[736] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[736] | 20 | ! Current revisions: |
---|
[1092] | 21 | ! ------------------ |
---|
[1399] | 22 | ! |
---|
| 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: prognostic_equations.f90 1399 2014-05-07 11:16:25Z keck $ |
---|
| 27 | ! |
---|
| 28 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
[1398] | 29 | ! Rayleigh-damping for horizontal velocity components changed: instead of damping |
---|
| 30 | ! against ug and vg, damping against u_init and v_init is used to allow for a |
---|
| 31 | ! homogenized treatment in case of nudging |
---|
| 32 | ! |
---|
| 33 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
[1381] | 34 | ! Change order of calls for scalar prognostic quantities: |
---|
| 35 | ! ls_advec -> nudging -> subsidence since initial profiles |
---|
| 36 | ! |
---|
[1380] | 37 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 38 | ! missing variables added to ONLY lists |
---|
| 39 | ! |
---|
| 40 | ! 1365 2014-04-22 15:03:56Z boeske |
---|
[1365] | 41 | ! Calls of ls_advec for large scale advection added, |
---|
| 42 | ! subroutine subsidence is only called if use_subsidence_tendencies = .F., |
---|
| 43 | ! new argument ls_index added to the calls of subsidence |
---|
| 44 | ! +ls_index |
---|
| 45 | ! |
---|
| 46 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
[1361] | 47 | ! Two-moment microphysics moved to the start of prognostic equations. This makes |
---|
| 48 | ! the 3d arrays for tend_q, tend_qr, tend_pt and tend_pt redundant. |
---|
| 49 | ! Additionally, it is allowed to call the microphysics just once during the time |
---|
| 50 | ! step (not at each sub-time step). |
---|
| 51 | ! |
---|
| 52 | ! Two-moment cloud physics added for vector and accelerator optimization. |
---|
| 53 | ! |
---|
| 54 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
[1354] | 55 | ! REAL constants provided with KIND-attribute |
---|
| 56 | ! |
---|
[1353] | 57 | ! 1337 2014-03-25 15:11:48Z heinze |
---|
| 58 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 59 | ! |
---|
| 60 | ! 1332 2014-03-25 11:59:43Z suehring |
---|
[1333] | 61 | ! Bugfix: call advec_ws or advec_pw for TKE only if NOT use_upstream_for_tke |
---|
| 62 | ! |
---|
[1332] | 63 | ! 1330 2014-03-24 17:29:32Z suehring |
---|
[1331] | 64 | ! In case of SGS-particle velocity advection of TKE is also allowed with |
---|
| 65 | ! dissipative 5th-order scheme. |
---|
| 66 | ! |
---|
[1321] | 67 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 68 | ! ONLY-attribute added to USE-statements, |
---|
| 69 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 70 | ! kinds are defined in new module kinds, |
---|
| 71 | ! old module precision_kind is removed, |
---|
| 72 | ! revision history before 2012 removed, |
---|
| 73 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 74 | ! all variable declaration statements |
---|
[1054] | 75 | ! |
---|
[1319] | 76 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 77 | ! module interfaces removed |
---|
| 78 | ! |
---|
[1258] | 79 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 80 | ! openacc loop vector clauses removed, independent clauses added |
---|
| 81 | ! |
---|
[1247] | 82 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
| 83 | ! enable nudging also for accelerator version |
---|
| 84 | ! |
---|
[1242] | 85 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 86 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
| 87 | ! |
---|
[1182] | 88 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 89 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 90 | ! |
---|
[1132] | 91 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 92 | ! those parts requiring global communication moved to time_integration, |
---|
| 93 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 94 | ! j_north |
---|
| 95 | ! |
---|
[1116] | 96 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 97 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 98 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 99 | ! |
---|
[1112] | 100 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 101 | ! update directives for prognostic quantities removed |
---|
| 102 | ! |
---|
[1107] | 103 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 104 | ! small changes in code formatting |
---|
| 105 | ! |
---|
[1093] | 106 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 107 | ! unused variables removed |
---|
| 108 | ! |
---|
[1054] | 109 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 110 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 111 | ! and rain water content (qr) |
---|
[979] | 112 | ! |
---|
[1053] | 113 | ! currently, only available for cache loop optimization |
---|
[1020] | 114 | ! |
---|
[1037] | 115 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 116 | ! code put under GPL (PALM 3.9) |
---|
| 117 | ! |
---|
[1020] | 118 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 119 | ! non-optimized version of prognostic_equations removed |
---|
| 120 | ! |
---|
[1017] | 121 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 122 | ! new branch prognostic_equations_acc |
---|
| 123 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 124 | ! |
---|
[1002] | 125 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 126 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 127 | ! |
---|
[979] | 128 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 129 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 130 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 131 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 132 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 133 | ! |
---|
[941] | 134 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 135 | ! temperature equation can be switched off |
---|
| 136 | ! |
---|
[736] | 137 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 138 | ! Initial revision |
---|
| 139 | ! |
---|
| 140 | ! |
---|
| 141 | ! Description: |
---|
| 142 | ! ------------ |
---|
| 143 | ! Solving the prognostic equations. |
---|
| 144 | !------------------------------------------------------------------------------! |
---|
| 145 | |
---|
[1320] | 146 | USE arrays_3d, & |
---|
| 147 | ONLY: diss_l_e, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qr, & |
---|
| 148 | diss_l_sa, diss_s_e, diss_s_nr, diss_s_pt, diss_s_q, & |
---|
| 149 | diss_s_qr, diss_s_sa, e, e_p, flux_s_e, flux_s_nr, flux_s_pt, & |
---|
| 150 | flux_s_q, flux_s_qr, flux_s_sa, flux_l_e, flux_l_nr, & |
---|
| 151 | flux_l_pt, flux_l_q, flux_l_qr, flux_l_sa, nr, nr_p, nrsws, & |
---|
| 152 | nrswst, pt, ptdf_x, ptdf_y, pt_init, pt_p, prho, q, q_init, & |
---|
[1374] | 153 | q_p, qsws, qswst, qr, qr_p, qrsws, qrswst, rdf, rdf_sc, & |
---|
| 154 | ref_state, rho, sa, sa_init, sa_p, saswsb, saswst, shf, tend, & |
---|
| 155 | te_m, tnr_m, tpt_m, tq_m, tqr_m, tsa_m, tswst, tu_m, tv_m, & |
---|
[1398] | 156 | tw_m, u, ug, u_init, u_p, v, vg, vpt, v_init, v_p, w, w_p |
---|
[1320] | 157 | |
---|
| 158 | USE control_parameters, & |
---|
[1361] | 159 | ONLY: call_microphysics_at_all_substeps, cloud_physics, & |
---|
| 160 | constant_diffusion, cthf, dp_external, & |
---|
[1320] | 161 | dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, humidity, & |
---|
| 162 | icloud_scheme, inflow_l, intermediate_timestep_count, & |
---|
[1365] | 163 | intermediate_timestep_count_max, large_scale_forcing, & |
---|
| 164 | large_scale_subsidence, neutral, nudging, ocean, outflow_l, & |
---|
| 165 | outflow_s, passive_scalar, plant_canopy, precipitation, & |
---|
| 166 | prho_reference, prho_reference, prho_reference, pt_reference, & |
---|
| 167 | pt_reference, pt_reference, radiation, scalar_advec, & |
---|
| 168 | scalar_advec, simulated_time, sloping_surface, timestep_scheme, & |
---|
| 169 | tsc, use_subsidence_tendencies, use_upstream_for_tke, & |
---|
[1320] | 170 | use_upstream_for_tke, use_upstream_for_tke, wall_heatflux, & |
---|
| 171 | wall_nrflux, wall_qflux, wall_qflux, wall_qflux, wall_qrflux, & |
---|
| 172 | wall_salinityflux, ws_scheme_mom, ws_scheme_sca |
---|
[736] | 173 | |
---|
[1320] | 174 | USE cpulog, & |
---|
| 175 | ONLY: cpu_log, log_point |
---|
[736] | 176 | |
---|
[1320] | 177 | USE eqn_state_seawater_mod, & |
---|
| 178 | ONLY: eqn_state_seawater |
---|
| 179 | |
---|
| 180 | USE indices, & |
---|
| 181 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlu, nxr, nyn, nys, & |
---|
| 182 | nysv, nzb_s_inner, nzb_u_inner, nzb_v_inner, nzb_w_inner, nzt |
---|
| 183 | |
---|
| 184 | USE advec_ws, & |
---|
| 185 | ONLY: advec_s_ws, advec_s_ws_acc, advec_u_ws, advec_u_ws_acc, & |
---|
| 186 | advec_v_ws, advec_v_ws_acc, advec_w_ws, advec_w_ws_acc |
---|
| 187 | |
---|
| 188 | USE advec_s_pw_mod, & |
---|
| 189 | ONLY: advec_s_pw |
---|
| 190 | |
---|
| 191 | USE advec_s_up_mod, & |
---|
| 192 | ONLY: advec_s_up |
---|
| 193 | |
---|
| 194 | USE advec_u_pw_mod, & |
---|
| 195 | ONLY: advec_u_pw |
---|
| 196 | |
---|
| 197 | USE advec_u_up_mod, & |
---|
| 198 | ONLY: advec_u_up |
---|
| 199 | |
---|
| 200 | USE advec_v_pw_mod, & |
---|
| 201 | ONLY: advec_v_pw |
---|
| 202 | |
---|
| 203 | USE advec_v_up_mod, & |
---|
| 204 | ONLY: advec_v_up |
---|
| 205 | |
---|
| 206 | USE advec_w_pw_mod, & |
---|
| 207 | ONLY: advec_w_pw |
---|
| 208 | |
---|
| 209 | USE advec_w_up_mod, & |
---|
| 210 | ONLY: advec_w_up |
---|
| 211 | |
---|
| 212 | USE buoyancy_mod, & |
---|
| 213 | ONLY: buoyancy, buoyancy_acc |
---|
| 214 | |
---|
| 215 | USE calc_precipitation_mod, & |
---|
| 216 | ONLY: calc_precipitation |
---|
| 217 | |
---|
| 218 | USE calc_radiation_mod, & |
---|
| 219 | ONLY: calc_radiation |
---|
| 220 | |
---|
| 221 | USE coriolis_mod, & |
---|
| 222 | ONLY: coriolis, coriolis_acc |
---|
| 223 | |
---|
| 224 | USE diffusion_e_mod, & |
---|
| 225 | ONLY: diffusion_e, diffusion_e_acc |
---|
| 226 | |
---|
| 227 | USE diffusion_s_mod, & |
---|
| 228 | ONLY: diffusion_s, diffusion_s_acc |
---|
| 229 | |
---|
| 230 | USE diffusion_u_mod, & |
---|
| 231 | ONLY: diffusion_u, diffusion_u_acc |
---|
| 232 | |
---|
| 233 | USE diffusion_v_mod, & |
---|
| 234 | ONLY: diffusion_v, diffusion_v_acc |
---|
| 235 | |
---|
| 236 | USE diffusion_w_mod, & |
---|
| 237 | ONLY: diffusion_w, diffusion_w_acc |
---|
| 238 | |
---|
| 239 | USE impact_of_latent_heat_mod, & |
---|
| 240 | ONLY: impact_of_latent_heat |
---|
| 241 | |
---|
| 242 | USE kinds |
---|
| 243 | |
---|
[1365] | 244 | USE ls_forcing_mod, & |
---|
| 245 | ONLY: ls_advec |
---|
| 246 | |
---|
[1320] | 247 | USE microphysics_mod, & |
---|
| 248 | ONLY: microphysics_control |
---|
| 249 | |
---|
| 250 | USE nudge_mod, & |
---|
| 251 | ONLY: nudge |
---|
| 252 | |
---|
| 253 | USE plant_canopy_model_mod, & |
---|
| 254 | ONLY: plant_canopy_model |
---|
| 255 | |
---|
| 256 | USE production_e_mod, & |
---|
| 257 | ONLY: production_e, production_e_acc |
---|
| 258 | |
---|
[1374] | 259 | USE statistics, & |
---|
| 260 | ONLY: hom |
---|
| 261 | |
---|
[1320] | 262 | USE subsidence_mod, & |
---|
| 263 | ONLY: subsidence |
---|
| 264 | |
---|
| 265 | USE user_actions_mod, & |
---|
| 266 | ONLY: user_actions |
---|
| 267 | |
---|
| 268 | |
---|
[736] | 269 | PRIVATE |
---|
[1019] | 270 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 271 | prognostic_equations_acc |
---|
[736] | 272 | |
---|
| 273 | INTERFACE prognostic_equations_cache |
---|
| 274 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 275 | END INTERFACE prognostic_equations_cache |
---|
| 276 | |
---|
| 277 | INTERFACE prognostic_equations_vector |
---|
| 278 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 279 | END INTERFACE prognostic_equations_vector |
---|
| 280 | |
---|
[1015] | 281 | INTERFACE prognostic_equations_acc |
---|
| 282 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 283 | END INTERFACE prognostic_equations_acc |
---|
