[736] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[736] | 20 | ! Current revisions: |
---|
[1092] | 21 | ! ------------------ |
---|
[1497] | 22 | ! |
---|
| 23 | ! |
---|
[1485] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: prognostic_equations.f90 1497 2014-12-02 17:28:07Z kanani $ |
---|
| 27 | ! |
---|
[1497] | 28 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
| 29 | ! Renamed "radiation" -> "cloud_top_radiation" |
---|
| 30 | ! |
---|
[1496] | 31 | ! 1484 2014-10-21 10:53:05Z kanani |
---|
[1484] | 32 | ! Changes due to new module structure of the plant canopy model: |
---|
| 33 | ! parameters cthf and plant_canopy moved to module plant_canopy_model_mod. |
---|
| 34 | ! Removed double-listing of use_upstream_for_tke in ONLY-list of module |
---|
| 35 | ! control_parameters |
---|
| 36 | ! |
---|
| 37 | ! 1409 2014-05-23 12:11:32Z suehring |
---|
[1409] | 38 | ! Bugfix: i_omp_start changed for advec_u_ws at left inflow and outflow boundary. |
---|
| 39 | ! This ensures that left-hand side fluxes are also calculated for nxl in that |
---|
| 40 | ! case, even though the solution at nxl is overwritten in boundary_conds() |
---|
| 41 | ! |
---|
| 42 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
[1398] | 43 | ! Rayleigh-damping for horizontal velocity components changed: instead of damping |
---|
| 44 | ! against ug and vg, damping against u_init and v_init is used to allow for a |
---|
| 45 | ! homogenized treatment in case of nudging |
---|
| 46 | ! |
---|
| 47 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
[1381] | 48 | ! Change order of calls for scalar prognostic quantities: |
---|
| 49 | ! ls_advec -> nudging -> subsidence since initial profiles |
---|
| 50 | ! |
---|
[1380] | 51 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 52 | ! missing variables added to ONLY lists |
---|
| 53 | ! |
---|
| 54 | ! 1365 2014-04-22 15:03:56Z boeske |
---|
[1365] | 55 | ! Calls of ls_advec for large scale advection added, |
---|
| 56 | ! subroutine subsidence is only called if use_subsidence_tendencies = .F., |
---|
| 57 | ! new argument ls_index added to the calls of subsidence |
---|
| 58 | ! +ls_index |
---|
| 59 | ! |
---|
| 60 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
[1361] | 61 | ! Two-moment microphysics moved to the start of prognostic equations. This makes |
---|
| 62 | ! the 3d arrays for tend_q, tend_qr, tend_pt and tend_pt redundant. |
---|
| 63 | ! Additionally, it is allowed to call the microphysics just once during the time |
---|
| 64 | ! step (not at each sub-time step). |
---|
| 65 | ! |
---|
| 66 | ! Two-moment cloud physics added for vector and accelerator optimization. |
---|
| 67 | ! |
---|
| 68 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
[1354] | 69 | ! REAL constants provided with KIND-attribute |
---|
| 70 | ! |
---|
[1353] | 71 | ! 1337 2014-03-25 15:11:48Z heinze |
---|
| 72 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 73 | ! |
---|
| 74 | ! 1332 2014-03-25 11:59:43Z suehring |
---|
[1333] | 75 | ! Bugfix: call advec_ws or advec_pw for TKE only if NOT use_upstream_for_tke |
---|
| 76 | ! |
---|
[1332] | 77 | ! 1330 2014-03-24 17:29:32Z suehring |
---|
[1331] | 78 | ! In case of SGS-particle velocity advection of TKE is also allowed with |
---|
| 79 | ! dissipative 5th-order scheme. |
---|
| 80 | ! |
---|
[1321] | 81 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 82 | ! ONLY-attribute added to USE-statements, |
---|
| 83 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 84 | ! kinds are defined in new module kinds, |
---|
| 85 | ! old module precision_kind is removed, |
---|
| 86 | ! revision history before 2012 removed, |
---|
| 87 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 88 | ! all variable declaration statements |
---|
[1054] | 89 | ! |
---|
[1319] | 90 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 91 | ! module interfaces removed |
---|
| 92 | ! |
---|
[1258] | 93 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 94 | ! openacc loop vector clauses removed, independent clauses added |
---|
| 95 | ! |
---|
[1247] | 96 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
| 97 | ! enable nudging also for accelerator version |
---|
| 98 | ! |
---|
[1242] | 99 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 100 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
| 101 | ! |
---|
[1182] | 102 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 103 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 104 | ! |
---|
[1132] | 105 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 106 | ! those parts requiring global communication moved to time_integration, |
---|
| 107 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 108 | ! j_north |
---|
| 109 | ! |
---|
[1116] | 110 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 111 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 112 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 113 | ! |
---|
[1112] | 114 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 115 | ! update directives for prognostic quantities removed |
---|
| 116 | ! |
---|
[1107] | 117 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 118 | ! small changes in code formatting |
---|
| 119 | ! |
---|
[1093] | 120 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 121 | ! unused variables removed |
---|
| 122 | ! |
---|
[1054] | 123 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 124 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 125 | ! and rain water content (qr) |
---|
[979] | 126 | ! |
---|
[1053] | 127 | ! currently, only available for cache loop optimization |
---|
[1020] | 128 | ! |
---|
[1037] | 129 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 130 | ! code put under GPL (PALM 3.9) |
---|
| 131 | ! |
---|
[1020] | 132 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 133 | ! non-optimized version of prognostic_equations removed |
---|
| 134 | ! |
---|
[1017] | 135 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 136 | ! new branch prognostic_equations_acc |
---|
| 137 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 138 | ! |
---|
[1002] | 139 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 140 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 141 | ! |
---|
[979] | 142 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 143 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 144 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 145 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 146 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 147 | ! |
---|
[941] | 148 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 149 | ! temperature equation can be switched off |
---|
| 150 | ! |
---|
[736] | 151 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 152 | ! Initial revision |
---|
| 153 | ! |
---|
| 154 | ! |
---|
| 155 | ! Description: |
---|
| 156 | ! ------------ |
---|
| 157 | ! Solving the prognostic equations. |
---|
| 158 | !------------------------------------------------------------------------------! |
---|
| 159 | |
---|
[1320] | 160 | USE arrays_3d, & |
---|
| 161 | ONLY: diss_l_e, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qr, & |
---|
| 162 | diss_l_sa, diss_s_e, diss_s_nr, diss_s_pt, diss_s_q, & |
---|
| 163 | diss_s_qr, diss_s_sa, e, e_p, flux_s_e, flux_s_nr, flux_s_pt, & |
---|
| 164 | flux_s_q, flux_s_qr, flux_s_sa, flux_l_e, flux_l_nr, & |
---|
| 165 | flux_l_pt, flux_l_q, flux_l_qr, flux_l_sa, nr, nr_p, nrsws, & |
---|
| 166 | nrswst, pt, ptdf_x, ptdf_y, pt_init, pt_p, prho, q, q_init, & |
---|
[1374] | 167 | q_p, qsws, qswst, qr, qr_p, qrsws, qrswst, rdf, rdf_sc, & |
---|
| 168 | ref_state, rho, sa, sa_init, sa_p, saswsb, saswst, shf, tend, & |
---|
| 169 | te_m, tnr_m, tpt_m, tq_m, tqr_m, tsa_m, tswst, tu_m, tv_m, & |
---|
[1398] | 170 | tw_m, u, ug, u_init, u_p, v, vg, vpt, v_init, v_p, w, w_p |
---|
[1320] | 171 | |
---|
| 172 | USE control_parameters, & |
---|
[1361] | 173 | ONLY: call_microphysics_at_all_substeps, cloud_physics, & |
---|
[1496] | 174 | cloud_top_radiation, constant_diffusion, dp_external, & |
---|
[1320] | 175 | dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, humidity, & |
---|
| 176 | icloud_scheme, inflow_l, intermediate_timestep_count, & |
---|
[1365] | 177 | intermediate_timestep_count_max, large_scale_forcing, & |
---|
| 178 | large_scale_subsidence, neutral, nudging, ocean, outflow_l, & |
---|
[1484] | 179 | outflow_s, passive_scalar, precipitation, & |
---|
[1365] | 180 | prho_reference, prho_reference, prho_reference, pt_reference, & |
---|
[1496] | 181 | pt_reference, pt_reference, scalar_advec, scalar_advec, & |
---|
| 182 | simulated_time, sloping_surface, & |
---|
| 183 | timestep_scheme, tsc, use_subsidence_tendencies, & |
---|
| 184 | use_upstream_for_tke, wall_heatflux, & |
---|
[1320] | 185 | wall_nrflux, wall_qflux, wall_qflux, wall_qflux, wall_qrflux, & |
---|
| 186 | wall_salinityflux, ws_scheme_mom, ws_scheme_sca |
---|
[736] | 187 | |
---|
[1320] | 188 | USE cpulog, & |
---|
| 189 | ONLY: cpu_log, log_point |
---|
[736] | 190 | |
---|
[1320] | 191 | USE eqn_state_seawater_mod, & |
---|
| 192 | ONLY: eqn_state_seawater |
---|
| 193 | |
---|
| 194 | USE indices, & |
---|
| 195 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlu, nxr, nyn, nys, & |
---|
| 196 | nysv, nzb_s_inner, nzb_u_inner, nzb_v_inner, nzb_w_inner, nzt |
---|
| 197 | |
---|
| 198 | USE advec_ws, & |
---|
| 199 | ONLY: advec_s_ws, advec_s_ws_acc, advec_u_ws, advec_u_ws_acc, & |
---|
| 200 | advec_v_ws, advec_v_ws_acc, advec_w_ws, advec_w_ws_acc |
---|
| 201 | |
---|
| 202 | USE advec_s_pw_mod, & |
---|
| 203 | ONLY: advec_s_pw |
---|
| 204 | |
---|
| 205 | USE advec_s_up_mod, & |
---|
| 206 | ONLY: advec_s_up |
---|
| 207 | |
---|
| 208 | USE advec_u_pw_mod, & |
---|
| 209 | ONLY: advec_u_pw |
---|
| 210 | |
---|
| 211 | USE advec_u_up_mod, & |
---|
| 212 | ONLY: advec_u_up |
---|
| 213 | |
---|
| 214 | USE advec_v_pw_mod, & |
---|
| 215 | ONLY: advec_v_pw |
---|
| 216 | |
---|
| 217 | USE advec_v_up_mod, & |
---|
| 218 | ONLY: advec_v_up |
---|
| 219 | |
---|
| 220 | USE advec_w_pw_mod, & |
---|
| 221 | ONLY: advec_w_pw |
---|
| 222 | |
---|
| 223 | USE advec_w_up_mod, & |
---|
| 224 | ONLY: advec_w_up |
---|
| 225 | |
---|
| 226 | USE buoyancy_mod, & |
---|
| 227 | ONLY: buoyancy, buoyancy_acc |
---|
| 228 | |
---|
| 229 | USE calc_precipitation_mod, & |
---|
| 230 | ONLY: calc_precipitation |
---|
| 231 | |
---|
| 232 | USE calc_radiation_mod, & |
---|
| 233 | ONLY: calc_radiation |
---|
| 234 | |
---|
| 235 | USE coriolis_mod, & |
---|
| 236 | ONLY: coriolis, coriolis_acc |
---|
| 237 | |
---|
| 238 | USE diffusion_e_mod, & |
---|
| 239 | ONLY: diffusion_e, diffusion_e_acc |
---|
| 240 | |
---|
| 241 | USE diffusion_s_mod, & |
---|
| 242 | ONLY: diffusion_s, diffusion_s_acc |
---|
| 243 | |
---|
| 244 | USE diffusion_u_mod, & |
---|
| 245 | ONLY: diffusion_u, diffusion_u_acc |
---|
| 246 | |
---|
| 247 | USE diffusion_v_mod, & |
---|
| 248 | ONLY: diffusion_v, diffusion_v_acc |
---|
| 249 | |
---|
| 250 | USE diffusion_w_mod, & |
---|
| 251 | ONLY: diffusion_w, diffusion_w_acc |
---|
| 252 | |
---|
| 253 | USE impact_of_latent_heat_mod, & |
---|
| 254 | ONLY: impact_of_latent_heat |
---|
| 255 | |
---|
| 256 | USE kinds |
---|
| 257 | |
---|
[1365] | 258 | USE ls_forcing_mod, & |
---|
| 259 | ONLY: ls_advec |
---|
| 260 | |
---|
[1320] | 261 | USE microphysics_mod, & |
---|
| 262 | ONLY: microphysics_control |
---|
| 263 | |
---|
| 264 | USE nudge_mod, & |
---|
| 265 | ONLY: nudge |
---|
| 266 | |
---|
| 267 | USE plant_canopy_model_mod, & |
---|
[1484] | 268 | ONLY: cthf, plant_canopy, plant_canopy_model |
---|
[1320] | 269 | |
---|
| 270 | USE production_e_mod, & |
---|
| 271 | ONLY: production_e, production_e_acc |
---|
| 272 | |
---|
[1374] | 273 | USE statistics, & |
---|
| 274 | ONLY: hom |
---|
| 275 | |
---|
[1320] | 276 | USE subsidence_mod, & |
---|
| 277 | ONLY: subsidence |
---|
| 278 | |
