[1] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[139] | 6 | ! |
---|
[98] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
| 10 | ! $Id: prognostic_equations.f90 139 2007-11-29 09:37:41Z raasch $ |
---|
| 11 | ! |
---|
[139] | 12 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 13 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
| 14 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
| 15 | ! |
---|
[110] | 16 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 17 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
| 18 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
| 19 | ! for non-cyclic boundary conditions) |
---|
| 20 | ! |
---|
[98] | 21 | ! 97 2007-06-21 08:23:15Z raasch |
---|
[96] | 22 | ! prognostic equation for salinity, density is calculated from equation of |
---|
[97] | 23 | ! state for seawater and is used for calculation of buoyancy, |
---|
| 24 | ! +eqn_state_seawater_mod |
---|
| 25 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
| 26 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
| 27 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
[96] | 28 | ! calc_mean_profile |
---|
[1] | 29 | ! |
---|
[77] | 30 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 31 | ! checking for negative q and limiting for positive values, |
---|
| 32 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
| 33 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
| 34 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
| 35 | ! _vector-version |
---|
| 36 | ! |
---|
[39] | 37 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 38 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
| 39 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
| 40 | ! |
---|
[3] | 41 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 42 | ! |
---|
[1] | 43 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
| 44 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
| 45 | ! regardless of the timestep scheme used for the other quantities, |
---|
| 46 | ! new argument diss in call of diffusion_e |
---|
| 47 | ! |
---|
| 48 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 49 | ! Initial revision |
---|
| 50 | ! |
---|
| 51 | ! |
---|
| 52 | ! Description: |
---|
| 53 | ! ------------ |
---|
[19] | 54 | ! Solving the prognostic equations. |
---|
[1] | 55 | !------------------------------------------------------------------------------! |
---|
| 56 | |
---|
| 57 | USE arrays_3d |
---|
| 58 | USE control_parameters |
---|
| 59 | USE cpulog |
---|
[96] | 60 | USE eqn_state_seawater_mod |
---|
[1] | 61 | USE grid_variables |
---|
| 62 | USE indices |
---|
| 63 | USE interfaces |
---|
| 64 | USE pegrid |
---|
| 65 | USE pointer_interfaces |
---|
| 66 | USE statistics |
---|
| 67 | |
---|
| 68 | USE advec_s_pw_mod |
---|
| 69 | USE advec_s_up_mod |
---|
| 70 | USE advec_u_pw_mod |
---|
| 71 | USE advec_u_up_mod |
---|
| 72 | USE advec_v_pw_mod |
---|
| 73 | USE advec_v_up_mod |
---|
| 74 | USE advec_w_pw_mod |
---|
| 75 | USE advec_w_up_mod |
---|
| 76 | USE buoyancy_mod |
---|
| 77 | USE calc_precipitation_mod |
---|
| 78 | USE calc_radiation_mod |
---|
| 79 | USE coriolis_mod |
---|
| 80 | USE diffusion_e_mod |
---|
| 81 | USE diffusion_s_mod |
---|
| 82 | USE diffusion_u_mod |
---|
| 83 | USE diffusion_v_mod |
---|
| 84 | USE diffusion_w_mod |
---|
| 85 | USE impact_of_latent_heat_mod |
---|
[138] | 86 | USE plant_canopy_model_mod |
---|
[1] | 87 | USE production_e_mod |
---|
| 88 | USE user_actions_mod |
---|
| 89 | |
---|
| 90 | |
---|
| 91 | PRIVATE |
---|
[63] | 92 | PUBLIC prognostic_equations_noopt, prognostic_equations_cache, & |
---|
| 93 | prognostic_equations_vector |
---|
[1] | 94 | |
---|
[63] | 95 | INTERFACE prognostic_equations_noopt |
---|
| 96 | MODULE PROCEDURE prognostic_equations_noopt |
---|
| 97 | END INTERFACE prognostic_equations_noopt |
---|
[1] | 98 | |
---|
[63] | 99 | INTERFACE prognostic_equations_cache |
---|
| 100 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 101 | END INTERFACE prognostic_equations_cache |
---|
[1] | 102 | |
---|
[63] | 103 | INTERFACE prognostic_equations_vector |
---|
| 104 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 105 | END INTERFACE prognostic_equations_vector |
---|
[1] | 106 | |
---|
| 107 | |
---|
| 108 | CONTAINS |
---|
| 109 | |
---|
| 110 | |
---|
[63] | 111 | SUBROUTINE prognostic_equations_noopt |
---|
[1] | 112 | |
---|
| 113 | !------------------------------------------------------------------------------! |
---|
| 114 | ! Version with single loop optimization |
---|
| 115 | ! |
---|
| 116 | ! (Optimized over each single prognostic equation.) |
---|
| 117 | !------------------------------------------------------------------------------! |
---|
| 118 | |
---|
| 119 | IMPLICIT NONE |
---|
| 120 | |
---|
| 121 | CHARACTER (LEN=9) :: time_to_string |
---|
| 122 | INTEGER :: i, j, k |
---|
| 123 | REAL :: sat, sbt |
---|
| 124 | |
---|
| 125 | ! |
---|
| 126 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 127 | !-- global communication |
---|
[96] | 128 | CALL calc_mean_profile( pt, 4 ) |
