[736] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[736] | 20 | ! Current revisions: |
---|
[1092] | 21 | ! ------------------ |
---|
[1410] | 22 | ! |
---|
| 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: prognostic_equations.f90 1410 2014-05-23 12:16:18Z suehring $ |
---|
| 27 | ! |
---|
| 28 | ! 1409 2014-05-23 12:11:32Z suehring |
---|
[1409] | 29 | ! Bugfix: i_omp_start changed for advec_u_ws at left inflow and outflow boundary. |
---|
| 30 | ! This ensures that left-hand side fluxes are also calculated for nxl in that |
---|
| 31 | ! case, even though the solution at nxl is overwritten in boundary_conds() |
---|
| 32 | ! |
---|
| 33 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
[1398] | 34 | ! Rayleigh-damping for horizontal velocity components changed: instead of damping |
---|
| 35 | ! against ug and vg, damping against u_init and v_init is used to allow for a |
---|
| 36 | ! homogenized treatment in case of nudging |
---|
| 37 | ! |
---|
| 38 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
[1381] | 39 | ! Change order of calls for scalar prognostic quantities: |
---|
| 40 | ! ls_advec -> nudging -> subsidence since initial profiles |
---|
| 41 | ! |
---|
[1380] | 42 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 43 | ! missing variables added to ONLY lists |
---|
| 44 | ! |
---|
| 45 | ! 1365 2014-04-22 15:03:56Z boeske |
---|
[1365] | 46 | ! Calls of ls_advec for large scale advection added, |
---|
| 47 | ! subroutine subsidence is only called if use_subsidence_tendencies = .F., |
---|
| 48 | ! new argument ls_index added to the calls of subsidence |
---|
| 49 | ! +ls_index |
---|
| 50 | ! |
---|
| 51 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
[1361] | 52 | ! Two-moment microphysics moved to the start of prognostic equations. This makes |
---|
| 53 | ! the 3d arrays for tend_q, tend_qr, tend_pt and tend_pt redundant. |
---|
| 54 | ! Additionally, it is allowed to call the microphysics just once during the time |
---|
| 55 | ! step (not at each sub-time step). |
---|
| 56 | ! |
---|
| 57 | ! Two-moment cloud physics added for vector and accelerator optimization. |
---|
| 58 | ! |
---|
| 59 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
[1354] | 60 | ! REAL constants provided with KIND-attribute |
---|
| 61 | ! |
---|
[1353] | 62 | ! 1337 2014-03-25 15:11:48Z heinze |
---|
| 63 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 64 | ! |
---|
| 65 | ! 1332 2014-03-25 11:59:43Z suehring |
---|
[1333] | 66 | ! Bugfix: call advec_ws or advec_pw for TKE only if NOT use_upstream_for_tke |
---|
| 67 | ! |
---|
[1332] | 68 | ! 1330 2014-03-24 17:29:32Z suehring |
---|
[1331] | 69 | ! In case of SGS-particle velocity advection of TKE is also allowed with |
---|
| 70 | ! dissipative 5th-order scheme. |
---|
| 71 | ! |
---|
[1321] | 72 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 73 | ! ONLY-attribute added to USE-statements, |
---|
| 74 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 75 | ! kinds are defined in new module kinds, |
---|
| 76 | ! old module precision_kind is removed, |
---|
| 77 | ! revision history before 2012 removed, |
---|
| 78 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 79 | ! all variable declaration statements |
---|
[1054] | 80 | ! |
---|
[1319] | 81 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 82 | ! module interfaces removed |
---|
| 83 | ! |
---|
[1258] | 84 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 85 | ! openacc loop vector clauses removed, independent clauses added |
---|
| 86 | ! |
---|
[1247] | 87 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
| 88 | ! enable nudging also for accelerator version |
---|
| 89 | ! |
---|
[1242] | 90 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 91 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
| 92 | ! |
---|
[1182] | 93 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 94 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 95 | ! |
---|
[1132] | 96 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 97 | ! those parts requiring global communication moved to time_integration, |
---|
| 98 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 99 | ! j_north |
---|
| 100 | ! |
---|
[1116] | 101 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 102 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 103 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 104 | ! |
---|
[1112] | 105 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 106 | ! update directives for prognostic quantities removed |
---|
| 107 | ! |
---|
[1107] | 108 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 109 | ! small changes in code formatting |
---|
| 110 | ! |
---|
[1093] | 111 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 112 | ! unused variables removed |
---|
| 113 | ! |
---|
[1054] | 114 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 115 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 116 | ! and rain water content (qr) |
---|
[979] | 117 | ! |
---|
[1053] | 118 | ! currently, only available for cache loop optimization |
---|
[1020] | 119 | ! |
---|
[1037] | 120 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 121 | ! code put under GPL (PALM 3.9) |
---|
| 122 | ! |
---|
[1020] | 123 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 124 | ! non-optimized version of prognostic_equations removed |
---|
| 125 | ! |
---|
[1017] | 126 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 127 | ! new branch prognostic_equations_acc |
---|
| 128 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 129 | ! |
---|
[1002] | 130 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 131 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 132 | ! |
---|
[979] | 133 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 134 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 135 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 136 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 137 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 138 | ! |
---|
[941] | 139 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 140 | ! temperature equation can be switched off |
---|
| 141 | ! |
---|
[736] | 142 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 143 | ! Initial revision |
---|
| 144 | ! |
---|
| 145 | ! |
---|
| 146 | ! Description: |
---|
| 147 | ! ------------ |
---|
| 148 | ! Solving the prognostic equations. |
---|
| 149 | !------------------------------------------------------------------------------! |
---|
| 150 | |
---|
[1320] | 151 | USE arrays_3d, & |
---|
| 152 | ONLY: diss_l_e, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qr, & |
---|
| 153 | diss_l_sa, diss_s_e, diss_s_nr, diss_s_pt, diss_s_q, & |
---|
| 154 | diss_s_qr, diss_s_sa, e, e_p, flux_s_e, flux_s_nr, flux_s_pt, & |
---|
| 155 | flux_s_q, flux_s_qr, flux_s_sa, flux_l_e, flux_l_nr, & |
---|
| 156 | flux_l_pt, flux_l_q, flux_l_qr, flux_l_sa, nr, nr_p, nrsws, & |
---|
| 157 | nrswst, pt, ptdf_x, ptdf_y, pt_init, pt_p, prho, q, q_init, & |
---|
[1374] | 158 | q_p, qsws, qswst, qr, qr_p, qrsws, qrswst, rdf, rdf_sc, & |
---|
| 159 | ref_state, rho, sa, sa_init, sa_p, saswsb, saswst, shf, tend, & |
---|
| 160 | te_m, tnr_m, tpt_m, tq_m, tqr_m, tsa_m, tswst, tu_m, tv_m, & |
---|
[1398] | 161 | tw_m, u, ug, u_init, u_p, v, vg, vpt, v_init, v_p, w, w_p |
---|
[1320] | 162 | |
---|
| 163 | USE control_parameters, & |
---|
[1361] | 164 | ONLY: call_microphysics_at_all_substeps, cloud_physics, & |
---|
| 165 | constant_diffusion, cthf, dp_external, & |
---|
[1320] | 166 | dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, humidity, & |
---|
| 167 | icloud_scheme, inflow_l, intermediate_timestep_count, & |
---|
[1365] | 168 | intermediate_timestep_count_max, large_scale_forcing, & |
---|
| 169 | large_scale_subsidence, neutral, nudging, ocean, outflow_l, & |
---|
| 170 | outflow_s, passive_scalar, plant_canopy, precipitation, & |
---|
| 171 | prho_reference, prho_reference, prho_reference, pt_reference, & |
---|
| 172 | pt_reference, pt_reference, radiation, scalar_advec, & |
---|
| 173 | scalar_advec, simulated_time, sloping_surface, timestep_scheme, & |
---|
| 174 | tsc, use_subsidence_tendencies, use_upstream_for_tke, & |
---|
[1320] | 175 | use_upstream_for_tke, use_upstream_for_tke, wall_heatflux, & |
---|
| 176 | wall_nrflux, wall_qflux, wall_qflux, wall_qflux, wall_qrflux, & |
---|
| 177 | wall_salinityflux, ws_scheme_mom, ws_scheme_sca |
---|
[736] | 178 | |
---|
[1320] | 179 | USE cpulog, & |
---|
| 180 | ONLY: cpu_log, log_point |
---|
[736] | 181 | |
---|
[1320] | 182 | USE eqn_state_seawater_mod, & |
---|
| 183 | ONLY: eqn_state_seawater |
---|
| 184 | |
---|
| 185 | USE indices, & |
---|
| 186 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlu, nxr, nyn, nys, & |
---|
| 187 | nysv, nzb_s_inner, nzb_u_inner, nzb_v_inner, nzb_w_inner, nzt |
---|
| 188 | |
---|
| 189 | USE advec_ws, & |
---|
| 190 | ONLY: advec_s_ws, advec_s_ws_acc, advec_u_ws, advec_u_ws_acc, & |
---|
| 191 | advec_v_ws, advec_v_ws_acc, advec_w_ws, advec_w_ws_acc |
---|
| 192 | |
---|
| 193 | USE advec_s_pw_mod, & |
---|
| 194 | ONLY: advec_s_pw |
---|
| 195 | |
---|
| 196 | USE advec_s_up_mod, & |
---|
| 197 | ONLY: advec_s_up |
---|
| 198 | |
---|
| 199 | USE advec_u_pw_mod, & |
---|
| 200 | ONLY: advec_u_pw |
---|
| 201 | |
---|
| 202 | USE advec_u_up_mod, & |
---|
| 203 | ONLY: advec_u_up |
---|
| 204 | |
---|
| 205 | USE advec_v_pw_mod, & |
---|
| 206 | ONLY: advec_v_pw |
---|
| 207 | |
---|
| 208 | USE advec_v_up_mod, & |
---|
| 209 | ONLY: advec_v_up |
---|
| 210 | |
---|
| 211 | USE advec_w_pw_mod, & |
---|
| 212 | ONLY: advec_w_pw |
---|
| 213 | |
---|
| 214 | USE advec_w_up_mod, & |
---|
| 215 | ONLY: advec_w_up |
---|
| 216 | |
---|
| 217 | USE buoyancy_mod, & |
---|
| 218 | ONLY: buoyancy, buoyancy_acc |
---|
| 219 | |
---|
| 220 | USE calc_precipitation_mod, & |
---|
| 221 | ONLY: calc_precipitation |
---|
| 222 | |
---|
| 223 | USE calc_radiation_mod, & |
---|
| 224 | ONLY: calc_radiation |
---|
| 225 | |
---|
| 226 | USE coriolis_mod, & |
---|
| 227 | ONLY: coriolis, coriolis_acc |
---|
| 228 | |
---|
| 229 | USE diffusion_e_mod, & |
---|
| 230 | ONLY: diffusion_e, diffusion_e_acc |
---|
| 231 | |
---|
| 232 | USE diffusion_s_mod, & |
---|
| 233 | ONLY: diffusion_s, diffusion_s_acc |
---|
| 234 | |
---|
| 235 | USE diffusion_u_mod, & |
---|
| 236 | ONLY: diffusion_u, diffusion_u_acc |
---|
| 237 | |
---|
| 238 | USE diffusion_v_mod, & |
---|
| 239 | ONLY: diffusion_v, diffusion_v_acc |
---|
| 240 | |
---|
| 241 | USE diffusion_w_mod, & |
---|
| 242 | ONLY: diffusion_w, diffusion_w_acc |
---|
| 243 | |
---|
| 244 | USE impact_of_latent_heat_mod, & |
---|
| 245 | ONLY: impact_of_latent_heat |
---|
| 246 | |
---|
| 247 | USE kinds |
---|
| 248 | |
---|
[1365] | 249 | USE ls_forcing_mod, & |
---|
| 250 | ONLY: ls_advec |
---|
| 251 | |
---|
[1320] | 252 | USE microphysics_mod, & |
---|
| 253 | ONLY: microphysics_control |
---|
| 254 | |
---|
| 255 | USE nudge_mod, & |
---|
| 256 | ONLY: nudge |
---|
| 257 | |
---|
| 258 | USE plant_canopy_model_mod, & |
---|
| 259 | ONLY: plant_canopy_model |
---|
| 260 | |
---|
| 261 | USE production_e_mod, & |
---|
| 262 | ONLY: production_e, production_e_acc |
---|
| 263 | |
---|
[1374] | 264 | USE statistics, & |
---|
| 265 | ONLY: hom |
---|
| 266 | |
---|
[1320] | 267 | USE subsidence_mod, & |
---|
| 268 | ONLY: subsidence |
---|
| 269 | |
---|
| 270 | USE user_actions_mod, & |
---|
| 271 | ONLY: user_actions |
---|
| 272 | |
---|
| 273 | |
---|
[736] | 274 | PRIVATE |
---|
[1019] | 275 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 276 | prognostic_equations_acc |
---|
[736] | 277 | |
---|
| 278 | INTERFACE prognostic_equations_cache |
---|
| 279 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 280 | END INTERFACE prognostic_equations_cache |
---|
| 281 | |
---|
