 | ) THEN |
---|
| 944 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 945 | CALL microphysics_control |
---|
| 946 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 947 | ENDIF |
---|
| 948 | |
---|
| 949 | ! |
---|
[736] | 950 | !-- u-velocity component |
---|
| 951 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 952 | |
---|
[1337] | 953 | tend = 0.0_wp |
---|
[1001] | 954 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 955 | IF ( ws_scheme_mom ) THEN |
---|
| 956 | CALL advec_u_ws |
---|
| 957 | ELSE |
---|
| 958 | CALL advec_u_pw |
---|
| 959 | ENDIF |
---|
| 960 | ELSE |
---|
[1001] | 961 | CALL advec_u_up |
---|
[736] | 962 | ENDIF |
---|
[1001] | 963 | CALL diffusion_u |
---|
[736] | 964 | CALL coriolis( 1 ) |
---|
[940] | 965 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 966 | CALL buoyancy( pt, 1 ) |
---|
[940] | 967 | ENDIF |
---|
[736] | 968 | |
---|
| 969 | ! |
---|
| 970 | !-- Drag by plant canopy |
---|
| 971 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 972 | |
---|
| 973 | ! |
---|
| 974 | !-- External pressure gradient |
---|
| 975 | IF ( dp_external ) THEN |
---|
| 976 | DO i = nxlu, nxr |
---|
| 977 | DO j = nys, nyn |
---|
| 978 | DO k = dp_level_ind_b+1, nzt |
---|
| 979 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 980 | ENDDO |
---|
| 981 | ENDDO |
---|
| 982 | ENDDO |
---|
| 983 | ENDIF |
---|
| 984 | |
---|
[1241] | 985 | ! |
---|
| 986 | !-- Nudging |
---|
| 987 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 988 | |
---|
[736] | 989 | CALL user_actions( 'u-tendency' ) |
---|
| 990 | |
---|
| 991 | ! |
---|
| 992 | !-- Prognostic equation for u-velocity component |
---|
| 993 | DO i = nxlu, nxr |
---|
| 994 | DO j = nys, nyn |
---|
| 995 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 996 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 997 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 998 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 999 | ENDDO |
---|
| 1000 | ENDDO |
---|
| 1001 | ENDDO |
---|
| 1002 | |
---|
| 1003 | ! |
---|
| 1004 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1005 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1006 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1007 | DO i = nxlu, nxr |
---|
| 1008 | DO j = nys, nyn |
---|
| 1009 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1010 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1011 | ENDDO |
---|
| 1012 | ENDDO |
---|
| 1013 | ENDDO |
---|
| 1014 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1015 | intermediate_timestep_count_max ) THEN |
---|
| 1016 | DO i = nxlu, nxr |
---|
| 1017 | DO j = nys, nyn |
---|
| 1018 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 1019 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 1020 | ENDDO |
---|
| 1021 | ENDDO |
---|
| 1022 | ENDDO |
---|
| 1023 | ENDIF |
---|
| 1024 | ENDIF |
---|
| 1025 | |
---|
| 1026 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1027 | |
---|
| 1028 | ! |
---|
| 1029 | !-- v-velocity component |
---|
| 1030 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1031 | |
---|
[1337] | 1032 | tend = 0.0_wp |
---|
[1001] | 1033 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1034 | IF ( ws_scheme_mom ) THEN |
---|
| 1035 | CALL advec_v_ws |
---|
| 1036 | ELSE |
---|
| 1037 | CALL advec_v_pw |
---|
| 1038 | END IF |
---|
| 1039 | ELSE |
---|
[1001] | 1040 | CALL advec_v_up |
---|
[736] | 1041 | ENDIF |
---|
[1001] | 1042 | CALL diffusion_v |
---|
[736] | 1043 | CALL coriolis( 2 ) |
---|
| 1044 | |
---|
| 1045 | ! |
---|
| 1046 | !-- Drag by plant canopy |
---|
| 1047 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1048 | |
---|
| 1049 | ! |
---|
| 1050 | !-- External pressure gradient |
---|
| 1051 | IF ( dp_external ) THEN |
---|
| 1052 | DO i = nxl, nxr |
---|
| 1053 | DO j = nysv, nyn |
---|
| 1054 | DO k = dp_level_ind_b+1, nzt |
---|
| 1055 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1056 | ENDDO |
---|
| 1057 | ENDDO |
---|
| 1058 | ENDDO |
---|
| 1059 | ENDIF |
---|
| 1060 | |
---|
[1241] | 1061 | ! |
---|
| 1062 | !-- Nudging |
---|
| 1063 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1064 | |
---|
[736] | 1065 | CALL user_actions( 'v-tendency' ) |
---|
| 1066 | |
---|
| 1067 | ! |
---|
| 1068 | !-- Prognostic equation for v-velocity component |
---|
| 1069 | DO i = nxl, nxr |
---|
| 1070 | DO j = nysv, nyn |
---|
| 1071 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 1072 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1073 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1074 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 1075 | ENDDO |
---|
| 1076 | ENDDO |
---|
| 1077 | ENDDO |
---|
| 1078 | |
---|
| 1079 | ! |
---|
| 1080 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1081 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1082 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1083 | DO i = nxl, nxr |
---|
| 1084 | DO j = nysv, nyn |
---|
| 1085 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1086 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1087 | ENDDO |
---|
| 1088 | ENDDO |
---|
| 1089 | ENDDO |
---|
| 1090 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1091 | intermediate_timestep_count_max ) THEN |
---|
| 1092 | DO i = nxl, nxr |
---|
| 1093 | DO j = nysv, nyn |
---|
| 1094 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 1095 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 1096 | ENDDO |
---|
| 1097 | ENDDO |
---|
| 1098 | ENDDO |
---|
| 1099 | ENDIF |
---|
| 1100 | ENDIF |
---|
| 1101 | |
---|
| 1102 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1103 | |
---|
| 1104 | ! |
---|
| 1105 | !-- w-velocity component |
---|
| 1106 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1107 | |
---|
[1353] | 1108 | tend = 0.0_wp |
---|
[1001] | 1109 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1110 | IF ( ws_scheme_mom ) THEN |
---|
| 1111 | CALL advec_w_ws |
---|
| 1112 | ELSE |
---|
| 1113 | CALL advec_w_pw |
---|
| 1114 | ENDIF |
---|
| 1115 | ELSE |
---|
[1001] | 1116 | CALL advec_w_up |
---|
[736] | 1117 | ENDIF |
---|
[1001] | 1118 | CALL diffusion_w |
---|
[736] | 1119 | CALL coriolis( 3 ) |
---|
[940] | 1120 | |
---|
| 1121 | IF ( .NOT. neutral ) THEN |
---|
| 1122 | IF ( ocean ) THEN |
---|
[1179] | 1123 | CALL buoyancy( rho, 3 ) |
---|
[736] | 1124 | ELSE |
---|
[940] | 1125 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1126 | CALL buoyancy( pt, 3 ) |
---|
[940] | 1127 | ELSE |
---|
[1179] | 1128 | CALL buoyancy( vpt, 3 ) |
---|
[940] | 1129 | ENDIF |
---|
[736] | 1130 | ENDIF |
---|
| 1131 | ENDIF |
---|
| 1132 | |
---|
| 1133 | ! |
---|
| 1134 | !-- Drag by plant canopy |
---|
| 1135 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1136 | |
---|
| 1137 | CALL user_actions( 'w-tendency' ) |
---|
| 1138 | |
---|
| 1139 | ! |
---|
| 1140 | !-- Prognostic equation for w-velocity component |
---|
| 1141 | DO i = nxl, nxr |
---|
| 1142 | DO j = nys, nyn |
---|
| 1143 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 1144 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1145 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1146 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 1147 | ENDDO |