---|
| 279 | USE user_actions_mod, & |
---|
| 280 | ONLY: user_actions |
---|
| 281 | |
---|
| 282 | |
---|
[736] | 283 | PRIVATE |
---|
[1019] | 284 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 285 | prognostic_equations_acc |
---|
[736] | 286 | |
---|
| 287 | INTERFACE prognostic_equations_cache |
---|
| 288 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 289 | END INTERFACE prognostic_equations_cache |
---|
| 290 | |
---|
| 291 | INTERFACE prognostic_equations_vector |
---|
| 292 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 293 | END INTERFACE prognostic_equations_vector |
---|
| 294 | |
---|
[1015] | 295 | INTERFACE prognostic_equations_acc |
---|
| 296 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 297 | END INTERFACE prognostic_equations_acc |
---|
[736] | 298 | |
---|
[1015] | 299 | |
---|
[736] | 300 | CONTAINS |
---|
| 301 | |
---|
| 302 | |
---|
| 303 | SUBROUTINE prognostic_equations_cache |
---|
| 304 | |
---|
| 305 | !------------------------------------------------------------------------------! |
---|
| 306 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 307 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 308 | ! |
---|
| 309 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 310 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 311 | ! these loops. |
---|
| 312 | ! |
---|
| 313 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 314 | !------------------------------------------------------------------------------! |
---|
| 315 | |
---|
| 316 | IMPLICIT NONE |
---|
| 317 | |
---|
[1320] | 318 | INTEGER(iwp) :: i !: |
---|
| 319 | INTEGER(iwp) :: i_omp_start !: |
---|
| 320 | INTEGER(iwp) :: j !: |
---|
| 321 | INTEGER(iwp) :: k !: |
---|
| 322 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
| 323 | INTEGER(iwp) :: tn = 0 !: |
---|
| 324 | |
---|
| 325 | LOGICAL :: loop_start !: |
---|
[736] | 326 | |
---|
| 327 | |
---|
| 328 | ! |
---|
| 329 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 330 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 331 | |
---|
| 332 | ! |
---|
| 333 | !-- Loop over all prognostic equations |
---|
| 334 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 335 | |
---|
| 336 | !$ tn = omp_get_thread_num() |
---|
| 337 | loop_start = .TRUE. |
---|
| 338 | !$OMP DO |
---|
| 339 | DO i = nxl, nxr |
---|
| 340 | |
---|
| 341 | ! |
---|
| 342 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 343 | !-- later in advec_ws |
---|
| 344 | IF ( loop_start ) THEN |
---|
| 345 | loop_start = .FALSE. |
---|
| 346 | i_omp_start = i |
---|
| 347 | ENDIF |
---|
[1365] | 348 | |
---|
[736] | 349 | DO j = nys, nyn |
---|
| 350 | ! |
---|
[1361] | 351 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 352 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 353 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 354 | call_microphysics_at_all_substeps ) & |
---|
| 355 | ) THEN |
---|
| 356 | CALL microphysics_control( i, j ) |
---|
| 357 | ENDIF |
---|
| 358 | ! |
---|
[736] | 359 | !-- Tendency terms for u-velocity component |
---|
| 360 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 361 | |
---|
[1337] | 362 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 363 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 364 | IF ( ws_scheme_mom ) THEN |
---|
[1409] | 365 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
[736] | 366 | ELSE |
---|
| 367 | CALL advec_u_pw( i, j ) |
---|
| 368 | ENDIF |
---|
| 369 | ELSE |
---|
| 370 | CALL advec_u_up( i, j ) |
---|
| 371 | ENDIF |
---|
[1001] | 372 | CALL diffusion_u( i, j ) |
---|
[736] | 373 | CALL coriolis( i, j, 1 ) |
---|
[940] | 374 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 375 | CALL buoyancy( i, j, pt, 1 ) |
---|
[940] | 376 | ENDIF |
---|
[736] | 377 | |
---|
| 378 | ! |
---|
| 379 | !-- Drag by plant canopy |
---|
| 380 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 381 | |
---|
| 382 | ! |
---|
| 383 | !-- External pressure gradient |
---|
| 384 | IF ( dp_external ) THEN |
---|
| 385 | DO k = dp_level_ind_b+1, nzt |
---|
| 386 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 387 | ENDDO |
---|
| 388 | ENDIF |
---|
| 389 | |
---|
[1241] | 390 | ! |
---|
| 391 | !-- Nudging |
---|
| 392 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
| 393 | |
---|
[736] | 394 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 395 | ! |
---|
| 396 | !-- Prognostic equation for u-velocity component |
---|
| 397 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 398 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 399 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 400 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 401 | ENDDO |
---|
| 402 | |
---|
| 403 | ! |
---|
| 404 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 405 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 406 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 407 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 408 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 409 | ENDDO |
---|
| 410 | ELSEIF ( intermediate_timestep_count < & |
---|
| 411 | intermediate_timestep_count_max ) THEN |
---|
| 412 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 413 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 414 | ENDDO |
---|
| 415 | ENDIF |
---|
| 416 | ENDIF |
---|
| 417 | |
---|
| 418 | ENDIF |
---|
| 419 | |
---|
| 420 | ! |
---|
| 421 | !-- Tendency terms for v-velocity component |
---|
| 422 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 423 | |
---|
[1337] | 424 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 425 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 426 | IF ( ws_scheme_mom ) THEN |
---|
| 427 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 428 | ELSE |
---|
| 429 | CALL advec_v_pw( i, j ) |
---|
| 430 | ENDIF |
---|
| 431 | ELSE |
---|
| 432 | CALL advec_v_up( i, j ) |
---|
| 433 | ENDIF |
---|
[1001] | 434 | CALL diffusion_v( i, j ) |
---|
[736] | 435 | CALL coriolis( i, j, 2 ) |
---|
| 436 | |
---|
| 437 | ! |
---|
| 438 | !-- Drag by plant canopy |
---|
| 439 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 440 | |
---|
| 441 | ! |
---|
| 442 | !-- External pressure gradient |
---|
| 443 | IF ( dp_external ) THEN |
---|
| 444 | DO k = dp_level_ind_b+1, nzt |
---|
| 445 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 446 | ENDDO |
---|
| 447 | ENDIF |
---|
| 448 | |
---|
[1241] | 449 | ! |
---|
| 450 | !-- Nudging |
---|
| 451 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
| 452 | |
---|
[736] | 453 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 454 | ! |
---|
| 455 | !-- Prognostic equation for v-velocity component |
---|
| 456 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 457 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 458 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 459 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 460 | ENDDO |
---|
| 461 | |
---|
| 462 | ! |
---|
| 463 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 464 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 465 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 466 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 467 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 468 | ENDDO |
---|
| 469 | ELSEIF ( intermediate_timestep_count < & |
---|
| 470 | intermediate_timestep_count_max ) THEN |
---|
| 471 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 472 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 473 | ENDDO |
---|
| 474 | ENDIF |
---|
| 475 | ENDIF |
---|
| 476 | |
---|
| 477 | ENDIF |
---|
| 478 | |
---|
| 479 | ! |
---|
| 480 | !-- Tendency terms for w-velocity component |
---|
[1337] | 481 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 482 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 483 | IF ( ws_scheme_mom ) THEN |
---|
| 484 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 485 | ELSE |
---|
| 486 | CALL advec_w_pw( i, j ) |
---|
| 487 | END IF |
---|
| 488 | ELSE |
---|
| 489 | CALL advec_w_up( i, j ) |
---|
| 490 | ENDIF |
---|
[1001] | 491 | CALL diffusion_w( i, j ) |
---|
[736] | 492 | CALL coriolis( i, j, 3 ) |
---|
[940] | 493 | |
---|
| 494 | IF ( .NOT. neutral ) THEN |
---|
| 495 | IF ( ocean ) THEN |
---|
[1179] | 496 | CALL buoyancy( i, j, rho, 3 ) |
---|
[736] | 497 | ELSE |
---|
[940] | 498 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 499 | CALL buoyancy( i, j, pt, 3 ) |
---|
[940] | 500 | ELSE |
---|
[1179] | 501 | CALL buoyancy( i, j, vpt, 3 ) |
---|
[940] | 502 | ENDIF |
---|
[736] | 503 | ENDIF |
---|
| 504 | ENDIF |
---|
| 505 | |
---|
| 506 | ! |
---|
| 507 | !-- Drag by plant canopy |
---|
| 508 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 509 | |
---|
| 510 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 511 | |
---|
| 512 | ! |
---|
| 513 | !-- Prognostic equation for w-velocity component |
---|
| 514 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 515 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 516 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 517 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 518 | ENDDO |
---|
| 519 | |
---|
| 520 | ! |
---|
| 521 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 522 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 523 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 524 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 525 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 526 | ENDDO |
---|
| 527 | ELSEIF ( intermediate_timestep_count < & |
---|
| 528 | intermediate_timestep_count_max ) THEN |
---|
| 529 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 530 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 531 | ENDDO |
---|
| 532 | ENDIF |
---|
| 533 | ENDIF |
---|
[1361] | 534 | |
---|
[736] | 535 | ! |
---|
[940] | 536 | !-- If required, compute prognostic equation for potential temperature |
---|
| 537 | IF ( .NOT. neutral ) THEN |
---|
| 538 | ! |
---|
| 539 | !-- Tendency terms for potential temperature |
---|
[1337] | 540 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 541 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 542 | IF ( ws_scheme_sca ) THEN |
---|
| 543 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 544 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 545 | ELSE |
---|
| 546 | CALL advec_s_pw( i, j, pt ) |
---|
| 547 | ENDIF |
---|
| 548 | ELSE |
---|
| 549 | CALL advec_s_up( i, j, pt ) |
---|
| 550 | ENDIF |
---|
[1001] | 551 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 552 | |
---|
| 553 | ! |
---|
[940] | 554 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 555 | !-- processes |
---|
[1496] | 556 | IF ( cloud_top_radiation ) THEN |
---|
[940] | 557 | CALL calc_radiation( i, j ) |
---|
| 558 | ENDIF |
---|
[736] | 559 | |
---|
[1106] | 560 | ! |
---|
[1361] | 561 | !-- If required compute impact of latent heat due to precipitation |
---|
| 562 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 563 | precipitation ) THEN |
---|
| 564 | CALL impact_of_latent_heat( i, j ) |
---|
[940] | 565 | ENDIF |
---|
[736] | 566 | |
---|
| 567 | ! |
---|
[940] | 568 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 569 | IF ( plant_canopy .AND. cthf /= 0.0_wp ) THEN |
---|
[940] | 570 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 571 | ENDIF |
---|
[736] | 572 | |
---|
[940] | 573 | ! |
---|
[1365] | 574 | !-- Large scale advection |
---|
| 575 | IF ( large_scale_forcing ) THEN |
---|
| 576 | CALL ls_advec( i, j, simulated_time, 'pt' ) |
---|
| 577 | ENDIF |
---|
| 578 | |
---|
| 579 | ! |
---|
[1380] | 580 | !-- Nudging |
---|
| 581 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
| 582 | |
---|
| 583 | ! |
---|
[1106] | 584 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
[1365] | 585 | IF ( large_scale_subsidence .AND. & |
---|
| 586 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 587 | CALL subsidence( i, j, tend, pt, pt_init, 2 ) |
---|
[940] | 588 | ENDIF |