[736] | 284 | |
---|
[1015] | 285 | |
---|
[736] | 286 | CONTAINS |
---|
| 287 | |
---|
| 288 | |
---|
| 289 | SUBROUTINE prognostic_equations_cache |
---|
| 290 | |
---|
| 291 | !------------------------------------------------------------------------------! |
---|
| 292 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 293 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 294 | ! |
---|
| 295 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 296 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 297 | ! these loops. |
---|
| 298 | ! |
---|
| 299 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 300 | !------------------------------------------------------------------------------! |
---|
| 301 | |
---|
| 302 | IMPLICIT NONE |
---|
| 303 | |
---|
[1320] | 304 | INTEGER(iwp) :: i !: |
---|
| 305 | INTEGER(iwp) :: i_omp_start !: |
---|
| 306 | INTEGER(iwp) :: j !: |
---|
| 307 | INTEGER(iwp) :: k !: |
---|
| 308 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
| 309 | INTEGER(iwp) :: tn = 0 !: |
---|
| 310 | |
---|
| 311 | LOGICAL :: loop_start !: |
---|
[736] | 312 | |
---|
| 313 | |
---|
| 314 | ! |
---|
| 315 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 316 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 317 | |
---|
| 318 | ! |
---|
| 319 | !-- Loop over all prognostic equations |
---|
| 320 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 321 | |
---|
| 322 | !$ tn = omp_get_thread_num() |
---|
| 323 | loop_start = .TRUE. |
---|
| 324 | !$OMP DO |
---|
| 325 | DO i = nxl, nxr |
---|
| 326 | |
---|
| 327 | ! |
---|
| 328 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 329 | !-- later in advec_ws |
---|
| 330 | IF ( loop_start ) THEN |
---|
| 331 | loop_start = .FALSE. |
---|
| 332 | i_omp_start = i |
---|
| 333 | ENDIF |
---|
[1365] | 334 | |
---|
[736] | 335 | DO j = nys, nyn |
---|
| 336 | ! |
---|
[1361] | 337 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 338 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 339 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 340 | call_microphysics_at_all_substeps ) & |
---|
| 341 | ) THEN |
---|
| 342 | CALL microphysics_control( i, j ) |
---|
| 343 | ENDIF |
---|
| 344 | ! |
---|
[736] | 345 | !-- Tendency terms for u-velocity component |
---|
| 346 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 347 | |
---|
[1337] | 348 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 349 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 350 | IF ( ws_scheme_mom ) THEN |
---|
[978] | 351 | IF ( ( inflow_l .OR. outflow_l ) .AND. i_omp_start == nxl ) THEN |
---|
[736] | 352 | CALL advec_u_ws( i, j, i_omp_start + 1, tn ) |
---|
| 353 | ELSE |
---|
| 354 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
| 355 | ENDIF |
---|
| 356 | ELSE |
---|
| 357 | CALL advec_u_pw( i, j ) |
---|
| 358 | ENDIF |
---|
| 359 | ELSE |
---|
| 360 | CALL advec_u_up( i, j ) |
---|
| 361 | ENDIF |
---|
[1001] | 362 | CALL diffusion_u( i, j ) |
---|
[736] | 363 | CALL coriolis( i, j, 1 ) |
---|
[940] | 364 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 365 | CALL buoyancy( i, j, pt, 1 ) |
---|
[940] | 366 | ENDIF |
---|
[736] | 367 | |
---|
| 368 | ! |
---|
| 369 | !-- Drag by plant canopy |
---|
| 370 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 371 | |
---|
| 372 | ! |
---|
| 373 | !-- External pressure gradient |
---|
| 374 | IF ( dp_external ) THEN |
---|
| 375 | DO k = dp_level_ind_b+1, nzt |
---|
| 376 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 377 | ENDDO |
---|
| 378 | ENDIF |
---|
| 379 | |
---|
[1241] | 380 | ! |
---|
| 381 | !-- Nudging |
---|
| 382 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
| 383 | |
---|
[736] | 384 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 385 | ! |
---|
| 386 | !-- Prognostic equation for u-velocity component |
---|
| 387 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 388 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 389 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 390 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 391 | ENDDO |
---|
| 392 | |
---|
| 393 | ! |
---|
| 394 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 395 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 396 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 397 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 398 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 399 | ENDDO |
---|
| 400 | ELSEIF ( intermediate_timestep_count < & |
---|
| 401 | intermediate_timestep_count_max ) THEN |
---|
| 402 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 403 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 404 | ENDDO |
---|
| 405 | ENDIF |
---|
| 406 | ENDIF |
---|
| 407 | |
---|
| 408 | ENDIF |
---|
| 409 | |
---|
| 410 | ! |
---|
| 411 | !-- Tendency terms for v-velocity component |
---|
| 412 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 413 | |
---|
[1337] | 414 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 415 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 416 | IF ( ws_scheme_mom ) THEN |
---|
| 417 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 418 | ELSE |
---|
| 419 | CALL advec_v_pw( i, j ) |
---|
| 420 | ENDIF |
---|
| 421 | ELSE |
---|
| 422 | CALL advec_v_up( i, j ) |
---|
| 423 | ENDIF |
---|
[1001] | 424 | CALL diffusion_v( i, j ) |
---|
[736] | 425 | CALL coriolis( i, j, 2 ) |
---|
| 426 | |
---|
| 427 | ! |
---|
| 428 | !-- Drag by plant canopy |
---|
| 429 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 430 | |
---|
| 431 | ! |
---|
| 432 | !-- External pressure gradient |
---|
| 433 | IF ( dp_external ) THEN |
---|
| 434 | DO k = dp_level_ind_b+1, nzt |
---|
| 435 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 436 | ENDDO |
---|
| 437 | ENDIF |
---|
| 438 | |
---|
[1241] | 439 | ! |
---|
| 440 | !-- Nudging |
---|
| 441 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
| 442 | |
---|
[736] | 443 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 444 | ! |
---|
| 445 | !-- Prognostic equation for v-velocity component |
---|
| 446 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 447 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 448 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 449 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 450 | ENDDO |
---|
| 451 | |
---|
| 452 | ! |
---|
| 453 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 454 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 455 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 456 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 457 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 458 | ENDDO |
---|
| 459 | ELSEIF ( intermediate_timestep_count < & |
---|
| 460 | intermediate_timestep_count_max ) THEN |
---|
| 461 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 462 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 463 | ENDDO |
---|
| 464 | ENDIF |
---|
| 465 | ENDIF |
---|
| 466 | |
---|
| 467 | ENDIF |
---|
| 468 | |
---|
| 469 | ! |
---|
| 470 | !-- Tendency terms for w-velocity component |
---|
[1337] | 471 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 472 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 473 | IF ( ws_scheme_mom ) THEN |
---|
| 474 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 475 | ELSE |
---|
| 476 | CALL advec_w_pw( i, j ) |
---|
| 477 | END IF |
---|
| 478 | ELSE |
---|
| 479 | CALL advec_w_up( i, j ) |
---|
| 480 | ENDIF |
---|
[1001] | 481 | CALL diffusion_w( i, j ) |
---|
[736] | 482 | CALL coriolis( i, j, 3 ) |
---|
[940] | 483 | |
---|
| 484 | IF ( .NOT. neutral ) THEN |
---|
| 485 | IF ( ocean ) THEN |
---|
[1179] | 486 | CALL buoyancy( i, j, rho, 3 ) |
---|
[736] | 487 | ELSE |
---|
[940] | 488 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 489 | CALL buoyancy( i, j, pt, 3 ) |
---|
[940] | 490 | ELSE |
---|
[1179] | 491 | CALL buoyancy( i, j, vpt, 3 ) |
---|
[940] | 492 | ENDIF |
---|
[736] | 493 | ENDIF |
---|
| 494 | ENDIF |
---|
| 495 | |
---|
| 496 | ! |
---|
| 497 | !-- Drag by plant canopy |
---|
| 498 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 499 | |
---|
| 500 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 501 | |
---|
| 502 | ! |
---|
| 503 | !-- Prognostic equation for w-velocity component |
---|
| 504 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 505 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 506 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 507 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 508 | ENDDO |
---|
| 509 | |
---|
| 510 | ! |
---|
| 511 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 512 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 513 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 514 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 515 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 516 | ENDDO |
---|
| 517 | ELSEIF ( intermediate_timestep_count < & |
---|
| 518 | intermediate_timestep_count_max ) THEN |
---|
| 519 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 520 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 521 | ENDDO |
---|
| 522 | ENDIF |
---|
| 523 | ENDIF |
---|
[1361] | 524 | |
---|
[736] | 525 | ! |
---|
[940] | 526 | !-- If required, compute prognostic equation for potential temperature |
---|
| 527 | IF ( .NOT. neutral ) THEN |
---|
| 528 | ! |
---|
| 529 | !-- Tendency terms for potential temperature |
---|
[1337] | 530 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 531 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 532 | IF ( ws_scheme_sca ) THEN |
---|
| 533 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 534 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 535 | ELSE |
---|
| 536 | CALL advec_s_pw( i, j, pt ) |
---|
| 537 | ENDIF |
---|
| 538 | ELSE |
---|
| 539 | CALL advec_s_up( i, j, pt ) |
---|
| 540 | ENDIF |
---|
[1001] | 541 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 542 | |
---|
| 543 | ! |
---|
[940] | 544 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 545 | !-- processes |
---|
| 546 | IF ( radiation ) THEN |
---|
| 547 | CALL calc_radiation( i, j ) |
---|
| 548 | ENDIF |
---|
[736] | 549 | |
---|
[1106] | 550 | ! |
---|
[1361] | 551 | !-- If required compute impact of latent heat due to precipitation |
---|
| 552 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 553 | precipitation ) THEN |
---|
| 554 | CALL impact_of_latent_heat( i, j ) |
---|
[940] | 555 | ENDIF |
---|
[736] | 556 | |
---|
| 557 | ! |
---|
[940] | 558 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 559 | IF ( plant_canopy .AND. cthf /= 0.0_wp ) THEN |
---|
[940] | 560 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 561 | ENDIF |
---|
[736] | 562 | |
---|
[940] | 563 | ! |
---|
[1365] | 564 | !-- Large scale advection |
---|
| 565 | IF ( large_scale_forcing ) THEN |
---|
| 566 | CALL ls_advec( i, j, simulated_time, 'pt' ) |
---|
| 567 | ENDIF |
---|
| 568 | |
---|
| 569 | ! |
---|
[1380] | 570 | !-- Nudging |
---|
| 571 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
| 572 | |
---|
| 573 | ! |
---|
[1106] | 574 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
[1365] | 575 | IF ( large_scale_subsidence .AND. & |
---|
| 576 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 577 | CALL subsidence( i, j, tend, pt, pt_init, 2 ) |
---|
[940] | 578 | ENDIF |
---|
[736] | 579 | |
---|
[940] | 580 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 581 | |
---|
| 582 | ! |
---|
[940] | 583 | !-- Prognostic equation for potential temperature |
---|
| 584 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 585 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 586 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 587 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 588 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 589 | ENDDO |
---|
[736] | 590 | |
---|
| 591 | ! |