---|
| 1148 | ENDDO |
---|
| 1149 | ENDDO |
---|
| 1150 | |
---|
| 1151 | ! |
---|
| 1152 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1153 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1154 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1155 | DO i = nxl, nxr |
---|
| 1156 | DO j = nys, nyn |
---|
| 1157 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1158 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1159 | ENDDO |
---|
| 1160 | ENDDO |
---|
| 1161 | ENDDO |
---|
| 1162 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1163 | intermediate_timestep_count_max ) THEN |
---|
| 1164 | DO i = nxl, nxr |
---|
| 1165 | DO j = nys, nyn |
---|
| 1166 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 1167 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 1168 | ENDDO |
---|
| 1169 | ENDDO |
---|
| 1170 | ENDDO |
---|
| 1171 | ENDIF |
---|
| 1172 | ENDIF |
---|
| 1173 | |
---|
| 1174 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1175 | |
---|
[940] | 1176 | |
---|
[736] | 1177 | ! |
---|
[940] | 1178 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1179 | IF ( .NOT. neutral ) THEN |
---|
[736] | 1180 | |
---|
[940] | 1181 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1182 | |
---|
[736] | 1183 | ! |
---|
[940] | 1184 | !-- pt-tendency terms with communication |
---|
| 1185 | sbt = tsc(2) |
---|
| 1186 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 1187 | |
---|
[940] | 1188 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 1189 | ! |
---|
[1001] | 1190 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1191 | sbt = 1.0_wp |
---|
[940] | 1192 | ENDIF |
---|
[1337] | 1193 | tend = 0.0_wp |
---|
[940] | 1194 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 1195 | |
---|
[736] | 1196 | ENDIF |
---|
[940] | 1197 | |
---|
| 1198 | ! |
---|
| 1199 | !-- pt-tendency terms with no communication |
---|
[1001] | 1200 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1201 | tend = 0.0_wp |
---|
[1001] | 1202 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 1203 | IF ( ws_scheme_sca ) THEN |
---|
| 1204 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1205 | ELSE |
---|
| 1206 | CALL advec_s_pw( pt ) |
---|
| 1207 | ENDIF |
---|
| 1208 | ELSE |
---|
[1001] | 1209 | CALL advec_s_up( pt ) |
---|
[940] | 1210 | ENDIF |
---|
[736] | 1211 | ENDIF |
---|
| 1212 | |
---|
[1001] | 1213 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1214 | |
---|
[736] | 1215 | ! |
---|
[940] | 1216 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
[1496] | 1217 | IF ( cloud_top_radiation ) THEN |
---|
[940] | 1218 | CALL calc_radiation |
---|
| 1219 | ENDIF |
---|
[736] | 1220 | |
---|
| 1221 | ! |
---|
[940] | 1222 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 1223 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[940] | 1224 | CALL impact_of_latent_heat |
---|
| 1225 | ENDIF |
---|
[736] | 1226 | |
---|
| 1227 | ! |
---|
[940] | 1228 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 1229 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[940] | 1230 | CALL plant_canopy_model( 4 ) |
---|
| 1231 | ENDIF |
---|
[736] | 1232 | |
---|
[940] | 1233 | ! |
---|
[1365] | 1234 | !-- Large scale advection |
---|
| 1235 | IF ( large_scale_forcing ) THEN |
---|
| 1236 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 1237 | ENDIF |
---|
| 1238 | |
---|
| 1239 | ! |
---|
[1380] | 1240 | !-- Nudging |
---|
| 1241 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1242 | |
---|
| 1243 | ! |
---|
[940] | 1244 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1245 | IF ( large_scale_subsidence .AND. & |
---|
| 1246 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1247 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[940] | 1248 | ENDIF |
---|
[736] | 1249 | |
---|
[940] | 1250 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 1251 | |
---|
| 1252 | ! |
---|
[940] | 1253 | !-- Prognostic equation for potential temperature |
---|
| 1254 | DO i = nxl, nxr |
---|
| 1255 | DO j = nys, nyn |
---|
| 1256 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1257 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1258 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1259 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1260 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 1261 | ENDDO |
---|
[736] | 1262 | ENDDO |
---|
| 1263 | ENDDO |
---|
| 1264 | |
---|
| 1265 | ! |
---|
[940] | 1266 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1267 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1268 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1269 | DO i = nxl, nxr |
---|
| 1270 | DO j = nys, nyn |
---|
| 1271 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1272 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1273 | ENDDO |
---|
[736] | 1274 | ENDDO |
---|
| 1275 | ENDDO |
---|
[940] | 1276 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1277 | intermediate_timestep_count_max ) THEN |
---|
| 1278 | DO i = nxl, nxr |
---|
| 1279 | DO j = nys, nyn |
---|
| 1280 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1281 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1282 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 1283 | ENDDO |
---|
[736] | 1284 | ENDDO |
---|
| 1285 | ENDDO |
---|
[940] | 1286 | ENDIF |
---|
[736] | 1287 | ENDIF |
---|
[940] | 1288 | |
---|
| 1289 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1290 | |
---|
[736] | 1291 | ENDIF |
---|
| 1292 | |
---|
| 1293 | ! |
---|
| 1294 | !-- If required, compute prognostic equation for salinity |
---|
| 1295 | IF ( ocean ) THEN |
---|
| 1296 | |
---|
| 1297 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1298 | |
---|
| 1299 | ! |
---|
| 1300 | !-- sa-tendency terms with communication |
---|
| 1301 | sbt = tsc(2) |
---|
| 1302 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1303 | |
---|
| 1304 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1305 | ! |
---|
[1001] | 1306 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1307 | sbt = 1.0_wp |
---|
[736] | 1308 | ENDIF |
---|
[1337] | 1309 | tend = 0.0_wp |
---|
[736] | 1310 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1311 | |
---|
[736] | 1312 | ENDIF |
---|
| 1313 | |
---|
| 1314 | ! |
---|
| 1315 | !-- sa-tendency terms with no communication |
---|
[1001] | 1316 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1353] | 1317 | tend = 0.0_wp |
---|
[1001] | 1318 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1319 | IF ( ws_scheme_sca ) THEN |
---|
| 1320 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1321 | ELSE |
---|
| 1322 | CALL advec_s_pw( sa ) |
---|
| 1323 | ENDIF |
---|
| 1324 | ELSE |
---|
[1001] | 1325 | CALL advec_s_up( sa ) |
---|
[736] | 1326 | ENDIF |
---|
| 1327 | ENDIF |
---|
[1001] | 1328 | |
---|
| 1329 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1330 | |
---|
| 1331 | CALL user_actions( 'sa-tendency' ) |
---|
| 1332 | |
---|
| 1333 | ! |
---|
| 1334 | !-- Prognostic equation for salinity |
---|
| 1335 | DO i = nxl, nxr |
---|
| 1336 | DO j = nys, nyn |
---|