| 282 | INTERFACE prognostic_equations_vector |
---|
| 283 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 284 | END INTERFACE prognostic_equations_vector |
---|
| 285 | |
---|
[1015] | 286 | INTERFACE prognostic_equations_acc |
---|
| 287 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 288 | END INTERFACE prognostic_equations_acc |
---|
[736] | 289 | |
---|
[1015] | 290 | |
---|
[736] | 291 | CONTAINS |
---|
| 292 | |
---|
| 293 | |
---|
| 294 | SUBROUTINE prognostic_equations_cache |
---|
| 295 | |
---|
| 296 | !------------------------------------------------------------------------------! |
---|
| 297 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 298 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 299 | ! |
---|
| 300 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 301 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 302 | ! these loops. |
---|
| 303 | ! |
---|
| 304 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 305 | !------------------------------------------------------------------------------! |
---|
| 306 | |
---|
| 307 | IMPLICIT NONE |
---|
| 308 | |
---|
[1320] | 309 | INTEGER(iwp) :: i !: |
---|
| 310 | INTEGER(iwp) :: i_omp_start !: |
---|
| 311 | INTEGER(iwp) :: j !: |
---|
| 312 | INTEGER(iwp) :: k !: |
---|
| 313 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
| 314 | INTEGER(iwp) :: tn = 0 !: |
---|
| 315 | |
---|
| 316 | LOGICAL :: loop_start !: |
---|
[736] | 317 | |
---|
| 318 | |
---|
| 319 | ! |
---|
| 320 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 321 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 322 | |
---|
| 323 | ! |
---|
| 324 | !-- Loop over all prognostic equations |
---|
| 325 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 326 | |
---|
| 327 | !$ tn = omp_get_thread_num() |
---|
| 328 | loop_start = .TRUE. |
---|
| 329 | !$OMP DO |
---|
| 330 | DO i = nxl, nxr |
---|
| 331 | |
---|
| 332 | ! |
---|
| 333 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 334 | !-- later in advec_ws |
---|
| 335 | IF ( loop_start ) THEN |
---|
| 336 | loop_start = .FALSE. |
---|
| 337 | i_omp_start = i |
---|
| 338 | ENDIF |
---|
[1365] | 339 | |
---|
[736] | 340 | DO j = nys, nyn |
---|
| 341 | ! |
---|
[1361] | 342 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 343 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 344 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 345 | call_microphysics_at_all_substeps ) & |
---|
| 346 | ) THEN |
---|
| 347 | CALL microphysics_control( i, j ) |
---|
| 348 | ENDIF |
---|
| 349 | ! |
---|
[736] | 350 | !-- Tendency terms for u-velocity component |
---|
| 351 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 352 | |
---|
[1337] | 353 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 354 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 355 | IF ( ws_scheme_mom ) THEN |
---|
[1409] | 356 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
[736] | 357 | ELSE |
---|
| 358 | CALL advec_u_pw( i, j ) |
---|
| 359 | ENDIF |
---|
| 360 | ELSE |
---|
| 361 | CALL advec_u_up( i, j ) |
---|
| 362 | ENDIF |
---|
[1001] | 363 | CALL diffusion_u( i, j ) |
---|
[736] | 364 | CALL coriolis( i, j, 1 ) |
---|
[940] | 365 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 366 | CALL buoyancy( i, j, pt, 1 ) |
---|
[940] | 367 | ENDIF |
---|
[736] | 368 | |
---|
| 369 | ! |
---|
| 370 | !-- Drag by plant canopy |
---|
| 371 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 372 | |
---|
| 373 | ! |
---|
| 374 | !-- External pressure gradient |
---|
| 375 | IF ( dp_external ) THEN |
---|
| 376 | DO k = dp_level_ind_b+1, nzt |
---|
| 377 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 378 | ENDDO |
---|
| 379 | ENDIF |
---|
| 380 | |
---|
[1241] | 381 | ! |
---|
| 382 | !-- Nudging |
---|
| 383 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
| 384 | |
---|
[736] | 385 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 386 | ! |
---|
| 387 | !-- Prognostic equation for u-velocity component |
---|
| 388 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 389 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 390 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 391 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 392 | ENDDO |
---|
| 393 | |
---|
| 394 | ! |
---|
| 395 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 396 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 397 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 398 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 399 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 400 | ENDDO |
---|
| 401 | ELSEIF ( intermediate_timestep_count < & |
---|
| 402 | intermediate_timestep_count_max ) THEN |
---|
| 403 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 404 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 405 | ENDDO |
---|
| 406 | ENDIF |
---|
| 407 | ENDIF |
---|
| 408 | |
---|
| 409 | ENDIF |
---|
| 410 | |
---|
| 411 | ! |
---|
| 412 | !-- Tendency terms for v-velocity component |
---|
| 413 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 414 | |
---|
[1337] | 415 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 416 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 417 | IF ( ws_scheme_mom ) THEN |
---|
| 418 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 419 | ELSE |
---|
| 420 | CALL advec_v_pw( i, j ) |
---|
| 421 | ENDIF |
---|
| 422 | ELSE |
---|
| 423 | CALL advec_v_up( i, j ) |
---|
| 424 | ENDIF |
---|
[1001] | 425 | CALL diffusion_v( i, j ) |
---|
[736] | 426 | CALL coriolis( i, j, 2 ) |
---|
| 427 | |
---|
| 428 | ! |
---|
| 429 | !-- Drag by plant canopy |
---|
| 430 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 431 | |
---|
| 432 | ! |
---|
| 433 | !-- External pressure gradient |
---|
| 434 | IF ( dp_external ) THEN |
---|
| 435 | DO k = dp_level_ind_b+1, nzt |
---|
| 436 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 437 | ENDDO |
---|
| 438 | ENDIF |
---|
| 439 | |
---|
[1241] | 440 | ! |
---|
| 441 | !-- Nudging |
---|
| 442 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
| 443 | |
---|
[736] | 444 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 445 | ! |
---|
| 446 | !-- Prognostic equation for v-velocity component |
---|
| 447 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 448 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 449 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 450 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 451 | ENDDO |
---|
| 452 | |
---|
| 453 | ! |
---|
| 454 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 455 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 456 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 457 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 458 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 459 | ENDDO |
---|
| 460 | ELSEIF ( intermediate_timestep_count < & |
---|
| 461 | intermediate_timestep_count_max ) THEN |
---|
| 462 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 463 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 464 | ENDDO |
---|
| 465 | ENDIF |
---|
| 466 | ENDIF |
---|
| 467 | |
---|
| 468 | ENDIF |
---|
| 469 | |
---|
| 470 | ! |
---|
| 471 | !-- Tendency terms for w-velocity component |
---|
[1337] | 472 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 473 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 474 | IF ( ws_scheme_mom ) THEN |
---|
| 475 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 476 | ELSE |
---|
| 477 | CALL advec_w_pw( i, j ) |
---|
| 478 | END IF |
---|
| 479 | ELSE |
---|
| 480 | CALL advec_w_up( i, j ) |
---|
| 481 | ENDIF |
---|
[1001] | 482 | CALL diffusion_w( i, j ) |
---|
[736] | 483 | CALL coriolis( i, j, 3 ) |
---|
[940] | 484 | |
---|
| 485 | IF ( .NOT. neutral ) THEN |
---|
| 486 | IF ( ocean ) THEN |
---|
[1179] | 487 | CALL buoyancy( i, j, rho, 3 ) |
---|
[736] | 488 | ELSE |
---|
[940] | 489 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 490 | CALL buoyancy( i, j, pt, 3 ) |
---|
[940] | 491 | ELSE |
---|
[1179] | 492 | CALL buoyancy( i, j, vpt, 3 ) |
---|
[940] | 493 | ENDIF |
---|
[736] | 494 | ENDIF |
---|
| 495 | ENDIF |
---|
| 496 | |
---|
| 497 | ! |
---|
| 498 | !-- Drag by plant canopy |
---|
| 499 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 500 | |
---|
| 501 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 502 | |
---|
| 503 | ! |
---|
| 504 | !-- Prognostic equation for w-velocity component |
---|
| 505 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 506 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 507 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 508 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 509 | ENDDO |
---|
| 510 | |
---|
| 511 | ! |
---|
| 512 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 513 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 514 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 515 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 516 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 517 | ENDDO |
---|
| 518 | ELSEIF ( intermediate_timestep_count < & |
---|
| 519 | intermediate_timestep_count_max ) THEN |
---|
| 520 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 521 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 522 | ENDDO |
---|
| 523 | ENDIF |
---|
| 524 | ENDIF |
---|
[1361] | 525 | |
---|
[736] | 526 | ! |
---|
[940] | 527 | !-- If required, compute prognostic equation for potential temperature |
---|
| 528 | IF ( .NOT. neutral ) THEN |
---|
| 529 | ! |
---|
| 530 | !-- Tendency terms for potential temperature |
---|
[1337] | 531 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 532 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 533 | IF ( ws_scheme_sca ) THEN |
---|
| 534 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 535 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 536 | ELSE |
---|
| 537 | CALL advec_s_pw( i, j, pt ) |
---|
| 538 | ENDIF |
---|
| 539 | ELSE |
---|
| 540 | CALL advec_s_up( i, j, pt ) |
---|
| 541 | ENDIF |
---|
[1001] | 542 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 543 | |
---|
| 544 | ! |
---|
[940] | 545 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 546 | !-- processes |
---|
| 547 | IF ( radiation ) THEN |
---|
| 548 | CALL calc_radiation( i, j ) |
---|
| 549 | ENDIF |
---|
[736] | 550 | |
---|
[1106] | 551 | ! |
---|
[1361] | 552 | !-- If required compute impact of latent heat due to precipitation |
---|
| 553 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 554 | precipitation ) THEN |
---|
| 555 | CALL impact_of_latent_heat( i, j ) |
---|
[940] | 556 | ENDIF |
---|
[736] | 557 | |
---|
| 558 | ! |
---|
[940] | 559 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 560 | IF ( plant_canopy .AND. cthf /= 0.0_wp ) THEN |
---|
[940] | 561 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 562 | ENDIF |
---|
[736] | 563 | |
---|
[940] | 564 | ! |
---|
[1365] | 565 | !-- Large scale advection |
---|
| 566 | IF ( large_scale_forcing ) THEN |
---|
| 567 | CALL ls_advec( i, j, simulated_time, 'pt' ) |
---|
| 568 | ENDIF |
---|
| 569 | |
---|
| 570 | ! |
---|
[1380] | 571 | !-- Nudging |
---|
| 572 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
| 573 | |
---|
| 574 | ! |
---|
[1106] | 575 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
[1365] | 576 | IF ( large_scale_subsidence .AND. & |
---|
| 577 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 578 | CALL subsidence( i, j, tend, pt, pt_init, 2 ) |
---|
[940] | 579 | ENDIF |
---|
[736] | 580 | |
---|
[940] | 581 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 582 | |
---|
| 583 | ! |
---|
[940] | 584 | !-- Prognostic equation for potential temperature |
---|
| 585 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 586 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 587 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 588 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 589 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 590 | ENDDO |