---|
[940] | 592 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 593 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 594 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 595 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 596 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 597 | ENDDO |
---|
| 598 | ELSEIF ( intermediate_timestep_count < & |
---|
| 599 | intermediate_timestep_count_max ) THEN |
---|
| 600 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 601 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 602 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 603 | ENDDO |
---|
| 604 | ENDIF |
---|
[736] | 605 | ENDIF |
---|
[940] | 606 | |
---|
[736] | 607 | ENDIF |
---|
| 608 | |
---|
| 609 | ! |
---|
| 610 | !-- If required, compute prognostic equation for salinity |
---|
| 611 | IF ( ocean ) THEN |
---|
| 612 | |
---|
| 613 | ! |
---|
| 614 | !-- Tendency-terms for salinity |
---|
[1337] | 615 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 616 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 617 | THEN |
---|
| 618 | IF ( ws_scheme_sca ) THEN |
---|
| 619 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 620 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 621 | ELSE |
---|
| 622 | CALL advec_s_pw( i, j, sa ) |
---|
| 623 | ENDIF |
---|
| 624 | ELSE |
---|
| 625 | CALL advec_s_up( i, j, sa ) |
---|
| 626 | ENDIF |
---|
[1001] | 627 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 628 | |
---|
| 629 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 630 | |
---|
| 631 | ! |
---|
| 632 | !-- Prognostic equation for salinity |
---|
| 633 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 634 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 635 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 636 | - tsc(5) * rdf_sc(k) * & |
---|
| 637 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 638 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 639 | ENDDO |
---|
| 640 | |
---|
| 641 | ! |
---|
| 642 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 643 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 644 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 645 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 646 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 647 | ENDDO |
---|
| 648 | ELSEIF ( intermediate_timestep_count < & |
---|
| 649 | intermediate_timestep_count_max ) THEN |
---|
| 650 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 651 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 652 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 653 | ENDDO |
---|
| 654 | ENDIF |
---|
| 655 | ENDIF |
---|
| 656 | |
---|
| 657 | ! |
---|
| 658 | !-- Calculate density by the equation of state for seawater |
---|
| 659 | CALL eqn_state_seawater( i, j ) |
---|
| 660 | |
---|
| 661 | ENDIF |
---|
| 662 | |
---|
| 663 | ! |
---|
| 664 | !-- If required, compute prognostic equation for total water content / |
---|
| 665 | !-- scalar |
---|
| 666 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 667 | |
---|
| 668 | ! |
---|
| 669 | !-- Tendency-terms for total water content / scalar |
---|
[1337] | 670 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 671 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 672 | THEN |
---|
| 673 | IF ( ws_scheme_sca ) THEN |
---|
| 674 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 675 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 676 | ELSE |
---|
| 677 | CALL advec_s_pw( i, j, q ) |
---|
| 678 | ENDIF |
---|
| 679 | ELSE |
---|
| 680 | CALL advec_s_up( i, j, q ) |
---|
| 681 | ENDIF |
---|
[1001] | 682 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[1053] | 683 | |
---|
[736] | 684 | ! |
---|
[1361] | 685 | !-- If required compute decrease of total water content due to |
---|
| 686 | !-- precipitation |
---|
| 687 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 688 | precipitation ) THEN |
---|
| 689 | CALL calc_precipitation( i, j ) |
---|
[736] | 690 | ENDIF |
---|
| 691 | ! |
---|
| 692 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1106] | 693 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
[736] | 694 | |
---|
[1053] | 695 | ! |
---|
[1365] | 696 | !-- Large scale advection |
---|
| 697 | IF ( large_scale_forcing ) THEN |
---|
| 698 | CALL ls_advec( i, j, simulated_time, 'q' ) |
---|
| 699 | ENDIF |
---|
| 700 | |
---|
| 701 | ! |
---|
[1380] | 702 | !-- Nudging |
---|
| 703 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
| 704 | |
---|
| 705 | ! |
---|
[736] | 706 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 707 | IF ( large_scale_subsidence .AND. & |
---|
| 708 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 709 | CALL subsidence( i, j, tend, q, q_init, 3 ) |
---|
[736] | 710 | ENDIF |
---|
| 711 | |
---|
| 712 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 713 | |
---|
| 714 | ! |
---|
| 715 | !-- Prognostic equation for total water content / scalar |
---|
| 716 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 717 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 718 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 719 | - tsc(5) * rdf_sc(k) * & |
---|
| 720 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 721 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 722 | ENDDO |
---|
| 723 | |
---|
| 724 | ! |
---|
| 725 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 726 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 727 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 728 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 729 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 730 | ENDDO |
---|
| 731 | ELSEIF ( intermediate_timestep_count < & |
---|
| 732 | intermediate_timestep_count_max ) THEN |
---|
| 733 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 734 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 735 | 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 736 | ENDDO |
---|
| 737 | ENDIF |
---|
| 738 | ENDIF |
---|
| 739 | |
---|
[1053] | 740 | ! |
---|
| 741 | !-- If required, calculate prognostic equations for rain water content |
---|
| 742 | !-- and rain drop concentration |
---|
[1115] | 743 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 744 | precipitation ) THEN |
---|
[1053] | 745 | ! |
---|
| 746 | !-- Calculate prognostic equation for rain water content |
---|
[1337] | 747 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 748 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 749 | THEN |
---|
| 750 | IF ( ws_scheme_sca ) THEN |
---|
| 751 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 752 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 753 | i_omp_start, tn ) |
---|
| 754 | ELSE |
---|
| 755 | CALL advec_s_pw( i, j, qr ) |
---|
| 756 | ENDIF |
---|
| 757 | ELSE |
---|
| 758 | CALL advec_s_up( i, j, qr ) |
---|
| 759 | ENDIF |
---|
| 760 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 761 | |
---|
[1115] | 762 | CALL user_actions( i, j, 'qr-tendency' ) |
---|
[1053] | 763 | ! |
---|
| 764 | !-- Prognostic equation for rain water content |
---|
| 765 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 766 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 767 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 768 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
[1337] | 769 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
[1053] | 770 | ENDDO |
---|
| 771 | ! |
---|
| 772 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 773 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 774 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 775 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 776 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 777 | ENDDO |
---|
| 778 | ELSEIF ( intermediate_timestep_count < & |
---|
| 779 | intermediate_timestep_count_max ) THEN |
---|
| 780 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 781 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 782 | 5.3125_wp * tqr_m(k,j,i) |
---|
[1053] | 783 | ENDDO |
---|
| 784 | ENDIF |
---|
| 785 | ENDIF |
---|
| 786 | |
---|
| 787 | ! |
---|
| 788 | !-- Calculate prognostic equation for rain drop concentration. |
---|
[1337] | 789 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 790 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 791 | IF ( ws_scheme_sca ) THEN |
---|
[1115] | 792 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 793 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 794 | i_omp_start, tn ) |
---|
[1053] | 795 | ELSE |
---|
| 796 | CALL advec_s_pw( i, j, nr ) |
---|
| 797 | ENDIF |
---|
| 798 | ELSE |
---|
| 799 | CALL advec_s_up( i, j, nr ) |
---|
| 800 | ENDIF |
---|
| 801 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
| 802 | |
---|
[1115] | 803 | CALL user_actions( i, j, 'nr-tendency' ) |
---|
[1053] | 804 | ! |
---|
| 805 | !-- Prognostic equation for rain drop concentration |
---|
| 806 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 807 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 808 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 809 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
[1337] | 810 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
[1053] | 811 | ENDDO |
---|
| 812 | ! |
---|
| 813 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 814 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 815 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 816 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 817 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 818 | ENDDO |
---|
| 819 | ELSEIF ( intermediate_timestep_count < & |
---|
| 820 | intermediate_timestep_count_max ) THEN |
---|
| 821 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 822 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 823 | 5.3125_wp * tnr_m(k,j,i) |
---|
[1053] | 824 | ENDDO |
---|
| 825 | ENDIF |
---|
| 826 | ENDIF |
---|
| 827 | |
---|
| 828 | ENDIF |
---|
| 829 | |
---|
[1128] | 830 | ENDIF |
---|
| 831 | |
---|
[736] | 832 | ! |
---|
| 833 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 834 | !-- energy (TKE) |
---|
| 835 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 836 | |
---|
| 837 | ! |
---|
| 838 | !-- Tendency-terms for TKE |
---|
[1337] | 839 | tend(:,j,i) = 0.0_wp |
---|
[1332] | 840 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
| 841 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
[736] | 842 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 843 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 844 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 845 | ELSE |
---|
| 846 | CALL advec_s_pw( i, j, e ) |
---|
| 847 | ENDIF |
---|
| 848 | ELSE |
---|
| 849 | CALL advec_s_up( i, j, e ) |
---|
| 850 | ENDIF |
---|
[1001] | 851 | IF ( .NOT. humidity ) THEN |
---|
| 852 | IF ( ocean ) THEN |
---|
| 853 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 854 | ELSE |
---|
[1001] | 855 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 856 | ENDIF |
---|
| 857 | ELSE |
---|
[1001] | 858 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 859 | ENDIF |
---|
| 860 | CALL production_e( i, j ) |
---|
| 861 | |
---|
| 862 | ! |
---|
| 863 | !-- Additional sink term for flows through plant canopies |
---|
| 864 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 865 | |
---|
| 866 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 867 | |
---|
| 868 | ! |
---|
| 869 | !-- Prognostic equation for TKE. |
---|
| 870 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 871 | !-- reasons in the course of the integration. In such cases the old |
---|
| 872 | !-- TKE value is reduced by 90%. |
---|
| 873 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 874 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 875 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 876 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 877 | ENDDO |