| 1337 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1338 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1339 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1340 | - tsc(5) * rdf_sc(k) * & |
---|
| 1341 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 1342 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 1343 | ENDDO |
---|
| 1344 | ENDDO |
---|
| 1345 | ENDDO |
---|
| 1346 | |
---|
| 1347 | ! |
---|
| 1348 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1349 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1350 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1351 | DO i = nxl, nxr |
---|
| 1352 | DO j = nys, nyn |
---|
| 1353 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1354 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1355 | ENDDO |
---|
| 1356 | ENDDO |
---|
| 1357 | ENDDO |
---|
| 1358 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1359 | intermediate_timestep_count_max ) THEN |
---|
| 1360 | DO i = nxl, nxr |
---|
| 1361 | DO j = nys, nyn |
---|
| 1362 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1363 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1364 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 1365 | ENDDO |
---|
| 1366 | ENDDO |
---|
| 1367 | ENDDO |
---|
| 1368 | ENDIF |
---|
| 1369 | ENDIF |
---|
| 1370 | |
---|
| 1371 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1372 | |
---|
| 1373 | ! |
---|
| 1374 | !-- Calculate density by the equation of state for seawater |
---|
| 1375 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1376 | CALL eqn_state_seawater |
---|
| 1377 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1378 | |
---|
| 1379 | ENDIF |
---|
| 1380 | |
---|
| 1381 | ! |
---|
| 1382 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1383 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1384 | |
---|
| 1385 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1386 | |
---|
| 1387 | ! |
---|
| 1388 | !-- Scalar/q-tendency terms with communication |
---|
| 1389 | sbt = tsc(2) |
---|
| 1390 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1391 | |
---|
| 1392 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1393 | ! |
---|
[1001] | 1394 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1395 | sbt = 1.0_wp |
---|
[736] | 1396 | ENDIF |
---|
[1337] | 1397 | tend = 0.0_wp |
---|
[736] | 1398 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1399 | |
---|
[736] | 1400 | ENDIF |
---|
| 1401 | |
---|
| 1402 | ! |
---|
| 1403 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1404 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1405 | tend = 0.0_wp |
---|
[1001] | 1406 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1407 | IF ( ws_scheme_sca ) THEN |
---|
| 1408 | CALL advec_s_ws( q, 'q' ) |
---|
| 1409 | ELSE |
---|
| 1410 | CALL advec_s_pw( q ) |
---|
| 1411 | ENDIF |
---|
| 1412 | ELSE |
---|
[1001] | 1413 | CALL advec_s_up( q ) |
---|
[736] | 1414 | ENDIF |
---|
| 1415 | ENDIF |
---|
[1001] | 1416 | |
---|
| 1417 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1418 | |
---|
| 1419 | ! |
---|
| 1420 | !-- If required compute decrease of total water content due to |
---|
| 1421 | !-- precipitation |
---|
[1361] | 1422 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[736] | 1423 | CALL calc_precipitation |
---|
| 1424 | ENDIF |
---|
| 1425 | |
---|
| 1426 | ! |
---|
| 1427 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1428 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
[1365] | 1429 | |
---|
[736] | 1430 | ! |
---|
[1365] | 1431 | !-- Large scale advection |
---|
| 1432 | IF ( large_scale_forcing ) THEN |
---|
| 1433 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 1434 | ENDIF |
---|
| 1435 | |
---|
| 1436 | ! |
---|
[1380] | 1437 | !-- Nudging |
---|
| 1438 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1439 | |
---|
| 1440 | ! |
---|
[736] | 1441 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1442 | IF ( large_scale_subsidence .AND. & |
---|
| 1443 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1444 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[736] | 1445 | ENDIF |
---|
| 1446 | |
---|
| 1447 | CALL user_actions( 'q-tendency' ) |
---|
| 1448 | |
---|
| 1449 | ! |
---|
| 1450 | !-- Prognostic equation for total water content / scalar |
---|
| 1451 | DO i = nxl, nxr |
---|
| 1452 | DO j = nys, nyn |
---|
| 1453 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1454 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1455 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1456 | - tsc(5) * rdf_sc(k) * & |
---|
| 1457 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 1458 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 1459 | ENDDO |
---|
| 1460 | ENDDO |
---|
| 1461 | ENDDO |
---|
| 1462 | |
---|
| 1463 | ! |
---|
| 1464 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1465 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1466 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1467 | DO i = nxl, nxr |
---|
| 1468 | DO j = nys, nyn |
---|
| 1469 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1470 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1471 | ENDDO |
---|
| 1472 | ENDDO |
---|
| 1473 | ENDDO |
---|
| 1474 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1475 | intermediate_timestep_count_max ) THEN |
---|
| 1476 | DO i = nxl, nxr |
---|
| 1477 | DO j = nys, nyn |
---|
| 1478 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1479 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 1480 | ENDDO |
---|
| 1481 | ENDDO |
---|
| 1482 | ENDDO |
---|
| 1483 | ENDIF |
---|
| 1484 | ENDIF |
---|
| 1485 | |
---|
| 1486 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1487 | |
---|
[1361] | 1488 | ! |
---|
| 1489 | !-- If required, calculate prognostic equations for rain water content |
---|
| 1490 | !-- and rain drop concentration |
---|
| 1491 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 1492 | |
---|
| 1493 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 1494 | |
---|
| 1495 | ! |
---|
| 1496 | !-- Calculate prognostic equation for rain water content |
---|
| 1497 | sbt = tsc(2) |
---|
| 1498 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1499 | |
---|
| 1500 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1501 | ! |
---|
| 1502 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1503 | sbt = 1.0_wp |
---|
| 1504 | ENDIF |
---|
| 1505 | tend = 0.0_wp |
---|
| 1506 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 1507 | |
---|
| 1508 | ENDIF |
---|
| 1509 | |
---|
| 1510 | ! |
---|
| 1511 | !-- qr-tendency terms with no communication |
---|
| 1512 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1513 | tend = 0.0_wp |
---|
| 1514 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1515 | IF ( ws_scheme_sca ) THEN |
---|
| 1516 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 1517 | ELSE |
---|
| 1518 | CALL advec_s_pw( qr ) |
---|
| 1519 | ENDIF |
---|
| 1520 | ELSE |
---|
| 1521 | CALL advec_s_up( qr ) |
---|
| 1522 | ENDIF |
---|
| 1523 | ENDIF |
---|
| 1524 | |
---|
| 1525 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 1526 | |
---|
| 1527 | CALL user_actions( 'qr-tendency' ) |
---|
| 1528 | |
---|
| 1529 | ! |
---|
| 1530 | !-- Prognostic equation for rain water content |
---|