---|
[736] | 591 | |
---|
| 592 | ! |
---|
[940] | 593 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 594 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 595 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 596 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 597 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 598 | ENDDO |
---|
| 599 | ELSEIF ( intermediate_timestep_count < & |
---|
| 600 | intermediate_timestep_count_max ) THEN |
---|
| 601 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 602 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 603 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 604 | ENDDO |
---|
| 605 | ENDIF |
---|
[736] | 606 | ENDIF |
---|
[940] | 607 | |
---|
[736] | 608 | ENDIF |
---|
| 609 | |
---|
| 610 | ! |
---|
| 611 | !-- If required, compute prognostic equation for salinity |
---|
| 612 | IF ( ocean ) THEN |
---|
| 613 | |
---|
| 614 | ! |
---|
| 615 | !-- Tendency-terms for salinity |
---|
[1337] | 616 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 617 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 618 | THEN |
---|
| 619 | IF ( ws_scheme_sca ) THEN |
---|
| 620 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 621 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 622 | ELSE |
---|
| 623 | CALL advec_s_pw( i, j, sa ) |
---|
| 624 | ENDIF |
---|
| 625 | ELSE |
---|
| 626 | CALL advec_s_up( i, j, sa ) |
---|
| 627 | ENDIF |
---|
[1001] | 628 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 629 | |
---|
| 630 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 631 | |
---|
| 632 | ! |
---|
| 633 | !-- Prognostic equation for salinity |
---|
| 634 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 635 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 636 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 637 | - tsc(5) * rdf_sc(k) * & |
---|
| 638 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 639 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 640 | ENDDO |
---|
| 641 | |
---|
| 642 | ! |
---|
| 643 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 644 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 645 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 646 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 647 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 648 | ENDDO |
---|
| 649 | ELSEIF ( intermediate_timestep_count < & |
---|
| 650 | intermediate_timestep_count_max ) THEN |
---|
| 651 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 652 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 653 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 654 | ENDDO |
---|
| 655 | ENDIF |
---|
| 656 | ENDIF |
---|
| 657 | |
---|
| 658 | ! |
---|
| 659 | !-- Calculate density by the equation of state for seawater |
---|
| 660 | CALL eqn_state_seawater( i, j ) |
---|
| 661 | |
---|
| 662 | ENDIF |
---|
| 663 | |
---|
| 664 | ! |
---|
| 665 | !-- If required, compute prognostic equation for total water content / |
---|
| 666 | !-- scalar |
---|
| 667 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 668 | |
---|
| 669 | ! |
---|
| 670 | !-- Tendency-terms for total water content / scalar |
---|
[1337] | 671 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 672 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 673 | THEN |
---|
| 674 | IF ( ws_scheme_sca ) THEN |
---|
| 675 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 676 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 677 | ELSE |
---|
| 678 | CALL advec_s_pw( i, j, q ) |
---|
| 679 | ENDIF |
---|
| 680 | ELSE |
---|
| 681 | CALL advec_s_up( i, j, q ) |
---|
| 682 | ENDIF |
---|
[1001] | 683 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[1053] | 684 | |
---|
[736] | 685 | ! |
---|
[1361] | 686 | !-- If required compute decrease of total water content due to |
---|
| 687 | !-- precipitation |
---|
| 688 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 689 | precipitation ) THEN |
---|
| 690 | CALL calc_precipitation( i, j ) |
---|
[736] | 691 | ENDIF |
---|
| 692 | ! |
---|
| 693 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1106] | 694 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
[736] | 695 | |
---|
[1053] | 696 | ! |
---|
[1365] | 697 | !-- Large scale advection |
---|
| 698 | IF ( large_scale_forcing ) THEN |
---|
| 699 | CALL ls_advec( i, j, simulated_time, 'q' ) |
---|
| 700 | ENDIF |
---|
| 701 | |
---|
| 702 | ! |
---|
[1380] | 703 | !-- Nudging |
---|
| 704 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
| 705 | |
---|
| 706 | ! |
---|
[736] | 707 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 708 | IF ( large_scale_subsidence .AND. & |
---|
| 709 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 710 | CALL subsidence( i, j, tend, q, q_init, 3 ) |
---|
[736] | 711 | ENDIF |
---|
| 712 | |
---|
| 713 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 714 | |
---|
| 715 | ! |
---|
| 716 | !-- Prognostic equation for total water content / scalar |
---|
| 717 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 718 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 719 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 720 | - tsc(5) * rdf_sc(k) * & |
---|
| 721 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 722 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 723 | ENDDO |
---|
| 724 | |
---|
| 725 | ! |
---|
| 726 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 727 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 728 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 729 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 730 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 731 | ENDDO |
---|
| 732 | ELSEIF ( intermediate_timestep_count < & |
---|
| 733 | intermediate_timestep_count_max ) THEN |
---|
| 734 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 735 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 736 | 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 737 | ENDDO |
---|
| 738 | ENDIF |
---|
| 739 | ENDIF |
---|
| 740 | |
---|
[1053] | 741 | ! |
---|
| 742 | !-- If required, calculate prognostic equations for rain water content |
---|
| 743 | !-- and rain drop concentration |
---|
[1115] | 744 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 745 | precipitation ) THEN |
---|
[1053] | 746 | ! |
---|
| 747 | !-- Calculate prognostic equation for rain water content |
---|
[1337] | 748 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 749 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 750 | THEN |
---|
| 751 | IF ( ws_scheme_sca ) THEN |
---|
| 752 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 753 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 754 | i_omp_start, tn ) |
---|
| 755 | ELSE |
---|
| 756 | CALL advec_s_pw( i, j, qr ) |
---|
| 757 | ENDIF |
---|
| 758 | ELSE |
---|
| 759 | CALL advec_s_up( i, j, qr ) |
---|
| 760 | ENDIF |
---|
| 761 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 762 | |
---|
[1115] | 763 | CALL user_actions( i, j, 'qr-tendency' ) |
---|
[1053] | 764 | ! |
---|
| 765 | !-- Prognostic equation for rain water content |
---|
| 766 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 767 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 768 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 769 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
[1337] | 770 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
[1053] | 771 | ENDDO |
---|
| 772 | ! |
---|
| 773 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 774 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 775 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 776 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 777 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 778 | ENDDO |
---|
| 779 | ELSEIF ( intermediate_timestep_count < & |
---|
| 780 | intermediate_timestep_count_max ) THEN |
---|
| 781 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 782 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 783 | 5.3125_wp * tqr_m(k,j,i) |
---|
[1053] | 784 | ENDDO |
---|
| 785 | ENDIF |
---|
| 786 | ENDIF |
---|
| 787 | |
---|
| 788 | ! |
---|
| 789 | !-- Calculate prognostic equation for rain drop concentration. |
---|
[1337] | 790 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 791 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 792 | IF ( ws_scheme_sca ) THEN |
---|
[1115] | 793 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 794 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 795 | i_omp_start, tn ) |
---|
[1053] | 796 | ELSE |
---|
| 797 | CALL advec_s_pw( i, j, nr ) |
---|
| 798 | ENDIF |
---|
| 799 | ELSE |
---|
| 800 | CALL advec_s_up( i, j, nr ) |
---|
| 801 | ENDIF |
---|
| 802 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
| 803 | |
---|
[1115] | 804 | CALL user_actions( i, j, 'nr-tendency' ) |
---|
[1053] | 805 | ! |
---|
| 806 | !-- Prognostic equation for rain drop concentration |
---|
| 807 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 808 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 809 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 810 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
[1337] | 811 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
[1053] | 812 | ENDDO |
---|
| 813 | ! |
---|
| 814 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 815 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 816 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 817 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 818 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 819 | ENDDO |
---|
| 820 | ELSEIF ( intermediate_timestep_count < & |
---|
| 821 | intermediate_timestep_count_max ) THEN |
---|
| 822 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 823 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 824 | 5.3125_wp * tnr_m(k,j,i) |
---|
[1053] | 825 | ENDDO |
---|
| 826 | ENDIF |
---|
| 827 | ENDIF |
---|
| 828 | |
---|
| 829 | ENDIF |
---|
| 830 | |
---|
[1128] | 831 | ENDIF |
---|
| 832 | |
---|
[736] | 833 | ! |
---|
| 834 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 835 | !-- energy (TKE) |
---|
| 836 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 837 | |
---|
| 838 | ! |
---|
| 839 | !-- Tendency-terms for TKE |
---|
[1337] | 840 | tend(:,j,i) = 0.0_wp |
---|
[1332] | 841 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
| 842 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
[736] | 843 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 844 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 845 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 846 | ELSE |
---|
| 847 | CALL advec_s_pw( i, j, e ) |
---|
| 848 | ENDIF |
---|
| 849 | ELSE |
---|
| 850 | CALL advec_s_up( i, j, e ) |
---|
| 851 | ENDIF |
---|
[1001] | 852 | IF ( .NOT. humidity ) THEN |
---|
| 853 | IF ( ocean ) THEN |
---|
| 854 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 855 | ELSE |
---|
[1001] | 856 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 857 | ENDIF |
---|
| 858 | ELSE |
---|
[1001] | 859 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 860 | ENDIF |
---|
| 861 | CALL production_e( i, j ) |
---|
| 862 | |
---|
| 863 | ! |
---|
| 864 | !-- Additional sink term for flows through plant canopies |
---|
| 865 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 866 | |
---|
| 867 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 868 | |
---|
| 869 | ! |
---|
| 870 | !-- Prognostic equation for TKE. |
---|
| 871 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 872 | !-- reasons in the course of the integration. In such cases the old |
---|
| 873 | !-- TKE value is reduced by 90%. |
---|