---|
| 878 | |
---|
| 879 | ! |
---|
| 880 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 881 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 882 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 883 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 884 | te_m(k,j,i) = tend(k,j,i) |
---|
| 885 | ENDDO |
---|
| 886 | ELSEIF ( intermediate_timestep_count < & |
---|
| 887 | intermediate_timestep_count_max ) THEN |
---|
| 888 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 889 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 890 | 5.3125_wp * te_m(k,j,i) |
---|
[736] | 891 | ENDDO |
---|
| 892 | ENDIF |
---|
| 893 | ENDIF |
---|
| 894 | |
---|
| 895 | ENDIF ! TKE equation |
---|
| 896 | |
---|
| 897 | ENDDO |
---|
| 898 | ENDDO |
---|
| 899 | !$OMP END PARALLEL |
---|
| 900 | |
---|
| 901 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 902 | |
---|
| 903 | |
---|
| 904 | END SUBROUTINE prognostic_equations_cache |
---|
| 905 | |
---|
| 906 | |
---|
| 907 | SUBROUTINE prognostic_equations_vector |
---|
| 908 | |
---|
| 909 | !------------------------------------------------------------------------------! |
---|
| 910 | ! Version for vector machines |
---|
| 911 | !------------------------------------------------------------------------------! |
---|
| 912 | |
---|
| 913 | IMPLICIT NONE |
---|
| 914 | |
---|
[1320] | 915 | INTEGER(iwp) :: i !: |
---|
| 916 | INTEGER(iwp) :: j !: |
---|
| 917 | INTEGER(iwp) :: k !: |
---|
[736] | 918 | |
---|
[1320] | 919 | REAL(wp) :: sbt !: |
---|
[736] | 920 | |
---|
[1320] | 921 | |
---|
[736] | 922 | ! |
---|
[1361] | 923 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 924 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 925 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 926 | call_microphysics_at_all_substeps ) & |
---|
| 927 | ) THEN |
---|
| 928 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 929 | CALL microphysics_control |
---|
| 930 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 931 | ENDIF |
---|
| 932 | |
---|
| 933 | ! |
---|
[736] | 934 | !-- u-velocity component |
---|
| 935 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 936 | |
---|
[1337] | 937 | tend = 0.0_wp |
---|
[1001] | 938 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 939 | IF ( ws_scheme_mom ) THEN |
---|
| 940 | CALL advec_u_ws |
---|
| 941 | ELSE |
---|
| 942 | CALL advec_u_pw |
---|
| 943 | ENDIF |
---|
| 944 | ELSE |
---|
[1001] | 945 | CALL advec_u_up |
---|
[736] | 946 | ENDIF |
---|
[1001] | 947 | CALL diffusion_u |
---|
[736] | 948 | CALL coriolis( 1 ) |
---|
[940] | 949 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 950 | CALL buoyancy( pt, 1 ) |
---|
[940] | 951 | ENDIF |
---|
[736] | 952 | |
---|
| 953 | ! |
---|
| 954 | !-- Drag by plant canopy |
---|
| 955 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 956 | |
---|
| 957 | ! |
---|
| 958 | !-- External pressure gradient |
---|
| 959 | IF ( dp_external ) THEN |
---|
| 960 | DO i = nxlu, nxr |
---|
| 961 | DO j = nys, nyn |
---|
| 962 | DO k = dp_level_ind_b+1, nzt |
---|
| 963 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 964 | ENDDO |
---|
| 965 | ENDDO |
---|
| 966 | ENDDO |
---|
| 967 | ENDIF |
---|
| 968 | |
---|
[1241] | 969 | ! |
---|
| 970 | !-- Nudging |
---|
| 971 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 972 | |
---|
[736] | 973 | CALL user_actions( 'u-tendency' ) |
---|
| 974 | |
---|
| 975 | ! |
---|
| 976 | !-- Prognostic equation for u-velocity component |
---|
| 977 | DO i = nxlu, nxr |
---|
| 978 | DO j = nys, nyn |
---|
| 979 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 980 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 981 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 982 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[736] | 983 | ENDDO |
---|
| 984 | ENDDO |
---|
| 985 | ENDDO |
---|
| 986 | |
---|
| 987 | ! |
---|
| 988 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 989 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 990 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 991 | DO i = nxlu, nxr |
---|
| 992 | DO j = nys, nyn |
---|
| 993 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 994 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 995 | ENDDO |
---|
| 996 | ENDDO |
---|
| 997 | ENDDO |
---|
| 998 | ELSEIF ( intermediate_timestep_count < & |
---|
| 999 | intermediate_timestep_count_max ) THEN |
---|
| 1000 | DO i = nxlu, nxr |
---|
| 1001 | DO j = nys, nyn |
---|
| 1002 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 1003 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 1004 | ENDDO |
---|
| 1005 | ENDDO |
---|
| 1006 | ENDDO |
---|
| 1007 | ENDIF |
---|
| 1008 | ENDIF |
---|
| 1009 | |
---|
| 1010 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1011 | |
---|
| 1012 | ! |
---|
| 1013 | !-- v-velocity component |
---|
| 1014 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1015 | |
---|
[1337] | 1016 | tend = 0.0_wp |
---|
[1001] | 1017 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1018 | IF ( ws_scheme_mom ) THEN |
---|
| 1019 | CALL advec_v_ws |
---|
| 1020 | ELSE |
---|
| 1021 | CALL advec_v_pw |
---|
| 1022 | END IF |
---|
| 1023 | ELSE |
---|
[1001] | 1024 | CALL advec_v_up |
---|
[736] | 1025 | ENDIF |
---|
[1001] | 1026 | CALL diffusion_v |
---|
[736] | 1027 | CALL coriolis( 2 ) |
---|
| 1028 | |
---|
| 1029 | ! |
---|
| 1030 | !-- Drag by plant canopy |
---|
| 1031 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1032 | |
---|
| 1033 | ! |
---|
| 1034 | !-- External pressure gradient |
---|
| 1035 | IF ( dp_external ) THEN |
---|
| 1036 | DO i = nxl, nxr |
---|
| 1037 | DO j = nysv, nyn |
---|
| 1038 | DO k = dp_level_ind_b+1, nzt |
---|
| 1039 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1040 | ENDDO |
---|
| 1041 | ENDDO |
---|
| 1042 | ENDDO |
---|
| 1043 | ENDIF |
---|
| 1044 | |
---|
[1241] | 1045 | ! |
---|
| 1046 | !-- Nudging |
---|
| 1047 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1048 | |
---|
[736] | 1049 | CALL user_actions( 'v-tendency' ) |
---|
| 1050 | |
---|
| 1051 | ! |
---|
| 1052 | !-- Prognostic equation for v-velocity component |
---|
| 1053 | DO i = nxl, nxr |
---|
| 1054 | DO j = nysv, nyn |
---|
| 1055 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 1056 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1057 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1058 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[736] | 1059 | ENDDO |
---|
| 1060 | ENDDO |
---|
| 1061 | ENDDO |
---|
| 1062 | |
---|
| 1063 | ! |
---|
| 1064 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1065 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1066 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1067 | DO i = nxl, nxr |
---|
| 1068 | DO j = nysv, nyn |
---|
| 1069 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1070 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1071 | ENDDO |
---|
| 1072 | ENDDO |
---|
| 1073 | ENDDO |
---|
| 1074 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1075 | intermediate_timestep_count_max ) THEN |
---|
| 1076 | DO i = nxl, nxr |
---|
| 1077 | DO j = nysv, nyn |
---|
| 1078 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 1079 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 1080 | ENDDO |
---|
| 1081 | ENDDO |
---|
| 1082 | ENDDO |
---|
| 1083 | ENDIF |
---|
| 1084 | ENDIF |
---|
| 1085 | |
---|
| 1086 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1087 | |
---|
| 1088 | ! |
---|
| 1089 | !-- w-velocity component |
---|
| 1090 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1091 | |
---|
[1353] | 1092 | tend = 0.0_wp |
---|
[1001] | 1093 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1094 | IF ( ws_scheme_mom ) THEN |
---|
| 1095 | CALL advec_w_ws |
---|
| 1096 | ELSE |
---|
| 1097 | CALL advec_w_pw |
---|
| 1098 | ENDIF |
---|
| 1099 | ELSE |
---|
[1001] | 1100 | CALL advec_w_up |
---|
[736] | 1101 | ENDIF |
---|
[1001] | 1102 | CALL diffusion_w |
---|
[736] | 1103 | CALL coriolis( 3 ) |
---|
[940] | 1104 | |
---|
| 1105 | IF ( .NOT. neutral ) THEN |
---|
| 1106 | IF ( ocean ) THEN |
---|
[1179] | 1107 | CALL buoyancy( rho, 3 ) |
---|
[736] | 1108 | ELSE |
---|
[940] | 1109 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1110 | CALL buoyancy( pt, 3 ) |
---|
[940] | 1111 | ELSE |
---|
[1179] | 1112 | CALL buoyancy( vpt, 3 ) |
---|
[940] | 1113 | ENDIF |
---|
[736] | 1114 | ENDIF |
---|
| 1115 | ENDIF |
---|
| 1116 | |
---|
| 1117 | ! |
---|
| 1118 | !-- Drag by plant canopy |
---|
| 1119 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1120 | |
---|
| 1121 | CALL user_actions( 'w-tendency' ) |
---|
| 1122 | |
---|
| 1123 | ! |
---|
| 1124 | !-- Prognostic equation for w-velocity component |
---|
| 1125 | DO i = nxl, nxr |
---|
| 1126 | DO j = nys, nyn |
---|
| 1127 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 1128 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1129 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1130 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 1131 | ENDDO |
---|
| 1132 | ENDDO |
---|
| 1133 | ENDDO |
---|
| 1134 | |
---|
| 1135 | ! |
---|
| 1136 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1137 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1138 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1139 | DO i = nxl, nxr |
---|
| 1140 | DO j = nys, nyn |
---|
| 1141 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1142 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1143 | ENDDO |
---|
| 1144 | ENDDO |
---|
| 1145 | ENDDO |
---|
| 1146 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1147 | intermediate_timestep_count_max ) THEN |
---|
| 1148 | DO i = nxl, nxr |
---|
| 1149 | DO j = nys, nyn |
---|
| 1150 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 1151 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 1152 | ENDDO |
---|
| 1153 | ENDDO |
---|
| 1154 | ENDDO |
---|
| 1155 | ENDIF |
---|
| 1156 | ENDIF |
---|
| 1157 | |
---|
| 1158 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1159 | |
---|
[940] | 1160 | |
---|
[736] | 1161 | ! |
---|
[940] | 1162 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1163 | IF ( .NOT. neutral ) THEN |
---|
[736] | 1164 | |
---|
[940] | 1165 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1166 | |
---|
[736] | 1167 | ! |
---|
[940] | 1168 | !-- pt-tendency terms with communication |
---|
| 1169 | sbt = tsc(2) |
---|
| 1170 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 1171 | |
---|
[940] | 1172 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 1173 | ! |
---|
[1001] | 1174 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1175 | sbt = 1.0_wp |
---|
[940] | 1176 | ENDIF |
---|
[1337] | 1177 | tend = 0.0_wp |
---|
[940] | 1178 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 1179 | |
---|
[736] | 1180 | ENDIF |
---|
[940] | 1181 | |
---|
| 1182 | ! |
---|
| 1183 | !-- pt-tendency terms with no communication |
---|
[1001] | 1184 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1185 | tend = 0.0_wp |
---|
[1001] | 1186 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 1187 | IF ( ws_scheme_sca ) THEN |
---|
| 1188 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1189 | ELSE |
---|
| 1190 | CALL advec_s_pw( pt ) |
---|
| 1191 | ENDIF |
---|
| 1192 | ELSE |
---|
[1001] | 1193 | CALL advec_s_up( pt ) |
---|
[940] | 1194 | ENDIF |
---|
[736] | 1195 | ENDIF |
---|
| 1196 | |
---|
[1001] | 1197 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1198 | |
---|
[736] | 1199 | ! |
---|
[940] | 1200 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1201 | IF ( radiation ) THEN |
---|
| 1202 | CALL calc_radiation |
---|
| 1203 | ENDIF |
---|
[736] | 1204 | |
---|
| 1205 | ! |
---|
[940] | 1206 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 1207 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[940] | 1208 | CALL impact_of_latent_heat |