| 1531 | DO i = nxl, nxr |
---|
| 1532 | DO j = nys, nyn |
---|
| 1533 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1534 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1535 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 1536 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 1537 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 1538 | ENDDO |
---|
| 1539 | ENDDO |
---|
| 1540 | ENDDO |
---|
| 1541 | |
---|
| 1542 | ! |
---|
| 1543 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1544 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1545 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1546 | DO i = nxl, nxr |
---|
| 1547 | DO j = nys, nyn |
---|
| 1548 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1549 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 1550 | ENDDO |
---|
| 1551 | ENDDO |
---|
| 1552 | ENDDO |
---|
| 1553 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1554 | intermediate_timestep_count_max ) THEN |
---|
| 1555 | DO i = nxl, nxr |
---|
| 1556 | DO j = nys, nyn |
---|
| 1557 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1558 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1559 | tqr_m(k,j,i) |
---|
| 1560 | ENDDO |
---|
| 1561 | ENDDO |
---|
| 1562 | ENDDO |
---|
| 1563 | ENDIF |
---|
| 1564 | ENDIF |
---|
| 1565 | |
---|
| 1566 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 1567 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 1568 | |
---|
| 1569 | ! |
---|
| 1570 | !-- Calculate prognostic equation for rain drop concentration |
---|
| 1571 | sbt = tsc(2) |
---|
| 1572 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1573 | |
---|
| 1574 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1575 | ! |
---|
| 1576 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1577 | sbt = 1.0_wp |
---|
| 1578 | ENDIF |
---|
| 1579 | tend = 0.0_wp |
---|
| 1580 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 1581 | |
---|
| 1582 | ENDIF |
---|
| 1583 | |
---|
| 1584 | ! |
---|
| 1585 | !-- nr-tendency terms with no communication |
---|
| 1586 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1587 | tend = 0.0_wp |
---|
| 1588 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1589 | IF ( ws_scheme_sca ) THEN |
---|
| 1590 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 1591 | ELSE |
---|
| 1592 | CALL advec_s_pw( nr ) |
---|
| 1593 | ENDIF |
---|
| 1594 | ELSE |
---|
| 1595 | CALL advec_s_up( nr ) |
---|
| 1596 | ENDIF |
---|
| 1597 | ENDIF |
---|
| 1598 | |
---|
| 1599 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 1600 | |
---|
| 1601 | CALL user_actions( 'nr-tendency' ) |
---|
| 1602 | |
---|
| 1603 | ! |
---|
| 1604 | !-- Prognostic equation for rain drop concentration |
---|
| 1605 | DO i = nxl, nxr |
---|
| 1606 | DO j = nys, nyn |
---|
| 1607 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1608 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1609 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 1610 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 1611 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 1612 | ENDDO |
---|
| 1613 | ENDDO |
---|
| 1614 | ENDDO |
---|
| 1615 | |
---|
| 1616 | ! |
---|
| 1617 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1618 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1619 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1620 | DO i = nxl, nxr |
---|
| 1621 | DO j = nys, nyn |
---|
| 1622 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1623 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 1624 | ENDDO |
---|
| 1625 | ENDDO |
---|
| 1626 | ENDDO |
---|
| 1627 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1628 | intermediate_timestep_count_max ) THEN |
---|
| 1629 | DO i = nxl, nxr |
---|
| 1630 | DO j = nys, nyn |
---|
| 1631 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1632 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1633 | tnr_m(k,j,i) |
---|
| 1634 | ENDDO |
---|
| 1635 | ENDDO |
---|
| 1636 | ENDDO |
---|
| 1637 | ENDIF |
---|
| 1638 | ENDIF |
---|
| 1639 | |
---|
| 1640 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 1641 | |
---|
| 1642 | ENDIF |
---|
| 1643 | |
---|
[736] | 1644 | ENDIF |
---|
| 1645 | |
---|
| 1646 | ! |
---|
| 1647 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1648 | !-- energy (TKE) |
---|
| 1649 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1650 | |
---|
| 1651 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1652 | |
---|
| 1653 | sbt = tsc(2) |
---|
| 1654 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1655 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1656 | |
---|
| 1657 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1658 | ! |
---|
[1001] | 1659 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1660 | sbt = 1.0_wp |
---|
[736] | 1661 | ENDIF |
---|
[1337] | 1662 | tend = 0.0_wp |
---|
[736] | 1663 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1664 | |
---|
[736] | 1665 | ENDIF |
---|
| 1666 | ENDIF |
---|
| 1667 | |
---|
| 1668 | ! |
---|
| 1669 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1670 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1671 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 1672 | tend = 0.0_wp |
---|
[736] | 1673 | CALL advec_s_up( e ) |
---|
| 1674 | ELSE |
---|
[1337] | 1675 | tend = 0.0_wp |
---|
[1001] | 1676 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1677 | IF ( ws_scheme_sca ) THEN |
---|
| 1678 | CALL advec_s_ws( e, 'e' ) |
---|
| 1679 | ELSE |
---|
| 1680 | CALL advec_s_pw( e ) |
---|
| 1681 | ENDIF |
---|
| 1682 | ELSE |
---|
[1001] | 1683 | CALL advec_s_up( e ) |
---|
[736] | 1684 | ENDIF |
---|
| 1685 | ENDIF |
---|
[1001] | 1686 | ENDIF |
---|
| 1687 | |
---|
| 1688 | IF ( .NOT. humidity ) THEN |
---|
| 1689 | IF ( ocean ) THEN |
---|
| 1690 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1691 | ELSE |
---|
[1001] | 1692 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1693 | ENDIF |
---|
[1001] | 1694 | ELSE |
---|
| 1695 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1696 | ENDIF |
---|
[1001] | 1697 | |
---|
[736] | 1698 | CALL production_e |
---|
| 1699 | |
---|
| 1700 | ! |
---|
| 1701 | !-- Additional sink term for flows through plant canopies |
---|
| 1702 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1703 | CALL user_actions( 'e-tendency' ) |
---|
| 1704 | |
---|
| 1705 | ! |
---|
| 1706 | !-- Prognostic equation for TKE. |
---|
| 1707 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1708 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1709 | !-- value is reduced by 90%. |
---|
| 1710 | DO i = nxl, nxr |
---|
| 1711 | DO j = nys, nyn |
---|
| 1712 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1713 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1714 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 1715 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 1716 | ENDDO |
---|
| 1717 | ENDDO |
---|
| 1718 | ENDDO |
---|
| 1719 | |
---|
| 1720 | ! |
---|
| 1721 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1722 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1723 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1724 | DO i = nxl, nxr |
---|
| 1725 | DO j = nys, nyn |