---|
[736] | 589 | |
---|
[940] | 590 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 591 | |
---|
| 592 | ! |
---|
[940] | 593 | !-- Prognostic equation for potential temperature |
---|
| 594 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 595 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 596 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 597 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 598 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 599 | ENDDO |
---|
[736] | 600 | |
---|
| 601 | ! |
---|
[940] | 602 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 603 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 604 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 605 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 606 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 607 | ENDDO |
---|
| 608 | ELSEIF ( intermediate_timestep_count < & |
---|
| 609 | intermediate_timestep_count_max ) THEN |
---|
| 610 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 611 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 612 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 613 | ENDDO |
---|
| 614 | ENDIF |
---|
[736] | 615 | ENDIF |
---|
[940] | 616 | |
---|
[736] | 617 | ENDIF |
---|
| 618 | |
---|
| 619 | ! |
---|
| 620 | !-- If required, compute prognostic equation for salinity |
---|
| 621 | IF ( ocean ) THEN |
---|
| 622 | |
---|
| 623 | ! |
---|
| 624 | !-- Tendency-terms for salinity |
---|
[1337] | 625 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 626 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 627 | THEN |
---|
| 628 | IF ( ws_scheme_sca ) THEN |
---|
| 629 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 630 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 631 | ELSE |
---|
| 632 | CALL advec_s_pw( i, j, sa ) |
---|
| 633 | ENDIF |
---|
| 634 | ELSE |
---|
| 635 | CALL advec_s_up( i, j, sa ) |
---|
| 636 | ENDIF |
---|
[1001] | 637 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 638 | |
---|
| 639 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 640 | |
---|
| 641 | ! |
---|
| 642 | !-- Prognostic equation for salinity |
---|
| 643 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 644 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 645 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 646 | - tsc(5) * rdf_sc(k) * & |
---|
| 647 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 648 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 649 | ENDDO |
---|
| 650 | |
---|
| 651 | ! |
---|
| 652 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 653 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 654 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 655 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 656 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 657 | ENDDO |
---|
| 658 | ELSEIF ( intermediate_timestep_count < & |
---|
| 659 | intermediate_timestep_count_max ) THEN |
---|
| 660 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 661 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 662 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 663 | ENDDO |
---|
| 664 | ENDIF |
---|
| 665 | ENDIF |
---|
| 666 | |
---|
| 667 | ! |
---|
| 668 | !-- Calculate density by the equation of state for seawater |
---|
| 669 | CALL eqn_state_seawater( i, j ) |
---|
| 670 | |
---|
| 671 | ENDIF |
---|
| 672 | |
---|
| 673 | ! |
---|
| 674 | !-- If required, compute prognostic equation for total water content / |
---|
| 675 | !-- scalar |
---|
| 676 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 677 | |
---|
| 678 | ! |
---|
| 679 | !-- Tendency-terms for total water content / scalar |
---|
[1337] | 680 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 681 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 682 | THEN |
---|
| 683 | IF ( ws_scheme_sca ) THEN |
---|
| 684 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 685 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 686 | ELSE |
---|
| 687 | CALL advec_s_pw( i, j, q ) |
---|
| 688 | ENDIF |
---|
| 689 | ELSE |
---|
| 690 | CALL advec_s_up( i, j, q ) |
---|
| 691 | ENDIF |
---|
[1001] | 692 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[1053] | 693 | |
---|
[736] | 694 | ! |
---|
[1361] | 695 | !-- If required compute decrease of total water content due to |
---|
| 696 | !-- precipitation |
---|
| 697 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 698 | precipitation ) THEN |
---|
| 699 | CALL calc_precipitation( i, j ) |
---|
[736] | 700 | ENDIF |
---|
| 701 | ! |
---|
| 702 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1106] | 703 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
[736] | 704 | |
---|
[1053] | 705 | ! |
---|
[1365] | 706 | !-- Large scale advection |
---|
| 707 | IF ( large_scale_forcing ) THEN |
---|
| 708 | CALL ls_advec( i, j, simulated_time, 'q' ) |
---|
| 709 | ENDIF |
---|
| 710 | |
---|
| 711 | ! |
---|
[1380] | 712 | !-- Nudging |
---|
| 713 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
| 714 | |
---|
| 715 | ! |
---|
[736] | 716 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 717 | IF ( large_scale_subsidence .AND. & |
---|
| 718 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 719 | CALL subsidence( i, j, tend, q, q_init, 3 ) |
---|
[736] | 720 | ENDIF |
---|
| 721 | |
---|
| 722 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 723 | |
---|
| 724 | ! |
---|
| 725 | !-- Prognostic equation for total water content / scalar |
---|
| 726 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 727 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 728 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 729 | - tsc(5) * rdf_sc(k) * & |
---|
| 730 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 731 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 732 | ENDDO |
---|
| 733 | |
---|
| 734 | ! |
---|
| 735 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 736 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 737 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 738 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 739 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 740 | ENDDO |
---|
| 741 | ELSEIF ( intermediate_timestep_count < & |
---|
| 742 | intermediate_timestep_count_max ) THEN |
---|
| 743 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 744 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 745 | 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 746 | ENDDO |
---|
| 747 | ENDIF |
---|
| 748 | ENDIF |
---|
| 749 | |
---|
[1053] | 750 | ! |
---|
| 751 | !-- If required, calculate prognostic equations for rain water content |
---|
| 752 | !-- and rain drop concentration |
---|
[1115] | 753 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 754 | precipitation ) THEN |
---|
[1053] | 755 | ! |
---|
| 756 | !-- Calculate prognostic equation for rain water content |
---|
[1337] | 757 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 758 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 759 | THEN |
---|
| 760 | IF ( ws_scheme_sca ) THEN |
---|
| 761 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 762 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 763 | i_omp_start, tn ) |
---|
| 764 | ELSE |
---|
| 765 | CALL advec_s_pw( i, j, qr ) |
---|
| 766 | ENDIF |
---|
| 767 | ELSE |
---|
| 768 | CALL advec_s_up( i, j, qr ) |
---|
| 769 | ENDIF |
---|
| 770 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 771 | |
---|
[1115] | 772 | CALL user_actions( i, j, 'qr-tendency' ) |
---|
[1053] | 773 | ! |
---|
| 774 | !-- Prognostic equation for rain water content |
---|
| 775 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 776 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 777 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 778 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
[1337] | 779 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
[1053] | 780 | ENDDO |
---|
| 781 | ! |
---|
| 782 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 783 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 784 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 785 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 786 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 787 | ENDDO |
---|
| 788 | ELSEIF ( intermediate_timestep_count < & |
---|
| 789 | intermediate_timestep_count_max ) THEN |
---|
| 790 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 791 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 792 | 5.3125_wp * tqr_m(k,j,i) |
---|
[1053] | 793 | ENDDO |
---|
| 794 | ENDIF |
---|
| 795 | ENDIF |
---|
| 796 | |
---|
| 797 | ! |
---|
| 798 | !-- Calculate prognostic equation for rain drop concentration. |
---|
[1337] | 799 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 800 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 801 | IF ( ws_scheme_sca ) THEN |
---|
[1115] | 802 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 803 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 804 | i_omp_start, tn ) |
---|
[1053] | 805 | ELSE |
---|
| 806 | CALL advec_s_pw( i, j, nr ) |
---|
| 807 | ENDIF |
---|
| 808 | ELSE |
---|
| 809 | CALL advec_s_up( i, j, nr ) |
---|
| 810 | ENDIF |
---|
| 811 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
| 812 | |
---|
[1115] | 813 | CALL user_actions( i, j, 'nr-tendency' ) |
---|
[1053] | 814 | ! |
---|
| 815 | !-- Prognostic equation for rain drop concentration |
---|
| 816 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 817 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 818 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 819 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
[1337] | 820 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
[1053] | 821 | ENDDO |
---|
| 822 | ! |
---|
| 823 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 824 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 825 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 826 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 827 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 828 | ENDDO |
---|
| 829 | ELSEIF ( intermediate_timestep_count < & |
---|
| 830 | intermediate_timestep_count_max ) THEN |
---|
| 831 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 832 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 833 | 5.3125_wp * tnr_m(k,j,i) |
---|
[1053] | 834 | ENDDO |
---|
| 835 | ENDIF |
---|
| 836 | ENDIF |
---|
| 837 | |
---|
| 838 | ENDIF |
---|
| 839 | |
---|
[1128] | 840 | ENDIF |
---|
| 841 | |
---|
[736] | 842 | ! |
---|
| 843 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 844 | !-- energy (TKE) |
---|
| 845 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 846 | |
---|
| 847 | ! |
---|
| 848 | !-- Tendency-terms for TKE |
---|
[1337] | 849 | tend(:,j,i) = 0.0_wp |
---|
[1332] | 850 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
| 851 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
[736] | 852 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 853 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 854 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 855 | ELSE |
---|
| 856 | CALL advec_s_pw( i, j, e ) |
---|
| 857 | ENDIF |
---|
| 858 | ELSE |
---|
| 859 | CALL advec_s_up( i, j, e ) |
---|
| 860 | ENDIF |
---|
[1001] | 861 | IF ( .NOT. humidity ) THEN |
---|
| 862 | IF ( ocean ) THEN |
---|
| 863 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 864 | ELSE |
---|
[1001] | 865 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 866 | ENDIF |
---|
| 867 | ELSE |
---|
[1001] | 868 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 869 | ENDIF |
---|
| 870 | CALL production_e( i, j ) |
---|
| 871 | |
---|
| 872 | ! |
---|
| 873 | !-- Additional sink term for flows through plant canopies |
---|
| 874 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 875 | |
---|
| 876 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 877 | |
---|
| 878 | ! |
---|
| 879 | !-- Prognostic equation for TKE. |