| 874 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 875 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 876 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 877 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 878 | ENDDO |
---|
| 879 | |
---|
| 880 | ! |
---|
| 881 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 882 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 883 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 884 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 885 | te_m(k,j,i) = tend(k,j,i) |
---|
| 886 | ENDDO |
---|
| 887 | ELSEIF ( intermediate_timestep_count < & |
---|
| 888 | intermediate_timestep_count_max ) THEN |
---|
| 889 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 890 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 891 | 5.3125_wp * te_m(k,j,i) |
---|
[736] | 892 | ENDDO |
---|
| 893 | ENDIF |
---|
| 894 | ENDIF |
---|
| 895 | |
---|
| 896 | ENDIF ! TKE equation |
---|
| 897 | |
---|
| 898 | ENDDO |
---|
| 899 | ENDDO |
---|
| 900 | !$OMP END PARALLEL |
---|
| 901 | |
---|
| 902 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 903 | |
---|
| 904 | |
---|
| 905 | END SUBROUTINE prognostic_equations_cache |
---|
| 906 | |
---|
| 907 | |
---|
| 908 | SUBROUTINE prognostic_equations_vector |
---|
| 909 | |
---|
| 910 | !------------------------------------------------------------------------------! |
---|
| 911 | ! Version for vector machines |
---|
| 912 | !------------------------------------------------------------------------------! |
---|
| 913 | |
---|
| 914 | IMPLICIT NONE |
---|
| 915 | |
---|
[1320] | 916 | INTEGER(iwp) :: i !: |
---|
| 917 | INTEGER(iwp) :: j !: |
---|
| 918 | INTEGER(iwp) :: k !: |
---|
[736] | 919 | |
---|
[1320] | 920 | REAL(wp) :: sbt !: |
---|
[736] | 921 | |
---|
[1320] | 922 | |
---|
[736] | 923 | ! |
---|
[1361] | 924 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 925 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 926 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 927 | call_microphysics_at_all_substeps ) & |
---|
| 928 | ) THEN |
---|
| 929 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 930 | CALL microphysics_control |
---|
| 931 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 932 | ENDIF |
---|
| 933 | |
---|
| 934 | ! |
---|
[736] | 935 | !-- u-velocity component |
---|
| 936 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 937 | |
---|
[1337] | 938 | tend = 0.0_wp |
---|
[1001] | 939 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 940 | IF ( ws_scheme_mom ) THEN |
---|
| 941 | CALL advec_u_ws |
---|
| 942 | ELSE |
---|
| 943 | CALL advec_u_pw |
---|
| 944 | ENDIF |
---|
| 945 | ELSE |
---|
[1001] | 946 | CALL advec_u_up |
---|
[736] | 947 | ENDIF |
---|
[1001] | 948 | CALL diffusion_u |
---|
[736] | 949 | CALL coriolis( 1 ) |
---|
[940] | 950 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 951 | CALL buoyancy( pt, 1 ) |
---|
[940] | 952 | ENDIF |
---|
[736] | 953 | |
---|
| 954 | ! |
---|
| 955 | !-- Drag by plant canopy |
---|
| 956 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 957 | |
---|
| 958 | ! |
---|
| 959 | !-- External pressure gradient |
---|
| 960 | IF ( dp_external ) THEN |
---|
| 961 | DO i = nxlu, nxr |
---|
| 962 | DO j = nys, nyn |
---|
| 963 | DO k = dp_level_ind_b+1, nzt |
---|
| 964 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 965 | ENDDO |
---|
| 966 | ENDDO |
---|
| 967 | ENDDO |
---|
| 968 | ENDIF |
---|
| 969 | |
---|
[1241] | 970 | ! |
---|
| 971 | !-- Nudging |
---|
| 972 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 973 | |
---|
[736] | 974 | CALL user_actions( 'u-tendency' ) |
---|
| 975 | |
---|
| 976 | ! |
---|
| 977 | !-- Prognostic equation for u-velocity component |
---|
| 978 | DO i = nxlu, nxr |
---|
| 979 | DO j = nys, nyn |
---|
| 980 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 981 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 982 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 983 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 984 | ENDDO |
---|
| 985 | ENDDO |
---|
| 986 | ENDDO |
---|
| 987 | |
---|
| 988 | ! |
---|
| 989 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 990 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 991 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 992 | DO i = nxlu, nxr |
---|
| 993 | DO j = nys, nyn |
---|
| 994 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 995 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 996 | ENDDO |
---|
| 997 | ENDDO |
---|
| 998 | ENDDO |
---|
| 999 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1000 | intermediate_timestep_count_max ) THEN |
---|
| 1001 | DO i = nxlu, nxr |
---|
| 1002 | DO j = nys, nyn |
---|
| 1003 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 1004 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 1005 | ENDDO |
---|
| 1006 | ENDDO |
---|
| 1007 | ENDDO |
---|
| 1008 | ENDIF |
---|
| 1009 | ENDIF |
---|
| 1010 | |
---|
| 1011 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1012 | |
---|
| 1013 | ! |
---|
| 1014 | !-- v-velocity component |
---|
| 1015 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1016 | |
---|
[1337] | 1017 | tend = 0.0_wp |
---|
[1001] | 1018 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1019 | IF ( ws_scheme_mom ) THEN |
---|
| 1020 | CALL advec_v_ws |
---|
| 1021 | ELSE |
---|
| 1022 | CALL advec_v_pw |
---|
| 1023 | END IF |
---|
| 1024 | ELSE |
---|
[1001] | 1025 | CALL advec_v_up |
---|
[736] | 1026 | ENDIF |
---|
[1001] | 1027 | CALL diffusion_v |
---|
[736] | 1028 | CALL coriolis( 2 ) |
---|
| 1029 | |
---|
| 1030 | ! |
---|
| 1031 | !-- Drag by plant canopy |
---|
| 1032 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1033 | |
---|
| 1034 | ! |
---|
| 1035 | !-- External pressure gradient |
---|
| 1036 | IF ( dp_external ) THEN |
---|
| 1037 | DO i = nxl, nxr |
---|
| 1038 | DO j = nysv, nyn |
---|
| 1039 | DO k = dp_level_ind_b+1, nzt |
---|
| 1040 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1041 | ENDDO |
---|
| 1042 | ENDDO |
---|
| 1043 | ENDDO |
---|
| 1044 | ENDIF |
---|
| 1045 | |
---|
[1241] | 1046 | ! |
---|
| 1047 | !-- Nudging |
---|
| 1048 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1049 | |
---|
[736] | 1050 | CALL user_actions( 'v-tendency' ) |
---|
| 1051 | |
---|
| 1052 | ! |
---|
| 1053 | !-- Prognostic equation for v-velocity component |
---|
| 1054 | DO i = nxl, nxr |
---|
| 1055 | DO j = nysv, nyn |
---|
| 1056 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 1057 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1058 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1059 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 1060 | ENDDO |
---|
| 1061 | ENDDO |
---|
| 1062 | ENDDO |
---|
| 1063 | |
---|
| 1064 | ! |
---|
| 1065 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1066 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1067 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1068 | DO i = nxl, nxr |
---|
| 1069 | DO j = nysv, nyn |
---|
| 1070 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1071 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1072 | ENDDO |
---|
| 1073 | ENDDO |
---|
| 1074 | ENDDO |
---|
| 1075 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1076 | intermediate_timestep_count_max ) THEN |
---|
| 1077 | DO i = nxl, nxr |
---|
| 1078 | DO j = nysv, nyn |
---|
| 1079 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 1080 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 1081 | ENDDO |
---|
| 1082 | ENDDO |
---|
| 1083 | ENDDO |
---|
| 1084 | ENDIF |
---|
| 1085 | ENDIF |
---|
| 1086 | |
---|
| 1087 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1088 | |
---|
| 1089 | ! |
---|
| 1090 | !-- w-velocity component |
---|
| 1091 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1092 | |
---|
[1353] | 1093 | tend = 0.0_wp |
---|
[1001] | 1094 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1095 | IF ( ws_scheme_mom ) THEN |
---|
| 1096 | CALL advec_w_ws |
---|
| 1097 | ELSE |
---|
| 1098 | CALL advec_w_pw |
---|
| 1099 | ENDIF |
---|
| 1100 | ELSE |
---|
[1001] | 1101 | CALL advec_w_up |
---|
[736] | 1102 | ENDIF |
---|
[1001] | 1103 | CALL diffusion_w |
---|
[736] | 1104 | CALL coriolis( 3 ) |
---|
[940] | 1105 | |
---|
| 1106 | IF ( .NOT. neutral ) THEN |
---|
| 1107 | IF ( ocean ) THEN |
---|
[1179] | 1108 | CALL buoyancy( rho, 3 ) |
---|
[736] | 1109 | ELSE |
---|
[940] | 1110 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1111 | CALL buoyancy( pt, 3 ) |
---|
[940] | 1112 | ELSE |
---|
[1179] | 1113 | CALL buoyancy( vpt, 3 ) |
---|
[940] | 1114 | ENDIF |
---|
[736] | 1115 | ENDIF |
---|
| 1116 | ENDIF |
---|
| 1117 | |
---|
| 1118 | ! |
---|
| 1119 | !-- Drag by plant canopy |
---|
| 1120 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1121 | |
---|
| 1122 | CALL user_actions( 'w-tendency' ) |
---|
| 1123 | |
---|
| 1124 | ! |
---|
| 1125 | !-- Prognostic equation for w-velocity component |
---|
| 1126 | DO i = nxl, nxr |
---|
| 1127 | DO j = nys, nyn |
---|
| 1128 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 1129 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1130 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1131 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 1132 | ENDDO |
---|
| 1133 | ENDDO |
---|
| 1134 | ENDDO |
---|
| 1135 | |
---|
| 1136 | ! |
---|
| 1137 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1138 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1139 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1140 | DO i = nxl, nxr |
---|
| 1141 | DO j = nys, nyn |
---|
| 1142 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1143 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1144 | ENDDO |
---|
| 1145 | ENDDO |
---|
| 1146 | ENDDO |
---|
| 1147 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1148 | intermediate_timestep_count_max ) THEN |
---|
| 1149 | DO i = nxl, nxr |
---|
| 1150 | DO j = nys, nyn |
---|
| 1151 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 1152 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 1153 | ENDDO |
---|
| 1154 | ENDDO |
---|
| 1155 | ENDDO |
---|
| 1156 | ENDIF |
---|
| 1157 | ENDIF |
---|
| 1158 | |
---|
| 1159 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1160 | |
---|
[940] | 1161 | |
---|
[736] | 1162 | ! |
---|
[940] | 1163 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1164 | IF ( .NOT. neutral ) THEN |
---|
[736] | 1165 | |
---|
[940] | 1166 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1167 | |
---|
[736] | 1168 | ! |
---|
[940] | 1169 | !-- pt-tendency terms with communication |
---|
| 1170 | sbt = tsc(2) |
---|
| 1171 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 1172 | |
---|
[940] | 1173 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 1174 | ! |
---|
[1001] | 1175 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1176 | sbt = 1.0_wp |
---|
[940] | 1177 | ENDIF |
---|
[1337] | 1178 | tend = 0.0_wp |
---|
[940] | 1179 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 1180 | |
---|
[736] | 1181 | ENDIF |
---|
[940] | 1182 | |
---|
| 1183 | ! |
---|
| 1184 | !-- pt-tendency terms with no communication |
---|
[1001] | 1185 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1186 | tend = 0.0_wp |
---|
[1001] | 1187 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 1188 | IF ( ws_scheme_sca ) THEN |
---|
| 1189 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1190 | ELSE |
---|
| 1191 | CALL advec_s_pw( pt ) |
---|
| 1192 | ENDIF |
---|
| 1193 | ELSE |
---|
[1001] | 1194 | CALL advec_s_up( pt ) |
---|
[940] | 1195 | ENDIF |
---|
[736] | 1196 | ENDIF |
---|
| 1197 | |
---|
[1001] | 1198 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1199 | |
---|
[736] | 1200 | ! |
---|
[940] | 1201 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1202 | IF ( radiation ) THEN |
---|
| 1203 | CALL calc_radiation |
---|
| 1204 | ENDIF |
---|
[736] | 1205 | |
---|
| 1206 | ! |
---|