---|
| 1209 | ENDIF |
---|
[736] | 1210 | |
---|
| 1211 | ! |
---|
[940] | 1212 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 1213 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[940] | 1214 | CALL plant_canopy_model( 4 ) |
---|
| 1215 | ENDIF |
---|
[736] | 1216 | |
---|
[940] | 1217 | ! |
---|
[1365] | 1218 | !-- Large scale advection |
---|
| 1219 | IF ( large_scale_forcing ) THEN |
---|
| 1220 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 1221 | ENDIF |
---|
| 1222 | |
---|
| 1223 | ! |
---|
[1380] | 1224 | !-- Nudging |
---|
| 1225 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1226 | |
---|
| 1227 | ! |
---|
[940] | 1228 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1229 | IF ( large_scale_subsidence .AND. & |
---|
| 1230 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1231 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[940] | 1232 | ENDIF |
---|
[736] | 1233 | |
---|
[940] | 1234 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 1235 | |
---|
| 1236 | ! |
---|
[940] | 1237 | !-- Prognostic equation for potential temperature |
---|
| 1238 | DO i = nxl, nxr |
---|
| 1239 | DO j = nys, nyn |
---|
| 1240 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1241 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1242 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1243 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1244 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 1245 | ENDDO |
---|
[736] | 1246 | ENDDO |
---|
| 1247 | ENDDO |
---|
| 1248 | |
---|
| 1249 | ! |
---|
[940] | 1250 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1251 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1252 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1253 | DO i = nxl, nxr |
---|
| 1254 | DO j = nys, nyn |
---|
| 1255 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1256 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1257 | ENDDO |
---|
[736] | 1258 | ENDDO |
---|
| 1259 | ENDDO |
---|
[940] | 1260 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1261 | intermediate_timestep_count_max ) THEN |
---|
| 1262 | DO i = nxl, nxr |
---|
| 1263 | DO j = nys, nyn |
---|
| 1264 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1265 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1266 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 1267 | ENDDO |
---|
[736] | 1268 | ENDDO |
---|
| 1269 | ENDDO |
---|
[940] | 1270 | ENDIF |
---|
[736] | 1271 | ENDIF |
---|
[940] | 1272 | |
---|
| 1273 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1274 | |
---|
[736] | 1275 | ENDIF |
---|
| 1276 | |
---|
| 1277 | ! |
---|
| 1278 | !-- If required, compute prognostic equation for salinity |
---|
| 1279 | IF ( ocean ) THEN |
---|
| 1280 | |
---|
| 1281 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1282 | |
---|
| 1283 | ! |
---|
| 1284 | !-- sa-tendency terms with communication |
---|
| 1285 | sbt = tsc(2) |
---|
| 1286 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1287 | |
---|
| 1288 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1289 | ! |
---|
[1001] | 1290 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1291 | sbt = 1.0_wp |
---|
[736] | 1292 | ENDIF |
---|
[1337] | 1293 | tend = 0.0_wp |
---|
[736] | 1294 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1295 | |
---|
[736] | 1296 | ENDIF |
---|
| 1297 | |
---|
| 1298 | ! |
---|
| 1299 | !-- sa-tendency terms with no communication |
---|
[1001] | 1300 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1353] | 1301 | tend = 0.0_wp |
---|
[1001] | 1302 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1303 | IF ( ws_scheme_sca ) THEN |
---|
| 1304 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1305 | ELSE |
---|
| 1306 | CALL advec_s_pw( sa ) |
---|
| 1307 | ENDIF |
---|
| 1308 | ELSE |
---|
[1001] | 1309 | CALL advec_s_up( sa ) |
---|
[736] | 1310 | ENDIF |
---|
| 1311 | ENDIF |
---|
[1001] | 1312 | |
---|
| 1313 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1314 | |
---|
| 1315 | CALL user_actions( 'sa-tendency' ) |
---|
| 1316 | |
---|
| 1317 | ! |
---|
| 1318 | !-- Prognostic equation for salinity |
---|
| 1319 | DO i = nxl, nxr |
---|
| 1320 | DO j = nys, nyn |
---|
| 1321 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1322 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1323 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1324 | - tsc(5) * rdf_sc(k) * & |
---|
| 1325 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 1326 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 1327 | ENDDO |
---|
| 1328 | ENDDO |
---|
| 1329 | ENDDO |
---|
| 1330 | |
---|
| 1331 | ! |
---|
| 1332 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1333 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1334 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1335 | DO i = nxl, nxr |
---|
| 1336 | DO j = nys, nyn |
---|
| 1337 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1338 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1339 | ENDDO |
---|
| 1340 | ENDDO |
---|
| 1341 | ENDDO |
---|
| 1342 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1343 | intermediate_timestep_count_max ) THEN |
---|
| 1344 | DO i = nxl, nxr |
---|
| 1345 | DO j = nys, nyn |
---|
| 1346 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1347 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1348 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 1349 | ENDDO |
---|
| 1350 | ENDDO |
---|
| 1351 | ENDDO |
---|
| 1352 | ENDIF |
---|
| 1353 | ENDIF |
---|
| 1354 | |
---|
| 1355 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1356 | |
---|
| 1357 | ! |
---|
| 1358 | !-- Calculate density by the equation of state for seawater |
---|
| 1359 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1360 | CALL eqn_state_seawater |
---|
| 1361 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1362 | |
---|
| 1363 | ENDIF |
---|
| 1364 | |
---|
| 1365 | ! |
---|
| 1366 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1367 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1368 | |
---|
| 1369 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1370 | |
---|
| 1371 | ! |
---|
| 1372 | !-- Scalar/q-tendency terms with communication |
---|
| 1373 | sbt = tsc(2) |
---|
| 1374 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1375 | |
---|
| 1376 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1377 | ! |
---|
[1001] | 1378 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1379 | sbt = 1.0_wp |
---|
[736] | 1380 | ENDIF |
---|
[1337] | 1381 | tend = 0.0_wp |
---|
[736] | 1382 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1383 | |
---|
[736] | 1384 | ENDIF |
---|
| 1385 | |
---|
| 1386 | ! |
---|
| 1387 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1388 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1389 | tend = 0.0_wp |
---|
[1001] | 1390 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1391 | IF ( ws_scheme_sca ) THEN |
---|
| 1392 | CALL advec_s_ws( q, 'q' ) |
---|
| 1393 | ELSE |
---|
| 1394 | CALL advec_s_pw( q ) |
---|
| 1395 | ENDIF |
---|
| 1396 | ELSE |
---|
[1001] | 1397 | CALL advec_s_up( q ) |
---|
[736] | 1398 | ENDIF |
---|
| 1399 | ENDIF |
---|
[1001] | 1400 | |
---|
| 1401 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1402 | |
---|
| 1403 | ! |
---|
| 1404 | !-- If required compute decrease of total water content due to |
---|
| 1405 | !-- precipitation |
---|
[1361] | 1406 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[736] | 1407 | CALL calc_precipitation |
---|
| 1408 | ENDIF |
---|
| 1409 | |
---|
| 1410 | ! |
---|
| 1411 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1412 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
[1365] | 1413 | |
---|
[736] | 1414 | ! |
---|
[1365] | 1415 | !-- Large scale advection |
---|
| 1416 | IF ( large_scale_forcing ) THEN |
---|
| 1417 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 1418 | ENDIF |
---|
| 1419 | |
---|
| 1420 | ! |
---|
[1380] | 1421 | !-- Nudging |
---|
| 1422 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1423 | |
---|
| 1424 | ! |
---|
[736] | 1425 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1426 | IF ( large_scale_subsidence .AND. & |
---|
| 1427 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1428 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[736] | 1429 | ENDIF |
---|
| 1430 | |
---|
| 1431 | CALL user_actions( 'q-tendency' ) |
---|
| 1432 | |
---|
| 1433 | ! |
---|
| 1434 | !-- Prognostic equation for total water content / scalar |
---|
| 1435 | DO i = nxl, nxr |
---|
| 1436 | DO j = nys, nyn |
---|
| 1437 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1438 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1439 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1440 | - tsc(5) * rdf_sc(k) * & |
---|
| 1441 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 1442 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 1443 | ENDDO |
---|
| 1444 | ENDDO |
---|
| 1445 | ENDDO |
---|
| 1446 | |
---|
| 1447 | ! |
---|
| 1448 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1449 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1450 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1451 | DO i = nxl, nxr |
---|
| 1452 | DO j = nys, nyn |
---|
| 1453 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1454 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1455 | ENDDO |
---|
| 1456 | ENDDO |
---|
| 1457 | ENDDO |
---|
| 1458 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1459 | intermediate_timestep_count_max ) THEN |
---|
| 1460 | DO i = nxl, nxr |
---|
| 1461 | DO j = nys, nyn |
---|
| 1462 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1463 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 1464 | ENDDO |
---|
| 1465 | ENDDO |
---|
| 1466 | ENDDO |
---|
| 1467 | ENDIF |
---|
| 1468 | ENDIF |
---|
| 1469 | |
---|
| 1470 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1471 | |
---|
[1361] | 1472 | ! |
---|
| 1473 | !-- If required, calculate prognostic equations for rain water content |
---|
| 1474 | !-- and rain drop concentration |
---|
| 1475 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 1476 | |
---|
| 1477 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 1478 | |
---|
| 1479 | ! |
---|
| 1480 | !-- Calculate prognostic equation for rain water content |
---|
| 1481 | sbt = tsc(2) |
---|
| 1482 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1483 | |
---|
| 1484 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1485 | ! |
---|
| 1486 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1487 | sbt = 1.0_wp |
---|
| 1488 | ENDIF |
---|
| 1489 | tend = 0.0_wp |
---|
| 1490 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 1491 | |
---|
| 1492 | ENDIF |
---|
| 1493 | |
---|
| 1494 | ! |
---|
| 1495 | !-- qr-tendency terms with no communication |
---|
| 1496 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1497 | tend = 0.0_wp |
---|
| 1498 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1499 | IF ( ws_scheme_sca ) THEN |
---|
| 1500 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 1501 | ELSE |
---|
| 1502 | CALL advec_s_pw( qr ) |
---|
| 1503 | ENDIF |
---|
| 1504 | ELSE |
---|
| 1505 | CALL advec_s_up( qr ) |
---|
| 1506 | ENDIF |
---|
| 1507 | ENDIF |
---|
| 1508 | |
---|
| 1509 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 1510 | |
---|
| 1511 | CALL user_actions( 'qr-tendency' ) |
---|
| 1512 | |
---|
| 1513 | ! |
---|
| 1514 | !-- Prognostic equation for rain water content |
---|
| 1515 | DO i = nxl, nxr |
---|
| 1516 | DO j = nys, nyn |
---|
| 1517 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1518 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1519 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 1520 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 1521 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 1522 | ENDDO |
