[736] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[736] | 20 | ! Current revisions: |
---|
[1092] | 21 | ! ------------------ |
---|
[1485] | 22 | ! |
---|
| 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: prognostic_equations.f90 1485 2014-10-21 11:09:54Z raasch $ |
---|
| 27 | ! |
---|
| 28 | ! 1484 2014-10-21 10:53:05Z kanani |
---|
[1484] | 29 | ! Changes due to new module structure of the plant canopy model: |
---|
| 30 | ! parameters cthf and plant_canopy moved to module plant_canopy_model_mod. |
---|
| 31 | ! Removed double-listing of use_upstream_for_tke in ONLY-list of module |
---|
| 32 | ! control_parameters |
---|
| 33 | ! |
---|
| 34 | ! 1409 2014-05-23 12:11:32Z suehring |
---|
[1409] | 35 | ! Bugfix: i_omp_start changed for advec_u_ws at left inflow and outflow boundary. |
---|
| 36 | ! This ensures that left-hand side fluxes are also calculated for nxl in that |
---|
| 37 | ! case, even though the solution at nxl is overwritten in boundary_conds() |
---|
| 38 | ! |
---|
| 39 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
[1398] | 40 | ! Rayleigh-damping for horizontal velocity components changed: instead of damping |
---|
| 41 | ! against ug and vg, damping against u_init and v_init is used to allow for a |
---|
| 42 | ! homogenized treatment in case of nudging |
---|
| 43 | ! |
---|
| 44 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
[1381] | 45 | ! Change order of calls for scalar prognostic quantities: |
---|
| 46 | ! ls_advec -> nudging -> subsidence since initial profiles |
---|
| 47 | ! |
---|
[1380] | 48 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 49 | ! missing variables added to ONLY lists |
---|
| 50 | ! |
---|
| 51 | ! 1365 2014-04-22 15:03:56Z boeske |
---|
[1365] | 52 | ! Calls of ls_advec for large scale advection added, |
---|
| 53 | ! subroutine subsidence is only called if use_subsidence_tendencies = .F., |
---|
| 54 | ! new argument ls_index added to the calls of subsidence |
---|
| 55 | ! +ls_index |
---|
| 56 | ! |
---|
| 57 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
[1361] | 58 | ! Two-moment microphysics moved to the start of prognostic equations. This makes |
---|
| 59 | ! the 3d arrays for tend_q, tend_qr, tend_pt and tend_pt redundant. |
---|
| 60 | ! Additionally, it is allowed to call the microphysics just once during the time |
---|
| 61 | ! step (not at each sub-time step). |
---|
| 62 | ! |
---|
| 63 | ! Two-moment cloud physics added for vector and accelerator optimization. |
---|
| 64 | ! |
---|
| 65 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
[1354] | 66 | ! REAL constants provided with KIND-attribute |
---|
| 67 | ! |
---|
[1353] | 68 | ! 1337 2014-03-25 15:11:48Z heinze |
---|
| 69 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 70 | ! |
---|
| 71 | ! 1332 2014-03-25 11:59:43Z suehring |
---|
[1333] | 72 | ! Bugfix: call advec_ws or advec_pw for TKE only if NOT use_upstream_for_tke |
---|
| 73 | ! |
---|
[1332] | 74 | ! 1330 2014-03-24 17:29:32Z suehring |
---|
[1331] | 75 | ! In case of SGS-particle velocity advection of TKE is also allowed with |
---|
| 76 | ! dissipative 5th-order scheme. |
---|
| 77 | ! |
---|
[1321] | 78 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 79 | ! ONLY-attribute added to USE-statements, |
---|
| 80 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 81 | ! kinds are defined in new module kinds, |
---|
| 82 | ! old module precision_kind is removed, |
---|
| 83 | ! revision history before 2012 removed, |
---|
| 84 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 85 | ! all variable declaration statements |
---|
[1054] | 86 | ! |
---|
[1319] | 87 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 88 | ! module interfaces removed |
---|
| 89 | ! |
---|
[1258] | 90 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 91 | ! openacc loop vector clauses removed, independent clauses added |
---|
| 92 | ! |
---|
[1247] | 93 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
| 94 | ! enable nudging also for accelerator version |
---|
| 95 | ! |
---|
[1242] | 96 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 97 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
| 98 | ! |
---|
[1182] | 99 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 100 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 101 | ! |
---|
[1132] | 102 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 103 | ! those parts requiring global communication moved to time_integration, |
---|
| 104 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 105 | ! j_north |
---|
| 106 | ! |
---|
[1116] | 107 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 108 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 109 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 110 | ! |
---|
[1112] | 111 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 112 | ! update directives for prognostic quantities removed |
---|
| 113 | ! |
---|
[1107] | 114 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 115 | ! small changes in code formatting |
---|
| 116 | ! |
---|
[1093] | 117 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 118 | ! unused variables removed |
---|
| 119 | ! |
---|
[1054] | 120 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 121 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 122 | ! and rain water content (qr) |
---|
[979] | 123 | ! |
---|
[1053] | 124 | ! currently, only available for cache loop optimization |
---|
[1020] | 125 | ! |
---|
[1037] | 126 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 127 | ! code put under GPL (PALM 3.9) |
---|
| 128 | ! |
---|
[1020] | 129 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 130 | ! non-optimized version of prognostic_equations removed |
---|
| 131 | ! |
---|
[1017] | 132 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 133 | ! new branch prognostic_equations_acc |
---|
| 134 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 135 | ! |
---|
[1002] | 136 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 137 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 138 | ! |
---|
[979] | 139 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 140 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 141 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 142 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 143 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 144 | ! |
---|
[941] | 145 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 146 | ! temperature equation can be switched off |
---|
| 147 | ! |
---|
[736] | 148 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 149 | ! Initial revision |
---|
| 150 | ! |
---|
| 151 | ! |
---|
| 152 | ! Description: |
---|
| 153 | ! ------------ |
---|
| 154 | ! Solving the prognostic equations. |
---|
| 155 | !------------------------------------------------------------------------------! |
---|
| 156 | |
---|
[1320] | 157 | USE arrays_3d, & |
---|
| 158 | ONLY: diss_l_e, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qr, & |
---|
| 159 | diss_l_sa, diss_s_e, diss_s_nr, diss_s_pt, diss_s_q, & |
---|
| 160 | diss_s_qr, diss_s_sa, e, e_p, flux_s_e, flux_s_nr, flux_s_pt, & |
---|
| 161 | flux_s_q, flux_s_qr, flux_s_sa, flux_l_e, flux_l_nr, & |
---|
| 162 | flux_l_pt, flux_l_q, flux_l_qr, flux_l_sa, nr, nr_p, nrsws, & |
---|
| 163 | nrswst, pt, ptdf_x, ptdf_y, pt_init, pt_p, prho, q, q_init, & |
---|
[1374] | 164 | q_p, qsws, qswst, qr, qr_p, qrsws, qrswst, rdf, rdf_sc, & |
---|
| 165 | ref_state, rho, sa, sa_init, sa_p, saswsb, saswst, shf, tend, & |
---|
| 166 | te_m, tnr_m, tpt_m, tq_m, tqr_m, tsa_m, tswst, tu_m, tv_m, & |
---|
[1398] | 167 | tw_m, u, ug, u_init, u_p, v, vg, vpt, v_init, v_p, w, w_p |
---|
[1320] | 168 | |
---|
| 169 | USE control_parameters, & |
---|
[1361] | 170 | ONLY: call_microphysics_at_all_substeps, cloud_physics, & |
---|
[1484] | 171 | constant_diffusion, dp_external, & |
---|
[1320] | 172 | dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, humidity, & |
---|
| 173 | icloud_scheme, inflow_l, intermediate_timestep_count, & |
---|
[1365] | 174 | intermediate_timestep_count_max, large_scale_forcing, & |
---|
| 175 | large_scale_subsidence, neutral, nudging, ocean, outflow_l, & |
---|
[1484] | 176 | outflow_s, passive_scalar, precipitation, & |
---|
[1365] | 177 | prho_reference, prho_reference, prho_reference, pt_reference, & |
---|
| 178 | pt_reference, pt_reference, radiation, scalar_advec, & |
---|
| 179 | scalar_advec, simulated_time, sloping_surface, timestep_scheme, & |
---|
| 180 | tsc, use_subsidence_tendencies, use_upstream_for_tke, & |
---|
[1484] | 181 | wall_heatflux, & |
---|
[1320] | 182 | wall_nrflux, wall_qflux, wall_qflux, wall_qflux, wall_qrflux, & |
---|
| 183 | wall_salinityflux, ws_scheme_mom, ws_scheme_sca |
---|
[736] | 184 | |
---|
[1320] | 185 | USE cpulog, & |
---|
| 186 | ONLY: cpu_log, log_point |
---|
[736] | 187 | |
---|
[1320] | 188 | USE eqn_state_seawater_mod, & |
---|
| 189 | ONLY: eqn_state_seawater |
---|
| 190 | |
---|
| 191 | USE indices, & |
---|
| 192 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlu, nxr, nyn, nys, & |
---|
| 193 | nysv, nzb_s_inner, nzb_u_inner, nzb_v_inner, nzb_w_inner, nzt |
---|
| 194 | |
---|
| 195 | USE advec_ws, & |
---|
| 196 | ONLY: advec_s_ws, advec_s_ws_acc, advec_u_ws, advec_u_ws_acc, & |
---|
| 197 | advec_v_ws, advec_v_ws_acc, advec_w_ws, advec_w_ws_acc |
---|
| 198 | |
---|
| 199 | USE advec_s_pw_mod, & |
---|
| 200 | ONLY: advec_s_pw |
---|
| 201 | |
---|
| 202 | USE advec_s_up_mod, & |
---|
| 203 | ONLY: advec_s_up |
---|
| 204 | |
---|
| 205 | USE advec_u_pw_mod, & |
---|
| 206 | ONLY: advec_u_pw |
---|
| 207 | |
---|
| 208 | USE advec_u_up_mod, & |
---|
| 209 | ONLY: advec_u_up |
---|
| 210 | |
---|
| 211 | USE advec_v_pw_mod, & |
---|
| 212 | ONLY: advec_v_pw |
---|
| 213 | |
---|
| 214 | USE advec_v_up_mod, & |
---|
| 215 | ONLY: advec_v_up |
---|
| 216 | |
---|
| 217 | USE advec_w_pw_mod, & |
---|
| 218 | ONLY: advec_w_pw |
---|
| 219 | |
---|
| 220 | USE advec_w_up_mod, & |
---|
| 221 | ONLY: advec_w_up |
---|
| 222 | |
---|
| 223 | USE buoyancy_mod, & |
---|
| 224 | ONLY: buoyancy, buoyancy_acc |
---|
| 225 | |
---|
| 226 | USE calc_precipitation_mod, & |
---|
| 227 | ONLY: calc_precipitation |
---|
| 228 | |
---|
| 229 | USE calc_radiation_mod, & |
---|
| 230 | ONLY: calc_radiation |
---|
| 231 | |
---|
| 232 | USE coriolis_mod, & |
---|
| 233 | ONLY: coriolis, coriolis_acc |
---|
| 234 | |
---|
| 235 | USE diffusion_e_mod, & |
---|
| 236 | ONLY: diffusion_e, diffusion_e_acc |
---|
| 237 | |
---|
| 238 | USE diffusion_s_mod, & |
---|
| 239 | ONLY: diffusion_s, diffusion_s_acc |
---|
| 240 | |
---|
| 241 | USE diffusion_u_mod, & |
---|
| 242 | ONLY: diffusion_u, diffusion_u_acc |
---|
| 243 | |
---|
| 244 | USE diffusion_v_mod, & |
---|
| 245 | ONLY: diffusion_v, diffusion_v_acc |
---|
| 246 | |
---|
| 247 | USE diffusion_w_mod, & |
---|
| 248 | ONLY: diffusion_w, diffusion_w_acc |
---|
| 249 | |
---|
| 250 | USE impact_of_latent_heat_mod, & |
---|
| 251 | ONLY: impact_of_latent_heat |
---|
| 252 | |
---|
| 253 | USE kinds |
---|
| 254 | |
---|
[1365] | 255 | USE ls_forcing_mod, & |
---|
| 256 | ONLY: ls_advec |
---|
| 257 | |
---|
[1320] | 258 | USE microphysics_mod, & |
---|
| 259 | ONLY: microphysics_control |
---|
| 260 | |
---|
| 261 | USE nudge_mod, & |
---|
| 262 | ONLY: nudge |
---|
| 263 | |
---|
| 264 | USE plant_canopy_model_mod, & |
---|
[1484] | 265 | ONLY: cthf, plant_canopy, plant_canopy_model |
---|
[1320] | 266 | |
---|
| 267 | USE production_e_mod, & |
---|
| 268 | ONLY: production_e, production_e_acc |
---|
| 269 | |
---|
[1374] | 270 | USE statistics, & |
---|
| 271 | ONLY: hom |
---|
| 272 | |
---|
[1320] | 273 | USE subsidence_mod, & |
---|
| 274 | ONLY: subsidence |
---|
| 275 | |
---|
| 276 | USE user_actions_mod, & |
---|
| 277 | ONLY: user_actions |
---|
| 278 | |
---|
| 279 | |
---|
[736] | 280 | PRIVATE |
---|