[940] | 1207 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 1208 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[940] | 1209 | CALL impact_of_latent_heat |
---|
| 1210 | ENDIF |
---|
[736] | 1211 | |
---|
| 1212 | ! |
---|
[940] | 1213 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 1214 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[940] | 1215 | CALL plant_canopy_model( 4 ) |
---|
| 1216 | ENDIF |
---|
[736] | 1217 | |
---|
[940] | 1218 | ! |
---|
[1365] | 1219 | !-- Large scale advection |
---|
| 1220 | IF ( large_scale_forcing ) THEN |
---|
| 1221 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 1222 | ENDIF |
---|
| 1223 | |
---|
| 1224 | ! |
---|
[1380] | 1225 | !-- Nudging |
---|
| 1226 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1227 | |
---|
| 1228 | ! |
---|
[940] | 1229 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1230 | IF ( large_scale_subsidence .AND. & |
---|
| 1231 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1232 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[940] | 1233 | ENDIF |
---|
[736] | 1234 | |
---|
[940] | 1235 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 1236 | |
---|
| 1237 | ! |
---|
[940] | 1238 | !-- Prognostic equation for potential temperature |
---|
| 1239 | DO i = nxl, nxr |
---|
| 1240 | DO j = nys, nyn |
---|
| 1241 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1242 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1243 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1244 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1245 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 1246 | ENDDO |
---|
[736] | 1247 | ENDDO |
---|
| 1248 | ENDDO |
---|
| 1249 | |
---|
| 1250 | ! |
---|
[940] | 1251 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1252 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1253 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1254 | DO i = nxl, nxr |
---|
| 1255 | DO j = nys, nyn |
---|
| 1256 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1257 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1258 | ENDDO |
---|
[736] | 1259 | ENDDO |
---|
| 1260 | ENDDO |
---|
[940] | 1261 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1262 | intermediate_timestep_count_max ) THEN |
---|
| 1263 | DO i = nxl, nxr |
---|
| 1264 | DO j = nys, nyn |
---|
| 1265 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1266 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1267 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 1268 | ENDDO |
---|
[736] | 1269 | ENDDO |
---|
| 1270 | ENDDO |
---|
[940] | 1271 | ENDIF |
---|
[736] | 1272 | ENDIF |
---|
[940] | 1273 | |
---|
| 1274 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1275 | |
---|
[736] | 1276 | ENDIF |
---|
| 1277 | |
---|
| 1278 | ! |
---|
| 1279 | !-- If required, compute prognostic equation for salinity |
---|
| 1280 | IF ( ocean ) THEN |
---|
| 1281 | |
---|
| 1282 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1283 | |
---|
| 1284 | ! |
---|
| 1285 | !-- sa-tendency terms with communication |
---|
| 1286 | sbt = tsc(2) |
---|
| 1287 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1288 | |
---|
| 1289 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1290 | ! |
---|
[1001] | 1291 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1292 | sbt = 1.0_wp |
---|
[736] | 1293 | ENDIF |
---|
[1337] | 1294 | tend = 0.0_wp |
---|
[736] | 1295 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1296 | |
---|
[736] | 1297 | ENDIF |
---|
| 1298 | |
---|
| 1299 | ! |
---|
| 1300 | !-- sa-tendency terms with no communication |
---|
[1001] | 1301 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1353] | 1302 | tend = 0.0_wp |
---|
[1001] | 1303 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1304 | IF ( ws_scheme_sca ) THEN |
---|
| 1305 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1306 | ELSE |
---|
| 1307 | CALL advec_s_pw( sa ) |
---|
| 1308 | ENDIF |
---|
| 1309 | ELSE |
---|
[1001] | 1310 | CALL advec_s_up( sa ) |
---|
[736] | 1311 | ENDIF |
---|
| 1312 | ENDIF |
---|
[1001] | 1313 | |
---|
| 1314 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1315 | |
---|
| 1316 | CALL user_actions( 'sa-tendency' ) |
---|
| 1317 | |
---|
| 1318 | ! |
---|
| 1319 | !-- Prognostic equation for salinity |
---|
| 1320 | DO i = nxl, nxr |
---|
| 1321 | DO j = nys, nyn |
---|
| 1322 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1323 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1324 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1325 | - tsc(5) * rdf_sc(k) * & |
---|
| 1326 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 1327 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 1328 | ENDDO |
---|
| 1329 | ENDDO |
---|
| 1330 | ENDDO |
---|
| 1331 | |
---|
| 1332 | ! |
---|
| 1333 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1334 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1335 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1336 | DO i = nxl, nxr |
---|
| 1337 | DO j = nys, nyn |
---|
| 1338 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1339 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1340 | ENDDO |
---|
| 1341 | ENDDO |
---|
| 1342 | ENDDO |
---|
| 1343 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1344 | intermediate_timestep_count_max ) THEN |
---|
| 1345 | DO i = nxl, nxr |
---|
| 1346 | DO j = nys, nyn |
---|
| 1347 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1348 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1349 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 1350 | ENDDO |
---|
| 1351 | ENDDO |
---|
| 1352 | ENDDO |
---|
| 1353 | ENDIF |
---|
| 1354 | ENDIF |
---|
| 1355 | |
---|
| 1356 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1357 | |
---|
| 1358 | ! |
---|
| 1359 | !-- Calculate density by the equation of state for seawater |
---|
| 1360 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1361 | CALL eqn_state_seawater |
---|
| 1362 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1363 | |
---|
| 1364 | ENDIF |
---|
| 1365 | |
---|
| 1366 | ! |
---|
| 1367 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1368 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1369 | |
---|
| 1370 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1371 | |
---|
| 1372 | ! |
---|
| 1373 | !-- Scalar/q-tendency terms with communication |
---|
| 1374 | sbt = tsc(2) |
---|
| 1375 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1376 | |
---|
| 1377 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1378 | ! |
---|
[1001] | 1379 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1380 | sbt = 1.0_wp |
---|
[736] | 1381 | ENDIF |
---|
[1337] | 1382 | tend = 0.0_wp |
---|
[736] | 1383 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1384 | |
---|
[736] | 1385 | ENDIF |
---|
| 1386 | |
---|
| 1387 | ! |
---|
| 1388 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1389 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1390 | tend = 0.0_wp |
---|
[1001] | 1391 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1392 | IF ( ws_scheme_sca ) THEN |
---|
| 1393 | CALL advec_s_ws( q, 'q' ) |
---|
| 1394 | ELSE |
---|
| 1395 | CALL advec_s_pw( q ) |
---|
| 1396 | ENDIF |
---|
| 1397 | ELSE |
---|
[1001] | 1398 | CALL advec_s_up( q ) |
---|
[736] | 1399 | ENDIF |
---|
| 1400 | ENDIF |
---|
[1001] | 1401 | |
---|
| 1402 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1403 | |
---|
| 1404 | ! |
---|
| 1405 | !-- If required compute decrease of total water content due to |
---|
| 1406 | !-- precipitation |
---|
[1361] | 1407 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[736] | 1408 | CALL calc_precipitation |
---|
| 1409 | ENDIF |
---|
| 1410 | |
---|
| 1411 | ! |
---|
| 1412 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1413 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
[1365] | 1414 | |
---|
[736] | 1415 | ! |
---|
[1365] | 1416 | !-- Large scale advection |
---|
| 1417 | IF ( large_scale_forcing ) THEN |
---|
| 1418 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 1419 | ENDIF |
---|
| 1420 | |
---|
| 1421 | ! |
---|
[1380] | 1422 | !-- Nudging |
---|
| 1423 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1424 | |
---|
| 1425 | ! |
---|
[736] | 1426 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1427 | IF ( large_scale_subsidence .AND. & |
---|
| 1428 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1429 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[736] | 1430 | ENDIF |
---|
| 1431 | |
---|
| 1432 | CALL user_actions( 'q-tendency' ) |
---|
| 1433 | |
---|
| 1434 | ! |
---|
| 1435 | !-- Prognostic equation for total water content / scalar |
---|
| 1436 | DO i = nxl, nxr |
---|
| 1437 | DO j = nys, nyn |
---|
| 1438 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1439 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1440 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1441 | - tsc(5) * rdf_sc(k) * & |
---|
| 1442 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 1443 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 1444 | ENDDO |
---|
| 1445 | ENDDO |
---|
| 1446 | ENDDO |
---|
| 1447 | |
---|
| 1448 | ! |
---|
| 1449 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1450 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1451 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1452 | DO i = nxl, nxr |
---|
| 1453 | DO j = nys, nyn |
---|
| 1454 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1455 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1456 | ENDDO |
---|
| 1457 | ENDDO |
---|
| 1458 | ENDDO |
---|
| 1459 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1460 | intermediate_timestep_count_max ) THEN |
---|
| 1461 | DO i = nxl, nxr |
---|
| 1462 | DO j = nys, nyn |
---|
| 1463 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1464 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 1465 | ENDDO |
---|
| 1466 | ENDDO |
---|
| 1467 | ENDDO |
---|
| 1468 | ENDIF |
---|
| 1469 | ENDIF |
---|
| 1470 | |
---|
| 1471 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1472 | |
---|
[1361] | 1473 | ! |
---|
| 1474 | !-- If required, calculate prognostic equations for rain water content |
---|
| 1475 | !-- and rain drop concentration |
---|
| 1476 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 1477 | |
---|
| 1478 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 1479 | |
---|
| 1480 | ! |
---|
| 1481 | !-- Calculate prognostic equation for rain water content |
---|
| 1482 | sbt = tsc(2) |
---|
| 1483 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1484 | |
---|
| 1485 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1486 | ! |
---|
| 1487 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1488 | sbt = 1.0_wp |
---|
| 1489 | ENDIF |
---|
| 1490 | tend = 0.0_wp |
---|
| 1491 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 1492 | |
---|
| 1493 | ENDIF |
---|
| 1494 | |
---|
| 1495 | ! |
---|
| 1496 | !-- qr-tendency terms with no communication |
---|
| 1497 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1498 | tend = 0.0_wp |
---|
| 1499 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1500 | IF ( ws_scheme_sca ) THEN |
---|
| 1501 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 1502 | ELSE |
---|
| 1503 | CALL advec_s_pw( qr ) |
---|
| 1504 | ENDIF |
---|
| 1505 | ELSE |
---|
| 1506 | CALL advec_s_up( qr ) |
---|
| 1507 | ENDIF |
---|
| 1508 | ENDIF |
---|
| 1509 | |
---|
| 1510 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 1511 | |
---|
| 1512 | CALL user_actions( 'qr-tendency' ) |
---|
| 1513 | |
---|
| 1514 | ! |
---|
| 1515 | !-- Prognostic equation for rain water content |
---|
| 1516 | DO i = nxl, nxr |
---|
| 1517 | DO j = nys, nyn |
---|
| 1518 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1519 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1520 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 1521 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 1522 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 1523 | ENDDO |