---|
| 1523 | ENDDO |
---|
| 1524 | ENDDO |
---|
| 1525 | |
---|
| 1526 | ! |
---|
| 1527 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1528 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1529 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1530 | DO i = nxl, nxr |
---|
| 1531 | DO j = nys, nyn |
---|
| 1532 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1533 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 1534 | ENDDO |
---|
| 1535 | ENDDO |
---|
| 1536 | ENDDO |
---|
| 1537 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1538 | intermediate_timestep_count_max ) THEN |
---|
| 1539 | DO i = nxl, nxr |
---|
| 1540 | DO j = nys, nyn |
---|
| 1541 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1542 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1543 | tqr_m(k,j,i) |
---|
| 1544 | ENDDO |
---|
| 1545 | ENDDO |
---|
| 1546 | ENDDO |
---|
| 1547 | ENDIF |
---|
| 1548 | ENDIF |
---|
| 1549 | |
---|
| 1550 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 1551 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 1552 | |
---|
| 1553 | ! |
---|
| 1554 | !-- Calculate prognostic equation for rain drop concentration |
---|
| 1555 | sbt = tsc(2) |
---|
| 1556 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1557 | |
---|
| 1558 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1559 | ! |
---|
| 1560 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1561 | sbt = 1.0_wp |
---|
| 1562 | ENDIF |
---|
| 1563 | tend = 0.0_wp |
---|
| 1564 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 1565 | |
---|
| 1566 | ENDIF |
---|
| 1567 | |
---|
| 1568 | ! |
---|
| 1569 | !-- nr-tendency terms with no communication |
---|
| 1570 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1571 | tend = 0.0_wp |
---|
| 1572 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1573 | IF ( ws_scheme_sca ) THEN |
---|
| 1574 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 1575 | ELSE |
---|
| 1576 | CALL advec_s_pw( nr ) |
---|
| 1577 | ENDIF |
---|
| 1578 | ELSE |
---|
| 1579 | CALL advec_s_up( nr ) |
---|
| 1580 | ENDIF |
---|
| 1581 | ENDIF |
---|
| 1582 | |
---|
| 1583 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 1584 | |
---|
| 1585 | CALL user_actions( 'nr-tendency' ) |
---|
| 1586 | |
---|
| 1587 | ! |
---|
| 1588 | !-- Prognostic equation for rain drop concentration |
---|
| 1589 | DO i = nxl, nxr |
---|
| 1590 | DO j = nys, nyn |
---|
| 1591 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1592 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1593 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 1594 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 1595 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 1596 | ENDDO |
---|
| 1597 | ENDDO |
---|
| 1598 | ENDDO |
---|
| 1599 | |
---|
| 1600 | ! |
---|
| 1601 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1602 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1603 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1604 | DO i = nxl, nxr |
---|
| 1605 | DO j = nys, nyn |
---|
| 1606 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1607 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 1608 | ENDDO |
---|
| 1609 | ENDDO |
---|
| 1610 | ENDDO |
---|
| 1611 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1612 | intermediate_timestep_count_max ) THEN |
---|
| 1613 | DO i = nxl, nxr |
---|
| 1614 | DO j = nys, nyn |
---|
| 1615 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1616 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1617 | tnr_m(k,j,i) |
---|
| 1618 | ENDDO |
---|
| 1619 | ENDDO |
---|
| 1620 | ENDDO |
---|
| 1621 | ENDIF |
---|
| 1622 | ENDIF |
---|
| 1623 | |
---|
| 1624 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 1625 | |
---|
| 1626 | ENDIF |
---|
| 1627 | |
---|
[736] | 1628 | ENDIF |
---|
| 1629 | |
---|
| 1630 | ! |
---|
| 1631 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1632 | !-- energy (TKE) |
---|
| 1633 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1634 | |
---|
| 1635 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1636 | |
---|
| 1637 | sbt = tsc(2) |
---|
| 1638 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1639 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1640 | |
---|
| 1641 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1642 | ! |
---|
[1001] | 1643 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1644 | sbt = 1.0_wp |
---|
[736] | 1645 | ENDIF |
---|
[1337] | 1646 | tend = 0.0_wp |
---|
[736] | 1647 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1648 | |
---|
[736] | 1649 | ENDIF |
---|
| 1650 | ENDIF |
---|
| 1651 | |
---|
| 1652 | ! |
---|
| 1653 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1654 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1655 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 1656 | tend = 0.0_wp |
---|
[736] | 1657 | CALL advec_s_up( e ) |
---|
| 1658 | ELSE |
---|
[1337] | 1659 | tend = 0.0_wp |
---|
[1001] | 1660 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1661 | IF ( ws_scheme_sca ) THEN |
---|
| 1662 | CALL advec_s_ws( e, 'e' ) |
---|
| 1663 | ELSE |
---|
| 1664 | CALL advec_s_pw( e ) |
---|
| 1665 | ENDIF |
---|
| 1666 | ELSE |
---|
[1001] | 1667 | CALL advec_s_up( e ) |
---|
[736] | 1668 | ENDIF |
---|
| 1669 | ENDIF |
---|
[1001] | 1670 | ENDIF |
---|
| 1671 | |
---|
| 1672 | IF ( .NOT. humidity ) THEN |
---|
| 1673 | IF ( ocean ) THEN |
---|
| 1674 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1675 | ELSE |
---|
[1001] | 1676 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1677 | ENDIF |
---|
[1001] | 1678 | ELSE |
---|
| 1679 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1680 | ENDIF |
---|
[1001] | 1681 | |
---|
[736] | 1682 | CALL production_e |
---|
| 1683 | |
---|
| 1684 | ! |
---|
| 1685 | !-- Additional sink term for flows through plant canopies |
---|
| 1686 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1687 | CALL user_actions( 'e-tendency' ) |
---|
| 1688 | |
---|
| 1689 | ! |
---|
| 1690 | !-- Prognostic equation for TKE. |
---|
| 1691 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1692 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1693 | !-- value is reduced by 90%. |
---|
| 1694 | DO i = nxl, nxr |
---|
| 1695 | DO j = nys, nyn |
---|
| 1696 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1697 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1698 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 1699 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 1700 | ENDDO |
---|
| 1701 | ENDDO |
---|
| 1702 | ENDDO |
---|
| 1703 | |
---|
| 1704 | ! |
---|
| 1705 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1706 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1707 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1708 | DO i = nxl, nxr |
---|
| 1709 | DO j = nys, nyn |
---|
| 1710 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1711 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1712 | ENDDO |
---|
| 1713 | ENDDO |
---|
| 1714 | ENDDO |
---|
| 1715 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1716 | intermediate_timestep_count_max ) THEN |
---|
| 1717 | DO i = nxl, nxr |
---|
| 1718 | DO j = nys, nyn |
---|
| 1719 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1720 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[736] | 1721 | ENDDO |
---|
| 1722 | ENDDO |
---|
| 1723 | ENDDO |
---|
| 1724 | ENDIF |
---|
| 1725 | ENDIF |
---|
| 1726 | |
---|
| 1727 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1728 | |
---|
| 1729 | ENDIF |
---|
| 1730 | |
---|
| 1731 | END SUBROUTINE prognostic_equations_vector |
---|
| 1732 | |
---|
| 1733 | |
---|
[1015] | 1734 | SUBROUTINE prognostic_equations_acc |
---|
| 1735 | |
---|
| 1736 | !------------------------------------------------------------------------------! |
---|
| 1737 | ! Version for accelerator boards |
---|
| 1738 | !------------------------------------------------------------------------------! |
---|
| 1739 | |
---|
| 1740 | IMPLICIT NONE |
---|
| 1741 | |
---|
[1320] | 1742 | INTEGER(iwp) :: i !: |
---|
| 1743 | INTEGER(iwp) :: j !: |
---|
| 1744 | INTEGER(iwp) :: k !: |
---|
| 1745 | INTEGER(iwp) :: runge_step !: |
---|
[1015] | 1746 | |
---|
[1320] | 1747 | REAL(wp) :: sbt !: |
---|
| 1748 | |
---|
[1015] | 1749 | ! |
---|
| 1750 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1751 | runge_step = 0 |
---|
| 1752 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1753 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1754 | runge_step = 1 |
---|
| 1755 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1756 | intermediate_timestep_count_max ) THEN |
---|
| 1757 | runge_step = 2 |
---|
| 1758 | ENDIF |
---|
| 1759 | ENDIF |
---|
| 1760 | |
---|
| 1761 | ! |
---|
[1361] | 1762 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 1763 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 1764 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 1765 | call_microphysics_at_all_substeps ) & |
---|
| 1766 | ) THEN |
---|
| 1767 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 1768 | CALL microphysics_control |
---|
| 1769 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 1770 | ENDIF |
---|
| 1771 | |
---|
| 1772 | ! |
---|
[1015] | 1773 | !-- u-velocity component |
---|
[1374] | 1774 | !++ Statistics still not completely ported to accelerators |
---|
[1179] | 1775 | !$acc update device( hom, ref_state ) |
---|
[1015] | 1776 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1777 | |
---|
| 1778 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1779 | IF ( ws_scheme_mom ) THEN |
---|
| 1780 | CALL advec_u_ws_acc |
---|
| 1781 | ELSE |
---|
[1337] | 1782 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1783 | CALL advec_u_pw |
---|
| 1784 | ENDIF |
---|
| 1785 | ELSE |
---|
| 1786 | CALL advec_u_up |
---|
| 1787 | ENDIF |
---|
| 1788 | CALL diffusion_u_acc |
---|
| 1789 | CALL coriolis_acc( 1 ) |
---|
| 1790 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 1791 | CALL buoyancy( pt, 1 ) |
---|
[1015] | 1792 | ENDIF |
---|
| 1793 | |
---|
| 1794 | ! |
---|
| 1795 | !-- Drag by plant canopy |
---|
| 1796 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1797 | |
---|
| 1798 | ! |
---|
| 1799 | !-- External pressure gradient |
---|
| 1800 | IF ( dp_external ) THEN |
---|
[1128] | 1801 | DO i = i_left, i_right |
---|
| 1802 | DO j = j_south, j_north |
---|
[1015] | 1803 | DO k = dp_level_ind_b+1, nzt |
---|
| 1804 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1805 | ENDDO |
---|
| 1806 | ENDDO |
---|
| 1807 | ENDDO |
---|
| 1808 | ENDIF |
---|
| 1809 | |
---|
[1246] | 1810 | ! |
---|
| 1811 | !-- Nudging |
---|
| 1812 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 1813 | |
---|
[1015] | 1814 | CALL user_actions( 'u-tendency' ) |
---|
| 1815 | |
---|
| 1816 | ! |
---|
| 1817 | !-- Prognostic equation for u-velocity component |
---|
[1398] | 1818 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, u_init, u_p ) |
---|
[1257] | 1819 | !$acc loop independent |
---|
[1128] | 1820 | DO i = i_left, i_right |
---|
[1257] | 1821 | !$acc loop independent |
---|
[1128] | 1822 | DO j = j_south, j_north |
---|
[1257] | 1823 | !$acc loop independent |
---|
[1015] | 1824 | DO k = 1, nzt |
---|
| 1825 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1826 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1827 | tsc(3) * tu_m(k,j,i) ) & |
---|
[1398] | 1828 | - tsc(5) * rdf(k) * ( u(k,j,i) - u_init(k) ) |
---|
[1015] | 1829 | ! |
---|
| 1830 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1831 | IF ( runge_step == 1 ) THEN |
---|
| 1832 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1833 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1834 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[1015] | 1835 | ENDIF |
---|
| 1836 | ENDIF |
---|