---|
| 880 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 881 | !-- reasons in the course of the integration. In such cases the old |
---|
| 882 | !-- TKE value is reduced by 90%. |
---|
| 883 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 884 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 885 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 886 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 887 | ENDDO |
---|
| 888 | |
---|
| 889 | ! |
---|
| 890 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 891 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 892 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 893 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 894 | te_m(k,j,i) = tend(k,j,i) |
---|
| 895 | ENDDO |
---|
| 896 | ELSEIF ( intermediate_timestep_count < & |
---|
| 897 | intermediate_timestep_count_max ) THEN |
---|
| 898 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 899 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 900 | 5.3125_wp * te_m(k,j,i) |
---|
[736] | 901 | ENDDO |
---|
| 902 | ENDIF |
---|
| 903 | ENDIF |
---|
| 904 | |
---|
| 905 | ENDIF ! TKE equation |
---|
| 906 | |
---|
| 907 | ENDDO |
---|
| 908 | ENDDO |
---|
| 909 | !$OMP END PARALLEL |
---|
| 910 | |
---|
| 911 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 912 | |
---|
| 913 | |
---|
| 914 | END SUBROUTINE prognostic_equations_cache |
---|
| 915 | |
---|
| 916 | |
---|
| 917 | SUBROUTINE prognostic_equations_vector |
---|
| 918 | |
---|
| 919 | !------------------------------------------------------------------------------! |
---|
| 920 | ! Version for vector machines |
---|
| 921 | !------------------------------------------------------------------------------! |
---|
| 922 | |
---|
| 923 | IMPLICIT NONE |
---|
| 924 | |
---|
[1320] | 925 | INTEGER(iwp) :: i !: |
---|
| 926 | INTEGER(iwp) :: j !: |
---|
| 927 | INTEGER(iwp) :: k !: |
---|
[736] | 928 | |
---|
[1320] | 929 | REAL(wp) :: sbt !: |
---|
[736] | 930 | |
---|
[1320] | 931 | |
---|
[736] | 932 | ! |
---|
[1361] | 933 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 934 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 935 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 936 | call_microphysics_at_all_substeps ) & |
---|
| 937 | ) THEN |
---|
| 938 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 939 | CALL microphysics_control |
---|
| 940 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 941 | ENDIF |
---|
| 942 | |
---|
| 943 | ! |
---|
[736] | 944 | !-- u-velocity component |
---|
| 945 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 946 | |
---|
[1337] | 947 | tend = 0.0_wp |
---|
[1001] | 948 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 949 | IF ( ws_scheme_mom ) THEN |
---|
| 950 | CALL advec_u_ws |
---|
| 951 | ELSE |
---|
| 952 | CALL advec_u_pw |
---|
| 953 | ENDIF |
---|
| 954 | ELSE |
---|
[1001] | 955 | CALL advec_u_up |
---|
[736] | 956 | ENDIF |
---|
[1001] | 957 | CALL diffusion_u |
---|
[736] | 958 | CALL coriolis( 1 ) |
---|
[940] | 959 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 960 | CALL buoyancy( pt, 1 ) |
---|
[940] | 961 | ENDIF |
---|
[736] | 962 | |
---|
| 963 | ! |
---|
| 964 | !-- Drag by plant canopy |
---|
| 965 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 966 | |
---|
| 967 | ! |
---|
| 968 | !-- External pressure gradient |
---|
| 969 | IF ( dp_external ) THEN |
---|
| 970 | DO i = nxlu, nxr |
---|
| 971 | DO j = nys, nyn |
---|
| 972 | DO k = dp_level_ind_b+1, nzt |
---|
| 973 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 974 | ENDDO |
---|
| 975 | ENDDO |
---|
| 976 | ENDDO |
---|
| 977 | ENDIF |
---|
| 978 | |
---|
[1241] | 979 | ! |
---|
| 980 | !-- Nudging |
---|
| 981 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 982 | |
---|
[736] | 983 | CALL user_actions( 'u-tendency' ) |
---|
| 984 | |
---|
| 985 | ! |
---|
| 986 | !-- Prognostic equation for u-velocity component |
---|
| 987 | DO i = nxlu, nxr |
---|
| 988 | DO j = nys, nyn |
---|
| 989 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 990 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 991 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 992 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 993 | ENDDO |
---|
| 994 | ENDDO |
---|
| 995 | ENDDO |
---|
| 996 | |
---|
| 997 | ! |
---|
| 998 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 999 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1000 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1001 | DO i = nxlu, nxr |
---|
| 1002 | DO j = nys, nyn |
---|
| 1003 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1004 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1005 | ENDDO |
---|
| 1006 | ENDDO |
---|
| 1007 | ENDDO |
---|
| 1008 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1009 | intermediate_timestep_count_max ) THEN |
---|
| 1010 | DO i = nxlu, nxr |
---|
| 1011 | DO j = nys, nyn |
---|
| 1012 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 1013 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 1014 | ENDDO |
---|
| 1015 | ENDDO |
---|
| 1016 | ENDDO |
---|
| 1017 | ENDIF |
---|
| 1018 | ENDIF |
---|
| 1019 | |
---|
| 1020 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1021 | |
---|
| 1022 | ! |
---|
| 1023 | !-- v-velocity component |
---|
| 1024 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1025 | |
---|
[1337] | 1026 | tend = 0.0_wp |
---|
[1001] | 1027 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1028 | IF ( ws_scheme_mom ) THEN |
---|
| 1029 | CALL advec_v_ws |
---|
| 1030 | ELSE |
---|
| 1031 | CALL advec_v_pw |
---|
| 1032 | END IF |
---|
| 1033 | ELSE |
---|
[1001] | 1034 | CALL advec_v_up |
---|
[736] | 1035 | ENDIF |
---|
[1001] | 1036 | CALL diffusion_v |
---|
[736] | 1037 | CALL coriolis( 2 ) |
---|
| 1038 | |
---|
| 1039 | ! |
---|
| 1040 | !-- Drag by plant canopy |
---|
| 1041 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1042 | |
---|
| 1043 | ! |
---|
| 1044 | !-- External pressure gradient |
---|
| 1045 | IF ( dp_external ) THEN |
---|
| 1046 | DO i = nxl, nxr |
---|
| 1047 | DO j = nysv, nyn |
---|
| 1048 | DO k = dp_level_ind_b+1, nzt |
---|
| 1049 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1050 | ENDDO |
---|
| 1051 | ENDDO |
---|
| 1052 | ENDDO |
---|
| 1053 | ENDIF |
---|
| 1054 | |
---|
[1241] | 1055 | ! |
---|
| 1056 | !-- Nudging |
---|
| 1057 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1058 | |
---|
[736] | 1059 | CALL user_actions( 'v-tendency' ) |
---|
| 1060 | |
---|
| 1061 | ! |
---|
| 1062 | !-- Prognostic equation for v-velocity component |
---|
| 1063 | DO i = nxl, nxr |
---|
| 1064 | DO j = nysv, nyn |
---|
| 1065 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 1066 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1067 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1068 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 1069 | ENDDO |
---|
| 1070 | ENDDO |
---|
| 1071 | ENDDO |
---|
| 1072 | |
---|
| 1073 | ! |
---|
| 1074 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1075 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1076 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1077 | DO i = nxl, nxr |
---|
| 1078 | DO j = nysv, nyn |
---|
| 1079 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1080 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1081 | ENDDO |
---|
| 1082 | ENDDO |
---|
| 1083 | ENDDO |
---|
| 1084 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1085 | intermediate_timestep_count_max ) THEN |
---|
| 1086 | DO i = nxl, nxr |
---|
| 1087 | DO j = nysv, nyn |
---|
| 1088 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 1089 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 1090 | ENDDO |
---|
| 1091 | ENDDO |
---|
| 1092 | ENDDO |
---|
| 1093 | ENDIF |
---|
| 1094 | ENDIF |
---|
| 1095 | |
---|
| 1096 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1097 | |
---|
| 1098 | ! |
---|
| 1099 | !-- w-velocity component |
---|
| 1100 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1101 | |
---|
[1353] | 1102 | tend = 0.0_wp |
---|
[1001] | 1103 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1104 | IF ( ws_scheme_mom ) THEN |
---|
| 1105 | CALL advec_w_ws |
---|
| 1106 | ELSE |
---|
| 1107 | CALL advec_w_pw |
---|
| 1108 | ENDIF |
---|
| 1109 | ELSE |
---|
[1001] | 1110 | CALL advec_w_up |
---|
[736] | 1111 | ENDIF |
---|
[1001] | 1112 | CALL diffusion_w |
---|
[736] | 1113 | CALL coriolis( 3 ) |
---|
[940] | 1114 | |
---|
| 1115 | IF ( .NOT. neutral ) THEN |
---|
| 1116 | IF ( ocean ) THEN |
---|
[1179] | 1117 | CALL buoyancy( rho, 3 ) |
---|
[736] | 1118 | ELSE |
---|
[940] | 1119 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1120 | CALL buoyancy( pt, 3 ) |
---|
[940] | 1121 | ELSE |
---|
[1179] | 1122 | CALL buoyancy( vpt, 3 ) |
---|
[940] | 1123 | ENDIF |
---|
[736] | 1124 | ENDIF |
---|
| 1125 | ENDIF |
---|
| 1126 | |
---|
| 1127 | ! |
---|
| 1128 | !-- Drag by plant canopy |
---|
| 1129 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1130 | |
---|
| 1131 | CALL user_actions( 'w-tendency' ) |
---|
| 1132 | |
---|
| 1133 | ! |
---|
| 1134 | !-- Prognostic equation for w-velocity component |
---|
| 1135 | DO i = nxl, nxr |
---|
| 1136 | DO j = nys, nyn |
---|
| 1137 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 1138 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1139 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1140 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 1141 | ENDDO |
---|
| 1142 | ENDDO |
---|
| 1143 | ENDDO |
---|
| 1144 | |
---|
| 1145 | ! |
---|
| 1146 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1147 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1148 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1149 | DO i = nxl, nxr |
---|
| 1150 | DO j = nys, nyn |
---|
| 1151 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1152 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1153 | ENDDO |
---|
| 1154 | ENDDO |
---|
| 1155 | ENDDO |
---|
| 1156 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1157 | intermediate_timestep_count_max ) THEN |
---|
| 1158 | DO i = nxl, nxr |
---|
| 1159 | DO j = nys, nyn |
---|
| 1160 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 1161 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 1162 | ENDDO |
---|
| 1163 | ENDDO |
---|
| 1164 | ENDDO |
---|
| 1165 | ENDIF |
---|
| 1166 | ENDIF |
---|
| 1167 | |
---|
| 1168 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1169 | |
---|
[940] | 1170 | |
---|
[736] | 1171 | ! |
---|
[940] | 1172 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1173 | IF ( .NOT. neutral ) THEN |
---|
[736] | 1174 | |
---|
[940] | 1175 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1176 | |
---|
[736] | 1177 | ! |
---|
[940] | 1178 | !-- pt-tendency terms with communication |
---|
| 1179 | sbt = tsc(2) |
---|
| 1180 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 1181 | |
---|
[940] | 1182 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 1183 | ! |
---|
[1001] | 1184 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1185 | sbt = 1.0_wp |
---|
[940] | 1186 | ENDIF |
---|
[1337] | 1187 | tend = 0.0_wp |
---|
[940] | 1188 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 1189 | |
---|
[736] | 1190 | ENDIF |
---|
[940] | 1191 | |
---|
| 1192 | ! |
---|
| 1193 | !-- pt-tendency terms with no communication |
---|
[1001] | 1194 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1195 | tend = 0.0_wp |
---|
[1001] | 1196 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 1197 | IF ( ws_scheme_sca ) THEN |
---|
| 1198 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1199 | ELSE |
---|
| 1200 | CALL advec_s_pw( pt ) |
---|
| 1201 | ENDIF |
---|
| 1202 | ELSE |
---|
[1001] | 1203 | CALL advec_s_up( pt ) |
---|
[940] | 1204 | ENDIF |
---|
[736] | 1205 | ENDIF |
---|
| 1206 | |
---|
[1001] | 1207 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1208 | |
---|