[1019] | 281 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 282 | prognostic_equations_acc |
---|
[736] | 283 | |
---|
| 284 | INTERFACE prognostic_equations_cache |
---|
| 285 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 286 | END INTERFACE prognostic_equations_cache |
---|
| 287 | |
---|
| 288 | INTERFACE prognostic_equations_vector |
---|
| 289 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 290 | END INTERFACE prognostic_equations_vector |
---|
| 291 | |
---|
[1015] | 292 | INTERFACE prognostic_equations_acc |
---|
| 293 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 294 | END INTERFACE prognostic_equations_acc |
---|
[736] | 295 | |
---|
[1015] | 296 | |
---|
[736] | 297 | CONTAINS |
---|
| 298 | |
---|
| 299 | |
---|
| 300 | SUBROUTINE prognostic_equations_cache |
---|
| 301 | |
---|
| 302 | !------------------------------------------------------------------------------! |
---|
| 303 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 304 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 305 | ! |
---|
| 306 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 307 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 308 | ! these loops. |
---|
| 309 | ! |
---|
| 310 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 311 | !------------------------------------------------------------------------------! |
---|
| 312 | |
---|
| 313 | IMPLICIT NONE |
---|
| 314 | |
---|
[1320] | 315 | INTEGER(iwp) :: i !: |
---|
| 316 | INTEGER(iwp) :: i_omp_start !: |
---|
| 317 | INTEGER(iwp) :: j !: |
---|
| 318 | INTEGER(iwp) :: k !: |
---|
| 319 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
| 320 | INTEGER(iwp) :: tn = 0 !: |
---|
| 321 | |
---|
| 322 | LOGICAL :: loop_start !: |
---|
[736] | 323 | |
---|
| 324 | |
---|
| 325 | ! |
---|
| 326 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 327 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 328 | |
---|
| 329 | ! |
---|
| 330 | !-- Loop over all prognostic equations |
---|
| 331 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 332 | |
---|
| 333 | !$ tn = omp_get_thread_num() |
---|
| 334 | loop_start = .TRUE. |
---|
| 335 | !$OMP DO |
---|
| 336 | DO i = nxl, nxr |
---|
| 337 | |
---|
| 338 | ! |
---|
| 339 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 340 | !-- later in advec_ws |
---|
| 341 | IF ( loop_start ) THEN |
---|
| 342 | loop_start = .FALSE. |
---|
| 343 | i_omp_start = i |
---|
| 344 | ENDIF |
---|
[1365] | 345 | |
---|
[736] | 346 | DO j = nys, nyn |
---|
| 347 | ! |
---|
[1361] | 348 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 349 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 350 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 351 | call_microphysics_at_all_substeps ) & |
---|
| 352 | ) THEN |
---|
| 353 | CALL microphysics_control( i, j ) |
---|
| 354 | ENDIF |
---|
| 355 | ! |
---|
[736] | 356 | !-- Tendency terms for u-velocity component |
---|
| 357 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 358 | |
---|
[1337] | 359 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 360 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 361 | IF ( ws_scheme_mom ) THEN |
---|
[1409] | 362 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
[736] | 363 | ELSE |
---|
| 364 | CALL advec_u_pw( i, j ) |
---|
| 365 | ENDIF |
---|
| 366 | ELSE |
---|
| 367 | CALL advec_u_up( i, j ) |
---|
| 368 | ENDIF |
---|
[1001] | 369 | CALL diffusion_u( i, j ) |
---|
[736] | 370 | CALL coriolis( i, j, 1 ) |
---|
[940] | 371 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 372 | CALL buoyancy( i, j, pt, 1 ) |
---|
[940] | 373 | ENDIF |
---|
[736] | 374 | |
---|
| 375 | ! |
---|
| 376 | !-- Drag by plant canopy |
---|
| 377 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 378 | |
---|
| 379 | ! |
---|
| 380 | !-- External pressure gradient |
---|
| 381 | IF ( dp_external ) THEN |
---|
| 382 | DO k = dp_level_ind_b+1, nzt |
---|
| 383 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 384 | ENDDO |
---|
| 385 | ENDIF |
---|
| 386 | |
---|
[1241] | 387 | ! |
---|
| 388 | !-- Nudging |
---|
| 389 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
| 390 | |
---|
[736] | 391 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 392 | ! |
---|
| 393 | !-- Prognostic equation for u-velocity component |
---|
| 394 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 395 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 396 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 397 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 398 | ENDDO |
---|
| 399 | |
---|
| 400 | ! |
---|
| 401 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 402 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 403 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 404 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 405 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 406 | ENDDO |
---|
| 407 | ELSEIF ( intermediate_timestep_count < & |
---|
| 408 | intermediate_timestep_count_max ) THEN |
---|
| 409 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 410 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 411 | ENDDO |
---|
| 412 | ENDIF |
---|
| 413 | ENDIF |
---|
| 414 | |
---|
| 415 | ENDIF |
---|
| 416 | |
---|
| 417 | ! |
---|
| 418 | !-- Tendency terms for v-velocity component |
---|
| 419 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 420 | |
---|
[1337] | 421 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 422 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 423 | IF ( ws_scheme_mom ) THEN |
---|
| 424 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 425 | ELSE |
---|
| 426 | CALL advec_v_pw( i, j ) |
---|
| 427 | ENDIF |
---|
| 428 | ELSE |
---|
| 429 | CALL advec_v_up( i, j ) |
---|
| 430 | ENDIF |
---|
[1001] | 431 | CALL diffusion_v( i, j ) |
---|
[736] | 432 | CALL coriolis( i, j, 2 ) |
---|
| 433 | |
---|
| 434 | ! |
---|
| 435 | !-- Drag by plant canopy |
---|
| 436 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 437 | |
---|
| 438 | ! |
---|
| 439 | !-- External pressure gradient |
---|
| 440 | IF ( dp_external ) THEN |
---|
| 441 | DO k = dp_level_ind_b+1, nzt |
---|
| 442 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 443 | ENDDO |
---|
| 444 | ENDIF |
---|
| 445 | |
---|
[1241] | 446 | ! |
---|
| 447 | !-- Nudging |
---|
| 448 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
| 449 | |
---|
[736] | 450 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 451 | ! |
---|
| 452 | !-- Prognostic equation for v-velocity component |
---|
| 453 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 454 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 455 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 456 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 457 | ENDDO |
---|
| 458 | |
---|
| 459 | ! |
---|
| 460 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 461 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 462 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 463 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 464 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 465 | ENDDO |
---|
| 466 | ELSEIF ( intermediate_timestep_count < & |
---|
| 467 | intermediate_timestep_count_max ) THEN |
---|
| 468 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 469 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 470 | ENDDO |
---|
| 471 | ENDIF |
---|
| 472 | ENDIF |
---|
| 473 | |
---|
| 474 | ENDIF |
---|
| 475 | |
---|
| 476 | ! |
---|
| 477 | !-- Tendency terms for w-velocity component |
---|
[1337] | 478 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 479 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 480 | IF ( ws_scheme_mom ) THEN |
---|
| 481 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 482 | ELSE |
---|
| 483 | CALL advec_w_pw( i, j ) |
---|
| 484 | END IF |
---|
| 485 | ELSE |
---|
| 486 | CALL advec_w_up( i, j ) |
---|
| 487 | ENDIF |
---|
[1001] | 488 | CALL diffusion_w( i, j ) |
---|
[736] | 489 | CALL coriolis( i, j, 3 ) |
---|
[940] | 490 | |
---|
| 491 | IF ( .NOT. neutral ) THEN |
---|
| 492 | IF ( ocean ) THEN |
---|
[1179] | 493 | CALL buoyancy( i, j, rho, 3 ) |
---|
[736] | 494 | ELSE |
---|
[940] | 495 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 496 | CALL buoyancy( i, j, pt, 3 ) |
---|
[940] | 497 | ELSE |
---|
[1179] | 498 | CALL buoyancy( i, j, vpt, 3 ) |
---|
[940] | 499 | ENDIF |
---|
[736] | 500 | ENDIF |
---|
| 501 | ENDIF |
---|
| 502 | |
---|
| 503 | ! |
---|
| 504 | !-- Drag by plant canopy |
---|
| 505 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 506 | |
---|
| 507 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 508 | |
---|
| 509 | ! |
---|
| 510 | !-- Prognostic equation for w-velocity component |
---|
| 511 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 512 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 513 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 514 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 515 | ENDDO |
---|
| 516 | |
---|
| 517 | ! |
---|
| 518 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 519 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 520 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 521 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 522 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 523 | ENDDO |
---|
| 524 | ELSEIF ( intermediate_timestep_count < & |
---|
| 525 | intermediate_timestep_count_max ) THEN |
---|
| 526 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 527 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 528 | ENDDO |
---|
| 529 | ENDIF |
---|
| 530 | ENDIF |
---|
[1361] | 531 | |
---|
[736] | 532 | ! |
---|
[940] | 533 | !-- If required, compute prognostic equation for potential temperature |
---|
| 534 | IF ( .NOT. neutral ) THEN |
---|
| 535 | ! |
---|
| 536 | !-- Tendency terms for potential temperature |
---|
[1337] | 537 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 538 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 539 | IF ( ws_scheme_sca ) THEN |
---|
| 540 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 541 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 542 | ELSE |
---|
| 543 | CALL advec_s_pw( i, j, pt ) |
---|
| 544 | ENDIF |
---|
| 545 | ELSE |
---|
| 546 | CALL advec_s_up( i, j, pt ) |
---|
| 547 | ENDIF |
---|
[1001] | 548 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 549 | |
---|
| 550 | ! |
---|
[940] | 551 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 552 | !-- processes |
---|
| 553 | IF ( radiation ) THEN |
---|
| 554 | CALL calc_radiation( i, j ) |
---|
| 555 | ENDIF |
---|
[736] | 556 | |
---|
[1106] | 557 | ! |
---|
[1361] | 558 | !-- If required compute impact of latent heat due to precipitation |
---|
| 559 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 560 | precipitation ) THEN |
---|
| 561 | CALL impact_of_latent_heat( i, j ) |
---|
[940] | 562 | ENDIF |
---|
[736] | 563 | |
---|
| 564 | ! |
---|
[940] | 565 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 566 | IF ( plant_canopy .AND. cthf /= 0.0_wp ) THEN |
---|
[940] | 567 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 568 | ENDIF |
---|
[736] | 569 | |
---|
[940] | 570 | ! |
---|
[1365] | 571 | !-- Large scale advection |
---|
| 572 | IF ( large_scale_forcing ) THEN |
---|
| 573 | CALL ls_advec( i, j, simulated_time, 'pt' ) |
---|
| 574 | ENDIF |
---|
| 575 | |
---|
| 576 | ! |
---|
[1380] | 577 | !-- Nudging |
---|
| 578 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
| 579 | |
---|
| 580 | ! |
---|
[1106] | 581 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
[1365] | 582 | IF ( large_scale_subsidence .AND. & |
---|
| 583 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 584 | CALL subsidence( i, j, tend, pt, pt_init, 2 ) |
---|
[940] | 585 | ENDIF |
---|
[736] | 586 | |
---|
[940] | 587 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 588 | |
---|
| 589 | ! |
---|