---|
| 129 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 130 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 131 | |
---|
| 132 | ! |
---|
| 133 | !-- u-velocity component |
---|
| 134 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 135 | |
---|
| 136 | ! |
---|
| 137 | !-- u-tendency terms with communication |
---|
| 138 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 139 | tend = 0.0 |
---|
| 140 | CALL advec_u_ups |
---|
| 141 | ENDIF |
---|
| 142 | |
---|
| 143 | ! |
---|
| 144 | !-- u-tendency terms with no communication |
---|
[106] | 145 | DO i = nxlu, nxr |
---|
[1] | 146 | DO j = nys, nyn |
---|
| 147 | ! |
---|
| 148 | !-- Tendency terms |
---|
| 149 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 150 | tend(:,j,i) = 0.0 |
---|
| 151 | CALL advec_u_pw( i, j ) |
---|
| 152 | ELSE |
---|
| 153 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 154 | tend(:,j,i) = 0.0 |
---|
| 155 | CALL advec_u_up( i, j ) |
---|
| 156 | ENDIF |
---|
| 157 | ENDIF |
---|
| 158 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 159 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
[102] | 160 | usws_m, uswst_m, v_m, w_m ) |
---|
[1] | 161 | ELSE |
---|
| 162 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
[102] | 163 | uswst, v, w ) |
---|
[1] | 164 | ENDIF |
---|
| 165 | CALL coriolis( i, j, 1 ) |
---|
[97] | 166 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, 4 ) |
---|
[138] | 167 | |
---|
| 168 | ! |
---|
| 169 | !-- Drag by plant canopy |
---|
| 170 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
[1] | 171 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 172 | |
---|
| 173 | ! |
---|
| 174 | !-- Prognostic equation for u-velocity component |
---|
| 175 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 176 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 177 | dt_3d * ( & |
---|
| 178 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 179 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 180 | ) - & |
---|
| 181 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 182 | ENDDO |
---|
| 183 | |
---|
| 184 | ! |
---|
| 185 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 186 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 187 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 188 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 189 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 190 | ENDDO |
---|
| 191 | ELSEIF ( intermediate_timestep_count < & |
---|
| 192 | intermediate_timestep_count_max ) THEN |
---|
| 193 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 194 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 195 | ENDDO |
---|
| 196 | ENDIF |
---|
| 197 | ENDIF |
---|
| 198 | |
---|
| 199 | ENDDO |
---|
| 200 | ENDDO |
---|
| 201 | |
---|
| 202 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 203 | |
---|
| 204 | ! |
---|
| 205 | !-- v-velocity component |
---|
| 206 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 207 | |
---|
| 208 | ! |
---|
| 209 | !-- v-tendency terms with communication |
---|
| 210 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 211 | tend = 0.0 |
---|
| 212 | CALL advec_v_ups |
---|
| 213 | ENDIF |
---|
| 214 | |
---|
| 215 | ! |
---|
| 216 | !-- v-tendency terms with no communication |
---|
| 217 | DO i = nxl, nxr |
---|
[106] | 218 | DO j = nysv, nyn |
---|
[1] | 219 | ! |
---|
| 220 | !-- Tendency terms |
---|
| 221 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 222 | tend(:,j,i) = 0.0 |
---|
| 223 | CALL advec_v_pw( i, j ) |
---|
| 224 | ELSE |
---|
| 225 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 226 | tend(:,j,i) = 0.0 |
---|
| 227 | CALL advec_v_up( i, j ) |
---|
| 228 | ENDIF |
---|
| 229 | ENDIF |
---|
| 230 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 231 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
[102] | 232 | v_m, vsws_m, vswst_m, w_m ) |
---|
[1] | 233 | ELSE |
---|
| 234 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[102] | 235 | vsws, vswst, w ) |
---|
[1] | 236 | ENDIF |
---|
| 237 | CALL coriolis( i, j, 2 ) |
---|
[138] | 238 | |
---|
| 239 | ! |
---|
| 240 | !-- Drag by plant canopy |
---|
| 241 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 242 | |
---|
[1] | 243 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 244 | |
---|
| 245 | ! |
---|
| 246 | !-- Prognostic equation for v-velocity component |
---|
| 247 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 248 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 249 | dt_3d * ( & |
---|
| 250 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 251 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 252 | ) - & |
---|
| 253 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 254 | ENDDO |
---|
| 255 | |
---|
| 256 | ! |
---|
| 257 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 258 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 259 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 260 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 261 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 262 | ENDDO |