---|
| 1524 | ENDDO |
---|
| 1525 | ENDDO |
---|
| 1526 | |
---|
| 1527 | ! |
---|
| 1528 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1529 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1530 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1531 | DO i = nxl, nxr |
---|
| 1532 | DO j = nys, nyn |
---|
| 1533 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1534 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 1535 | ENDDO |
---|
| 1536 | ENDDO |
---|
| 1537 | ENDDO |
---|
| 1538 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1539 | intermediate_timestep_count_max ) THEN |
---|
| 1540 | DO i = nxl, nxr |
---|
| 1541 | DO j = nys, nyn |
---|
| 1542 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1543 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1544 | tqr_m(k,j,i) |
---|
| 1545 | ENDDO |
---|
| 1546 | ENDDO |
---|
| 1547 | ENDDO |
---|
| 1548 | ENDIF |
---|
| 1549 | ENDIF |
---|
| 1550 | |
---|
| 1551 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 1552 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 1553 | |
---|
| 1554 | ! |
---|
| 1555 | !-- Calculate prognostic equation for rain drop concentration |
---|
| 1556 | sbt = tsc(2) |
---|
| 1557 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1558 | |
---|
| 1559 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1560 | ! |
---|
| 1561 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1562 | sbt = 1.0_wp |
---|
| 1563 | ENDIF |
---|
| 1564 | tend = 0.0_wp |
---|
| 1565 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 1566 | |
---|
| 1567 | ENDIF |
---|
| 1568 | |
---|
| 1569 | ! |
---|
| 1570 | !-- nr-tendency terms with no communication |
---|
| 1571 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1572 | tend = 0.0_wp |
---|
| 1573 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1574 | IF ( ws_scheme_sca ) THEN |
---|
| 1575 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 1576 | ELSE |
---|
| 1577 | CALL advec_s_pw( nr ) |
---|
| 1578 | ENDIF |
---|
| 1579 | ELSE |
---|
| 1580 | CALL advec_s_up( nr ) |
---|
| 1581 | ENDIF |
---|
| 1582 | ENDIF |
---|
| 1583 | |
---|
| 1584 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 1585 | |
---|
| 1586 | CALL user_actions( 'nr-tendency' ) |
---|
| 1587 | |
---|
| 1588 | ! |
---|
| 1589 | !-- Prognostic equation for rain drop concentration |
---|
| 1590 | DO i = nxl, nxr |
---|
| 1591 | DO j = nys, nyn |
---|
| 1592 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1593 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1594 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 1595 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 1596 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 1597 | ENDDO |
---|
| 1598 | ENDDO |
---|
| 1599 | ENDDO |
---|
| 1600 | |
---|
| 1601 | ! |
---|
| 1602 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1603 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1604 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1605 | DO i = nxl, nxr |
---|
| 1606 | DO j = nys, nyn |
---|
| 1607 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1608 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 1609 | ENDDO |
---|
| 1610 | ENDDO |
---|
| 1611 | ENDDO |
---|
| 1612 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1613 | intermediate_timestep_count_max ) THEN |
---|
| 1614 | DO i = nxl, nxr |
---|
| 1615 | DO j = nys, nyn |
---|
| 1616 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1617 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1618 | tnr_m(k,j,i) |
---|
| 1619 | ENDDO |
---|
| 1620 | ENDDO |
---|
| 1621 | ENDDO |
---|
| 1622 | ENDIF |
---|
| 1623 | ENDIF |
---|
| 1624 | |
---|
| 1625 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 1626 | |
---|
| 1627 | ENDIF |
---|
| 1628 | |
---|
[736] | 1629 | ENDIF |
---|
| 1630 | |
---|
| 1631 | ! |
---|
| 1632 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1633 | !-- energy (TKE) |
---|
| 1634 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1635 | |
---|
| 1636 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1637 | |
---|
| 1638 | sbt = tsc(2) |
---|
| 1639 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1640 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1641 | |
---|
| 1642 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1643 | ! |
---|
[1001] | 1644 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1645 | sbt = 1.0_wp |
---|
[736] | 1646 | ENDIF |
---|
[1337] | 1647 | tend = 0.0_wp |
---|
[736] | 1648 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1649 | |
---|
[736] | 1650 | ENDIF |
---|
| 1651 | ENDIF |
---|
| 1652 | |
---|
| 1653 | ! |
---|
| 1654 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1655 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1656 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 1657 | tend = 0.0_wp |
---|
[736] | 1658 | CALL advec_s_up( e ) |
---|
| 1659 | ELSE |
---|
[1337] | 1660 | tend = 0.0_wp |
---|
[1001] | 1661 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1662 | IF ( ws_scheme_sca ) THEN |
---|
| 1663 | CALL advec_s_ws( e, 'e' ) |
---|
| 1664 | ELSE |
---|
| 1665 | CALL advec_s_pw( e ) |
---|
| 1666 | ENDIF |
---|
| 1667 | ELSE |
---|
[1001] | 1668 | CALL advec_s_up( e ) |
---|
[736] | 1669 | ENDIF |
---|
| 1670 | ENDIF |
---|
[1001] | 1671 | ENDIF |
---|
| 1672 | |
---|
| 1673 | IF ( .NOT. humidity ) THEN |
---|
| 1674 | IF ( ocean ) THEN |
---|
| 1675 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1676 | ELSE |
---|
[1001] | 1677 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1678 | ENDIF |
---|
[1001] | 1679 | ELSE |
---|
| 1680 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1681 | ENDIF |
---|
[1001] | 1682 | |
---|
[736] | 1683 | CALL production_e |
---|
| 1684 | |
---|
| 1685 | ! |
---|
| 1686 | !-- Additional sink term for flows through plant canopies |
---|
| 1687 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1688 | CALL user_actions( 'e-tendency' ) |
---|
| 1689 | |
---|
| 1690 | ! |
---|
| 1691 | !-- Prognostic equation for TKE. |
---|
| 1692 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1693 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1694 | !-- value is reduced by 90%. |
---|
| 1695 | DO i = nxl, nxr |
---|
| 1696 | DO j = nys, nyn |
---|
| 1697 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1698 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1699 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 1700 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 1701 | ENDDO |
---|
| 1702 | ENDDO |
---|
| 1703 | ENDDO |
---|
| 1704 | |
---|
| 1705 | ! |
---|
| 1706 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1707 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1708 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1709 | DO i = nxl, nxr |
---|
| 1710 | DO j = nys, nyn |
---|
| 1711 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1712 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1713 | ENDDO |
---|
| 1714 | ENDDO |
---|
| 1715 | ENDDO |
---|
| 1716 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1717 | intermediate_timestep_count_max ) THEN |
---|
| 1718 | DO i = nxl, nxr |
---|
| 1719 | DO j = nys, nyn |
---|
| 1720 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1721 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[736] | 1722 | ENDDO |
---|
| 1723 | ENDDO |
---|
| 1724 | ENDDO |
---|
| 1725 | ENDIF |
---|
| 1726 | ENDIF |
---|
| 1727 | |
---|
| 1728 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1729 | |
---|
| 1730 | ENDIF |
---|
| 1731 | |
---|
| 1732 | END SUBROUTINE prognostic_equations_vector |
---|
| 1733 | |
---|
| 1734 | |
---|
[1015] | 1735 | SUBROUTINE prognostic_equations_acc |
---|
| 1736 | |
---|
| 1737 | !------------------------------------------------------------------------------! |
---|
| 1738 | ! Version for accelerator boards |
---|
| 1739 | !------------------------------------------------------------------------------! |
---|
| 1740 | |
---|
| 1741 | IMPLICIT NONE |
---|
| 1742 | |
---|
[1320] | 1743 | INTEGER(iwp) :: i !: |
---|
| 1744 | INTEGER(iwp) :: j !: |
---|
| 1745 | INTEGER(iwp) :: k !: |
---|
| 1746 | INTEGER(iwp) :: runge_step !: |
---|
[1015] | 1747 | |
---|
[1320] | 1748 | REAL(wp) :: sbt !: |
---|
| 1749 | |
---|
[1015] | 1750 | ! |
---|
| 1751 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1752 | runge_step = 0 |
---|
| 1753 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1754 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1755 | runge_step = 1 |
---|
| 1756 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1757 | intermediate_timestep_count_max ) THEN |
---|
| 1758 | runge_step = 2 |
---|
| 1759 | ENDIF |
---|
| 1760 | ENDIF |
---|
| 1761 | |
---|
| 1762 | ! |
---|
[1361] | 1763 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 1764 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 1765 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 1766 | call_microphysics_at_all_substeps ) & |
---|
| 1767 | ) THEN |
---|
| 1768 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 1769 | CALL microphysics_control |
---|
| 1770 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 1771 | ENDIF |
---|
| 1772 | |
---|
| 1773 | ! |
---|
[1015] | 1774 | !-- u-velocity component |
---|
[1374] | 1775 | !++ Statistics still not completely ported to accelerators |
---|
[1179] | 1776 | !$acc update device( hom, ref_state ) |
---|
[1015] | 1777 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1778 | |
---|
| 1779 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1780 | IF ( ws_scheme_mom ) THEN |
---|
| 1781 | CALL advec_u_ws_acc |
---|
| 1782 | ELSE |
---|
[1337] | 1783 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1784 | CALL advec_u_pw |
---|
| 1785 | ENDIF |
---|
| 1786 | ELSE |
---|
| 1787 | CALL advec_u_up |
---|
| 1788 | ENDIF |
---|
| 1789 | CALL diffusion_u_acc |
---|
| 1790 | CALL coriolis_acc( 1 ) |
---|
| 1791 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 1792 | CALL buoyancy( pt, 1 ) |
---|
[1015] | 1793 | ENDIF |
---|
| 1794 | |
---|
| 1795 | ! |
---|
| 1796 | !-- Drag by plant canopy |
---|
| 1797 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1798 | |
---|
| 1799 | ! |
---|
| 1800 | !-- External pressure gradient |
---|
| 1801 | IF ( dp_external ) THEN |
---|
[1128] | 1802 | DO i = i_left, i_right |
---|
| 1803 | DO j = j_south, j_north |
---|
[1015] | 1804 | DO k = dp_level_ind_b+1, nzt |
---|
| 1805 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1806 | ENDDO |
---|
| 1807 | ENDDO |
---|
| 1808 | ENDDO |
---|
| 1809 | ENDIF |
---|
| 1810 | |
---|
[1246] | 1811 | ! |
---|
| 1812 | !-- Nudging |
---|
| 1813 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 1814 | |
---|
[1015] | 1815 | CALL user_actions( 'u-tendency' ) |
---|
| 1816 | |
---|
| 1817 | ! |
---|
| 1818 | !-- Prognostic equation for u-velocity component |
---|
[1398] | 1819 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, u_init, u_p ) |
---|
[1257] | 1820 | !$acc loop independent |
---|
[1128] | 1821 | DO i = i_left, i_right |
---|
[1257] | 1822 | !$acc loop independent |
---|
[1128] | 1823 | DO j = j_south, j_north |
---|
[1257] | 1824 | !$acc loop independent |
---|
[1015] | 1825 | DO k = 1, nzt |
---|
| 1826 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1827 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1828 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 1829 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[1015] | 1830 | ! |
---|
| 1831 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1832 | IF ( runge_step == 1 ) THEN |
---|
| 1833 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1834 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1835 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[1015] | 1836 | ENDIF |