[736] | 1209 | ! |
---|
[940] | 1210 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
[1496] | 1211 | IF ( cloud_top_radiation ) THEN |
---|
[940] | 1212 | CALL calc_radiation |
---|
| 1213 | ENDIF |
---|
[736] | 1214 | |
---|
| 1215 | ! |
---|
[940] | 1216 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 1217 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[940] | 1218 | CALL impact_of_latent_heat |
---|
| 1219 | ENDIF |
---|
[736] | 1220 | |
---|
| 1221 | ! |
---|
[940] | 1222 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 1223 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[940] | 1224 | CALL plant_canopy_model( 4 ) |
---|
| 1225 | ENDIF |
---|
[736] | 1226 | |
---|
[940] | 1227 | ! |
---|
[1365] | 1228 | !-- Large scale advection |
---|
| 1229 | IF ( large_scale_forcing ) THEN |
---|
| 1230 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 1231 | ENDIF |
---|
| 1232 | |
---|
| 1233 | ! |
---|
[1380] | 1234 | !-- Nudging |
---|
| 1235 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1236 | |
---|
| 1237 | ! |
---|
[940] | 1238 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1239 | IF ( large_scale_subsidence .AND. & |
---|
| 1240 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1241 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[940] | 1242 | ENDIF |
---|
[736] | 1243 | |
---|
[940] | 1244 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 1245 | |
---|
| 1246 | ! |
---|
[940] | 1247 | !-- Prognostic equation for potential temperature |
---|
| 1248 | DO i = nxl, nxr |
---|
| 1249 | DO j = nys, nyn |
---|
| 1250 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1251 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1252 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1253 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1254 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 1255 | ENDDO |
---|
[736] | 1256 | ENDDO |
---|
| 1257 | ENDDO |
---|
| 1258 | |
---|
| 1259 | ! |
---|
[940] | 1260 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1261 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1262 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1263 | DO i = nxl, nxr |
---|
| 1264 | DO j = nys, nyn |
---|
| 1265 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1266 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1267 | ENDDO |
---|
[736] | 1268 | ENDDO |
---|
| 1269 | ENDDO |
---|
[940] | 1270 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1271 | intermediate_timestep_count_max ) THEN |
---|
| 1272 | DO i = nxl, nxr |
---|
| 1273 | DO j = nys, nyn |
---|
| 1274 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1275 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1276 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 1277 | ENDDO |
---|
[736] | 1278 | ENDDO |
---|
| 1279 | ENDDO |
---|
[940] | 1280 | ENDIF |
---|
[736] | 1281 | ENDIF |
---|
[940] | 1282 | |
---|
| 1283 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1284 | |
---|
[736] | 1285 | ENDIF |
---|
| 1286 | |
---|
| 1287 | ! |
---|
| 1288 | !-- If required, compute prognostic equation for salinity |
---|
| 1289 | IF ( ocean ) THEN |
---|
| 1290 | |
---|
| 1291 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1292 | |
---|
| 1293 | ! |
---|
| 1294 | !-- sa-tendency terms with communication |
---|
| 1295 | sbt = tsc(2) |
---|
| 1296 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1297 | |
---|
| 1298 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1299 | ! |
---|
[1001] | 1300 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1301 | sbt = 1.0_wp |
---|
[736] | 1302 | ENDIF |
---|
[1337] | 1303 | tend = 0.0_wp |
---|
[736] | 1304 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1305 | |
---|
[736] | 1306 | ENDIF |
---|
| 1307 | |
---|
| 1308 | ! |
---|
| 1309 | !-- sa-tendency terms with no communication |
---|
[1001] | 1310 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1353] | 1311 | tend = 0.0_wp |
---|
[1001] | 1312 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1313 | IF ( ws_scheme_sca ) THEN |
---|
| 1314 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1315 | ELSE |
---|
| 1316 | CALL advec_s_pw( sa ) |
---|
| 1317 | ENDIF |
---|
| 1318 | ELSE |
---|
[1001] | 1319 | CALL advec_s_up( sa ) |
---|
[736] | 1320 | ENDIF |
---|
| 1321 | ENDIF |
---|
[1001] | 1322 | |
---|
| 1323 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1324 | |
---|
| 1325 | CALL user_actions( 'sa-tendency' ) |
---|
| 1326 | |
---|
| 1327 | ! |
---|
| 1328 | !-- Prognostic equation for salinity |
---|
| 1329 | DO i = nxl, nxr |
---|
| 1330 | DO j = nys, nyn |
---|
| 1331 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1332 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1333 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1334 | - tsc(5) * rdf_sc(k) * & |
---|
| 1335 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 1336 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 1337 | ENDDO |
---|
| 1338 | ENDDO |
---|
| 1339 | ENDDO |
---|
| 1340 | |
---|
| 1341 | ! |
---|
| 1342 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1343 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1344 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1345 | DO i = nxl, nxr |
---|
| 1346 | DO j = nys, nyn |
---|
| 1347 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1348 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1349 | ENDDO |
---|
| 1350 | ENDDO |
---|
| 1351 | ENDDO |
---|
| 1352 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1353 | intermediate_timestep_count_max ) THEN |
---|
| 1354 | DO i = nxl, nxr |
---|
| 1355 | DO j = nys, nyn |
---|
| 1356 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1357 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1358 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 1359 | ENDDO |
---|
| 1360 | ENDDO |
---|
| 1361 | ENDDO |
---|
| 1362 | ENDIF |
---|
| 1363 | ENDIF |
---|
| 1364 | |
---|
| 1365 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1366 | |
---|
| 1367 | ! |
---|
| 1368 | !-- Calculate density by the equation of state for seawater |
---|
| 1369 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1370 | CALL eqn_state_seawater |
---|
| 1371 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1372 | |
---|
| 1373 | ENDIF |
---|
| 1374 | |
---|
| 1375 | ! |
---|
| 1376 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1377 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1378 | |
---|
| 1379 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1380 | |
---|
| 1381 | ! |
---|
| 1382 | !-- Scalar/q-tendency terms with communication |
---|
| 1383 | sbt = tsc(2) |
---|
| 1384 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1385 | |
---|
| 1386 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1387 | ! |
---|
[1001] | 1388 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1389 | sbt = 1.0_wp |
---|
[736] | 1390 | ENDIF |
---|
[1337] | 1391 | tend = 0.0_wp |
---|
[736] | 1392 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1393 | |
---|
[736] | 1394 | ENDIF |
---|
| 1395 | |
---|
| 1396 | ! |
---|
| 1397 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1398 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1399 | tend = 0.0_wp |
---|
[1001] | 1400 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1401 | IF ( ws_scheme_sca ) THEN |
---|
| 1402 | CALL advec_s_ws( q, 'q' ) |
---|
| 1403 | ELSE |
---|
| 1404 | CALL advec_s_pw( q ) |
---|
| 1405 | ENDIF |
---|
| 1406 | ELSE |
---|
[1001] | 1407 | CALL advec_s_up( q ) |
---|
[736] | 1408 | ENDIF |
---|
| 1409 | ENDIF |
---|
[1001] | 1410 | |
---|
| 1411 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1412 | |
---|
| 1413 | ! |
---|
| 1414 | !-- If required compute decrease of total water content due to |
---|
| 1415 | !-- precipitation |
---|
[1361] | 1416 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[736] | 1417 | CALL calc_precipitation |
---|
| 1418 | ENDIF |
---|
| 1419 | |
---|
| 1420 | ! |
---|
| 1421 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1422 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
[1365] | 1423 | |
---|
[736] | 1424 | ! |
---|
[1365] | 1425 | !-- Large scale advection |
---|
| 1426 | IF ( large_scale_forcing ) THEN |
---|
| 1427 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 1428 | ENDIF |
---|
| 1429 | |
---|
| 1430 | ! |
---|
[1380] | 1431 | !-- Nudging |
---|
| 1432 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1433 | |
---|
| 1434 | ! |
---|
[736] | 1435 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1436 | IF ( large_scale_subsidence .AND. & |
---|
| 1437 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1438 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[736] | 1439 | ENDIF |
---|
| 1440 | |
---|
| 1441 | CALL user_actions( 'q-tendency' ) |
---|
| 1442 | |
---|
| 1443 | ! |
---|
| 1444 | !-- Prognostic equation for total water content / scalar |
---|
| 1445 | DO i = nxl, nxr |
---|
| 1446 | DO j = nys, nyn |
---|
| 1447 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1448 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1449 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1450 | - tsc(5) * rdf_sc(k) * & |
---|
| 1451 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 1452 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 1453 | ENDDO |
---|
| 1454 | ENDDO |
---|
| 1455 | ENDDO |
---|
| 1456 | |
---|
| 1457 | ! |
---|
| 1458 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1459 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1460 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1461 | DO i = nxl, nxr |
---|
| 1462 | DO j = nys, nyn |
---|
| 1463 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1464 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1465 | ENDDO |
---|
| 1466 | ENDDO |
---|
| 1467 | ENDDO |
---|
| 1468 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1469 | intermediate_timestep_count_max ) THEN |
---|
| 1470 | DO i = nxl, nxr |
---|
| 1471 | DO j = nys, nyn |
---|
| 1472 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1473 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 1474 | ENDDO |
---|
| 1475 | ENDDO |
---|
| 1476 | ENDDO |
---|
| 1477 | ENDIF |
---|
| 1478 | ENDIF |
---|
| 1479 | |
---|
| 1480 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1481 | |
---|
[1361] | 1482 | ! |
---|
| 1483 | !-- If required, calculate prognostic equations for rain water content |
---|
| 1484 | !-- and rain drop concentration |
---|
| 1485 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 1486 | |
---|
| 1487 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 1488 | |
---|
| 1489 | ! |
---|
| 1490 | !-- Calculate prognostic equation for rain water content |
---|
| 1491 | sbt = tsc(2) |
---|
| 1492 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1493 | |
---|
| 1494 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1495 | ! |
---|
| 1496 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1497 | sbt = 1.0_wp |
---|
| 1498 | ENDIF |
---|
| 1499 | tend = 0.0_wp |
---|
| 1500 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 1501 | |
---|
| 1502 | ENDIF |
---|
| 1503 | |
---|
| 1504 | ! |
---|
| 1505 | !-- qr-tendency terms with no communication |
---|
| 1506 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1507 | tend = 0.0_wp |
---|
| 1508 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1509 | IF ( ws_scheme_sca ) THEN |
---|
| 1510 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 1511 | ELSE |
---|
| 1512 | CALL advec_s_pw( qr ) |
---|
| 1513 | ENDIF |
---|
| 1514 | ELSE |
---|
| 1515 | CALL advec_s_up( qr ) |
---|
| 1516 | ENDIF |
---|
| 1517 | ENDIF |
---|
| 1518 | |
---|
| 1519 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 1520 | |
---|
| 1521 | CALL user_actions( 'qr-tendency' ) |
---|
| 1522 | |
---|
| 1523 | ! |
---|
| 1524 | !-- Prognostic equation for rain water content |
---|
| 1525 | DO i = nxl, nxr |
---|
| 1526 | DO j = nys, nyn |
---|