---|
| 263 | ELSEIF ( intermediate_timestep_count < & |
---|
| 264 | intermediate_timestep_count_max ) THEN |
---|
| 265 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 266 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 267 | ENDDO |
---|
| 268 | ENDIF |
---|
| 269 | ENDIF |
---|
| 270 | |
---|
| 271 | ENDDO |
---|
| 272 | ENDDO |
---|
| 273 | |
---|
| 274 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 275 | |
---|
| 276 | ! |
---|
| 277 | !-- w-velocity component |
---|
| 278 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 279 | |
---|
| 280 | ! |
---|
| 281 | !-- w-tendency terms with communication |
---|
| 282 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 283 | tend = 0.0 |
---|
| 284 | CALL advec_w_ups |
---|
| 285 | ENDIF |
---|
| 286 | |
---|
| 287 | ! |
---|
| 288 | !-- w-tendency terms with no communication |
---|
| 289 | DO i = nxl, nxr |
---|
| 290 | DO j = nys, nyn |
---|
| 291 | ! |
---|
| 292 | !-- Tendency terms |
---|
| 293 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 294 | tend(:,j,i) = 0.0 |
---|
| 295 | CALL advec_w_pw( i, j ) |
---|
| 296 | ELSE |
---|
| 297 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 298 | tend(:,j,i) = 0.0 |
---|
| 299 | CALL advec_w_up( i, j ) |
---|
| 300 | ENDIF |
---|
| 301 | ENDIF |
---|
| 302 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 303 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
[57] | 304 | tend, u_m, v_m, w_m ) |
---|
[1] | 305 | ELSE |
---|
| 306 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
[57] | 307 | tend, u, v, w ) |
---|
[1] | 308 | ENDIF |
---|
| 309 | CALL coriolis( i, j, 3 ) |
---|
[97] | 310 | IF ( ocean ) THEN |
---|
| 311 | CALL buoyancy( i, j, rho, prho_reference, 3, 64 ) |
---|
[1] | 312 | ELSE |
---|
[97] | 313 | IF ( .NOT. humidity ) THEN |
---|
| 314 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
| 315 | ELSE |
---|
| 316 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
| 317 | ENDIF |
---|
[1] | 318 | ENDIF |
---|
[138] | 319 | |
---|
| 320 | ! |
---|
| 321 | !-- Drag by plant canopy |
---|
| 322 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 323 | |
---|
[1] | 324 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 325 | |
---|
| 326 | ! |
---|
| 327 | !-- Prognostic equation for w-velocity component |
---|
| 328 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 329 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 330 | dt_3d * ( & |
---|
| 331 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 332 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 333 | ) - & |
---|
| 334 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 335 | ENDDO |
---|
| 336 | |
---|
| 337 | ! |
---|
| 338 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 339 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 340 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 341 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 342 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 343 | ENDDO |
---|
| 344 | ELSEIF ( intermediate_timestep_count < & |
---|
| 345 | intermediate_timestep_count_max ) THEN |
---|
| 346 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 347 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 348 | ENDDO |
---|
| 349 | ENDIF |
---|
| 350 | ENDIF |
---|
| 351 | |
---|
| 352 | ENDDO |
---|
| 353 | ENDDO |
---|
| 354 | |
---|
| 355 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 356 | |
---|
| 357 | ! |
---|
| 358 | !-- potential temperature |
---|
| 359 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 360 | |
---|
| 361 | ! |
---|
| 362 | !-- pt-tendency terms with communication |
---|
[70] | 363 | sat = tsc(1) |
---|
| 364 | sbt = tsc(2) |
---|
[1] | 365 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 366 | |
---|
| 367 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 368 | ! |
---|
[70] | 369 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 370 | !-- switched on. Thus: |
---|
| 371 | sat = 1.0 |
---|
| 372 | sbt = 1.0 |
---|
| 373 | ENDIF |
---|
[1] | 374 | tend = 0.0 |
---|
| 375 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 376 | ELSE |
---|
| 377 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 378 | tend = 0.0 |
---|
| 379 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 380 | ENDIF |
---|
| 381 | ENDIF |
---|
| 382 | |
---|
| 383 | ! |
---|
| 384 | !-- pt-tendency terms with no communication |
---|
| 385 | DO i = nxl, nxr |
---|
| 386 | DO j = nys, nyn |
---|
| 387 | ! |
---|
| 388 | !-- Tendency terms |
---|
| 389 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 390 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 391 | wall_heatflux, tend ) |
---|
[1] | 392 | ELSE |
---|
| 393 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 394 | tend(:,j,i) = 0.0 |
---|
| 395 | CALL advec_s_pw( i, j, pt ) |
---|
| 396 | ELSE |
---|
| 397 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 398 | tend(:,j,i) = 0.0 |
---|
| 399 | CALL advec_s_up( i, j, pt ) |
---|
| 400 | ENDIF |
---|
| 401 | ENDIF |
---|