| 1837 | ENDDO |
---|
| 1838 | ENDDO |
---|
| 1839 | ENDDO |
---|
| 1840 | !$acc end kernels |
---|
| 1841 | |
---|
| 1842 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1843 | |
---|
| 1844 | ! |
---|
| 1845 | !-- v-velocity component |
---|
| 1846 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1847 | |
---|
| 1848 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1849 | IF ( ws_scheme_mom ) THEN |
---|
| 1850 | CALL advec_v_ws_acc |
---|
| 1851 | ELSE |
---|
[1337] | 1852 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1853 | CALL advec_v_pw |
---|
| 1854 | END IF |
---|
| 1855 | ELSE |
---|
| 1856 | CALL advec_v_up |
---|
| 1857 | ENDIF |
---|
| 1858 | CALL diffusion_v_acc |
---|
| 1859 | CALL coriolis_acc( 2 ) |
---|
| 1860 | |
---|
| 1861 | ! |
---|
| 1862 | !-- Drag by plant canopy |
---|
| 1863 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1864 | |
---|
| 1865 | ! |
---|
| 1866 | !-- External pressure gradient |
---|
| 1867 | IF ( dp_external ) THEN |
---|
[1128] | 1868 | DO i = i_left, i_right |
---|
| 1869 | DO j = j_south, j_north |
---|
[1015] | 1870 | DO k = dp_level_ind_b+1, nzt |
---|
| 1871 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1872 | ENDDO |
---|
| 1873 | ENDDO |
---|
| 1874 | ENDDO |
---|
| 1875 | ENDIF |
---|
| 1876 | |
---|
[1246] | 1877 | ! |
---|
| 1878 | !-- Nudging |
---|
| 1879 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1880 | |
---|
[1015] | 1881 | CALL user_actions( 'v-tendency' ) |
---|
| 1882 | |
---|
| 1883 | ! |
---|
| 1884 | !-- Prognostic equation for v-velocity component |
---|
[1398] | 1885 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, v_init, v_p ) |
---|
[1257] | 1886 | !$acc loop independent |
---|
[1128] | 1887 | DO i = i_left, i_right |
---|
[1257] | 1888 | !$acc loop independent |
---|
[1128] | 1889 | DO j = j_south, j_north |
---|
[1257] | 1890 | !$acc loop independent |
---|
[1015] | 1891 | DO k = 1, nzt |
---|
| 1892 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1893 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1894 | tsc(3) * tv_m(k,j,i) ) & |
---|
[1398] | 1895 | - tsc(5) * rdf(k) * ( v(k,j,i) - v_init(k) ) |
---|
[1015] | 1896 | ! |
---|
| 1897 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1898 | IF ( runge_step == 1 ) THEN |
---|
| 1899 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1900 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1901 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[1015] | 1902 | ENDIF |
---|
| 1903 | ENDIF |
---|
| 1904 | ENDDO |
---|
| 1905 | ENDDO |
---|
| 1906 | ENDDO |
---|
| 1907 | !$acc end kernels |
---|
| 1908 | |
---|
| 1909 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1910 | |
---|
| 1911 | ! |
---|
| 1912 | !-- w-velocity component |
---|
| 1913 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1914 | |
---|
| 1915 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1916 | IF ( ws_scheme_mom ) THEN |
---|
| 1917 | CALL advec_w_ws_acc |
---|
| 1918 | ELSE |
---|
[1337] | 1919 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1920 | CALL advec_w_pw |
---|
| 1921 | ENDIF |
---|
| 1922 | ELSE |
---|
| 1923 | CALL advec_w_up |
---|
| 1924 | ENDIF |
---|
| 1925 | CALL diffusion_w_acc |
---|
| 1926 | CALL coriolis_acc( 3 ) |
---|
| 1927 | |
---|
| 1928 | IF ( .NOT. neutral ) THEN |
---|
| 1929 | IF ( ocean ) THEN |
---|
[1179] | 1930 | CALL buoyancy( rho, 3 ) |
---|
[1015] | 1931 | ELSE |
---|
| 1932 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1933 | CALL buoyancy_acc( pt, 3 ) |
---|
[1015] | 1934 | ELSE |
---|
[1179] | 1935 | CALL buoyancy( vpt, 3 ) |
---|
[1015] | 1936 | ENDIF |
---|
| 1937 | ENDIF |
---|
| 1938 | ENDIF |
---|
| 1939 | |
---|
| 1940 | ! |
---|
| 1941 | !-- Drag by plant canopy |
---|
| 1942 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1943 | |
---|
| 1944 | CALL user_actions( 'w-tendency' ) |
---|
| 1945 | |
---|
| 1946 | ! |
---|
| 1947 | !-- Prognostic equation for w-velocity component |
---|
| 1948 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
[1257] | 1949 | !$acc loop independent |
---|
[1128] | 1950 | DO i = i_left, i_right |
---|
[1257] | 1951 | !$acc loop independent |
---|
[1128] | 1952 | DO j = j_south, j_north |
---|
[1257] | 1953 | !$acc loop independent |
---|
[1015] | 1954 | DO k = 1, nzt-1 |
---|
| 1955 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 1956 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1957 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1958 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1959 | ! |
---|
| 1960 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1961 | IF ( runge_step == 1 ) THEN |
---|
| 1962 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1963 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1964 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[1015] | 1965 | ENDIF |
---|
| 1966 | ENDIF |
---|
| 1967 | ENDDO |
---|
| 1968 | ENDDO |
---|
| 1969 | ENDDO |
---|
| 1970 | !$acc end kernels |
---|
| 1971 | |
---|
| 1972 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1973 | |
---|
| 1974 | |
---|
| 1975 | ! |
---|
| 1976 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1977 | IF ( .NOT. neutral ) THEN |
---|
| 1978 | |
---|
| 1979 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1980 | |
---|
| 1981 | ! |
---|
| 1982 | !-- pt-tendency terms with communication |
---|
| 1983 | sbt = tsc(2) |
---|
| 1984 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1985 | |
---|
| 1986 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1987 | ! |
---|
| 1988 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1989 | sbt = 1.0_wp |
---|
[1015] | 1990 | ENDIF |
---|
[1337] | 1991 | tend = 0.0_wp |
---|
[1015] | 1992 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1993 | |
---|
| 1994 | ENDIF |
---|
| 1995 | |
---|
| 1996 | ! |
---|
| 1997 | !-- pt-tendency terms with no communication |
---|
| 1998 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1999 | tend = 0.0_wp |
---|
[1015] | 2000 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2001 | IF ( ws_scheme_sca ) THEN |
---|
| 2002 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 2003 | ELSE |
---|
[1337] | 2004 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2005 | CALL advec_s_pw( pt ) |
---|
| 2006 | ENDIF |
---|
| 2007 | ELSE |
---|
| 2008 | CALL advec_s_up( pt ) |
---|
| 2009 | ENDIF |
---|
| 2010 | ENDIF |
---|
| 2011 | |
---|
| 2012 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 2013 | |
---|
| 2014 | ! |
---|
| 2015 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 2016 | IF ( radiation ) THEN |
---|
| 2017 | CALL calc_radiation |
---|
| 2018 | ENDIF |
---|
| 2019 | |
---|
| 2020 | ! |
---|
| 2021 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 2022 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2023 | CALL impact_of_latent_heat |
---|
| 2024 | ENDIF |
---|
| 2025 | |
---|
| 2026 | ! |
---|
| 2027 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 2028 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[1015] | 2029 | CALL plant_canopy_model( 4 ) |
---|
| 2030 | ENDIF |
---|
| 2031 | |
---|
| 2032 | ! |
---|
[1365] | 2033 | !-- Large scale advection |
---|
| 2034 | IF ( large_scale_forcing ) THEN |
---|
| 2035 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 2036 | ENDIF |
---|
| 2037 | |
---|
| 2038 | ! |
---|
[1380] | 2039 | !-- Nudging |
---|
| 2040 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 2041 | |
---|
| 2042 | ! |
---|
[1015] | 2043 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2044 | IF ( large_scale_subsidence .AND. & |
---|
| 2045 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2046 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[1015] | 2047 | ENDIF |
---|
| 2048 | |
---|
| 2049 | CALL user_actions( 'pt-tendency' ) |
---|
| 2050 | |
---|
| 2051 | ! |
---|
| 2052 | !-- Prognostic equation for potential temperature |
---|
| 2053 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 2054 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
[1257] | 2055 | !$acc loop independent |
---|
[1128] | 2056 | DO i = i_left, i_right |
---|
[1257] | 2057 | !$acc loop independent |
---|
[1128] | 2058 | DO j = j_south, j_north |
---|
[1257] | 2059 | !$acc loop independent |
---|
[1015] | 2060 | DO k = 1, nzt |
---|
| 2061 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2062 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2063 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 2064 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 2065 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 2066 | ! |
---|
| 2067 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2068 | IF ( runge_step == 1 ) THEN |
---|
| 2069 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 2070 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2071 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tpt_m(k,j,i) |
---|
[1015] | 2072 | ENDIF |
---|
| 2073 | ENDIF |
---|
| 2074 | ENDDO |
---|
| 2075 | ENDDO |
---|
| 2076 | ENDDO |
---|
| 2077 | !$acc end kernels |
---|
| 2078 | |
---|
| 2079 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 2080 | |
---|
| 2081 | ENDIF |
---|
| 2082 | |
---|
| 2083 | ! |
---|
| 2084 | !-- If required, compute prognostic equation for salinity |
---|
| 2085 | IF ( ocean ) THEN |
---|
| 2086 | |
---|
| 2087 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 2088 | |
---|
| 2089 | ! |
---|
| 2090 | !-- sa-tendency terms with communication |
---|
| 2091 | sbt = tsc(2) |
---|
| 2092 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2093 | |
---|
| 2094 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2095 | ! |
---|
| 2096 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2097 | sbt = 1.0_wp |
---|
[1015] | 2098 | ENDIF |
---|
[1337] | 2099 | tend = 0.0_wp |
---|
[1015] | 2100 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 2101 | |
---|
| 2102 | ENDIF |
---|
| 2103 | |
---|
| 2104 | ! |
---|
| 2105 | !-- sa-tendency terms with no communication |
---|
| 2106 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2107 | tend = 0.0_wp |
---|
[1015] | 2108 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2109 | IF ( ws_scheme_sca ) THEN |
---|
| 2110 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 2111 | ELSE |
---|
| 2112 | CALL advec_s_pw( sa ) |
---|
| 2113 | ENDIF |
---|
| 2114 | ELSE |
---|
| 2115 | CALL advec_s_up( sa ) |
---|
| 2116 | ENDIF |
---|
| 2117 | ENDIF |
---|
| 2118 | |
---|
| 2119 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 2120 | |
---|
| 2121 | CALL user_actions( 'sa-tendency' ) |
---|
| 2122 | |
---|
| 2123 | ! |
---|
| 2124 | !-- Prognostic equation for salinity |
---|
[1128] | 2125 | DO i = i_left, i_right |
---|
| 2126 | DO j = j_south, j_north |
---|
[1015] | 2127 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2128 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2129 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 2130 | - tsc(5) * rdf_sc(k) * & |
---|
| 2131 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 2132 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[1015] | 2133 | ! |
---|
| 2134 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2135 | IF ( runge_step == 1 ) THEN |
---|
| 2136 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 2137 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2138 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tsa_m(k,j,i) |
---|
[1015] | 2139 | ENDIF |
---|
| 2140 | ENDDO |
---|
| 2141 | ENDDO |
---|
| 2142 | ENDDO |
---|
| 2143 | |
---|
| 2144 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 2145 | |
---|
| 2146 | ! |
---|
| 2147 | !-- Calculate density by the equation of state for seawater |
---|
| 2148 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 2149 | CALL eqn_state_seawater |
---|
| 2150 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 2151 | |
---|
| 2152 | ENDIF |