| 1527 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1528 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1529 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 1530 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 1531 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 1532 | ENDDO |
---|
| 1533 | ENDDO |
---|
| 1534 | ENDDO |
---|
| 1535 | |
---|
| 1536 | ! |
---|
| 1537 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1538 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1539 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1540 | DO i = nxl, nxr |
---|
| 1541 | DO j = nys, nyn |
---|
| 1542 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1543 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 1544 | ENDDO |
---|
| 1545 | ENDDO |
---|
| 1546 | ENDDO |
---|
| 1547 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1548 | intermediate_timestep_count_max ) THEN |
---|
| 1549 | DO i = nxl, nxr |
---|
| 1550 | DO j = nys, nyn |
---|
| 1551 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1552 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1553 | tqr_m(k,j,i) |
---|
| 1554 | ENDDO |
---|
| 1555 | ENDDO |
---|
| 1556 | ENDDO |
---|
| 1557 | ENDIF |
---|
| 1558 | ENDIF |
---|
| 1559 | |
---|
| 1560 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 1561 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 1562 | |
---|
| 1563 | ! |
---|
| 1564 | !-- Calculate prognostic equation for rain drop concentration |
---|
| 1565 | sbt = tsc(2) |
---|
| 1566 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1567 | |
---|
| 1568 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1569 | ! |
---|
| 1570 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1571 | sbt = 1.0_wp |
---|
| 1572 | ENDIF |
---|
| 1573 | tend = 0.0_wp |
---|
| 1574 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 1575 | |
---|
| 1576 | ENDIF |
---|
| 1577 | |
---|
| 1578 | ! |
---|
| 1579 | !-- nr-tendency terms with no communication |
---|
| 1580 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1581 | tend = 0.0_wp |
---|
| 1582 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1583 | IF ( ws_scheme_sca ) THEN |
---|
| 1584 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 1585 | ELSE |
---|
| 1586 | CALL advec_s_pw( nr ) |
---|
| 1587 | ENDIF |
---|
| 1588 | ELSE |
---|
| 1589 | CALL advec_s_up( nr ) |
---|
| 1590 | ENDIF |
---|
| 1591 | ENDIF |
---|
| 1592 | |
---|
| 1593 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 1594 | |
---|
| 1595 | CALL user_actions( 'nr-tendency' ) |
---|
| 1596 | |
---|
| 1597 | ! |
---|
| 1598 | !-- Prognostic equation for rain drop concentration |
---|
| 1599 | DO i = nxl, nxr |
---|
| 1600 | DO j = nys, nyn |
---|
| 1601 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1602 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1603 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 1604 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 1605 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 1606 | ENDDO |
---|
| 1607 | ENDDO |
---|
| 1608 | ENDDO |
---|
| 1609 | |
---|
| 1610 | ! |
---|
| 1611 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1612 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1613 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1614 | DO i = nxl, nxr |
---|
| 1615 | DO j = nys, nyn |
---|
| 1616 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1617 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 1618 | ENDDO |
---|
| 1619 | ENDDO |
---|
| 1620 | ENDDO |
---|
| 1621 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1622 | intermediate_timestep_count_max ) THEN |
---|
| 1623 | DO i = nxl, nxr |
---|
| 1624 | DO j = nys, nyn |
---|
| 1625 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1626 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1627 | tnr_m(k,j,i) |
---|
| 1628 | ENDDO |
---|
| 1629 | ENDDO |
---|
| 1630 | ENDDO |
---|
| 1631 | ENDIF |
---|
| 1632 | ENDIF |
---|
| 1633 | |
---|
| 1634 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 1635 | |
---|
| 1636 | ENDIF |
---|
| 1637 | |
---|
[736] | 1638 | ENDIF |
---|
| 1639 | |
---|
| 1640 | ! |
---|
| 1641 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1642 | !-- energy (TKE) |
---|
| 1643 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1644 | |
---|
| 1645 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1646 | |
---|
| 1647 | sbt = tsc(2) |
---|
| 1648 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1649 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1650 | |
---|
| 1651 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1652 | ! |
---|
[1001] | 1653 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1654 | sbt = 1.0_wp |
---|
[736] | 1655 | ENDIF |
---|
[1337] | 1656 | tend = 0.0_wp |
---|
[736] | 1657 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1658 | |
---|
[736] | 1659 | ENDIF |
---|
| 1660 | ENDIF |
---|
| 1661 | |
---|
| 1662 | ! |
---|
| 1663 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1664 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1665 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 1666 | tend = 0.0_wp |
---|
[736] | 1667 | CALL advec_s_up( e ) |
---|
| 1668 | ELSE |
---|
[1337] | 1669 | tend = 0.0_wp |
---|
[1001] | 1670 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1671 | IF ( ws_scheme_sca ) THEN |
---|
| 1672 | CALL advec_s_ws( e, 'e' ) |
---|
| 1673 | ELSE |
---|
| 1674 | CALL advec_s_pw( e ) |
---|
| 1675 | ENDIF |
---|
| 1676 | ELSE |
---|
[1001] | 1677 | CALL advec_s_up( e ) |
---|
[736] | 1678 | ENDIF |
---|
| 1679 | ENDIF |
---|
[1001] | 1680 | ENDIF |
---|
| 1681 | |
---|
| 1682 | IF ( .NOT. humidity ) THEN |
---|
| 1683 | IF ( ocean ) THEN |
---|
| 1684 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1685 | ELSE |
---|
[1001] | 1686 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1687 | ENDIF |
---|
[1001] | 1688 | ELSE |
---|
| 1689 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1690 | ENDIF |
---|
[1001] | 1691 | |
---|
[736] | 1692 | CALL production_e |
---|
| 1693 | |
---|
| 1694 | ! |
---|
| 1695 | !-- Additional sink term for flows through plant canopies |
---|
| 1696 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1697 | CALL user_actions( 'e-tendency' ) |
---|
| 1698 | |
---|
| 1699 | ! |
---|
| 1700 | !-- Prognostic equation for TKE. |
---|
| 1701 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1702 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1703 | !-- value is reduced by 90%. |
---|
| 1704 | DO i = nxl, nxr |
---|
| 1705 | DO j = nys, nyn |
---|
| 1706 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1707 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1708 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 1709 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 1710 | ENDDO |
---|
| 1711 | ENDDO |
---|
| 1712 | ENDDO |
---|
| 1713 | |
---|
| 1714 | ! |
---|
| 1715 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1716 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1717 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1718 | DO i = nxl, nxr |
---|
| 1719 | DO j = nys, nyn |
---|
| 1720 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1721 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1722 | ENDDO |
---|
| 1723 | ENDDO |
---|
| 1724 | ENDDO |
---|
| 1725 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1726 | intermediate_timestep_count_max ) THEN |
---|
| 1727 | DO i = nxl, nxr |
---|
| 1728 | DO j = nys, nyn |
---|
| 1729 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1730 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[736] | 1731 | ENDDO |
---|
| 1732 | ENDDO |
---|
| 1733 | ENDDO |
---|
| 1734 | ENDIF |
---|
| 1735 | ENDIF |
---|
| 1736 | |
---|
| 1737 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1738 | |
---|
| 1739 | ENDIF |
---|
| 1740 | |
---|
| 1741 | END SUBROUTINE prognostic_equations_vector |
---|
| 1742 | |
---|
| 1743 | |
---|
[1015] | 1744 | SUBROUTINE prognostic_equations_acc |
---|
| 1745 | |
---|
| 1746 | !------------------------------------------------------------------------------! |
---|
| 1747 | ! Version for accelerator boards |
---|
| 1748 | !------------------------------------------------------------------------------! |
---|
| 1749 | |
---|
| 1750 | IMPLICIT NONE |
---|
| 1751 | |
---|
[1320] | 1752 | INTEGER(iwp) :: i !: |
---|
| 1753 | INTEGER(iwp) :: j !: |
---|
| 1754 | INTEGER(iwp) :: k !: |
---|
| 1755 | INTEGER(iwp) :: runge_step !: |
---|
[1015] | 1756 | |
---|
[1320] | 1757 | REAL(wp) :: sbt !: |
---|
| 1758 | |
---|
[1015] | 1759 | ! |
---|
| 1760 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1761 | runge_step = 0 |
---|
| 1762 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1763 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1764 | runge_step = 1 |
---|
| 1765 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1766 | intermediate_timestep_count_max ) THEN |
---|
| 1767 | runge_step = 2 |
---|
| 1768 | ENDIF |
---|
| 1769 | ENDIF |
---|
| 1770 | |
---|
| 1771 | ! |
---|
[1361] | 1772 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 1773 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 1774 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 1775 | call_microphysics_at_all_substeps ) & |
---|
| 1776 | ) THEN |
---|
| 1777 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 1778 | CALL microphysics_control |
---|
| 1779 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 1780 | ENDIF |
---|
| 1781 | |
---|
| 1782 | ! |
---|
[1015] | 1783 | !-- u-velocity component |
---|
[1374] | 1784 | !++ Statistics still not completely ported to accelerators |
---|
[1179] | 1785 | !$acc update device( hom, ref_state ) |
---|
[1015] | 1786 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1787 | |
---|
| 1788 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1789 | IF ( ws_scheme_mom ) THEN |
---|
| 1790 | CALL advec_u_ws_acc |
---|
| 1791 | ELSE |
---|
[1337] | 1792 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1793 | CALL advec_u_pw |
---|
| 1794 | ENDIF |
---|
| 1795 | ELSE |
---|
| 1796 | CALL advec_u_up |
---|
| 1797 | ENDIF |
---|
| 1798 | CALL diffusion_u_acc |
---|
| 1799 | CALL coriolis_acc( 1 ) |
---|
| 1800 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 1801 | CALL buoyancy( pt, 1 ) |
---|
[1015] | 1802 | ENDIF |
---|
| 1803 | |
---|
| 1804 | ! |
---|
| 1805 | !-- Drag by plant canopy |
---|
| 1806 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1807 | |
---|
| 1808 | ! |
---|
| 1809 | !-- External pressure gradient |
---|
| 1810 | IF ( dp_external ) THEN |
---|
[1128] | 1811 | DO i = i_left, i_right |
---|
| 1812 | DO j = j_south, j_north |
---|
[1015] | 1813 | DO k = dp_level_ind_b+1, nzt |
---|
| 1814 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1815 | ENDDO |
---|
| 1816 | ENDDO |
---|
| 1817 | ENDDO |
---|
| 1818 | ENDIF |
---|
| 1819 | |
---|
[1246] | 1820 | ! |
---|
| 1821 | !-- Nudging |
---|
| 1822 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 1823 | |
---|
[1015] | 1824 | CALL user_actions( 'u-tendency' ) |
---|
| 1825 | |
---|
| 1826 | ! |
---|
| 1827 | !-- Prognostic equation for u-velocity component |
---|
[1398] | 1828 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, u_init, u_p ) |
---|
[1257] | 1829 | !$acc loop independent |
---|
[1128] | 1830 | DO i = i_left, i_right |
---|
[1257] | 1831 | !$acc loop independent |
---|
[1128] | 1832 | DO j = j_south, j_north |
---|
[1257] | 1833 | !$acc loop independent |
---|
[1015] | 1834 | DO k = 1, nzt |
---|
| 1835 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1836 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1837 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 1838 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[1015] | 1839 | ! |
---|
| 1840 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1841 | IF ( runge_step == 1 ) THEN |
---|