[940] | 590 | !-- Prognostic equation for potential temperature |
---|
| 591 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 592 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 593 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 594 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 595 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 596 | ENDDO |
---|
[736] | 597 | |
---|
| 598 | ! |
---|
[940] | 599 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 600 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 601 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 602 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 603 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 604 | ENDDO |
---|
| 605 | ELSEIF ( intermediate_timestep_count < & |
---|
| 606 | intermediate_timestep_count_max ) THEN |
---|
| 607 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 608 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 609 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 610 | ENDDO |
---|
| 611 | ENDIF |
---|
[736] | 612 | ENDIF |
---|
[940] | 613 | |
---|
[736] | 614 | ENDIF |
---|
| 615 | |
---|
| 616 | ! |
---|
| 617 | !-- If required, compute prognostic equation for salinity |
---|
| 618 | IF ( ocean ) THEN |
---|
| 619 | |
---|
| 620 | ! |
---|
| 621 | !-- Tendency-terms for salinity |
---|
[1337] | 622 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 623 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 624 | THEN |
---|
| 625 | IF ( ws_scheme_sca ) THEN |
---|
| 626 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 627 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 628 | ELSE |
---|
| 629 | CALL advec_s_pw( i, j, sa ) |
---|
| 630 | ENDIF |
---|
| 631 | ELSE |
---|
| 632 | CALL advec_s_up( i, j, sa ) |
---|
| 633 | ENDIF |
---|
[1001] | 634 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 635 | |
---|
| 636 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 637 | |
---|
| 638 | ! |
---|
| 639 | !-- Prognostic equation for salinity |
---|
| 640 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 641 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 642 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 643 | - tsc(5) * rdf_sc(k) * & |
---|
| 644 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 645 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 646 | ENDDO |
---|
| 647 | |
---|
| 648 | ! |
---|
| 649 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 650 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 651 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 652 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 653 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 654 | ENDDO |
---|
| 655 | ELSEIF ( intermediate_timestep_count < & |
---|
| 656 | intermediate_timestep_count_max ) THEN |
---|
| 657 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 658 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 659 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 660 | ENDDO |
---|
| 661 | ENDIF |
---|
| 662 | ENDIF |
---|
| 663 | |
---|
| 664 | ! |
---|
| 665 | !-- Calculate density by the equation of state for seawater |
---|
| 666 | CALL eqn_state_seawater( i, j ) |
---|
| 667 | |
---|
| 668 | ENDIF |
---|
| 669 | |
---|
| 670 | ! |
---|
| 671 | !-- If required, compute prognostic equation for total water content / |
---|
| 672 | !-- scalar |
---|
| 673 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 674 | |
---|
| 675 | ! |
---|
| 676 | !-- Tendency-terms for total water content / scalar |
---|
[1337] | 677 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 678 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 679 | THEN |
---|
| 680 | IF ( ws_scheme_sca ) THEN |
---|
| 681 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 682 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 683 | ELSE |
---|
| 684 | CALL advec_s_pw( i, j, q ) |
---|
| 685 | ENDIF |
---|
| 686 | ELSE |
---|
| 687 | CALL advec_s_up( i, j, q ) |
---|
| 688 | ENDIF |
---|
[1001] | 689 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[1053] | 690 | |
---|
[736] | 691 | ! |
---|
[1361] | 692 | !-- If required compute decrease of total water content due to |
---|
| 693 | !-- precipitation |
---|
| 694 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 695 | precipitation ) THEN |
---|
| 696 | CALL calc_precipitation( i, j ) |
---|
[736] | 697 | ENDIF |
---|
| 698 | ! |
---|
| 699 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1106] | 700 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
[736] | 701 | |
---|
[1053] | 702 | ! |
---|
[1365] | 703 | !-- Large scale advection |
---|
| 704 | IF ( large_scale_forcing ) THEN |
---|
| 705 | CALL ls_advec( i, j, simulated_time, 'q' ) |
---|
| 706 | ENDIF |
---|
| 707 | |
---|
| 708 | ! |
---|
[1380] | 709 | !-- Nudging |
---|
| 710 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
| 711 | |
---|
| 712 | ! |
---|
[736] | 713 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 714 | IF ( large_scale_subsidence .AND. & |
---|
| 715 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 716 | CALL subsidence( i, j, tend, q, q_init, 3 ) |
---|
[736] | 717 | ENDIF |
---|
| 718 | |
---|
| 719 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 720 | |
---|
| 721 | ! |
---|
| 722 | !-- Prognostic equation for total water content / scalar |
---|
| 723 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 724 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 725 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 726 | - tsc(5) * rdf_sc(k) * & |
---|
| 727 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 728 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 729 | ENDDO |
---|
| 730 | |
---|
| 731 | ! |
---|
| 732 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 733 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 734 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 735 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 736 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 737 | ENDDO |
---|
| 738 | ELSEIF ( intermediate_timestep_count < & |
---|
| 739 | intermediate_timestep_count_max ) THEN |
---|
| 740 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 741 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 742 | 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 743 | ENDDO |
---|
| 744 | ENDIF |
---|
| 745 | ENDIF |
---|
| 746 | |
---|
[1053] | 747 | ! |
---|
| 748 | !-- If required, calculate prognostic equations for rain water content |
---|
| 749 | !-- and rain drop concentration |
---|
[1115] | 750 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 751 | precipitation ) THEN |
---|
[1053] | 752 | ! |
---|
| 753 | !-- Calculate prognostic equation for rain water content |
---|
[1337] | 754 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 755 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 756 | THEN |
---|
| 757 | IF ( ws_scheme_sca ) THEN |
---|
| 758 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 759 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 760 | i_omp_start, tn ) |
---|
| 761 | ELSE |
---|
| 762 | CALL advec_s_pw( i, j, qr ) |
---|
| 763 | ENDIF |
---|
| 764 | ELSE |
---|
| 765 | CALL advec_s_up( i, j, qr ) |
---|
| 766 | ENDIF |
---|
| 767 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 768 | |
---|
[1115] | 769 | CALL user_actions( i, j, 'qr-tendency' ) |
---|
[1053] | 770 | ! |
---|
| 771 | !-- Prognostic equation for rain water content |
---|
| 772 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 773 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 774 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 775 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
[1337] | 776 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
[1053] | 777 | ENDDO |
---|
| 778 | ! |
---|
| 779 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 780 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 781 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 782 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 783 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 784 | ENDDO |
---|
| 785 | ELSEIF ( intermediate_timestep_count < & |
---|
| 786 | intermediate_timestep_count_max ) THEN |
---|
| 787 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 788 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 789 | 5.3125_wp * tqr_m(k,j,i) |
---|
[1053] | 790 | ENDDO |
---|
| 791 | ENDIF |
---|
| 792 | ENDIF |
---|
| 793 | |
---|
| 794 | ! |
---|
| 795 | !-- Calculate prognostic equation for rain drop concentration. |
---|
[1337] | 796 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 797 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 798 | IF ( ws_scheme_sca ) THEN |
---|
[1115] | 799 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 800 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 801 | i_omp_start, tn ) |
---|
[1053] | 802 | ELSE |
---|
| 803 | CALL advec_s_pw( i, j, nr ) |
---|
| 804 | ENDIF |
---|
| 805 | ELSE |
---|
| 806 | CALL advec_s_up( i, j, nr ) |
---|
| 807 | ENDIF |
---|
| 808 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
| 809 | |
---|
[1115] | 810 | CALL user_actions( i, j, 'nr-tendency' ) |
---|
[1053] | 811 | ! |
---|
| 812 | !-- Prognostic equation for rain drop concentration |
---|
| 813 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 814 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 815 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 816 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
[1337] | 817 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
[1053] | 818 | ENDDO |
---|
| 819 | ! |
---|
| 820 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 821 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 822 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 823 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 824 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 825 | ENDDO |
---|
| 826 | ELSEIF ( intermediate_timestep_count < & |
---|
| 827 | intermediate_timestep_count_max ) THEN |
---|
| 828 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 829 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 830 | 5.3125_wp * tnr_m(k,j,i) |
---|
[1053] | 831 | ENDDO |
---|
| 832 | ENDIF |
---|
| 833 | ENDIF |
---|
| 834 | |
---|
| 835 | ENDIF |
---|
| 836 | |
---|
[1128] | 837 | ENDIF |
---|
| 838 | |
---|
[736] | 839 | ! |
---|
| 840 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 841 | !-- energy (TKE) |
---|
| 842 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 843 | |
---|
| 844 | ! |
---|
| 845 | !-- Tendency-terms for TKE |
---|
[1337] | 846 | tend(:,j,i) = 0.0_wp |
---|
[1332] | 847 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
| 848 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
[736] | 849 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 850 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 851 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 852 | ELSE |
---|
| 853 | CALL advec_s_pw( i, j, e ) |
---|
| 854 | ENDIF |
---|
| 855 | ELSE |
---|
| 856 | CALL advec_s_up( i, j, e ) |
---|
| 857 | ENDIF |
---|
[1001] | 858 | IF ( .NOT. humidity ) THEN |
---|
| 859 | IF ( ocean ) THEN |
---|
| 860 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 861 | ELSE |
---|
[1001] | 862 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 863 | ENDIF |
---|
| 864 | ELSE |
---|
[1001] | 865 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 866 | ENDIF |
---|
| 867 | CALL production_e( i, j ) |
---|
| 868 | |
---|
| 869 | ! |
---|
| 870 | !-- Additional sink term for flows through plant canopies |
---|
| 871 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 872 | |
---|
| 873 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 874 | |
---|
| 875 | ! |
---|
| 876 | !-- Prognostic equation for TKE. |
---|
| 877 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 878 | !-- reasons in the course of the integration. In such cases the old |