---|
| 1726 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1727 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1728 | ENDDO |
---|
| 1729 | ENDDO |
---|
| 1730 | ENDDO |
---|
| 1731 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1732 | intermediate_timestep_count_max ) THEN |
---|
| 1733 | DO i = nxl, nxr |
---|
| 1734 | DO j = nys, nyn |
---|
| 1735 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1736 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[736] | 1737 | ENDDO |
---|
| 1738 | ENDDO |
---|
| 1739 | ENDDO |
---|
| 1740 | ENDIF |
---|
| 1741 | ENDIF |
---|
| 1742 | |
---|
| 1743 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1744 | |
---|
| 1745 | ENDIF |
---|
| 1746 | |
---|
| 1747 | END SUBROUTINE prognostic_equations_vector |
---|
| 1748 | |
---|
| 1749 | |
---|
[1015] | 1750 | SUBROUTINE prognostic_equations_acc |
---|
| 1751 | |
---|
| 1752 | !------------------------------------------------------------------------------! |
---|
| 1753 | ! Version for accelerator boards |
---|
| 1754 | !------------------------------------------------------------------------------! |
---|
| 1755 | |
---|
| 1756 | IMPLICIT NONE |
---|
| 1757 | |
---|
[1320] | 1758 | INTEGER(iwp) :: i !: |
---|
| 1759 | INTEGER(iwp) :: j !: |
---|
| 1760 | INTEGER(iwp) :: k !: |
---|
| 1761 | INTEGER(iwp) :: runge_step !: |
---|
[1015] | 1762 | |
---|
[1320] | 1763 | REAL(wp) :: sbt !: |
---|
| 1764 | |
---|
[1015] | 1765 | ! |
---|
| 1766 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1767 | runge_step = 0 |
---|
| 1768 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1769 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1770 | runge_step = 1 |
---|
| 1771 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1772 | intermediate_timestep_count_max ) THEN |
---|
| 1773 | runge_step = 2 |
---|
| 1774 | ENDIF |
---|
| 1775 | ENDIF |
---|
| 1776 | |
---|
| 1777 | ! |
---|
[1361] | 1778 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 1779 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 1780 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 1781 | call_microphysics_at_all_substeps ) & |
---|
| 1782 | ) THEN |
---|
| 1783 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 1784 | CALL microphysics_control |
---|
| 1785 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 1786 | ENDIF |
---|
| 1787 | |
---|
| 1788 | ! |
---|
[1015] | 1789 | !-- u-velocity component |
---|
[1374] | 1790 | !++ Statistics still not completely ported to accelerators |
---|
[1179] | 1791 | !$acc update device( hom, ref_state ) |
---|
[1015] | 1792 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1793 | |
---|
| 1794 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1795 | IF ( ws_scheme_mom ) THEN |
---|
| 1796 | CALL advec_u_ws_acc |
---|
| 1797 | ELSE |
---|
[1337] | 1798 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1799 | CALL advec_u_pw |
---|
| 1800 | ENDIF |
---|
| 1801 | ELSE |
---|
| 1802 | CALL advec_u_up |
---|
| 1803 | ENDIF |
---|
| 1804 | CALL diffusion_u_acc |
---|
| 1805 | CALL coriolis_acc( 1 ) |
---|
| 1806 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 1807 | CALL buoyancy( pt, 1 ) |
---|
[1015] | 1808 | ENDIF |
---|
| 1809 | |
---|
| 1810 | ! |
---|
| 1811 | !-- Drag by plant canopy |
---|
| 1812 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1813 | |
---|
| 1814 | ! |
---|
| 1815 | !-- External pressure gradient |
---|
| 1816 | IF ( dp_external ) THEN |
---|
[1128] | 1817 | DO i = i_left, i_right |
---|
| 1818 | DO j = j_south, j_north |
---|
[1015] | 1819 | DO k = dp_level_ind_b+1, nzt |
---|
| 1820 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1821 | ENDDO |
---|
| 1822 | ENDDO |
---|
| 1823 | ENDDO |
---|
| 1824 | ENDIF |
---|
| 1825 | |
---|
[1246] | 1826 | ! |
---|
| 1827 | !-- Nudging |
---|
| 1828 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 1829 | |
---|
[1015] | 1830 | CALL user_actions( 'u-tendency' ) |
---|
| 1831 | |
---|
| 1832 | ! |
---|
| 1833 | !-- Prognostic equation for u-velocity component |
---|
[1398] | 1834 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, u_init, u_p ) |
---|
[1257] | 1835 | !$acc loop independent |
---|
[1128] | 1836 | DO i = i_left, i_right |
---|
[1257] | 1837 | !$acc loop independent |
---|
[1128] | 1838 | DO j = j_south, j_north |
---|
[1257] | 1839 | !$acc loop independent |
---|
[1015] | 1840 | DO k = 1, nzt |
---|
| 1841 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1842 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1843 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 1844 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[1015] | 1845 | ! |
---|
| 1846 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1847 | IF ( runge_step == 1 ) THEN |
---|
| 1848 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1849 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1850 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[1015] | 1851 | ENDIF |
---|
| 1852 | ENDIF |
---|
| 1853 | ENDDO |
---|
| 1854 | ENDDO |
---|
| 1855 | ENDDO |
---|
| 1856 | !$acc end kernels |
---|
| 1857 | |
---|
| 1858 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1859 | |
---|
| 1860 | ! |
---|
| 1861 | !-- v-velocity component |
---|
| 1862 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1863 | |
---|
| 1864 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1865 | IF ( ws_scheme_mom ) THEN |
---|
| 1866 | CALL advec_v_ws_acc |
---|
| 1867 | ELSE |
---|
[1337] | 1868 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1869 | CALL advec_v_pw |
---|
| 1870 | END IF |
---|
| 1871 | ELSE |
---|
| 1872 | CALL advec_v_up |
---|
| 1873 | ENDIF |
---|
| 1874 | CALL diffusion_v_acc |
---|
| 1875 | CALL coriolis_acc( 2 ) |
---|
| 1876 | |
---|
| 1877 | ! |
---|
| 1878 | !-- Drag by plant canopy |
---|
| 1879 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1880 | |
---|
| 1881 | ! |
---|
| 1882 | !-- External pressure gradient |
---|
| 1883 | IF ( dp_external ) THEN |
---|
[1128] | 1884 | DO i = i_left, i_right |
---|
| 1885 | DO j = j_south, j_north |
---|
[1015] | 1886 | DO k = dp_level_ind_b+1, nzt |
---|
| 1887 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1888 | ENDDO |
---|
| 1889 | ENDDO |
---|
| 1890 | ENDDO |
---|
| 1891 | ENDIF |
---|
| 1892 | |
---|
[1246] | 1893 | ! |
---|
| 1894 | !-- Nudging |
---|
| 1895 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1896 | |
---|
[1015] | 1897 | CALL user_actions( 'v-tendency' ) |
---|
| 1898 | |
---|
| 1899 | ! |
---|
| 1900 | !-- Prognostic equation for v-velocity component |
---|
[1398] | 1901 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, v_init, v_p ) |
---|
[1257] | 1902 | !$acc loop independent |
---|
[1128] | 1903 | DO i = i_left, i_right |
---|
[1257] | 1904 | !$acc loop independent |
---|
[1128] | 1905 | DO j = j_south, j_north |
---|
[1257] | 1906 | !$acc loop independent |
---|
[1015] | 1907 | DO k = 1, nzt |
---|
| 1908 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1909 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1910 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1911 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[1015] | 1912 | ! |
---|