---|
| 1837 | ENDIF |
---|
| 1838 | ENDDO |
---|
| 1839 | ENDDO |
---|
| 1840 | ENDDO |
---|
| 1841 | !$acc end kernels |
---|
| 1842 | |
---|
| 1843 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1844 | |
---|
| 1845 | ! |
---|
| 1846 | !-- v-velocity component |
---|
| 1847 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1848 | |
---|
| 1849 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1850 | IF ( ws_scheme_mom ) THEN |
---|
| 1851 | CALL advec_v_ws_acc |
---|
| 1852 | ELSE |
---|
[1337] | 1853 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1854 | CALL advec_v_pw |
---|
| 1855 | END IF |
---|
| 1856 | ELSE |
---|
| 1857 | CALL advec_v_up |
---|
| 1858 | ENDIF |
---|
| 1859 | CALL diffusion_v_acc |
---|
| 1860 | CALL coriolis_acc( 2 ) |
---|
| 1861 | |
---|
| 1862 | ! |
---|
| 1863 | !-- Drag by plant canopy |
---|
| 1864 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1865 | |
---|
| 1866 | ! |
---|
| 1867 | !-- External pressure gradient |
---|
| 1868 | IF ( dp_external ) THEN |
---|
[1128] | 1869 | DO i = i_left, i_right |
---|
| 1870 | DO j = j_south, j_north |
---|
[1015] | 1871 | DO k = dp_level_ind_b+1, nzt |
---|
| 1872 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1873 | ENDDO |
---|
| 1874 | ENDDO |
---|
| 1875 | ENDDO |
---|
| 1876 | ENDIF |
---|
| 1877 | |
---|
[1246] | 1878 | ! |
---|
| 1879 | !-- Nudging |
---|
| 1880 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1881 | |
---|
[1015] | 1882 | CALL user_actions( 'v-tendency' ) |
---|
| 1883 | |
---|
| 1884 | ! |
---|
| 1885 | !-- Prognostic equation for v-velocity component |
---|
[1398] | 1886 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, v_init, v_p ) |
---|
[1257] | 1887 | !$acc loop independent |
---|
[1128] | 1888 | DO i = i_left, i_right |
---|
[1257] | 1889 | !$acc loop independent |
---|
[1128] | 1890 | DO j = j_south, j_north |
---|
[1257] | 1891 | !$acc loop independent |
---|
[1015] | 1892 | DO k = 1, nzt |
---|
| 1893 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1894 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1895 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1896 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[1015] | 1897 | ! |
---|
| 1898 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1899 | IF ( runge_step == 1 ) THEN |
---|
| 1900 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1901 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1902 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[1015] | 1903 | ENDIF |
---|
| 1904 | ENDIF |
---|
| 1905 | ENDDO |
---|
| 1906 | ENDDO |
---|
| 1907 | ENDDO |
---|
| 1908 | !$acc end kernels |
---|
| 1909 | |
---|
| 1910 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1911 | |
---|
| 1912 | ! |
---|
| 1913 | !-- w-velocity component |
---|
| 1914 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1915 | |
---|
| 1916 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1917 | IF ( ws_scheme_mom ) THEN |
---|
| 1918 | CALL advec_w_ws_acc |
---|
| 1919 | ELSE |
---|
[1337] | 1920 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1921 | CALL advec_w_pw |
---|
| 1922 | ENDIF |
---|
| 1923 | ELSE |
---|
| 1924 | CALL advec_w_up |
---|
| 1925 | ENDIF |
---|
| 1926 | CALL diffusion_w_acc |
---|
| 1927 | CALL coriolis_acc( 3 ) |
---|
| 1928 | |
---|
| 1929 | IF ( .NOT. neutral ) THEN |
---|
| 1930 | IF ( ocean ) THEN |
---|
[1179] | 1931 | CALL buoyancy( rho, 3 ) |
---|
[1015] | 1932 | ELSE |
---|
| 1933 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1934 | CALL buoyancy_acc( pt, 3 ) |
---|
[1015] | 1935 | ELSE |
---|
[1179] | 1936 | CALL buoyancy( vpt, 3 ) |
---|
[1015] | 1937 | ENDIF |
---|
| 1938 | ENDIF |
---|
| 1939 | ENDIF |
---|
| 1940 | |
---|
| 1941 | ! |
---|
| 1942 | !-- Drag by plant canopy |
---|
| 1943 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1944 | |
---|
| 1945 | CALL user_actions( 'w-tendency' ) |
---|
| 1946 | |
---|
| 1947 | ! |
---|
| 1948 | !-- Prognostic equation for w-velocity component |
---|
| 1949 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
[1257] | 1950 | !$acc loop independent |
---|
[1128] | 1951 | DO i = i_left, i_right |
---|
[1257] | 1952 | !$acc loop independent |
---|
[1128] | 1953 | DO j = j_south, j_north |
---|
[1257] | 1954 | !$acc loop independent |
---|
[1015] | 1955 | DO k = 1, nzt-1 |
---|
| 1956 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 1957 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1958 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1959 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1960 | ! |
---|
| 1961 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1962 | IF ( runge_step == 1 ) THEN |
---|
| 1963 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1964 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1965 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[1015] | 1966 | ENDIF |
---|
| 1967 | ENDIF |
---|
| 1968 | ENDDO |
---|
| 1969 | ENDDO |
---|
| 1970 | ENDDO |
---|
| 1971 | !$acc end kernels |
---|
| 1972 | |
---|
| 1973 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1974 | |
---|
| 1975 | |
---|
| 1976 | ! |
---|
| 1977 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1978 | IF ( .NOT. neutral ) THEN |
---|
| 1979 | |
---|
| 1980 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1981 | |
---|
| 1982 | ! |
---|
| 1983 | !-- pt-tendency terms with communication |
---|
| 1984 | sbt = tsc(2) |
---|
| 1985 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1986 | |
---|
| 1987 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1988 | ! |
---|
| 1989 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1990 | sbt = 1.0_wp |
---|
[1015] | 1991 | ENDIF |
---|
[1337] | 1992 | tend = 0.0_wp |
---|
[1015] | 1993 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1994 | |
---|
| 1995 | ENDIF |
---|
| 1996 | |
---|
| 1997 | ! |
---|
| 1998 | !-- pt-tendency terms with no communication |
---|
| 1999 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2000 | tend = 0.0_wp |
---|
[1015] | 2001 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2002 | IF ( ws_scheme_sca ) THEN |
---|
| 2003 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 2004 | ELSE |
---|
[1337] | 2005 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2006 | CALL advec_s_pw( pt ) |
---|
| 2007 | ENDIF |
---|
| 2008 | ELSE |
---|
| 2009 | CALL advec_s_up( pt ) |
---|
| 2010 | ENDIF |
---|
| 2011 | ENDIF |
---|
| 2012 | |
---|
| 2013 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 2014 | |
---|
| 2015 | ! |
---|
| 2016 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 2017 | IF ( radiation ) THEN |
---|
| 2018 | CALL calc_radiation |
---|
| 2019 | ENDIF |
---|
| 2020 | |
---|
| 2021 | ! |
---|
| 2022 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 2023 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2024 | CALL impact_of_latent_heat |
---|
| 2025 | ENDIF |
---|
| 2026 | |
---|
| 2027 | ! |
---|
| 2028 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 2029 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[1015] | 2030 | CALL plant_canopy_model( 4 ) |
---|
| 2031 | ENDIF |
---|
| 2032 | |
---|
| 2033 | ! |
---|
[1365] | 2034 | !-- Large scale advection |
---|
| 2035 | IF ( large_scale_forcing ) THEN |
---|
| 2036 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 2037 | ENDIF |
---|
| 2038 | |
---|
| 2039 | ! |
---|
[1380] | 2040 | !-- Nudging |
---|
| 2041 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 2042 | |
---|
| 2043 | ! |
---|
[1015] | 2044 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2045 | IF ( large_scale_subsidence .AND. & |
---|
| 2046 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2047 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[1015] | 2048 | ENDIF |
---|
| 2049 | |
---|
| 2050 | CALL user_actions( 'pt-tendency' ) |
---|
| 2051 | |
---|
| 2052 | ! |
---|
| 2053 | !-- Prognostic equation for potential temperature |
---|
| 2054 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 2055 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
[1257] | 2056 | !$acc loop independent |
---|
[1128] | 2057 | DO i = i_left, i_right |
---|
[1257] | 2058 | !$acc loop independent |
---|
[1128] | 2059 | DO j = j_south, j_north |
---|
[1257] | 2060 | !$acc loop independent |
---|
[1015] | 2061 | DO k = 1, nzt |
---|
| 2062 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2063 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2064 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 2065 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 2066 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 2067 | ! |
---|
| 2068 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2069 | IF ( runge_step == 1 ) THEN |
---|
| 2070 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 2071 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2072 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tpt_m(k,j,i) |
---|
[1015] | 2073 | ENDIF |
---|
| 2074 | ENDIF |
---|
| 2075 | ENDDO |
---|
| 2076 | ENDDO |
---|
| 2077 | ENDDO |
---|
| 2078 | !$acc end kernels |
---|
| 2079 | |
---|
| 2080 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 2081 | |
---|
| 2082 | ENDIF |
---|
| 2083 | |
---|
| 2084 | ! |
---|
| 2085 | !-- If required, compute prognostic equation for salinity |
---|
| 2086 | IF ( ocean ) THEN |
---|
| 2087 | |
---|
| 2088 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 2089 | |
---|
| 2090 | ! |
---|
| 2091 | !-- sa-tendency terms with communication |
---|
| 2092 | sbt = tsc(2) |
---|
| 2093 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2094 | |
---|
| 2095 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2096 | ! |
---|
| 2097 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2098 | sbt = 1.0_wp |
---|
[1015] | 2099 | ENDIF |
---|
[1337] | 2100 | tend = 0.0_wp |
---|
[1015] | 2101 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 2102 | |
---|
| 2103 | ENDIF |
---|
| 2104 | |
---|
| 2105 | ! |
---|
| 2106 | !-- sa-tendency terms with no communication |
---|
| 2107 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2108 | tend = 0.0_wp |
---|
[1015] | 2109 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2110 | IF ( ws_scheme_sca ) THEN |
---|
| 2111 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 2112 | ELSE |
---|
| 2113 | CALL advec_s_pw( sa ) |
---|
| 2114 | ENDIF |
---|
| 2115 | ELSE |
---|
| 2116 | CALL advec_s_up( sa ) |
---|
| 2117 | ENDIF |
---|
| 2118 | ENDIF |
---|
| 2119 | |
---|
| 2120 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 2121 | |
---|
| 2122 | CALL user_actions( 'sa-tendency' ) |
---|
| 2123 | |
---|
| 2124 | ! |
---|
| 2125 | !-- Prognostic equation for salinity |
---|
[1128] | 2126 | DO i = i_left, i_right |
---|
| 2127 | DO j = j_south, j_north |
---|
[1015] | 2128 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2129 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2130 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 2131 | - tsc(5) * rdf_sc(k) * & |
---|
| 2132 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 2133 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[1015] | 2134 | ! |
---|
| 2135 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2136 | IF ( runge_step == 1 ) THEN |
---|
| 2137 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 2138 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2139 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tsa_m(k,j,i) |
---|
[1015] | 2140 | ENDIF |
---|
| 2141 | ENDDO |
---|
| 2142 | ENDDO |
---|
| 2143 | ENDDO |
---|
| 2144 | |
---|
| 2145 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 2146 | |
---|
| 2147 | ! |
---|
| 2148 | !-- Calculate density by the equation of state for seawater |
---|
| 2149 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 2150 | CALL eqn_state_seawater |
---|
| 2151 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 2152 | |