---|
| 879 | !-- TKE value is reduced by 90%. |
---|
| 880 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 881 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 882 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 883 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 884 | ENDDO |
---|
| 885 | |
---|
| 886 | ! |
---|
| 887 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 888 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 889 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 890 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 891 | te_m(k,j,i) = tend(k,j,i) |
---|
| 892 | ENDDO |
---|
| 893 | ELSEIF ( intermediate_timestep_count < & |
---|
| 894 | intermediate_timestep_count_max ) THEN |
---|
| 895 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 896 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 897 | 5.3125_wp * te_m(k,j,i) |
---|
[736] | 898 | ENDDO |
---|
| 899 | ENDIF |
---|
| 900 | ENDIF |
---|
| 901 | |
---|
| 902 | ENDIF ! TKE equation |
---|
| 903 | |
---|
| 904 | ENDDO |
---|
| 905 | ENDDO |
---|
| 906 | !$OMP END PARALLEL |
---|
| 907 | |
---|
| 908 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 909 | |
---|
| 910 | |
---|
| 911 | END SUBROUTINE prognostic_equations_cache |
---|
| 912 | |
---|
| 913 | |
---|
| 914 | SUBROUTINE prognostic_equations_vector |
---|
| 915 | |
---|
| 916 | !------------------------------------------------------------------------------! |
---|
| 917 | ! Version for vector machines |
---|
| 918 | !------------------------------------------------------------------------------! |
---|
| 919 | |
---|
| 920 | IMPLICIT NONE |
---|
| 921 | |
---|
[1320] | 922 | INTEGER(iwp) :: i !: |
---|
| 923 | INTEGER(iwp) :: j !: |
---|
| 924 | INTEGER(iwp) :: k !: |
---|
[736] | 925 | |
---|
[1320] | 926 | REAL(wp) :: sbt !: |
---|
[736] | 927 | |
---|
[1320] | 928 | |
---|
[736] | 929 | ! |
---|
[1361] | 930 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 931 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 932 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 933 | call_microphysics_at_all_substeps ) & |
---|
| 934 | ) THEN |
---|
| 935 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 936 | CALL microphysics_control |
---|
| 937 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 938 | ENDIF |
---|
| 939 | |
---|
| 940 | ! |
---|
[736] | 941 | !-- u-velocity component |
---|
| 942 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 943 | |
---|
[1337] | 944 | tend = 0.0_wp |
---|
[1001] | 945 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 946 | IF ( ws_scheme_mom ) THEN |
---|
| 947 | CALL advec_u_ws |
---|
| 948 | ELSE |
---|
| 949 | CALL advec_u_pw |
---|
| 950 | ENDIF |
---|
| 951 | ELSE |
---|
[1001] | 952 | CALL advec_u_up |
---|
[736] | 953 | ENDIF |
---|
[1001] | 954 | CALL diffusion_u |
---|
[736] | 955 | CALL coriolis( 1 ) |
---|
[940] | 956 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 957 | CALL buoyancy( pt, 1 ) |
---|
[940] | 958 | ENDIF |
---|
[736] | 959 | |
---|
| 960 | ! |
---|
| 961 | !-- Drag by plant canopy |
---|
| 962 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 963 | |
---|
| 964 | ! |
---|
| 965 | !-- External pressure gradient |
---|
| 966 | IF ( dp_external ) THEN |
---|
| 967 | DO i = nxlu, nxr |
---|
| 968 | DO j = nys, nyn |
---|
| 969 | DO k = dp_level_ind_b+1, nzt |
---|
| 970 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 971 | ENDDO |
---|
| 972 | ENDDO |
---|
| 973 | ENDDO |
---|
| 974 | ENDIF |
---|
| 975 | |
---|
[1241] | 976 | ! |
---|
| 977 | !-- Nudging |
---|
| 978 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 979 | |
---|
[736] | 980 | CALL user_actions( 'u-tendency' ) |
---|
| 981 | |
---|
| 982 | ! |
---|
| 983 | !-- Prognostic equation for u-velocity component |
---|
| 984 | DO i = nxlu, nxr |
---|
| 985 | DO j = nys, nyn |
---|
| 986 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 987 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 988 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 989 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 990 | ENDDO |
---|
| 991 | ENDDO |
---|
| 992 | ENDDO |
---|
| 993 | |
---|
| 994 | ! |
---|
| 995 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 996 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 997 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 998 | DO i = nxlu, nxr |
---|
| 999 | DO j = nys, nyn |
---|
| 1000 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1001 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1002 | ENDDO |
---|
| 1003 | ENDDO |
---|
| 1004 | ENDDO |
---|
| 1005 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1006 | intermediate_timestep_count_max ) THEN |
---|
| 1007 | DO i = nxlu, nxr |
---|
| 1008 | DO j = nys, nyn |
---|
| 1009 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 1010 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 1011 | ENDDO |
---|
| 1012 | ENDDO |
---|
| 1013 | ENDDO |
---|
| 1014 | ENDIF |
---|
| 1015 | ENDIF |
---|
| 1016 | |
---|
| 1017 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1018 | |
---|
| 1019 | ! |
---|
| 1020 | !-- v-velocity component |
---|
| 1021 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1022 | |
---|
[1337] | 1023 | tend = 0.0_wp |
---|
[1001] | 1024 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1025 | IF ( ws_scheme_mom ) THEN |
---|
| 1026 | CALL advec_v_ws |
---|
| 1027 | ELSE |
---|
| 1028 | CALL advec_v_pw |
---|
| 1029 | END IF |
---|
| 1030 | ELSE |
---|
[1001] | 1031 | CALL advec_v_up |
---|
[736] | 1032 | ENDIF |
---|
[1001] | 1033 | CALL diffusion_v |
---|
[736] | 1034 | CALL coriolis( 2 ) |
---|
| 1035 | |
---|
| 1036 | ! |
---|
| 1037 | !-- Drag by plant canopy |
---|
| 1038 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1039 | |
---|
| 1040 | ! |
---|
| 1041 | !-- External pressure gradient |
---|
| 1042 | IF ( dp_external ) THEN |
---|
| 1043 | DO i = nxl, nxr |
---|
| 1044 | DO j = nysv, nyn |
---|
| 1045 | DO k = dp_level_ind_b+1, nzt |
---|
| 1046 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1047 | ENDDO |
---|
| 1048 | ENDDO |
---|
| 1049 | ENDDO |
---|
| 1050 | ENDIF |
---|
| 1051 | |
---|
[1241] | 1052 | ! |
---|
| 1053 | !-- Nudging |
---|
| 1054 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1055 | |
---|
[736] | 1056 | CALL user_actions( 'v-tendency' ) |
---|
| 1057 | |
---|
| 1058 | ! |
---|
| 1059 | !-- Prognostic equation for v-velocity component |
---|
| 1060 | DO i = nxl, nxr |
---|
| 1061 | DO j = nysv, nyn |
---|
| 1062 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 1063 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1064 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1065 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 1066 | ENDDO |
---|
| 1067 | ENDDO |
---|
| 1068 | ENDDO |
---|
| 1069 | |
---|
| 1070 | ! |
---|
| 1071 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1072 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1073 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1074 | DO i = nxl, nxr |
---|
| 1075 | DO j = nysv, nyn |
---|
| 1076 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1077 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1078 | ENDDO |
---|
| 1079 | ENDDO |
---|
| 1080 | ENDDO |
---|
| 1081 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1082 | intermediate_timestep_count_max ) THEN |
---|
| 1083 | DO i = nxl, nxr |
---|
| 1084 | DO j = nysv, nyn |
---|
| 1085 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 1086 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 1087 | ENDDO |
---|
| 1088 | ENDDO |
---|
| 1089 | ENDDO |
---|
| 1090 | ENDIF |
---|
| 1091 | ENDIF |
---|
| 1092 | |
---|
| 1093 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1094 | |
---|
| 1095 | ! |
---|
| 1096 | !-- w-velocity component |
---|
| 1097 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1098 | |
---|
[1353] | 1099 | tend = 0.0_wp |
---|
[1001] | 1100 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1101 | IF ( ws_scheme_mom ) THEN |
---|
| 1102 | CALL advec_w_ws |
---|
| 1103 | ELSE |
---|
| 1104 | CALL advec_w_pw |
---|
| 1105 | ENDIF |
---|
| 1106 | ELSE |
---|
[1001] | 1107 | CALL advec_w_up |
---|
[736] | 1108 | ENDIF |
---|
[1001] | 1109 | CALL diffusion_w |
---|
[736] | 1110 | CALL coriolis( 3 ) |
---|
[940] | 1111 | |
---|
| 1112 | IF ( .NOT. neutral ) THEN |
---|
| 1113 | IF ( ocean ) THEN |
---|
[1179] | 1114 | CALL buoyancy( rho, 3 ) |
---|
[736] | 1115 | ELSE |
---|
[940] | 1116 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1117 | CALL buoyancy( pt, 3 ) |
---|
[940] | 1118 | ELSE |
---|
[1179] | 1119 | CALL buoyancy( vpt, 3 ) |
---|
[940] | 1120 | ENDIF |
---|
[736] | 1121 | ENDIF |
---|
| 1122 | ENDIF |
---|
| 1123 | |
---|
| 1124 | ! |
---|
| 1125 | !-- Drag by plant canopy |
---|
| 1126 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1127 | |
---|
| 1128 | CALL user_actions( 'w-tendency' ) |
---|
| 1129 | |
---|
| 1130 | ! |
---|
| 1131 | !-- Prognostic equation for w-velocity component |
---|
| 1132 | DO i = nxl, nxr |
---|
| 1133 | DO j = nys, nyn |
---|
| 1134 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 1135 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1136 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1137 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 1138 | ENDDO |
---|
| 1139 | ENDDO |
---|
| 1140 | ENDDO |
---|
| 1141 | |
---|
| 1142 | ! |
---|
| 1143 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1144 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1145 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1146 | DO i = nxl, nxr |
---|
| 1147 | DO j = nys, nyn |
---|
| 1148 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1149 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1150 | ENDDO |
---|
| 1151 | ENDDO |
---|
| 1152 | ENDDO |
---|
| 1153 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1154 | intermediate_timestep_count_max ) THEN |
---|
| 1155 | DO i = nxl, nxr |
---|
| 1156 | DO j = nys, nyn |
---|
| 1157 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 1158 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 1159 | ENDDO |
---|
| 1160 | ENDDO |
---|
| 1161 | ENDDO |
---|
| 1162 | ENDIF |
---|
| 1163 | ENDIF |
---|
| 1164 | |
---|
| 1165 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1166 | |
---|
[940] | 1167 | |
---|
[736] | 1168 | ! |
---|
[940] | 1169 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1170 | IF ( .NOT. neutral ) THEN |
---|
[736] | 1171 | |
---|
[940] | 1172 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1173 | |
---|
[736] | 1174 | ! |
---|
[940] | 1175 | !-- pt-tendency terms with communication |
---|
| 1176 | sbt = tsc(2) |
---|
| 1177 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 1178 | |
---|
[940] | 1179 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 1180 | ! |
---|
[1001] | 1181 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1182 | sbt = 1.0_wp |
---|
[940] | 1183 | ENDIF |
---|
[1337] | 1184 | tend = 0.0_wp |
---|
[940] | 1185 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 1186 | |
---|
[736] | 1187 | ENDIF |
---|
[940] | 1188 | |
---|
| 1189 | ! |
---|
| 1190 | !-- pt-tendency terms with no communication |
---|
[1001] | 1191 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1192 | tend = 0.0_wp |
---|
[1001] | 1193 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 1194 | IF ( ws_scheme_sca ) THEN |
---|
| 1195 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1196 | ELSE |
---|
| 1197 | CALL advec_s_pw( pt ) |
---|
| 1198 | ENDIF |
---|
| 1199 | ELSE |
---|
[1001] | 1200 | CALL advec_s_up( pt ) |
---|
[940] | 1201 | ENDIF |
---|
[736] | 1202 | ENDIF |
---|
| 1203 | |
---|
[1001] | 1204 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1205 | |
---|
[736] | 1206 | ! |
---|
[940] | 1207 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1208 | IF ( radiation ) THEN |