| 1913 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1914 | IF ( runge_step == 1 ) THEN |
---|
| 1915 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1916 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1917 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[1015] | 1918 | ENDIF |
---|
| 1919 | ENDIF |
---|
| 1920 | ENDDO |
---|
| 1921 | ENDDO |
---|
| 1922 | ENDDO |
---|
| 1923 | !$acc end kernels |
---|
| 1924 | |
---|
| 1925 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1926 | |
---|
| 1927 | ! |
---|
| 1928 | !-- w-velocity component |
---|
| 1929 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1930 | |
---|
| 1931 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1932 | IF ( ws_scheme_mom ) THEN |
---|
| 1933 | CALL advec_w_ws_acc |
---|
| 1934 | ELSE |
---|
[1337] | 1935 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1936 | CALL advec_w_pw |
---|
| 1937 | ENDIF |
---|
| 1938 | ELSE |
---|
| 1939 | CALL advec_w_up |
---|
| 1940 | ENDIF |
---|
| 1941 | CALL diffusion_w_acc |
---|
| 1942 | CALL coriolis_acc( 3 ) |
---|
| 1943 | |
---|
| 1944 | IF ( .NOT. neutral ) THEN |
---|
| 1945 | IF ( ocean ) THEN |
---|
[1179] | 1946 | CALL buoyancy( rho, 3 ) |
---|
[1015] | 1947 | ELSE |
---|
| 1948 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1949 | CALL buoyancy_acc( pt, 3 ) |
---|
[1015] | 1950 | ELSE |
---|
[1179] | 1951 | CALL buoyancy( vpt, 3 ) |
---|
[1015] | 1952 | ENDIF |
---|
| 1953 | ENDIF |
---|
| 1954 | ENDIF |
---|
| 1955 | |
---|
| 1956 | ! |
---|
| 1957 | !-- Drag by plant canopy |
---|
| 1958 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1959 | |
---|
| 1960 | CALL user_actions( 'w-tendency' ) |
---|
| 1961 | |
---|
| 1962 | ! |
---|
| 1963 | !-- Prognostic equation for w-velocity component |
---|
| 1964 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
[1257] | 1965 | !$acc loop independent |
---|
[1128] | 1966 | DO i = i_left, i_right |
---|
[1257] | 1967 | !$acc loop independent |
---|
[1128] | 1968 | DO j = j_south, j_north |
---|
[1257] | 1969 | !$acc loop independent |
---|
[1015] | 1970 | DO k = 1, nzt-1 |
---|
| 1971 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 1972 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1973 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1974 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1975 | ! |
---|
| 1976 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1977 | IF ( runge_step == 1 ) THEN |
---|
| 1978 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1979 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1980 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[1015] | 1981 | ENDIF |
---|
| 1982 | ENDIF |
---|
| 1983 | ENDDO |
---|
| 1984 | ENDDO |
---|
| 1985 | ENDDO |
---|
| 1986 | !$acc end kernels |
---|
| 1987 | |
---|
| 1988 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1989 | |
---|
| 1990 | |
---|
| 1991 | ! |
---|
| 1992 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1993 | IF ( .NOT. neutral ) THEN |
---|
| 1994 | |
---|
| 1995 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1996 | |
---|
| 1997 | ! |
---|
| 1998 | !-- pt-tendency terms with communication |
---|
| 1999 | sbt = tsc(2) |
---|
| 2000 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2001 | |
---|
| 2002 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2003 | ! |
---|
| 2004 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 2005 | sbt = 1.0_wp |
---|
[1015] | 2006 | ENDIF |
---|
[1337] | 2007 | tend = 0.0_wp |
---|
[1015] | 2008 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 2009 | |
---|
| 2010 | ENDIF |
---|
| 2011 | |
---|
| 2012 | ! |
---|
| 2013 | !-- pt-tendency terms with no communication |
---|
| 2014 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2015 | tend = 0.0_wp |
---|
[1015] | 2016 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2017 | IF ( ws_scheme_sca ) THEN |
---|
| 2018 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 2019 | ELSE |
---|
[1337] | 2020 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2021 | CALL advec_s_pw( pt ) |
---|
| 2022 | ENDIF |
---|
| 2023 | ELSE |
---|
| 2024 | CALL advec_s_up( pt ) |
---|
| 2025 | ENDIF |
---|
| 2026 | ENDIF |
---|
| 2027 | |
---|
| 2028 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 2029 | |
---|
| 2030 | ! |
---|
| 2031 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
[1496] | 2032 | IF ( cloud_top_radiation ) THEN |
---|
[1015] | 2033 | CALL calc_radiation |
---|
| 2034 | ENDIF |
---|
| 2035 | |
---|
| 2036 | ! |
---|
| 2037 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 2038 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2039 | CALL impact_of_latent_heat |
---|
| 2040 | ENDIF |
---|
| 2041 | |
---|
| 2042 | ! |
---|
| 2043 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 2044 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[1015] | 2045 | CALL plant_canopy_model( 4 ) |
---|
| 2046 | ENDIF |
---|
| 2047 | |
---|
| 2048 | ! |
---|
[1365] | 2049 | !-- Large scale advection |
---|
| 2050 | IF ( large_scale_forcing ) THEN |
---|
| 2051 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 2052 | ENDIF |
---|
| 2053 | |
---|
| 2054 | ! |
---|
[1380] | 2055 | !-- Nudging |
---|
| 2056 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 2057 | |
---|
| 2058 | ! |
---|
[1015] | 2059 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2060 | IF ( large_scale_subsidence .AND. & |
---|
| 2061 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2062 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[1015] | 2063 | ENDIF |
---|
| 2064 | |
---|
| 2065 | CALL user_actions( 'pt-tendency' ) |
---|
| 2066 | |
---|
| 2067 | ! |
---|
| 2068 | !-- Prognostic equation for potential temperature |
---|
| 2069 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 2070 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
[1257] | 2071 | !$acc loop independent |
---|
[1128] | 2072 | DO i = i_left, i_right |
---|
[1257] | 2073 | !$acc loop independent |
---|
[1128] | 2074 | DO j = j_south, j_north |
---|
[1257] | 2075 | !$acc loop independent |
---|
[1015] | 2076 | DO k = 1, nzt |
---|
| 2077 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2078 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2079 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 2080 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 2081 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 2082 | ! |
---|
| 2083 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2084 | IF ( runge_step == 1 ) THEN |
---|
| 2085 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 2086 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2087 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tpt_m(k,j,i) |
---|
[1015] | 2088 | ENDIF |
---|
| 2089 | ENDIF |
---|
| 2090 | ENDDO |
---|
| 2091 | ENDDO |
---|
| 2092 | ENDDO |
---|
| 2093 | !$acc end kernels |
---|
| 2094 | |
---|
| 2095 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 2096 | |
---|
| 2097 | ENDIF |
---|
| 2098 | |
---|
| 2099 | ! |
---|
| 2100 | !-- If required, compute prognostic equation for salinity |
---|
| 2101 | IF ( ocean ) THEN |
---|
| 2102 | |
---|
| 2103 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 2104 | |