---|
| 2153 | |
---|
| 2154 | ! |
---|
| 2155 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 2156 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 2157 | |
---|
| 2158 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 2159 | |
---|
| 2160 | ! |
---|
| 2161 | !-- Scalar/q-tendency terms with communication |
---|
| 2162 | sbt = tsc(2) |
---|
| 2163 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2164 | |
---|
| 2165 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2166 | ! |
---|
| 2167 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2168 | sbt = 1.0_wp |
---|
[1015] | 2169 | ENDIF |
---|
[1337] | 2170 | tend = 0.0_wp |
---|
[1015] | 2171 | CALL advec_s_bc( q, 'q' ) |
---|
| 2172 | |
---|
| 2173 | ENDIF |
---|
| 2174 | |
---|
| 2175 | ! |
---|
| 2176 | !-- Scalar/q-tendency terms with no communication |
---|
| 2177 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2178 | tend = 0.0_wp |
---|
[1015] | 2179 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2180 | IF ( ws_scheme_sca ) THEN |
---|
| 2181 | CALL advec_s_ws( q, 'q' ) |
---|
| 2182 | ELSE |
---|
| 2183 | CALL advec_s_pw( q ) |
---|
| 2184 | ENDIF |
---|
| 2185 | ELSE |
---|
| 2186 | CALL advec_s_up( q ) |
---|
| 2187 | ENDIF |
---|
| 2188 | ENDIF |
---|
| 2189 | |
---|
| 2190 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 2191 | |
---|
| 2192 | ! |
---|
| 2193 | !-- If required compute decrease of total water content due to |
---|
| 2194 | !-- precipitation |
---|
[1361] | 2195 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2196 | CALL calc_precipitation |
---|
| 2197 | ENDIF |
---|
| 2198 | |
---|
| 2199 | ! |
---|
| 2200 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 2201 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 2202 | |
---|
| 2203 | ! |
---|
[1365] | 2204 | !-- Large scale advection |
---|
| 2205 | IF ( large_scale_forcing ) THEN |
---|
| 2206 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 2207 | ENDIF |
---|
| 2208 | |
---|
| 2209 | ! |
---|
[1380] | 2210 | !-- Nudging |
---|
| 2211 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 2212 | |
---|
| 2213 | ! |
---|
[1015] | 2214 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2215 | IF ( large_scale_subsidence .AND. & |
---|
| 2216 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2217 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[1015] | 2218 | ENDIF |
---|
| 2219 | |
---|
| 2220 | CALL user_actions( 'q-tendency' ) |
---|
| 2221 | |
---|
| 2222 | ! |
---|
| 2223 | !-- Prognostic equation for total water content / scalar |
---|
[1128] | 2224 | DO i = i_left, i_right |
---|
| 2225 | DO j = j_south, j_north |
---|
[1015] | 2226 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2227 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2228 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 2229 | - tsc(5) * rdf_sc(k) * & |
---|
| 2230 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 2231 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[1015] | 2232 | ! |
---|
| 2233 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2234 | IF ( runge_step == 1 ) THEN |
---|
| 2235 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 2236 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2237 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[1015] | 2238 | ENDIF |
---|
| 2239 | ENDDO |
---|
| 2240 | ENDDO |
---|
| 2241 | ENDDO |
---|
| 2242 | |
---|
| 2243 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 2244 | |
---|
[1361] | 2245 | ! |
---|
| 2246 | !-- If required, calculate prognostic equations for rain water content |
---|
| 2247 | !-- and rain drop concentration |
---|
| 2248 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 2249 | |
---|
| 2250 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 2251 | ! |
---|
| 2252 | !-- qr-tendency terms with communication |
---|
| 2253 | sbt = tsc(2) |
---|
| 2254 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2255 | |
---|
| 2256 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2257 | ! |
---|
| 2258 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2259 | sbt = 1.0_wp |
---|
| 2260 | ENDIF |
---|
| 2261 | tend = 0.0_wp |
---|
| 2262 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 2263 | |
---|
| 2264 | ENDIF |
---|
| 2265 | |
---|
| 2266 | ! |
---|
| 2267 | !-- qr-tendency terms with no communication |
---|
| 2268 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2269 | tend = 0.0_wp |
---|
| 2270 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2271 | IF ( ws_scheme_sca ) THEN |
---|
| 2272 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 2273 | ELSE |
---|
| 2274 | CALL advec_s_pw( qr ) |
---|
| 2275 | ENDIF |
---|
| 2276 | ELSE |
---|
| 2277 | CALL advec_s_up( qr ) |
---|
| 2278 | ENDIF |
---|
| 2279 | ENDIF |
---|
| 2280 | |
---|
| 2281 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 2282 | |
---|
| 2283 | CALL user_actions( 'qr-tendency' ) |
---|
| 2284 | |
---|
| 2285 | ! |
---|
| 2286 | !-- Prognostic equation for rain water content |
---|
| 2287 | DO i = i_left, i_right |
---|
| 2288 | DO j = j_south, j_north |
---|
| 2289 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2290 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2291 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 2292 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 2293 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 2294 | ! |
---|
| 2295 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2296 | IF ( runge_step == 1 ) THEN |
---|
| 2297 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 2298 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2299 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2300 | tqr_m(k,j,i) |
---|
| 2301 | ENDIF |
---|
| 2302 | ENDDO |
---|
| 2303 | ENDDO |
---|
| 2304 | ENDDO |
---|
| 2305 | |
---|
| 2306 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 2307 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 2308 | |
---|
| 2309 | ! |
---|
| 2310 | !-- nr-tendency terms with communication |
---|
| 2311 | sbt = tsc(2) |
---|
| 2312 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2313 | |
---|
| 2314 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2315 | ! |
---|
| 2316 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2317 | sbt = 1.0_wp |
---|
| 2318 | ENDIF |
---|
| 2319 | tend = 0.0_wp |
---|
| 2320 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 2321 | |
---|
| 2322 | ENDIF |
---|
| 2323 | |
---|
| 2324 | ! |
---|
| 2325 | !-- nr-tendency terms with no communication |
---|
| 2326 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2327 | tend = 0.0_wp |
---|
| 2328 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2329 | IF ( ws_scheme_sca ) THEN |
---|
| 2330 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 2331 | ELSE |
---|
| 2332 | CALL advec_s_pw( nr ) |
---|
| 2333 | ENDIF |
---|
| 2334 | ELSE |
---|
| 2335 | CALL advec_s_up( nr ) |
---|
| 2336 | ENDIF |
---|
| 2337 | ENDIF |
---|
| 2338 | |
---|
| 2339 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 2340 | |
---|
| 2341 | CALL user_actions( 'nr-tendency' ) |
---|
| 2342 | |
---|
| 2343 | ! |
---|
| 2344 | !-- Prognostic equation for rain drop concentration |
---|
| 2345 | DO i = i_left, i_right |
---|
| 2346 | DO j = j_south, j_north |
---|
| 2347 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2348 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2349 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 2350 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 2351 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 2352 | ! |
---|
| 2353 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2354 | IF ( runge_step == 1 ) THEN |
---|
| 2355 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 2356 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2357 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2358 | tnr_m(k,j,i) |
---|
| 2359 | ENDIF |
---|
| 2360 | ENDDO |
---|
| 2361 | ENDDO |
---|
| 2362 | ENDDO |
---|
| 2363 | |
---|
| 2364 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 2365 | |
---|
| 2366 | ENDIF |
---|
| 2367 | |
---|
[1015] | 2368 | ENDIF |
---|
| 2369 | |
---|
| 2370 | ! |
---|
| 2371 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 2372 | !-- energy (TKE) |
---|
| 2373 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 2374 | |
---|
| 2375 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 2376 | |
---|
| 2377 | sbt = tsc(2) |
---|
| 2378 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 2379 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2380 | |
---|
| 2381 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2382 | ! |
---|
| 2383 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2384 | sbt = 1.0_wp |
---|
[1015] | 2385 | ENDIF |
---|
[1337] | 2386 | tend = 0.0_wp |
---|
[1015] | 2387 | CALL advec_s_bc( e, 'e' ) |
---|
| 2388 | |
---|
| 2389 | ENDIF |
---|
| 2390 | ENDIF |
---|
| 2391 | |
---|
| 2392 | ! |
---|
| 2393 | !-- TKE-tendency terms with no communication |
---|
| 2394 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 2395 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 2396 | tend = 0.0_wp |
---|
[1015] | 2397 | CALL advec_s_up( e ) |
---|
| 2398 | ELSE |
---|
| 2399 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2400 | IF ( ws_scheme_sca ) THEN |
---|
| 2401 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 2402 | ELSE |
---|
[1337] | 2403 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2404 | CALL advec_s_pw( e ) |
---|
| 2405 | ENDIF |
---|
| 2406 | ELSE |
---|
[1337] | 2407 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2408 | CALL advec_s_up( e ) |
---|
| 2409 | ENDIF |
---|
| 2410 | ENDIF |
---|
| 2411 | ENDIF |
---|
| 2412 | |
---|
| 2413 | IF ( .NOT. humidity ) THEN |
---|
| 2414 | IF ( ocean ) THEN |
---|
| 2415 | CALL diffusion_e( prho, prho_reference ) |
---|
| 2416 | ELSE |
---|
| 2417 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 2418 | ENDIF |
---|
| 2419 | ELSE |
---|
| 2420 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 2421 | ENDIF |
---|
| 2422 | |
---|
| 2423 | CALL production_e_acc |
---|
| 2424 | |
---|
| 2425 | ! |
---|
| 2426 | !-- Additional sink term for flows through plant canopies |
---|
| 2427 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 2428 | CALL user_actions( 'e-tendency' ) |
---|
| 2429 | |
---|
| 2430 | ! |
---|
| 2431 | !-- Prognostic equation for TKE. |
---|
| 2432 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2433 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2434 | !-- value is reduced by 90%. |
---|
| 2435 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
[1257] | 2436 | !$acc loop independent |
---|
[1128] | 2437 | DO i = i_left, i_right |
---|
[1257] | 2438 | !$acc loop independent |
---|
[1128] | 2439 | DO j = j_south, j_north |
---|
[1257] | 2440 | !$acc loop independent |
---|
[1015] | 2441 | DO k = 1, nzt |
---|
| 2442 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2443 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2444 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 2445 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[1015] | 2446 | ! |
---|
| 2447 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2448 | IF ( runge_step == 1 ) THEN |
---|
| 2449 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2450 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2451 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[1015] | 2452 | ENDIF |
---|
| 2453 | ENDIF |
---|
| 2454 | ENDDO |
---|
| 2455 | ENDDO |
---|
| 2456 | ENDDO |
---|
| 2457 | !$acc end kernels |
---|
| 2458 | |
---|
| 2459 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2460 | |
---|
| 2461 | ENDIF |
---|
| 2462 | |
---|
| 2463 | END SUBROUTINE prognostic_equations_acc |
---|
| 2464 | |
---|
| 2465 | |
---|
[736] | 2466 | END MODULE prognostic_equations_mod |
---|