---|
| 1209 | CALL calc_radiation |
---|
| 1210 | ENDIF |
---|
[736] | 1211 | |
---|
| 1212 | ! |
---|
[940] | 1213 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 1214 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[940] | 1215 | CALL impact_of_latent_heat |
---|
| 1216 | ENDIF |
---|
[736] | 1217 | |
---|
| 1218 | ! |
---|
[940] | 1219 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 1220 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[940] | 1221 | CALL plant_canopy_model( 4 ) |
---|
| 1222 | ENDIF |
---|
[736] | 1223 | |
---|
[940] | 1224 | ! |
---|
[1365] | 1225 | !-- Large scale advection |
---|
| 1226 | IF ( large_scale_forcing ) THEN |
---|
| 1227 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 1228 | ENDIF |
---|
| 1229 | |
---|
| 1230 | ! |
---|
[1380] | 1231 | !-- Nudging |
---|
| 1232 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1233 | |
---|
| 1234 | ! |
---|
[940] | 1235 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1236 | IF ( large_scale_subsidence .AND. & |
---|
| 1237 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1238 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[940] | 1239 | ENDIF |
---|
[736] | 1240 | |
---|
[940] | 1241 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 1242 | |
---|
| 1243 | ! |
---|
[940] | 1244 | !-- Prognostic equation for potential temperature |
---|
| 1245 | DO i = nxl, nxr |
---|
| 1246 | DO j = nys, nyn |
---|
| 1247 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1248 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1249 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1250 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1251 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 1252 | ENDDO |
---|
[736] | 1253 | ENDDO |
---|
| 1254 | ENDDO |
---|
| 1255 | |
---|
| 1256 | ! |
---|
[940] | 1257 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1258 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1259 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1260 | DO i = nxl, nxr |
---|
| 1261 | DO j = nys, nyn |
---|
| 1262 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1263 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1264 | ENDDO |
---|
[736] | 1265 | ENDDO |
---|
| 1266 | ENDDO |
---|
[940] | 1267 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1268 | intermediate_timestep_count_max ) THEN |
---|
| 1269 | DO i = nxl, nxr |
---|
| 1270 | DO j = nys, nyn |
---|
| 1271 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1272 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1273 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 1274 | ENDDO |
---|
[736] | 1275 | ENDDO |
---|
| 1276 | ENDDO |
---|
[940] | 1277 | ENDIF |
---|
[736] | 1278 | ENDIF |
---|
[940] | 1279 | |
---|
| 1280 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1281 | |
---|
[736] | 1282 | ENDIF |
---|
| 1283 | |
---|
| 1284 | ! |
---|
| 1285 | !-- If required, compute prognostic equation for salinity |
---|
| 1286 | IF ( ocean ) THEN |
---|
| 1287 | |
---|
| 1288 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1289 | |
---|
| 1290 | ! |
---|
| 1291 | !-- sa-tendency terms with communication |
---|
| 1292 | sbt = tsc(2) |
---|
| 1293 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1294 | |
---|
| 1295 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1296 | ! |
---|
[1001] | 1297 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1298 | sbt = 1.0_wp |
---|
[736] | 1299 | ENDIF |
---|
[1337] | 1300 | tend = 0.0_wp |
---|
[736] | 1301 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1302 | |
---|
[736] | 1303 | ENDIF |
---|
| 1304 | |
---|
| 1305 | ! |
---|
| 1306 | !-- sa-tendency terms with no communication |
---|
[1001] | 1307 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1353] | 1308 | tend = 0.0_wp |
---|
[1001] | 1309 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1310 | IF ( ws_scheme_sca ) THEN |
---|
| 1311 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1312 | ELSE |
---|
| 1313 | CALL advec_s_pw( sa ) |
---|
| 1314 | ENDIF |
---|
| 1315 | ELSE |
---|
[1001] | 1316 | CALL advec_s_up( sa ) |
---|
[736] | 1317 | ENDIF |
---|
| 1318 | ENDIF |
---|
[1001] | 1319 | |
---|
| 1320 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1321 | |
---|
| 1322 | CALL user_actions( 'sa-tendency' ) |
---|
| 1323 | |
---|
| 1324 | ! |
---|
| 1325 | !-- Prognostic equation for salinity |
---|
| 1326 | DO i = nxl, nxr |
---|
| 1327 | DO j = nys, nyn |
---|
| 1328 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1329 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1330 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1331 | - tsc(5) * rdf_sc(k) * & |
---|
| 1332 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 1333 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 1334 | ENDDO |
---|
| 1335 | ENDDO |
---|
| 1336 | ENDDO |
---|
| 1337 | |
---|
| 1338 | ! |
---|
| 1339 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1340 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1341 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1342 | DO i = nxl, nxr |
---|
| 1343 | DO j = nys, nyn |
---|
| 1344 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1345 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1346 | ENDDO |
---|
| 1347 | ENDDO |
---|
| 1348 | ENDDO |
---|
| 1349 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1350 | intermediate_timestep_count_max ) THEN |
---|
| 1351 | DO i = nxl, nxr |
---|
| 1352 | DO j = nys, nyn |
---|
| 1353 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1354 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1355 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 1356 | ENDDO |
---|
| 1357 | ENDDO |
---|
| 1358 | ENDDO |
---|
| 1359 | ENDIF |
---|
| 1360 | ENDIF |
---|
| 1361 | |
---|
| 1362 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1363 | |
---|
| 1364 | ! |
---|
| 1365 | !-- Calculate density by the equation of state for seawater |
---|
| 1366 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1367 | CALL eqn_state_seawater |
---|
| 1368 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1369 | |
---|
| 1370 | ENDIF |
---|
| 1371 | |
---|
| 1372 | ! |
---|
| 1373 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1374 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1375 | |
---|
| 1376 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1377 | |
---|
| 1378 | ! |
---|
| 1379 | !-- Scalar/q-tendency terms with communication |
---|
| 1380 | sbt = tsc(2) |
---|
| 1381 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1382 | |
---|
| 1383 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1384 | ! |
---|
[1001] | 1385 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1386 | sbt = 1.0_wp |
---|
[736] | 1387 | ENDIF |
---|
[1337] | 1388 | tend = 0.0_wp |
---|
[736] | 1389 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1390 | |
---|
[736] | 1391 | ENDIF |
---|
| 1392 | |
---|
| 1393 | ! |
---|
| 1394 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1395 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1396 | tend = 0.0_wp |
---|
[1001] | 1397 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1398 | IF ( ws_scheme_sca ) THEN |
---|
| 1399 | CALL advec_s_ws( q, 'q' ) |
---|
| 1400 | ELSE |
---|
| 1401 | CALL advec_s_pw( q ) |
---|
| 1402 | ENDIF |
---|
| 1403 | ELSE |
---|
[1001] | 1404 | CALL advec_s_up( q ) |
---|
[736] | 1405 | ENDIF |
---|
| 1406 | ENDIF |
---|
[1001] | 1407 | |
---|
| 1408 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1409 | |
---|
| 1410 | ! |
---|
| 1411 | !-- If required compute decrease of total water content due to |
---|
| 1412 | !-- precipitation |
---|
[1361] | 1413 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[736] | 1414 | CALL calc_precipitation |
---|
| 1415 | ENDIF |
---|
| 1416 | |
---|
| 1417 | ! |
---|
| 1418 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1419 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
[1365] | 1420 | |
---|
[736] | 1421 | ! |
---|
[1365] | 1422 | !-- Large scale advection |
---|
| 1423 | IF ( large_scale_forcing ) THEN |
---|
| 1424 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 1425 | ENDIF |
---|
| 1426 | |
---|
| 1427 | ! |
---|
[1380] | 1428 | !-- Nudging |
---|
| 1429 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1430 | |
---|
| 1431 | ! |
---|
[736] | 1432 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1433 | IF ( large_scale_subsidence .AND. & |
---|
| 1434 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1435 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[736] | 1436 | ENDIF |
---|
| 1437 | |
---|
| 1438 | CALL user_actions( 'q-tendency' ) |
---|
| 1439 | |
---|
| 1440 | ! |
---|
| 1441 | !-- Prognostic equation for total water content / scalar |
---|
| 1442 | DO i = nxl, nxr |
---|
| 1443 | DO j = nys, nyn |
---|
| 1444 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1445 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1446 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1447 | - tsc(5) * rdf_sc(k) * & |
---|
| 1448 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 1449 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 1450 | ENDDO |
---|
| 1451 | ENDDO |
---|
| 1452 | ENDDO |
---|
| 1453 | |
---|
| 1454 | ! |
---|
| 1455 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1456 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1457 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1458 | DO i = nxl, nxr |
---|
| 1459 | DO j = nys, nyn |
---|
| 1460 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1461 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1462 | ENDDO |
---|
| 1463 | ENDDO |
---|
| 1464 | ENDDO |
---|
| 1465 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1466 | intermediate_timestep_count_max ) THEN |
---|
| 1467 | DO i = nxl, nxr |
---|
| 1468 | DO j = nys, nyn |
---|
| 1469 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1470 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 1471 | ENDDO |
---|
| 1472 | ENDDO |
---|
| 1473 | ENDDO |
---|
| 1474 | ENDIF |
---|
| 1475 | ENDIF |
---|
| 1476 | |
---|
| 1477 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1478 | |
---|
[1361] | 1479 | ! |
---|
| 1480 | !-- If required, calculate prognostic equations for rain water content |
---|
| 1481 | !-- and rain drop concentration |
---|
| 1482 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 1483 | |
---|
| 1484 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 1485 | |
---|
| 1486 | ! |
---|
| 1487 | !-- Calculate prognostic equation for rain water content |
---|
| 1488 | sbt = tsc(2) |
---|
| 1489 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1490 | |
---|
| 1491 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1492 | ! |
---|
| 1493 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1494 | sbt = 1.0_wp |
---|
| 1495 | ENDIF |
---|
| 1496 | tend = 0.0_wp |
---|
| 1497 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 1498 | |
---|
| 1499 | ENDIF |
---|
| 1500 | |
---|
| 1501 | ! |
---|
| 1502 | !-- qr-tendency terms with no communication |
---|
| 1503 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1504 | tend = 0.0_wp |
---|
| 1505 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1506 | IF ( ws_scheme_sca ) THEN |
---|
| 1507 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 1508 | ELSE |
---|
| 1509 | CALL advec_s_pw( qr ) |
---|
| 1510 | ENDIF |
---|
| 1511 | ELSE |
---|
| 1512 | CALL advec_s_up( qr ) |
---|
| 1513 | ENDIF |
---|
| 1514 | ENDIF |
---|
| 1515 | |
---|
| 1516 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 1517 | |
---|
| 1518 | CALL user_actions( 'qr-tendency' ) |
---|
| 1519 | |
---|
| 1520 | ! |
---|
| 1521 | !-- Prognostic equation for rain water content |
---|
| 1522 | DO i = nxl, nxr |
---|
| 1523 | DO j = nys, nyn |
---|