---|
| 2105 | ! |
---|
| 2106 | !-- sa-tendency terms with communication |
---|
| 2107 | sbt = tsc(2) |
---|
| 2108 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2109 | |
---|
| 2110 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2111 | ! |
---|
| 2112 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2113 | sbt = 1.0_wp |
---|
[1015] | 2114 | ENDIF |
---|
[1337] | 2115 | tend = 0.0_wp |
---|
[1015] | 2116 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 2117 | |
---|
| 2118 | ENDIF |
---|
| 2119 | |
---|
| 2120 | ! |
---|
| 2121 | !-- sa-tendency terms with no communication |
---|
| 2122 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2123 | tend = 0.0_wp |
---|
[1015] | 2124 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2125 | IF ( ws_scheme_sca ) THEN |
---|
| 2126 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 2127 | ELSE |
---|
| 2128 | CALL advec_s_pw( sa ) |
---|
| 2129 | ENDIF |
---|
| 2130 | ELSE |
---|
| 2131 | CALL advec_s_up( sa ) |
---|
| 2132 | ENDIF |
---|
| 2133 | ENDIF |
---|
| 2134 | |
---|
| 2135 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 2136 | |
---|
| 2137 | CALL user_actions( 'sa-tendency' ) |
---|
| 2138 | |
---|
| 2139 | ! |
---|
| 2140 | !-- Prognostic equation for salinity |
---|
[1128] | 2141 | DO i = i_left, i_right |
---|
| 2142 | DO j = j_south, j_north |
---|
[1015] | 2143 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2144 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2145 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 2146 | - tsc(5) * rdf_sc(k) * & |
---|
| 2147 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 2148 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[1015] | 2149 | ! |
---|
| 2150 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2151 | IF ( runge_step == 1 ) THEN |
---|
| 2152 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 2153 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2154 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tsa_m(k,j,i) |
---|
[1015] | 2155 | ENDIF |
---|
| 2156 | ENDDO |
---|
| 2157 | ENDDO |
---|
| 2158 | ENDDO |
---|
| 2159 | |
---|
| 2160 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 2161 | |
---|
| 2162 | ! |
---|
| 2163 | !-- Calculate density by the equation of state for seawater |
---|
| 2164 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 2165 | CALL eqn_state_seawater |
---|
| 2166 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 2167 | |
---|
| 2168 | ENDIF |
---|
| 2169 | |
---|
| 2170 | ! |
---|
| 2171 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 2172 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 2173 | |
---|
| 2174 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 2175 | |
---|
| 2176 | ! |
---|
| 2177 | !-- Scalar/q-tendency terms with communication |
---|
| 2178 | sbt = tsc(2) |
---|
| 2179 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2180 | |
---|
| 2181 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2182 | ! |
---|
| 2183 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2184 | sbt = 1.0_wp |
---|
[1015] | 2185 | ENDIF |
---|
[1337] | 2186 | tend = 0.0_wp |
---|
[1015] | 2187 | CALL advec_s_bc( q, 'q' ) |
---|
| 2188 | |
---|
| 2189 | ENDIF |
---|
| 2190 | |
---|
| 2191 | ! |
---|
| 2192 | !-- Scalar/q-tendency terms with no communication |
---|
| 2193 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2194 | tend = 0.0_wp |
---|
[1015] | 2195 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2196 | IF ( ws_scheme_sca ) THEN |
---|
| 2197 | CALL advec_s_ws( q, 'q' ) |
---|
| 2198 | ELSE |
---|
| 2199 | CALL advec_s_pw( q ) |
---|
| 2200 | ENDIF |
---|
| 2201 | ELSE |
---|
| 2202 | CALL advec_s_up( q ) |
---|
| 2203 | ENDIF |
---|
| 2204 | ENDIF |
---|
| 2205 | |
---|
| 2206 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 2207 | |
---|
| 2208 | ! |
---|
| 2209 | !-- If required compute decrease of total water content due to |
---|
| 2210 | !-- precipitation |
---|
[1361] | 2211 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2212 | CALL calc_precipitation |
---|
| 2213 | ENDIF |
---|
| 2214 | |
---|
| 2215 | ! |
---|
| 2216 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 2217 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 2218 | |
---|
| 2219 | ! |
---|
[1365] | 2220 | !-- Large scale advection |
---|
| 2221 | IF ( large_scale_forcing ) THEN |
---|
| 2222 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 2223 | ENDIF |
---|
| 2224 | |
---|
| 2225 | ! |
---|
[1380] | 2226 | !-- Nudging |
---|
| 2227 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 2228 | |
---|
| 2229 | ! |
---|
[1015] | 2230 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2231 | IF ( large_scale_subsidence .AND. & |
---|
| 2232 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2233 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[1015] | 2234 | ENDIF |
---|
| 2235 | |
---|
| 2236 | CALL user_actions( 'q-tendency' ) |
---|
| 2237 | |
---|
| 2238 | ! |
---|
| 2239 | !-- Prognostic equation for total water content / scalar |
---|
[1128] | 2240 | DO i = i_left, i_right |
---|
| 2241 | DO j = j_south, j_north |
---|
[1015] | 2242 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2243 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2244 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 2245 | - tsc(5) * rdf_sc(k) * & |
---|
| 2246 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 2247 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[1015] | 2248 | ! |
---|
| 2249 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2250 | IF ( runge_step == 1 ) THEN |
---|
| 2251 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 2252 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2253 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[1015] | 2254 | ENDIF |
---|
| 2255 | ENDDO |
---|
| 2256 | ENDDO |
---|
| 2257 | ENDDO |
---|
| 2258 | |
---|
| 2259 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 2260 | |
---|
[1361] | 2261 | ! |
---|
| 2262 | !-- If required, calculate prognostic equations for rain water content |
---|
| 2263 | !-- and rain drop concentration |
---|
| 2264 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 2265 | |
---|
| 2266 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 2267 | ! |
---|
| 2268 | !-- qr-tendency terms with communication |
---|
| 2269 | sbt = tsc(2) |
---|
| 2270 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2271 | |
---|
| 2272 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2273 | ! |
---|
| 2274 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2275 | sbt = 1.0_wp |
---|
| 2276 | ENDIF |
---|
| 2277 | tend = 0.0_wp |
---|
| 2278 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 2279 | |
---|
| 2280 | ENDIF |
---|
| 2281 | |
---|
| 2282 | ! |
---|
| 2283 | !-- qr-tendency terms with no communication |
---|
| 2284 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2285 | tend = 0.0_wp |
---|
| 2286 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2287 | IF ( ws_scheme_sca ) THEN |
---|
| 2288 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 2289 | ELSE |
---|
| 2290 | CALL advec_s_pw( qr ) |
---|
| 2291 | ENDIF |