| 1842 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1843 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1844 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[1015] | 1845 | ENDIF |
---|
| 1846 | ENDIF |
---|
| 1847 | ENDDO |
---|
| 1848 | ENDDO |
---|
| 1849 | ENDDO |
---|
| 1850 | !$acc end kernels |
---|
| 1851 | |
---|
| 1852 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1853 | |
---|
| 1854 | ! |
---|
| 1855 | !-- v-velocity component |
---|
| 1856 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1857 | |
---|
| 1858 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1859 | IF ( ws_scheme_mom ) THEN |
---|
| 1860 | CALL advec_v_ws_acc |
---|
| 1861 | ELSE |
---|
[1337] | 1862 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1863 | CALL advec_v_pw |
---|
| 1864 | END IF |
---|
| 1865 | ELSE |
---|
| 1866 | CALL advec_v_up |
---|
| 1867 | ENDIF |
---|
| 1868 | CALL diffusion_v_acc |
---|
| 1869 | CALL coriolis_acc( 2 ) |
---|
| 1870 | |
---|
| 1871 | ! |
---|
| 1872 | !-- Drag by plant canopy |
---|
| 1873 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1874 | |
---|
| 1875 | ! |
---|
| 1876 | !-- External pressure gradient |
---|
| 1877 | IF ( dp_external ) THEN |
---|
[1128] | 1878 | DO i = i_left, i_right |
---|
| 1879 | DO j = j_south, j_north |
---|
[1015] | 1880 | DO k = dp_level_ind_b+1, nzt |
---|
| 1881 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1882 | ENDDO |
---|
| 1883 | ENDDO |
---|
| 1884 | ENDDO |
---|
| 1885 | ENDIF |
---|
| 1886 | |
---|
[1246] | 1887 | ! |
---|
| 1888 | !-- Nudging |
---|
| 1889 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1890 | |
---|
[1015] | 1891 | CALL user_actions( 'v-tendency' ) |
---|
| 1892 | |
---|
| 1893 | ! |
---|
| 1894 | !-- Prognostic equation for v-velocity component |
---|
[1398] | 1895 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, v_init, v_p ) |
---|
[1257] | 1896 | !$acc loop independent |
---|
[1128] | 1897 | DO i = i_left, i_right |
---|
[1257] | 1898 | !$acc loop independent |
---|
[1128] | 1899 | DO j = j_south, j_north |
---|
[1257] | 1900 | !$acc loop independent |
---|
[1015] | 1901 | DO k = 1, nzt |
---|
| 1902 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1903 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1904 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1905 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[1015] | 1906 | ! |
---|
| 1907 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1908 | IF ( runge_step == 1 ) THEN |
---|
| 1909 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1910 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1911 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[1015] | 1912 | ENDIF |
---|
| 1913 | ENDIF |
---|
| 1914 | ENDDO |
---|
| 1915 | ENDDO |
---|
| 1916 | ENDDO |
---|
| 1917 | !$acc end kernels |
---|
| 1918 | |
---|
| 1919 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1920 | |
---|
| 1921 | ! |
---|
| 1922 | !-- w-velocity component |
---|
| 1923 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1924 | |
---|
| 1925 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1926 | IF ( ws_scheme_mom ) THEN |
---|
| 1927 | CALL advec_w_ws_acc |
---|
| 1928 | ELSE |
---|
[1337] | 1929 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1930 | CALL advec_w_pw |
---|
| 1931 | ENDIF |
---|
| 1932 | ELSE |
---|
| 1933 | CALL advec_w_up |
---|
| 1934 | ENDIF |
---|
| 1935 | CALL diffusion_w_acc |
---|
| 1936 | CALL coriolis_acc( 3 ) |
---|
| 1937 | |
---|
| 1938 | IF ( .NOT. neutral ) THEN |
---|
| 1939 | IF ( ocean ) THEN |
---|
[1179] | 1940 | CALL buoyancy( rho, 3 ) |
---|
[1015] | 1941 | ELSE |
---|
| 1942 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1943 | CALL buoyancy_acc( pt, 3 ) |
---|
[1015] | 1944 | ELSE |
---|
[1179] | 1945 | CALL buoyancy( vpt, 3 ) |
---|
[1015] | 1946 | ENDIF |
---|
| 1947 | ENDIF |
---|
| 1948 | ENDIF |
---|
| 1949 | |
---|
| 1950 | ! |
---|
| 1951 | !-- Drag by plant canopy |
---|
| 1952 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1953 | |
---|
| 1954 | CALL user_actions( 'w-tendency' ) |
---|
| 1955 | |
---|
| 1956 | ! |
---|
| 1957 | !-- Prognostic equation for w-velocity component |
---|
| 1958 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
[1257] | 1959 | !$acc loop independent |
---|
[1128] | 1960 | DO i = i_left, i_right |
---|
[1257] | 1961 | !$acc loop independent |
---|
[1128] | 1962 | DO j = j_south, j_north |
---|
[1257] | 1963 | !$acc loop independent |
---|
[1015] | 1964 | DO k = 1, nzt-1 |
---|
| 1965 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 1966 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1967 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1968 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1969 | ! |
---|
| 1970 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1971 | IF ( runge_step == 1 ) THEN |
---|
| 1972 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1973 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1974 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[1015] | 1975 | ENDIF |
---|
| 1976 | ENDIF |
---|
| 1977 | ENDDO |
---|
| 1978 | ENDDO |
---|
| 1979 | ENDDO |
---|
| 1980 | !$acc end kernels |
---|
| 1981 | |
---|
| 1982 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1983 | |
---|
| 1984 | |
---|
| 1985 | ! |
---|
| 1986 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1987 | IF ( .NOT. neutral ) THEN |
---|
| 1988 | |
---|
| 1989 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1990 | |
---|
| 1991 | ! |
---|
| 1992 | !-- pt-tendency terms with communication |
---|
| 1993 | sbt = tsc(2) |
---|
| 1994 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1995 | |
---|
| 1996 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1997 | ! |
---|
| 1998 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1999 | sbt = 1.0_wp |
---|
[1015] | 2000 | ENDIF |
---|
[1337] | 2001 | tend = 0.0_wp |
---|
[1015] | 2002 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 2003 | |
---|
| 2004 | ENDIF |
---|
| 2005 | |
---|
| 2006 | ! |
---|
| 2007 | !-- pt-tendency terms with no communication |
---|
| 2008 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2009 | tend = 0.0_wp |
---|
[1015] | 2010 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2011 | IF ( ws_scheme_sca ) THEN |
---|
| 2012 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 2013 | ELSE |
---|
[1337] | 2014 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2015 | CALL advec_s_pw( pt ) |
---|
| 2016 | ENDIF |
---|
| 2017 | ELSE |
---|
| 2018 | CALL advec_s_up( pt ) |
---|
| 2019 | ENDIF |
---|
| 2020 | ENDIF |
---|
| 2021 | |
---|
| 2022 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 2023 | |
---|
| 2024 | ! |
---|
| 2025 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
[1496] | 2026 | IF ( cloud_top_radiation ) THEN |
---|
[1015] | 2027 | CALL calc_radiation |
---|
| 2028 | ENDIF |
---|
| 2029 | |
---|
| 2030 | ! |
---|
| 2031 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 2032 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2033 | CALL impact_of_latent_heat |
---|
| 2034 | ENDIF |
---|
| 2035 | |
---|
| 2036 | ! |
---|
| 2037 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 2038 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[1015] | 2039 | CALL plant_canopy_model( 4 ) |
---|
| 2040 | ENDIF |
---|
| 2041 | |
---|
| 2042 | ! |
---|
[1365] | 2043 | !-- Large scale advection |
---|
| 2044 | IF ( large_scale_forcing ) THEN |
---|
| 2045 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 2046 | ENDIF |
---|
| 2047 | |
---|
| 2048 | ! |
---|
[1380] | 2049 | !-- Nudging |
---|
| 2050 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 2051 | |
---|
| 2052 | ! |
---|
[1015] | 2053 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2054 | IF ( large_scale_subsidence .AND. & |
---|
| 2055 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2056 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[1015] | 2057 | ENDIF |
---|
| 2058 | |
---|
| 2059 | CALL user_actions( 'pt-tendency' ) |
---|
| 2060 | |
---|
| 2061 | ! |
---|
| 2062 | !-- Prognostic equation for potential temperature |
---|
| 2063 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 2064 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
[1257] | 2065 | !$acc loop independent |
---|
[1128] | 2066 | DO i = i_left, i_right |
---|
[1257] | 2067 | !$acc loop independent |
---|
[1128] | 2068 | DO j = j_south, j_north |
---|
[1257] | 2069 | !$acc loop independent |
---|
[1015] | 2070 | DO k = 1, nzt |
---|
| 2071 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2072 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2073 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 2074 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 2075 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 2076 | ! |
---|
| 2077 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2078 | IF ( runge_step == 1 ) THEN |
---|
| 2079 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 2080 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2081 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tpt_m(k,j,i) |
---|
[1015] | 2082 | ENDIF |
---|
| 2083 | ENDIF |
---|
| 2084 | ENDDO |
---|
| 2085 | ENDDO |
---|
| 2086 | ENDDO |
---|
| 2087 | !$acc end kernels |
---|
| 2088 | |
---|
| 2089 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 2090 | |
---|
| 2091 | ENDIF |
---|
| 2092 | |
---|
| 2093 | ! |
---|
| 2094 | !-- If required, compute prognostic equation for salinity |
---|
| 2095 | IF ( ocean ) THEN |
---|
| 2096 | |
---|
| 2097 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 2098 | |
---|
| 2099 | ! |
---|
| 2100 | !-- sa-tendency terms with communication |
---|
| 2101 | sbt = tsc(2) |
---|
| 2102 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2103 | |
---|
| 2104 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2105 | ! |
---|
| 2106 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2107 | sbt = 1.0_wp |
---|
[1015] | 2108 | ENDIF |
---|
[1337] | 2109 | tend = 0.0_wp |
---|
[1015] | 2110 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 2111 | |
---|
| 2112 | ENDIF |
---|
| 2113 | |
---|
| 2114 | ! |
---|
| 2115 | !-- sa-tendency terms with no communication |
---|
| 2116 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2117 | tend = 0.0_wp |
---|
[1015] | 2118 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2119 | IF ( ws_scheme_sca ) THEN |
---|
| 2120 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 2121 | ELSE |
---|
| 2122 | CALL advec_s_pw( sa ) |
---|
| 2123 | ENDIF |
---|
| 2124 | ELSE |
---|
| 2125 | CALL advec_s_up( sa ) |
---|
| 2126 | ENDIF |
---|
| 2127 | ENDIF |
---|
| 2128 | |
---|
| 2129 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 2130 | |
---|
| 2131 | CALL user_actions( 'sa-tendency' ) |
---|
| 2132 | |
---|
| 2133 | ! |
---|
| 2134 | !-- Prognostic equation for salinity |
---|
[1128] | 2135 | DO i = i_left, i_right |
---|
| 2136 | DO j = j_south, j_north |
---|
[1015] | 2137 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2138 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2139 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 2140 | - tsc(5) * rdf_sc(k) * & |
---|
| 2141 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 2142 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[1015] | 2143 | ! |
---|
| 2144 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2145 | IF ( runge_step == 1 ) THEN |
---|
| 2146 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 2147 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2148 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tsa_m(k,j,i) |
---|
[1015] | 2149 | ENDIF |
---|
| 2150 | ENDDO |
---|
| 2151 | ENDDO |
---|
| 2152 | ENDDO |
---|
| 2153 | |
---|
| 2154 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 2155 | |
---|
| 2156 | ! |
---|
| 2157 | !-- Calculate density by the equation of state for seawater |
---|
| 2158 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 2159 | CALL eqn_state_seawater |