| 1524 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1525 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1526 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 1527 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 1528 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 1529 | ENDDO |
---|
| 1530 | ENDDO |
---|
| 1531 | ENDDO |
---|
| 1532 | |
---|
| 1533 | ! |
---|
| 1534 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1535 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1536 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1537 | DO i = nxl, nxr |
---|
| 1538 | DO j = nys, nyn |
---|
| 1539 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1540 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 1541 | ENDDO |
---|
| 1542 | ENDDO |
---|
| 1543 | ENDDO |
---|
| 1544 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1545 | intermediate_timestep_count_max ) THEN |
---|
| 1546 | DO i = nxl, nxr |
---|
| 1547 | DO j = nys, nyn |
---|
| 1548 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1549 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1550 | tqr_m(k,j,i) |
---|
| 1551 | ENDDO |
---|
| 1552 | ENDDO |
---|
| 1553 | ENDDO |
---|
| 1554 | ENDIF |
---|
| 1555 | ENDIF |
---|
| 1556 | |
---|
| 1557 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 1558 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 1559 | |
---|
| 1560 | ! |
---|
| 1561 | !-- Calculate prognostic equation for rain drop concentration |
---|
| 1562 | sbt = tsc(2) |
---|
| 1563 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1564 | |
---|
| 1565 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1566 | ! |
---|
| 1567 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1568 | sbt = 1.0_wp |
---|
| 1569 | ENDIF |
---|
| 1570 | tend = 0.0_wp |
---|
| 1571 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 1572 | |
---|
| 1573 | ENDIF |
---|
| 1574 | |
---|
| 1575 | ! |
---|
| 1576 | !-- nr-tendency terms with no communication |
---|
| 1577 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1578 | tend = 0.0_wp |
---|
| 1579 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1580 | IF ( ws_scheme_sca ) THEN |
---|
| 1581 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 1582 | ELSE |
---|
| 1583 | CALL advec_s_pw( nr ) |
---|
| 1584 | ENDIF |
---|
| 1585 | ELSE |
---|
| 1586 | CALL advec_s_up( nr ) |
---|
| 1587 | ENDIF |
---|
| 1588 | ENDIF |
---|
| 1589 | |
---|
| 1590 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 1591 | |
---|
| 1592 | CALL user_actions( 'nr-tendency' ) |
---|
| 1593 | |
---|
| 1594 | ! |
---|
| 1595 | !-- Prognostic equation for rain drop concentration |
---|
| 1596 | DO i = nxl, nxr |
---|
| 1597 | DO j = nys, nyn |
---|
| 1598 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1599 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1600 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 1601 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 1602 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 1603 | ENDDO |
---|
| 1604 | ENDDO |
---|
| 1605 | ENDDO |
---|
| 1606 | |
---|
| 1607 | ! |
---|
| 1608 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1609 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1610 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1611 | DO i = nxl, nxr |
---|
| 1612 | DO j = nys, nyn |
---|
| 1613 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1614 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 1615 | ENDDO |
---|
| 1616 | ENDDO |
---|
| 1617 | ENDDO |
---|
| 1618 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1619 | intermediate_timestep_count_max ) THEN |
---|
| 1620 | DO i = nxl, nxr |
---|
| 1621 | DO j = nys, nyn |
---|
| 1622 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1623 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1624 | tnr_m(k,j,i) |
---|
| 1625 | ENDDO |
---|
| 1626 | ENDDO |
---|
| 1627 | ENDDO |
---|
| 1628 | ENDIF |
---|
| 1629 | ENDIF |
---|
| 1630 | |
---|
| 1631 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 1632 | |
---|
| 1633 | ENDIF |
---|
| 1634 | |
---|
[736] | 1635 | ENDIF |
---|
| 1636 | |
---|
| 1637 | ! |
---|
| 1638 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1639 | !-- energy (TKE) |
---|
| 1640 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1641 | |
---|
| 1642 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1643 | |
---|
| 1644 | sbt = tsc(2) |
---|
| 1645 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1646 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1647 | |
---|
| 1648 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1649 | ! |
---|
[1001] | 1650 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1651 | sbt = 1.0_wp |
---|
[736] | 1652 | ENDIF |
---|
[1337] | 1653 | tend = 0.0_wp |
---|
[736] | 1654 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1655 | |
---|
[736] | 1656 | ENDIF |
---|
| 1657 | ENDIF |
---|
| 1658 | |
---|
| 1659 | ! |
---|
| 1660 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1661 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1662 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 1663 | tend = 0.0_wp |
---|
[736] | 1664 | CALL advec_s_up( e ) |
---|
| 1665 | ELSE |
---|
[1337] | 1666 | tend = 0.0_wp |
---|
[1001] | 1667 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1668 | IF ( ws_scheme_sca ) THEN |
---|
| 1669 | CALL advec_s_ws( e, 'e' ) |
---|
| 1670 | ELSE |
---|
| 1671 | CALL advec_s_pw( e ) |
---|
| 1672 | ENDIF |
---|
| 1673 | ELSE |
---|
[1001] | 1674 | CALL advec_s_up( e ) |
---|
[736] | 1675 | ENDIF |
---|
| 1676 | ENDIF |
---|
[1001] | 1677 | ENDIF |
---|
| 1678 | |
---|
| 1679 | IF ( .NOT. humidity ) THEN |
---|
| 1680 | IF ( ocean ) THEN |
---|
| 1681 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1682 | ELSE |
---|
[1001] | 1683 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1684 | ENDIF |
---|
[1001] | 1685 | ELSE |
---|
| 1686 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1687 | ENDIF |
---|
[1001] | 1688 | |
---|
[736] | 1689 | CALL production_e |
---|
| 1690 | |
---|
| 1691 | ! |
---|
| 1692 | !-- Additional sink term for flows through plant canopies |
---|
| 1693 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1694 | CALL user_actions( 'e-tendency' ) |
---|
| 1695 | |
---|
| 1696 | ! |
---|
| 1697 | !-- Prognostic equation for TKE. |
---|
| 1698 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1699 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1700 | !-- value is reduced by 90%. |
---|
| 1701 | DO i = nxl, nxr |
---|
| 1702 | DO j = nys, nyn |
---|
| 1703 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1704 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1705 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 1706 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 1707 | ENDDO |
---|
| 1708 | ENDDO |
---|
| 1709 | ENDDO |
---|
| 1710 | |
---|
| 1711 | ! |
---|
| 1712 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1713 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1714 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1715 | DO i = nxl, nxr |
---|
| 1716 | DO j = nys, nyn |
---|
| 1717 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1718 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1719 | ENDDO |
---|
| 1720 | ENDDO |
---|
| 1721 | ENDDO |
---|
| 1722 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1723 | intermediate_timestep_count_max ) THEN |
---|
| 1724 | DO i = nxl, nxr |
---|
| 1725 | DO j = nys, nyn |
---|
| 1726 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1727 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[736] | 1728 | ENDDO |
---|
| 1729 | ENDDO |
---|
| 1730 | ENDDO |
---|
| 1731 | ENDIF |
---|
| 1732 | ENDIF |
---|
| 1733 | |
---|
| 1734 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1735 | |
---|
| 1736 | ENDIF |
---|
| 1737 | |
---|
| 1738 | END SUBROUTINE prognostic_equations_vector |
---|
| 1739 | |
---|
| 1740 | |
---|
[1015] | 1741 | SUBROUTINE prognostic_equations_acc |
---|
| 1742 | |
---|
| 1743 | !------------------------------------------------------------------------------! |
---|
| 1744 | ! Version for accelerator boards |
---|
| 1745 | !------------------------------------------------------------------------------! |
---|
| 1746 | |
---|
| 1747 | IMPLICIT NONE |
---|
| 1748 | |
---|
[1320] | 1749 | INTEGER(iwp) :: i !: |
---|
| 1750 | INTEGER(iwp) :: j !: |
---|
| 1751 | INTEGER(iwp) :: k !: |
---|
| 1752 | INTEGER(iwp) :: runge_step !: |
---|
[1015] | 1753 | |
---|
[1320] | 1754 | REAL(wp) :: sbt !: |
---|
| 1755 | |
---|
[1015] | 1756 | ! |
---|
| 1757 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1758 | runge_step = 0 |
---|
| 1759 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1760 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1761 | runge_step = 1 |
---|
| 1762 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1763 | intermediate_timestep_count_max ) THEN |
---|
| 1764 | runge_step = 2 |
---|
| 1765 | ENDIF |
---|
| 1766 | ENDIF |
---|
| 1767 | |
---|
| 1768 | ! |
---|
[1361] | 1769 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 1770 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 1771 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 1772 | call_microphysics_at_all_substeps ) & |
---|
| 1773 | ) THEN |
---|
| 1774 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 1775 | CALL microphysics_control |
---|
| 1776 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 1777 | ENDIF |
---|
| 1778 | |
---|
| 1779 | ! |
---|
[1015] | 1780 | !-- u-velocity component |
---|
[1374] | 1781 | !++ Statistics still not completely ported to accelerators |
---|
[1179] | 1782 | !$acc update device( hom, ref_state ) |
---|
[1015] | 1783 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1784 | |
---|
| 1785 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1786 | IF ( ws_scheme_mom ) THEN |
---|
| 1787 | CALL advec_u_ws_acc |
---|
| 1788 | ELSE |
---|
[1337] | 1789 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1790 | CALL advec_u_pw |
---|
| 1791 | ENDIF |
---|
| 1792 | ELSE |
---|
| 1793 | CALL advec_u_up |
---|
| 1794 | ENDIF |
---|
| 1795 | CALL diffusion_u_acc |
---|
| 1796 | CALL coriolis_acc( 1 ) |
---|
| 1797 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 1798 | CALL buoyancy( pt, 1 ) |
---|
[1015] | 1799 | ENDIF |
---|
| 1800 | |
---|
| 1801 | ! |
---|
| 1802 | !-- Drag by plant canopy |
---|
| 1803 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1804 | |
---|
| 1805 | ! |
---|
| 1806 | !-- External pressure gradient |
---|
| 1807 | IF ( dp_external ) THEN |
---|
[1128] | 1808 | DO i = i_left, i_right |
---|
| 1809 | DO j = j_south, j_north |
---|
[1015] | 1810 | DO k = dp_level_ind_b+1, nzt |
---|
| 1811 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1812 | ENDDO |
---|
| 1813 | ENDDO |
---|
| 1814 | ENDDO |
---|
| 1815 | ENDIF |
---|
| 1816 | |
---|
[1246] | 1817 | ! |
---|
| 1818 | !-- Nudging |
---|
| 1819 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 1820 | |
---|
[1015] | 1821 | CALL user_actions( 'u-tendency' ) |
---|
| 1822 | |
---|
| 1823 | ! |
---|
| 1824 | !-- Prognostic equation for u-velocity component |
---|
[1398] | 1825 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, u_init, u_p ) |
---|
[1257] | 1826 | !$acc loop independent |
---|
[1128] | 1827 | DO i = i_left, i_right |
---|
[1257] | 1828 | !$acc loop independent |
---|
[1128] | 1829 | DO j = j_south, j_north |
---|
[1257] | 1830 | !$acc loop independent |
---|
[1015] | 1831 | DO k = 1, nzt |
---|
| 1832 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1833 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1834 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 1835 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[1015] | 1836 | ! |
---|
| 1837 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1838 | IF ( runge_step == 1 ) THEN |
---|
| 1839 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1840 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1841 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[1015] | 1842 | ENDIF |