---|
| 2153 | ENDIF |
---|
| 2154 | |
---|
| 2155 | ! |
---|
| 2156 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 2157 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 2158 | |
---|
| 2159 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 2160 | |
---|
| 2161 | ! |
---|
| 2162 | !-- Scalar/q-tendency terms with communication |
---|
| 2163 | sbt = tsc(2) |
---|
| 2164 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2165 | |
---|
| 2166 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2167 | ! |
---|
| 2168 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2169 | sbt = 1.0_wp |
---|
[1015] | 2170 | ENDIF |
---|
[1337] | 2171 | tend = 0.0_wp |
---|
[1015] | 2172 | CALL advec_s_bc( q, 'q' ) |
---|
| 2173 | |
---|
| 2174 | ENDIF |
---|
| 2175 | |
---|
| 2176 | ! |
---|
| 2177 | !-- Scalar/q-tendency terms with no communication |
---|
| 2178 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2179 | tend = 0.0_wp |
---|
[1015] | 2180 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2181 | IF ( ws_scheme_sca ) THEN |
---|
| 2182 | CALL advec_s_ws( q, 'q' ) |
---|
| 2183 | ELSE |
---|
| 2184 | CALL advec_s_pw( q ) |
---|
| 2185 | ENDIF |
---|
| 2186 | ELSE |
---|
| 2187 | CALL advec_s_up( q ) |
---|
| 2188 | ENDIF |
---|
| 2189 | ENDIF |
---|
| 2190 | |
---|
| 2191 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 2192 | |
---|
| 2193 | ! |
---|
| 2194 | !-- If required compute decrease of total water content due to |
---|
| 2195 | !-- precipitation |
---|
[1361] | 2196 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2197 | CALL calc_precipitation |
---|
| 2198 | ENDIF |
---|
| 2199 | |
---|
| 2200 | ! |
---|
| 2201 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 2202 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 2203 | |
---|
| 2204 | ! |
---|
[1365] | 2205 | !-- Large scale advection |
---|
| 2206 | IF ( large_scale_forcing ) THEN |
---|
| 2207 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 2208 | ENDIF |
---|
| 2209 | |
---|
| 2210 | ! |
---|
[1380] | 2211 | !-- Nudging |
---|
| 2212 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 2213 | |
---|
| 2214 | ! |
---|
[1015] | 2215 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2216 | IF ( large_scale_subsidence .AND. & |
---|
| 2217 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2218 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[1015] | 2219 | ENDIF |
---|
| 2220 | |
---|
| 2221 | CALL user_actions( 'q-tendency' ) |
---|
| 2222 | |
---|
| 2223 | ! |
---|
| 2224 | !-- Prognostic equation for total water content / scalar |
---|
[1128] | 2225 | DO i = i_left, i_right |
---|
| 2226 | DO j = j_south, j_north |
---|
[1015] | 2227 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2228 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2229 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 2230 | - tsc(5) * rdf_sc(k) * & |
---|
| 2231 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 2232 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[1015] | 2233 | ! |
---|
| 2234 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2235 | IF ( runge_step == 1 ) THEN |
---|
| 2236 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 2237 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2238 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[1015] | 2239 | ENDIF |
---|
| 2240 | ENDDO |
---|
| 2241 | ENDDO |
---|
| 2242 | ENDDO |
---|
| 2243 | |
---|
| 2244 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 2245 | |
---|
[1361] | 2246 | ! |
---|
| 2247 | !-- If required, calculate prognostic equations for rain water content |
---|
| 2248 | !-- and rain drop concentration |
---|
| 2249 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 2250 | |
---|
| 2251 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 2252 | ! |
---|
| 2253 | !-- qr-tendency terms with communication |
---|
| 2254 | sbt = tsc(2) |
---|
| 2255 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2256 | |
---|
| 2257 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2258 | ! |
---|
| 2259 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2260 | sbt = 1.0_wp |
---|
| 2261 | ENDIF |
---|
| 2262 | tend = 0.0_wp |
---|
| 2263 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 2264 | |
---|
| 2265 | ENDIF |
---|
| 2266 | |
---|
| 2267 | ! |
---|
| 2268 | !-- qr-tendency terms with no communication |
---|
| 2269 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2270 | tend = 0.0_wp |
---|
| 2271 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2272 | IF ( ws_scheme_sca ) THEN |
---|
| 2273 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 2274 | ELSE |
---|
| 2275 | CALL advec_s_pw( qr ) |
---|
| 2276 | ENDIF |
---|
| 2277 | ELSE |
---|
| 2278 | CALL advec_s_up( qr ) |
---|
| 2279 | ENDIF |
---|
| 2280 | ENDIF |
---|
| 2281 | |
---|
| 2282 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 2283 | |
---|
| 2284 | CALL user_actions( 'qr-tendency' ) |
---|
| 2285 | |
---|
| 2286 | ! |
---|
| 2287 | !-- Prognostic equation for rain water content |
---|
| 2288 | DO i = i_left, i_right |
---|
| 2289 | DO j = j_south, j_north |
---|
| 2290 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2291 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2292 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 2293 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 2294 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 2295 | ! |
---|
| 2296 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2297 | IF ( runge_step == 1 ) THEN |
---|
| 2298 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 2299 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2300 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2301 | tqr_m(k,j,i) |
---|
| 2302 | ENDIF |
---|
| 2303 | ENDDO |
---|
| 2304 | ENDDO |
---|
| 2305 | ENDDO |
---|
| 2306 | |
---|
| 2307 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 2308 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 2309 | |
---|
| 2310 | ! |
---|
| 2311 | !-- nr-tendency terms with communication |
---|
| 2312 | sbt = tsc(2) |
---|
| 2313 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2314 | |
---|
| 2315 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2316 | ! |
---|
| 2317 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2318 | sbt = 1.0_wp |
---|
| 2319 | ENDIF |
---|
| 2320 | tend = 0.0_wp |
---|
| 2321 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 2322 | |
---|
| 2323 | ENDIF |
---|
| 2324 | |
---|
| 2325 | ! |
---|
| 2326 | !-- nr-tendency terms with no communication |
---|
| 2327 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2328 | tend = 0.0_wp |
---|
| 2329 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2330 | IF ( ws_scheme_sca ) THEN |
---|
| 2331 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 2332 | ELSE |
---|
| 2333 | CALL advec_s_pw( nr ) |
---|
| 2334 | ENDIF |
---|
| 2335 | ELSE |
---|
| 2336 | CALL advec_s_up( nr ) |
---|
| 2337 | ENDIF |
---|
| 2338 | ENDIF |
---|
| 2339 | |
---|
| 2340 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 2341 | |
---|
| 2342 | CALL user_actions( 'nr-tendency' ) |
---|
| 2343 | |
---|
| 2344 | ! |
---|
| 2345 | !-- Prognostic equation for rain drop concentration |
---|
| 2346 | DO i = i_left, i_right |
---|
| 2347 | DO j = j_south, j_north |
---|
| 2348 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2349 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2350 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 2351 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 2352 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 2353 | ! |
---|
| 2354 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2355 | IF ( runge_step == 1 ) THEN |
---|
| 2356 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 2357 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2358 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2359 | tnr_m(k,j,i) |
---|
| 2360 | ENDIF |
---|
| 2361 | ENDDO |
---|
| 2362 | ENDDO |
---|
| 2363 | ENDDO |
---|
| 2364 | |
---|
| 2365 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 2366 | |
---|
| 2367 | ENDIF |
---|
| 2368 | |
---|
[1015] | 2369 | ENDIF |
---|
| 2370 | |
---|
| 2371 | ! |
---|
| 2372 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 2373 | !-- energy (TKE) |
---|
| 2374 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 2375 | |
---|
| 2376 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 2377 | |
---|
| 2378 | sbt = tsc(2) |
---|
| 2379 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 2380 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2381 | |
---|
| 2382 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2383 | ! |
---|
| 2384 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2385 | sbt = 1.0_wp |
---|
[1015] | 2386 | ENDIF |
---|
[1337] | 2387 | tend = 0.0_wp |
---|
[1015] | 2388 | CALL advec_s_bc( e, 'e' ) |
---|
| 2389 | |
---|
| 2390 | ENDIF |
---|
| 2391 | ENDIF |
---|
| 2392 | |
---|
| 2393 | ! |
---|
| 2394 | !-- TKE-tendency terms with no communication |
---|
| 2395 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 2396 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 2397 | tend = 0.0_wp |
---|
[1015] | 2398 | CALL advec_s_up( e ) |
---|
| 2399 | ELSE |
---|
| 2400 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2401 | IF ( ws_scheme_sca ) THEN |
---|
| 2402 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 2403 | ELSE |
---|
[1337] | 2404 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2405 | CALL advec_s_pw( e ) |
---|
| 2406 | ENDIF |
---|
| 2407 | ELSE |
---|
[1337] | 2408 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2409 | CALL advec_s_up( e ) |
---|
| 2410 | ENDIF |
---|
| 2411 | ENDIF |
---|
| 2412 | ENDIF |
---|
| 2413 | |
---|
| 2414 | IF ( .NOT. humidity ) THEN |
---|
| 2415 | IF ( ocean ) THEN |
---|
| 2416 | CALL diffusion_e( prho, prho_reference ) |
---|
| 2417 | ELSE |
---|
| 2418 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 2419 | ENDIF |
---|
| 2420 | ELSE |
---|
| 2421 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 2422 | ENDIF |
---|
| 2423 | |
---|
| 2424 | CALL production_e_acc |
---|
| 2425 | |
---|
| 2426 | ! |
---|
| 2427 | !-- Additional sink term for flows through plant canopies |
---|
| 2428 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 2429 | CALL user_actions( 'e-tendency' ) |
---|
| 2430 | |
---|
| 2431 | ! |
---|
| 2432 | !-- Prognostic equation for TKE. |
---|
| 2433 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2434 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2435 | !-- value is reduced by 90%. |
---|
| 2436 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
[1257] | 2437 | !$acc loop independent |
---|
[1128] | 2438 | DO i = i_left, i_right |
---|
[1257] | 2439 | !$acc loop independent |
---|
[1128] | 2440 | DO j = j_south, j_north |
---|
[1257] | 2441 | !$acc loop independent |
---|
[1015] | 2442 | DO k = 1, nzt |
---|
| 2443 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2444 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2445 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 2446 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[1015] | 2447 | ! |
---|
| 2448 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2449 | IF ( runge_step == 1 ) THEN |
---|
| 2450 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2451 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2452 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[1015] | 2453 | ENDIF |
---|
| 2454 | ENDIF |
---|
| 2455 | ENDDO |
---|
| 2456 | ENDDO |
---|
| 2457 | ENDDO |
---|
| 2458 | !$acc end kernels |
---|
| 2459 | |
---|
| 2460 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2461 | |
---|
| 2462 | ENDIF |
---|
| 2463 | |
---|
| 2464 | END SUBROUTINE prognostic_equations_acc |
---|
| 2465 | |
---|
| 2466 | |
---|
[736] | 2467 | END MODULE prognostic_equations_mod |
---|