---|
| 2292 | ELSE |
---|
| 2293 | CALL advec_s_up( qr ) |
---|
| 2294 | ENDIF |
---|
| 2295 | ENDIF |
---|
| 2296 | |
---|
| 2297 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 2298 | |
---|
| 2299 | CALL user_actions( 'qr-tendency' ) |
---|
| 2300 | |
---|
| 2301 | ! |
---|
| 2302 | !-- Prognostic equation for rain water content |
---|
| 2303 | DO i = i_left, i_right |
---|
| 2304 | DO j = j_south, j_north |
---|
| 2305 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2306 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2307 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 2308 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 2309 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 2310 | ! |
---|
| 2311 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2312 | IF ( runge_step == 1 ) THEN |
---|
| 2313 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 2314 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2315 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2316 | tqr_m(k,j,i) |
---|
| 2317 | ENDIF |
---|
| 2318 | ENDDO |
---|
| 2319 | ENDDO |
---|
| 2320 | ENDDO |
---|
| 2321 | |
---|
| 2322 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 2323 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 2324 | |
---|
| 2325 | ! |
---|
| 2326 | !-- nr-tendency terms with communication |
---|
| 2327 | sbt = tsc(2) |
---|
| 2328 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2329 | |
---|
| 2330 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2331 | ! |
---|
| 2332 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2333 | sbt = 1.0_wp |
---|
| 2334 | ENDIF |
---|
| 2335 | tend = 0.0_wp |
---|
| 2336 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 2337 | |
---|
| 2338 | ENDIF |
---|
| 2339 | |
---|
| 2340 | ! |
---|
| 2341 | !-- nr-tendency terms with no communication |
---|
| 2342 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2343 | tend = 0.0_wp |
---|
| 2344 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2345 | IF ( ws_scheme_sca ) THEN |
---|
| 2346 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 2347 | ELSE |
---|
| 2348 | CALL advec_s_pw( nr ) |
---|
| 2349 | ENDIF |
---|
| 2350 | ELSE |
---|
| 2351 | CALL advec_s_up( nr ) |
---|
| 2352 | ENDIF |
---|
| 2353 | ENDIF |
---|
| 2354 | |
---|
| 2355 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 2356 | |
---|
| 2357 | CALL user_actions( 'nr-tendency' ) |
---|
| 2358 | |
---|
| 2359 | ! |
---|
| 2360 | !-- Prognostic equation for rain drop concentration |
---|
| 2361 | DO i = i_left, i_right |
---|
| 2362 | DO j = j_south, j_north |
---|
| 2363 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2364 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2365 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 2366 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 2367 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 2368 | ! |
---|
| 2369 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2370 | IF ( runge_step == 1 ) THEN |
---|
| 2371 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 2372 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2373 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2374 | tnr_m(k,j,i) |
---|
| 2375 | ENDIF |
---|
| 2376 | ENDDO |
---|
| 2377 | ENDDO |
---|
| 2378 | ENDDO |
---|
| 2379 | |
---|
| 2380 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 2381 | |
---|
| 2382 | ENDIF |
---|
| 2383 | |
---|
[1015] | 2384 | ENDIF |
---|
| 2385 | |
---|
| 2386 | ! |
---|
| 2387 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 2388 | !-- energy (TKE) |
---|
| 2389 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 2390 | |
---|
| 2391 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 2392 | |
---|
| 2393 | sbt = tsc(2) |
---|
| 2394 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 2395 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2396 | |
---|
| 2397 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2398 | ! |
---|
| 2399 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2400 | sbt = 1.0_wp |
---|
[1015] | 2401 | ENDIF |
---|
[1337] | 2402 | tend = 0.0_wp |
---|
[1015] | 2403 | CALL advec_s_bc( e, 'e' ) |
---|
| 2404 | |
---|
| 2405 | ENDIF |
---|
| 2406 | ENDIF |
---|
| 2407 | |
---|
| 2408 | ! |
---|
| 2409 | !-- TKE-tendency terms with no communication |
---|
| 2410 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 2411 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 2412 | tend = 0.0_wp |
---|
[1015] | 2413 | CALL advec_s_up( e ) |
---|
| 2414 | ELSE |
---|
| 2415 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2416 | IF ( ws_scheme_sca ) THEN |
---|
| 2417 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 2418 | ELSE |
---|
[1337] | 2419 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2420 | CALL advec_s_pw( e ) |
---|
| 2421 | ENDIF |
---|
| 2422 | ELSE |
---|
[1337] | 2423 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2424 | CALL advec_s_up( e ) |
---|
| 2425 | ENDIF |
---|
| 2426 | ENDIF |
---|
| 2427 | ENDIF |
---|
| 2428 | |
---|
| 2429 | IF ( .NOT. humidity ) THEN |
---|
| 2430 | IF ( ocean ) THEN |
---|
| 2431 | CALL diffusion_e( prho, prho_reference ) |
---|
| 2432 | ELSE |
---|
| 2433 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 2434 | ENDIF |
---|
| 2435 | ELSE |
---|
| 2436 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 2437 | ENDIF |
---|
| 2438 | |
---|
| 2439 | CALL production_e_acc |
---|
| 2440 | |
---|
| 2441 | ! |
---|
| 2442 | !-- Additional sink term for flows through plant canopies |
---|
| 2443 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 2444 | CALL user_actions( 'e-tendency' ) |
---|
| 2445 | |
---|
| 2446 | ! |
---|
| 2447 | !-- Prognostic equation for TKE. |
---|
| 2448 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2449 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2450 | !-- value is reduced by 90%. |
---|
| 2451 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
[1257] | 2452 | !$acc loop independent |
---|
[1128] | 2453 | DO i = i_left, i_right |
---|
[1257] | 2454 | !$acc loop independent |
---|
[1128] | 2455 | DO j = j_south, j_north |
---|
[1257] | 2456 | !$acc loop independent |
---|
[1015] | 2457 | DO k = 1, nzt |
---|
| 2458 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2459 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2460 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 2461 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[1015] | 2462 | ! |
---|
| 2463 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2464 | IF ( runge_step == 1 ) THEN |
---|
| 2465 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2466 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2467 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[1015] | 2468 | ENDIF |
---|
| 2469 | ENDIF |
---|
| 2470 | ENDDO |
---|
| 2471 | ENDDO |
---|
| 2472 | ENDDO |
---|
| 2473 | !$acc end kernels |
---|
| 2474 | |
---|
| 2475 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2476 | |
---|
| 2477 | ENDIF |
---|
| 2478 | |
---|
| 2479 | END SUBROUTINE prognostic_equations_acc |
---|
| 2480 | |
---|
| 2481 | |
---|
[736] | 2482 | END MODULE prognostic_equations_mod |
---|