---|
| 1843 | ENDIF |
---|
| 1844 | ENDDO |
---|
| 1845 | ENDDO |
---|
| 1846 | ENDDO |
---|
| 1847 | !$acc end kernels |
---|
| 1848 | |
---|
| 1849 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1850 | |
---|
| 1851 | ! |
---|
| 1852 | !-- v-velocity component |
---|
| 1853 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1854 | |
---|
| 1855 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1856 | IF ( ws_scheme_mom ) THEN |
---|
| 1857 | CALL advec_v_ws_acc |
---|
| 1858 | ELSE |
---|
[1337] | 1859 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1860 | CALL advec_v_pw |
---|
| 1861 | END IF |
---|
| 1862 | ELSE |
---|
| 1863 | CALL advec_v_up |
---|
| 1864 | ENDIF |
---|
| 1865 | CALL diffusion_v_acc |
---|
| 1866 | CALL coriolis_acc( 2 ) |
---|
| 1867 | |
---|
| 1868 | ! |
---|
| 1869 | !-- Drag by plant canopy |
---|
| 1870 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1871 | |
---|
| 1872 | ! |
---|
| 1873 | !-- External pressure gradient |
---|
| 1874 | IF ( dp_external ) THEN |
---|
[1128] | 1875 | DO i = i_left, i_right |
---|
| 1876 | DO j = j_south, j_north |
---|
[1015] | 1877 | DO k = dp_level_ind_b+1, nzt |
---|
| 1878 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1879 | ENDDO |
---|
| 1880 | ENDDO |
---|
| 1881 | ENDDO |
---|
| 1882 | ENDIF |
---|
| 1883 | |
---|
[1246] | 1884 | ! |
---|
| 1885 | !-- Nudging |
---|
| 1886 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1887 | |
---|
[1015] | 1888 | CALL user_actions( 'v-tendency' ) |
---|
| 1889 | |
---|
| 1890 | ! |
---|
| 1891 | !-- Prognostic equation for v-velocity component |
---|
[1398] | 1892 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, v_init, v_p ) |
---|
[1257] | 1893 | !$acc loop independent |
---|
[1128] | 1894 | DO i = i_left, i_right |
---|
[1257] | 1895 | !$acc loop independent |
---|
[1128] | 1896 | DO j = j_south, j_north |
---|
[1257] | 1897 | !$acc loop independent |
---|
[1015] | 1898 | DO k = 1, nzt |
---|
| 1899 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1900 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1901 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1902 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[1015] | 1903 | ! |
---|
| 1904 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1905 | IF ( runge_step == 1 ) THEN |
---|
| 1906 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1907 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1908 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[1015] | 1909 | ENDIF |
---|
| 1910 | ENDIF |
---|
| 1911 | ENDDO |
---|
| 1912 | ENDDO |
---|
| 1913 | ENDDO |
---|
| 1914 | !$acc end kernels |
---|
| 1915 | |
---|
| 1916 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1917 | |
---|
| 1918 | ! |
---|
| 1919 | !-- w-velocity component |
---|
| 1920 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1921 | |
---|
| 1922 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1923 | IF ( ws_scheme_mom ) THEN |
---|
| 1924 | CALL advec_w_ws_acc |
---|
| 1925 | ELSE |
---|
[1337] | 1926 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1927 | CALL advec_w_pw |
---|
| 1928 | ENDIF |
---|
| 1929 | ELSE |
---|
| 1930 | CALL advec_w_up |
---|
| 1931 | ENDIF |
---|
| 1932 | CALL diffusion_w_acc |
---|
| 1933 | CALL coriolis_acc( 3 ) |
---|
| 1934 | |
---|
| 1935 | IF ( .NOT. neutral ) THEN |
---|
| 1936 | IF ( ocean ) THEN |
---|
[1179] | 1937 | CALL buoyancy( rho, 3 ) |
---|
[1015] | 1938 | ELSE |
---|
| 1939 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1940 | CALL buoyancy_acc( pt, 3 ) |
---|
[1015] | 1941 | ELSE |
---|
[1179] | 1942 | CALL buoyancy( vpt, 3 ) |
---|
[1015] | 1943 | ENDIF |
---|
| 1944 | ENDIF |
---|
| 1945 | ENDIF |
---|
| 1946 | |
---|
| 1947 | ! |
---|
| 1948 | !-- Drag by plant canopy |
---|
| 1949 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1950 | |
---|
| 1951 | CALL user_actions( 'w-tendency' ) |
---|
| 1952 | |
---|
| 1953 | ! |
---|
| 1954 | !-- Prognostic equation for w-velocity component |
---|
| 1955 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
[1257] | 1956 | !$acc loop independent |
---|
[1128] | 1957 | DO i = i_left, i_right |
---|
[1257] | 1958 | !$acc loop independent |
---|
[1128] | 1959 | DO j = j_south, j_north |
---|
[1257] | 1960 | !$acc loop independent |
---|
[1015] | 1961 | DO k = 1, nzt-1 |
---|
| 1962 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 1963 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1964 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1965 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1966 | ! |
---|
| 1967 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1968 | IF ( runge_step == 1 ) THEN |
---|
| 1969 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1970 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1971 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[1015] | 1972 | ENDIF |
---|
| 1973 | ENDIF |
---|
| 1974 | ENDDO |
---|
| 1975 | ENDDO |
---|
| 1976 | ENDDO |
---|
| 1977 | !$acc end kernels |
---|
| 1978 | |
---|
| 1979 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1980 | |
---|
| 1981 | |
---|
| 1982 | ! |
---|
| 1983 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1984 | IF ( .NOT. neutral ) THEN |
---|
| 1985 | |
---|
| 1986 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1987 | |
---|
| 1988 | ! |
---|
| 1989 | !-- pt-tendency terms with communication |
---|
| 1990 | sbt = tsc(2) |
---|
| 1991 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1992 | |
---|
| 1993 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1994 | ! |
---|
| 1995 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1996 | sbt = 1.0_wp |
---|
[1015] | 1997 | ENDIF |
---|
[1337] | 1998 | tend = 0.0_wp |
---|
[1015] | 1999 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 2000 | |
---|
| 2001 | ENDIF |
---|
| 2002 | |
---|
| 2003 | ! |
---|
| 2004 | !-- pt-tendency terms with no communication |
---|
| 2005 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2006 | tend = 0.0_wp |
---|
[1015] | 2007 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2008 | IF ( ws_scheme_sca ) THEN |
---|
| 2009 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 2010 | ELSE |
---|
[1337] | 2011 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2012 | CALL advec_s_pw( pt ) |
---|
| 2013 | ENDIF |
---|
| 2014 | ELSE |
---|
| 2015 | CALL advec_s_up( pt ) |
---|
| 2016 | ENDIF |
---|
| 2017 | ENDIF |
---|
| 2018 | |
---|
| 2019 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 2020 | |
---|
| 2021 | ! |
---|
| 2022 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 2023 | IF ( radiation ) THEN |
---|
| 2024 | CALL calc_radiation |
---|
| 2025 | ENDIF |
---|
| 2026 | |
---|
| 2027 | ! |
---|
| 2028 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 2029 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2030 | CALL impact_of_latent_heat |
---|
| 2031 | ENDIF |
---|
| 2032 | |
---|
| 2033 | ! |
---|
| 2034 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 2035 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[1015] | 2036 | CALL plant_canopy_model( 4 ) |
---|
| 2037 | ENDIF |
---|
| 2038 | |
---|
| 2039 | ! |
---|
[1365] | 2040 | !-- Large scale advection |
---|
| 2041 | IF ( large_scale_forcing ) THEN |
---|
| 2042 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 2043 | ENDIF |
---|
| 2044 | |
---|
| 2045 | ! |
---|
[1380] | 2046 | !-- Nudging |
---|
| 2047 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 2048 | |
---|
| 2049 | ! |
---|
[1015] | 2050 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2051 | IF ( large_scale_subsidence .AND. & |
---|
| 2052 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2053 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[1015] | 2054 | ENDIF |
---|
| 2055 | |
---|
| 2056 | CALL user_actions( 'pt-tendency' ) |
---|
| 2057 | |
---|
| 2058 | ! |
---|
| 2059 | !-- Prognostic equation for potential temperature |
---|
| 2060 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 2061 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
[1257] | 2062 | !$acc loop independent |
---|
[1128] | 2063 | DO i = i_left, i_right |
---|
[1257] | 2064 | !$acc loop independent |
---|
[1128] | 2065 | DO j = j_south, j_north |
---|
[1257] | 2066 | !$acc loop independent |
---|
[1015] | 2067 | DO k = 1, nzt |
---|
| 2068 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2069 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2070 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 2071 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 2072 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 2073 | ! |
---|
| 2074 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2075 | IF ( runge_step == 1 ) THEN |
---|
| 2076 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 2077 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2078 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tpt_m(k,j,i) |
---|
[1015] | 2079 | ENDIF |
---|
| 2080 | ENDIF |
---|
| 2081 | ENDDO |
---|
| 2082 | ENDDO |
---|
| 2083 | ENDDO |
---|
| 2084 | !$acc end kernels |
---|
| 2085 | |
---|
| 2086 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 2087 | |
---|
| 2088 | ENDIF |
---|
| 2089 | |
---|
| 2090 | ! |
---|
| 2091 | !-- If required, compute prognostic equation for salinity |
---|
| 2092 | IF ( ocean ) THEN |
---|
| 2093 | |
---|
| 2094 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 2095 | |
---|
| 2096 | ! |
---|
| 2097 | !-- sa-tendency terms with communication |
---|
| 2098 | sbt = tsc(2) |
---|
| 2099 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2100 | |
---|
| 2101 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2102 | ! |
---|
| 2103 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2104 | sbt = 1.0_wp |
---|
[1015] | 2105 | ENDIF |
---|
[1337] | 2106 | tend = 0.0_wp |
---|
[1015] | 2107 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 2108 | |
---|
| 2109 | ENDIF |
---|
| 2110 | |
---|
| 2111 | ! |
---|
| 2112 | !-- sa-tendency terms with no communication |
---|
| 2113 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2114 | tend = 0.0_wp |
---|
[1015] | 2115 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2116 | IF ( ws_scheme_sca ) THEN |
---|
| 2117 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 2118 | ELSE |
---|
| 2119 | CALL advec_s_pw( sa ) |
---|
| 2120 | ENDIF |
---|
| 2121 | ELSE |
---|
| 2122 | CALL advec_s_up( sa ) |
---|
| 2123 | ENDIF |
---|
| 2124 | ENDIF |
---|
| 2125 | |
---|
| 2126 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 2127 | |
---|
| 2128 | CALL user_actions( 'sa-tendency' ) |
---|
| 2129 | |
---|
| 2130 | ! |
---|
| 2131 | !-- Prognostic equation for salinity |
---|
[1128] | 2132 | DO i = i_left, i_right |
---|
| 2133 | DO j = j_south, j_north |
---|
[1015] | 2134 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2135 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2136 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 2137 | - tsc(5) * rdf_sc(k) * & |
---|
| 2138 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 2139 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[1015] | 2140 | ! |
---|
| 2141 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2142 | IF ( runge_step == 1 ) THEN |
---|
| 2143 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 2144 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2145 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tsa_m(k,j,i) |
---|
[1015] | 2146 | ENDIF |
---|
| 2147 | ENDDO |
---|
| 2148 | ENDDO |
---|
| 2149 | ENDDO |
---|
| 2150 | |
---|
| 2151 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 2152 | |
---|
| 2153 | ! |
---|
| 2154 | !-- Calculate density by the equation of state for seawater |
---|
| 2155 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 2156 | CALL eqn_state_seawater |
---|