---|
| 2160 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 2161 | |
---|
| 2162 | ENDIF |
---|
| 2163 | |
---|
| 2164 | ! |
---|
| 2165 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 2166 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 2167 | |
---|
| 2168 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 2169 | |
---|
| 2170 | ! |
---|
| 2171 | !-- Scalar/q-tendency terms with communication |
---|
| 2172 | sbt = tsc(2) |
---|
| 2173 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2174 | |
---|
| 2175 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2176 | ! |
---|
| 2177 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2178 | sbt = 1.0_wp |
---|
[1015] | 2179 | ENDIF |
---|
[1337] | 2180 | tend = 0.0_wp |
---|
[1015] | 2181 | CALL advec_s_bc( q, 'q' ) |
---|
| 2182 | |
---|
| 2183 | ENDIF |
---|
| 2184 | |
---|
| 2185 | ! |
---|
| 2186 | !-- Scalar/q-tendency terms with no communication |
---|
| 2187 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2188 | tend = 0.0_wp |
---|
[1015] | 2189 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2190 | IF ( ws_scheme_sca ) THEN |
---|
| 2191 | CALL advec_s_ws( q, 'q' ) |
---|
| 2192 | ELSE |
---|
| 2193 | CALL advec_s_pw( q ) |
---|
| 2194 | ENDIF |
---|
| 2195 | ELSE |
---|
| 2196 | CALL advec_s_up( q ) |
---|
| 2197 | ENDIF |
---|
| 2198 | ENDIF |
---|
| 2199 | |
---|
| 2200 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 2201 | |
---|
| 2202 | ! |
---|
| 2203 | !-- If required compute decrease of total water content due to |
---|
| 2204 | !-- precipitation |
---|
[1361] | 2205 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2206 | CALL calc_precipitation |
---|
| 2207 | ENDIF |
---|
| 2208 | |
---|
| 2209 | ! |
---|
| 2210 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 2211 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 2212 | |
---|
| 2213 | ! |
---|
[1365] | 2214 | !-- Large scale advection |
---|
| 2215 | IF ( large_scale_forcing ) THEN |
---|
| 2216 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 2217 | ENDIF |
---|
| 2218 | |
---|
| 2219 | ! |
---|
[1380] | 2220 | !-- Nudging |
---|
| 2221 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 2222 | |
---|
| 2223 | ! |
---|
[1015] | 2224 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2225 | IF ( large_scale_subsidence .AND. & |
---|
| 2226 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2227 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[1015] | 2228 | ENDIF |
---|
| 2229 | |
---|
| 2230 | CALL user_actions( 'q-tendency' ) |
---|
| 2231 | |
---|
| 2232 | ! |
---|
| 2233 | !-- Prognostic equation for total water content / scalar |
---|
[1128] | 2234 | DO i = i_left, i_right |
---|
| 2235 | DO j = j_south, j_north |
---|
[1015] | 2236 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2237 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2238 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 2239 | - tsc(5) * rdf_sc(k) * & |
---|
| 2240 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 2241 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[1015] | 2242 | ! |
---|
| 2243 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2244 | IF ( runge_step == 1 ) THEN |
---|
| 2245 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 2246 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2247 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[1015] | 2248 | ENDIF |
---|
| 2249 | ENDDO |
---|
| 2250 | ENDDO |
---|
| 2251 | ENDDO |
---|
| 2252 | |
---|
| 2253 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 2254 | |
---|
[1361] | 2255 | ! |
---|
| 2256 | !-- If required, calculate prognostic equations for rain water content |
---|
| 2257 | !-- and rain drop concentration |
---|
| 2258 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 2259 | |
---|
| 2260 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 2261 | ! |
---|
| 2262 | !-- qr-tendency terms with communication |
---|
| 2263 | sbt = tsc(2) |
---|
| 2264 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2265 | |
---|
| 2266 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2267 | ! |
---|
| 2268 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2269 | sbt = 1.0_wp |
---|
| 2270 | ENDIF |
---|
| 2271 | tend = 0.0_wp |
---|
| 2272 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 2273 | |
---|
| 2274 | ENDIF |
---|
| 2275 | |
---|
| 2276 | ! |
---|
| 2277 | !-- qr-tendency terms with no communication |
---|
| 2278 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2279 | tend = 0.0_wp |
---|
| 2280 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2281 | IF ( ws_scheme_sca ) THEN |
---|
| 2282 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 2283 | ELSE |
---|
| 2284 | CALL advec_s_pw( qr ) |
---|
| 2285 | ENDIF |
---|
| 2286 | ELSE |
---|
| 2287 | CALL advec_s_up( qr ) |
---|
| 2288 | ENDIF |
---|
| 2289 | ENDIF |
---|
| 2290 | |
---|
| 2291 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 2292 | |
---|
| 2293 | CALL user_actions( 'qr-tendency' ) |
---|
| 2294 | |
---|
| 2295 | ! |
---|
| 2296 | !-- Prognostic equation for rain water content |
---|
| 2297 | DO i = i_left, i_right |
---|
| 2298 | DO j = j_south, j_north |
---|
| 2299 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2300 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2301 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 2302 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 2303 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 2304 | ! |
---|
| 2305 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2306 | IF ( runge_step == 1 ) THEN |
---|
| 2307 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 2308 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2309 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2310 | tqr_m(k,j,i) |
---|
| 2311 | ENDIF |
---|
| 2312 | ENDDO |
---|
| 2313 | ENDDO |
---|
| 2314 | ENDDO |
---|
| 2315 | |
---|
| 2316 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 2317 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 2318 | |
---|
| 2319 | ! |
---|
| 2320 | !-- nr-tendency terms with communication |
---|
| 2321 | sbt = tsc(2) |
---|
| 2322 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2323 | |
---|
| 2324 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2325 | ! |
---|
| 2326 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2327 | sbt = 1.0_wp |
---|
| 2328 | ENDIF |
---|
| 2329 | tend = 0.0_wp |
---|
| 2330 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 2331 | |
---|
| 2332 | ENDIF |
---|
| 2333 | |
---|
| 2334 | ! |
---|
| 2335 | !-- nr-tendency terms with no communication |
---|
| 2336 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2337 | tend = 0.0_wp |
---|
| 2338 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2339 | IF ( ws_scheme_sca ) THEN |
---|
| 2340 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 2341 | ELSE |
---|
| 2342 | CALL advec_s_pw( nr ) |
---|
| 2343 | ENDIF |
---|
| 2344 | ELSE |
---|
| 2345 | CALL advec_s_up( nr ) |
---|
| 2346 | ENDIF |
---|
| 2347 | ENDIF |
---|
| 2348 | |
---|
| 2349 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 2350 | |
---|
| 2351 | CALL user_actions( 'nr-tendency' ) |
---|
| 2352 | |
---|
| 2353 | ! |
---|
| 2354 | !-- Prognostic equation for rain drop concentration |
---|
| 2355 | DO i = i_left, i_right |
---|
| 2356 | DO j = j_south, j_north |
---|
| 2357 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2358 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2359 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 2360 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 2361 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 2362 | ! |
---|
| 2363 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2364 | IF ( runge_step == 1 ) THEN |
---|
| 2365 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 2366 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2367 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2368 | tnr_m(k,j,i) |
---|
| 2369 | ENDIF |
---|
| 2370 | ENDDO |
---|
| 2371 | ENDDO |
---|
| 2372 | ENDDO |
---|
| 2373 | |
---|
| 2374 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 2375 | |
---|
| 2376 | ENDIF |
---|
| 2377 | |
---|
[1015] | 2378 | ENDIF |
---|
| 2379 | |
---|
| 2380 | ! |
---|
| 2381 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 2382 | !-- energy (TKE) |
---|
| 2383 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 2384 | |
---|
| 2385 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 2386 | |
---|
| 2387 | sbt = tsc(2) |
---|
| 2388 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 2389 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2390 | |
---|
| 2391 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2392 | ! |
---|
| 2393 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2394 | sbt = 1.0_wp |
---|
[1015] | 2395 | ENDIF |
---|
[1337] | 2396 | tend = 0.0_wp |
---|
[1015] | 2397 | CALL advec_s_bc( e, 'e' ) |
---|
| 2398 | |
---|
| 2399 | ENDIF |
---|
| 2400 | ENDIF |
---|
| 2401 | |
---|
| 2402 | ! |
---|
| 2403 | !-- TKE-tendency terms with no communication |
---|
| 2404 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 2405 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 2406 | tend = 0.0_wp |
---|
[1015] | 2407 | CALL advec_s_up( e ) |
---|
| 2408 | ELSE |
---|
| 2409 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2410 | IF ( ws_scheme_sca ) THEN |
---|
| 2411 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 2412 | ELSE |
---|
[1337] | 2413 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2414 | CALL advec_s_pw( e ) |
---|
| 2415 | ENDIF |
---|
| 2416 | ELSE |
---|
[1337] | 2417 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2418 | CALL advec_s_up( e ) |
---|
| 2419 | ENDIF |
---|
| 2420 | ENDIF |
---|
| 2421 | ENDIF |
---|
| 2422 | |
---|
| 2423 | IF ( .NOT. humidity ) THEN |
---|
| 2424 | IF ( ocean ) THEN |
---|
| 2425 | CALL diffusion_e( prho, prho_reference ) |
---|
| 2426 | ELSE |
---|
| 2427 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 2428 | ENDIF |
---|
| 2429 | ELSE |
---|
| 2430 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 2431 | ENDIF |
---|
| 2432 | |
---|
| 2433 | CALL production_e_acc |
---|
| 2434 | |
---|
| 2435 | ! |
---|
| 2436 | !-- Additional sink term for flows through plant canopies |
---|
| 2437 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 2438 | CALL user_actions( 'e-tendency' ) |
---|
| 2439 | |
---|
| 2440 | ! |
---|
| 2441 | !-- Prognostic equation for TKE. |
---|
| 2442 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2443 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2444 | !-- value is reduced by 90%. |
---|
| 2445 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
[1257] | 2446 | !$acc loop independent |
---|
[1128] | 2447 | DO i = i_left, i_right |
---|
[1257] | 2448 | !$acc loop independent |
---|
[1128] | 2449 | DO j = j_south, j_north |
---|
[1257] | 2450 | !$acc loop independent |
---|
[1015] | 2451 | DO k = 1, nzt |
---|
| 2452 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2453 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2454 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 2455 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[1015] | 2456 | ! |
---|
| 2457 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2458 | IF ( runge_step == 1 ) THEN |
---|
| 2459 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2460 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2461 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[1015] | 2462 | ENDIF |
---|
| 2463 | ENDIF |
---|
| 2464 | ENDDO |
---|
| 2465 | ENDDO |
---|
| 2466 | ENDDO |
---|
| 2467 | !$acc end kernels |
---|
| 2468 | |
---|
| 2469 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2470 | |
---|
| 2471 | ENDIF |
---|
| 2472 | |
---|
| 2473 | END SUBROUTINE prognostic_equations_acc |
---|
| 2474 | |
---|
| 2475 | |
---|
[736] | 2476 | END MODULE prognostic_equations_mod |
---|