| 2157 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 2158 | |
---|
| 2159 | ENDIF |
---|
| 2160 | |
---|
| 2161 | ! |
---|
| 2162 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 2163 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 2164 | |
---|
| 2165 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 2166 | |
---|
| 2167 | ! |
---|
| 2168 | !-- Scalar/q-tendency terms with communication |
---|
| 2169 | sbt = tsc(2) |
---|
| 2170 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2171 | |
---|
| 2172 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2173 | ! |
---|
| 2174 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2175 | sbt = 1.0_wp |
---|
[1015] | 2176 | ENDIF |
---|
[1337] | 2177 | tend = 0.0_wp |
---|
[1015] | 2178 | CALL advec_s_bc( q, 'q' ) |
---|
| 2179 | |
---|
| 2180 | ENDIF |
---|
| 2181 | |
---|
| 2182 | ! |
---|
| 2183 | !-- Scalar/q-tendency terms with no communication |
---|
| 2184 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2185 | tend = 0.0_wp |
---|
[1015] | 2186 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2187 | IF ( ws_scheme_sca ) THEN |
---|
| 2188 | CALL advec_s_ws( q, 'q' ) |
---|
| 2189 | ELSE |
---|
| 2190 | CALL advec_s_pw( q ) |
---|
| 2191 | ENDIF |
---|
| 2192 | ELSE |
---|
| 2193 | CALL advec_s_up( q ) |
---|
| 2194 | ENDIF |
---|
| 2195 | ENDIF |
---|
| 2196 | |
---|
| 2197 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 2198 | |
---|
| 2199 | ! |
---|
| 2200 | !-- If required compute decrease of total water content due to |
---|
| 2201 | !-- precipitation |
---|
[1361] | 2202 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2203 | CALL calc_precipitation |
---|
| 2204 | ENDIF |
---|
| 2205 | |
---|
| 2206 | ! |
---|
| 2207 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 2208 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 2209 | |
---|
| 2210 | ! |
---|
[1365] | 2211 | !-- Large scale advection |
---|
| 2212 | IF ( large_scale_forcing ) THEN |
---|
| 2213 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 2214 | ENDIF |
---|
| 2215 | |
---|
| 2216 | ! |
---|
[1380] | 2217 | !-- Nudging |
---|
| 2218 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 2219 | |
---|
| 2220 | ! |
---|
[1015] | 2221 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2222 | IF ( large_scale_subsidence .AND. & |
---|
| 2223 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2224 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[1015] | 2225 | ENDIF |
---|
| 2226 | |
---|
| 2227 | CALL user_actions( 'q-tendency' ) |
---|
| 2228 | |
---|
| 2229 | ! |
---|
| 2230 | !-- Prognostic equation for total water content / scalar |
---|
[1128] | 2231 | DO i = i_left, i_right |
---|
| 2232 | DO j = j_south, j_north |
---|
[1015] | 2233 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2234 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2235 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 2236 | - tsc(5) * rdf_sc(k) * & |
---|
| 2237 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 2238 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[1015] | 2239 | ! |
---|
| 2240 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2241 | IF ( runge_step == 1 ) THEN |
---|
| 2242 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 2243 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2244 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[1015] | 2245 | ENDIF |
---|
| 2246 | ENDDO |
---|
| 2247 | ENDDO |
---|
| 2248 | ENDDO |
---|
| 2249 | |
---|
| 2250 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 2251 | |
---|
[1361] | 2252 | ! |
---|
| 2253 | !-- If required, calculate prognostic equations for rain water content |
---|
| 2254 | !-- and rain drop concentration |
---|
| 2255 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 2256 | |
---|
| 2257 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 2258 | ! |
---|
| 2259 | !-- qr-tendency terms with communication |
---|
| 2260 | sbt = tsc(2) |
---|
| 2261 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2262 | |
---|
| 2263 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2264 | ! |
---|
| 2265 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2266 | sbt = 1.0_wp |
---|
| 2267 | ENDIF |
---|
| 2268 | tend = 0.0_wp |
---|
| 2269 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 2270 | |
---|
| 2271 | ENDIF |
---|
| 2272 | |
---|
| 2273 | ! |
---|
| 2274 | !-- qr-tendency terms with no communication |
---|
| 2275 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2276 | tend = 0.0_wp |
---|
| 2277 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2278 | IF ( ws_scheme_sca ) THEN |
---|
| 2279 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 2280 | ELSE |
---|
| 2281 | CALL advec_s_pw( qr ) |
---|
| 2282 | ENDIF |
---|
| 2283 | ELSE |
---|
| 2284 | CALL advec_s_up( qr ) |
---|
| 2285 | ENDIF |
---|
| 2286 | ENDIF |
---|
| 2287 | |
---|
| 2288 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 2289 | |
---|
| 2290 | CALL user_actions( 'qr-tendency' ) |
---|
| 2291 | |
---|
| 2292 | ! |
---|
| 2293 | !-- Prognostic equation for rain water content |
---|
| 2294 | DO i = i_left, i_right |
---|
| 2295 | DO j = j_south, j_north |
---|
| 2296 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2297 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2298 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 2299 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 2300 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 2301 | ! |
---|
| 2302 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2303 | IF ( runge_step == 1 ) THEN |
---|
| 2304 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 2305 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2306 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2307 | tqr_m(k,j,i) |
---|
| 2308 | ENDIF |
---|
| 2309 | ENDDO |
---|
| 2310 | ENDDO |
---|
| 2311 | ENDDO |
---|
| 2312 | |
---|
| 2313 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 2314 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 2315 | |
---|
| 2316 | ! |
---|
| 2317 | !-- nr-tendency terms with communication |
---|
| 2318 | sbt = tsc(2) |
---|
| 2319 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2320 | |
---|
| 2321 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2322 | ! |
---|
| 2323 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2324 | sbt = 1.0_wp |
---|
| 2325 | ENDIF |
---|
| 2326 | tend = 0.0_wp |
---|
| 2327 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 2328 | |
---|
| 2329 | ENDIF |
---|
| 2330 | |
---|
| 2331 | ! |
---|
| 2332 | !-- nr-tendency terms with no communication |
---|
| 2333 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2334 | tend = 0.0_wp |
---|
| 2335 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2336 | IF ( ws_scheme_sca ) THEN |
---|
| 2337 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 2338 | ELSE |
---|
| 2339 | CALL advec_s_pw( nr ) |
---|
| 2340 | ENDIF |
---|
| 2341 | ELSE |
---|
| 2342 | CALL advec_s_up( nr ) |
---|
| 2343 | ENDIF |
---|
| 2344 | ENDIF |
---|
| 2345 | |
---|
| 2346 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 2347 | |
---|
| 2348 | CALL user_actions( 'nr-tendency' ) |
---|
| 2349 | |
---|
| 2350 | ! |
---|
| 2351 | !-- Prognostic equation for rain drop concentration |
---|
| 2352 | DO i = i_left, i_right |
---|
| 2353 | DO j = j_south, j_north |
---|
| 2354 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2355 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2356 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 2357 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 2358 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 2359 | ! |
---|
| 2360 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2361 | IF ( runge_step == 1 ) THEN |
---|
| 2362 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 2363 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2364 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2365 | tnr_m(k,j,i) |
---|
| 2366 | ENDIF |
---|
| 2367 | ENDDO |
---|
| 2368 | ENDDO |
---|
| 2369 | ENDDO |
---|
| 2370 | |
---|
| 2371 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 2372 | |
---|
| 2373 | ENDIF |
---|
| 2374 | |
---|
[1015] | 2375 | ENDIF |
---|
| 2376 | |
---|
| 2377 | ! |
---|
| 2378 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 2379 | !-- energy (TKE) |
---|
| 2380 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 2381 | |
---|
| 2382 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 2383 | |
---|
| 2384 | sbt = tsc(2) |
---|
| 2385 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 2386 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2387 | |
---|
| 2388 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2389 | ! |
---|
| 2390 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2391 | sbt = 1.0_wp |
---|
[1015] | 2392 | ENDIF |
---|
[1337] | 2393 | tend = 0.0_wp |
---|
[1015] | 2394 | CALL advec_s_bc( e, 'e' ) |
---|
| 2395 | |
---|
| 2396 | ENDIF |
---|
| 2397 | ENDIF |
---|
| 2398 | |
---|
| 2399 | ! |
---|
| 2400 | !-- TKE-tendency terms with no communication |
---|
| 2401 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 2402 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 2403 | tend = 0.0_wp |
---|
[1015] | 2404 | CALL advec_s_up( e ) |
---|
| 2405 | ELSE |
---|
| 2406 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2407 | IF ( ws_scheme_sca ) THEN |
---|
| 2408 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 2409 | ELSE |
---|
[1337] | 2410 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2411 | CALL advec_s_pw( e ) |
---|
| 2412 | ENDIF |
---|
| 2413 | ELSE |
---|
[1337] | 2414 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2415 | CALL advec_s_up( e ) |
---|
| 2416 | ENDIF |
---|
| 2417 | ENDIF |
---|
| 2418 | ENDIF |
---|
| 2419 | |
---|
| 2420 | IF ( .NOT. humidity ) THEN |
---|
| 2421 | IF ( ocean ) THEN |
---|
| 2422 | CALL diffusion_e( prho, prho_reference ) |
---|
| 2423 | ELSE |
---|
| 2424 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 2425 | ENDIF |
---|
| 2426 | ELSE |
---|
| 2427 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 2428 | ENDIF |
---|
| 2429 | |
---|
| 2430 | CALL production_e_acc |
---|
| 2431 | |
---|
| 2432 | ! |
---|
| 2433 | !-- Additional sink term for flows through plant canopies |
---|
| 2434 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 2435 | CALL user_actions( 'e-tendency' ) |
---|
| 2436 | |
---|
| 2437 | ! |
---|
| 2438 | !-- Prognostic equation for TKE. |
---|
| 2439 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2440 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2441 | !-- value is reduced by 90%. |
---|
| 2442 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
[1257] | 2443 | !$acc loop independent |
---|
[1128] | 2444 | DO i = i_left, i_right |
---|
[1257] | 2445 | !$acc loop independent |
---|
[1128] | 2446 | DO j = j_south, j_north |
---|
[1257] | 2447 | !$acc loop independent |
---|
[1015] | 2448 | DO k = 1, nzt |
---|
| 2449 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2450 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2451 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 2452 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[1015] | 2453 | ! |
---|
| 2454 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2455 | IF ( runge_step == 1 ) THEN |
---|
| 2456 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2457 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2458 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[1015] | 2459 | ENDIF |
---|
| 2460 | ENDIF |
---|
| 2461 | ENDDO |
---|
| 2462 | ENDDO |
---|
| 2463 | ENDDO |
---|
| 2464 | !$acc end kernels |
---|
| 2465 | |
---|
| 2466 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2467 | |
---|
| 2468 | ENDIF |
---|
| 2469 | |
---|
| 2470 | END SUBROUTINE prognostic_equations_acc |
---|
| 2471 | |
---|
| 2472 | |
---|
[736] | 2473 | END MODULE prognostic_equations_mod |
---|