| 402 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 403 | THEN |
---|
[19] | 404 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
[129] | 405 | tswst_m, wall_heatflux, tend ) |
---|
[1] | 406 | ELSE |
---|
[129] | 407 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 408 | wall_heatflux, tend ) |
---|
[1] | 409 | ENDIF |
---|
| 410 | ENDIF |
---|
| 411 | |
---|
| 412 | ! |
---|
| 413 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 414 | !-- processes |
---|
| 415 | IF ( radiation ) THEN |
---|
| 416 | CALL calc_radiation( i, j ) |
---|
| 417 | ENDIF |
---|
| 418 | |
---|
| 419 | ! |
---|
| 420 | !-- If required compute impact of latent heat due to precipitation |
---|
| 421 | IF ( precipitation ) THEN |
---|
| 422 | CALL impact_of_latent_heat( i, j ) |
---|
| 423 | ENDIF |
---|
| 424 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 425 | |
---|
| 426 | ! |
---|
| 427 | !-- Prognostic equation for potential temperature |
---|
[19] | 428 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 429 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 430 | dt_3d * ( & |
---|
| 431 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 432 | ) - & |
---|
| 433 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 434 | ENDDO |
---|
| 435 | |
---|
| 436 | ! |
---|
| 437 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 438 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 439 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 440 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 441 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 442 | ENDDO |
---|
| 443 | ELSEIF ( intermediate_timestep_count < & |
---|
| 444 | intermediate_timestep_count_max ) THEN |
---|
[19] | 445 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 446 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 447 | ENDDO |
---|
| 448 | ENDIF |
---|
| 449 | ENDIF |
---|
| 450 | |
---|
| 451 | ENDDO |
---|
| 452 | ENDDO |
---|
| 453 | |
---|
| 454 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 455 | |
---|
| 456 | ! |
---|
[95] | 457 | !-- If required, compute prognostic equation for salinity |
---|
| 458 | IF ( ocean ) THEN |
---|
| 459 | |
---|
| 460 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 461 | |
---|
| 462 | ! |
---|
| 463 | !-- sa-tendency terms with communication |
---|
| 464 | sat = tsc(1) |
---|
| 465 | sbt = tsc(2) |
---|
| 466 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 467 | |
---|
| 468 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 469 | ! |
---|
| 470 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 471 | !-- switched on. Thus: |
---|
| 472 | sat = 1.0 |
---|
| 473 | sbt = 1.0 |
---|
| 474 | ENDIF |
---|
| 475 | tend = 0.0 |
---|
| 476 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 477 | ELSE |
---|
| 478 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 479 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 480 | tend = 0.0 |
---|
| 481 | CALL advec_s_ups( sa, 'sa' ) |
---|
| 482 | ENDIF |
---|
| 483 | ENDIF |
---|
| 484 | ENDIF |
---|
| 485 | |
---|
| 486 | ! |
---|
| 487 | !-- sa terms with no communication |
---|
| 488 | DO i = nxl, nxr |
---|
| 489 | DO j = nys, nyn |
---|
| 490 | ! |
---|
| 491 | !-- Tendency-terms |
---|
| 492 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 493 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
[129] | 494 | wall_salinityflux, tend ) |
---|
[95] | 495 | ELSE |
---|
| 496 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 497 | tend(:,j,i) = 0.0 |
---|
| 498 | CALL advec_s_pw( i, j, sa ) |
---|
| 499 | ELSE |
---|
| 500 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 501 | tend(:,j,i) = 0.0 |
---|
| 502 | CALL advec_s_up( i, j, sa ) |
---|
| 503 | ENDIF |
---|
| 504 | ENDIF |
---|
| 505 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
[129] | 506 | wall_salinityflux, tend ) |
---|
[95] | 507 | ENDIF |
---|
| 508 | |
---|
| 509 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 510 | |
---|
| 511 | ! |
---|
| 512 | !-- Prognostic equation for salinity |
---|
| 513 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 514 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
| 515 | dt_3d * ( & |
---|
| 516 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 517 | ) - & |
---|
| 518 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 519 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 520 | ENDDO |
---|
| 521 | |
---|
| 522 | ! |
---|
| 523 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 524 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 525 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 526 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 527 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 528 | ENDDO |
---|
| 529 | ELSEIF ( intermediate_timestep_count < & |
---|
| 530 | intermediate_timestep_count_max ) THEN |
---|
| 531 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 532 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 533 | 5.3125 * tsa_m(k,j,i) |
---|
| 534 | ENDDO |
---|
| 535 | ENDIF |
---|
| 536 | ENDIF |
---|
| 537 | |
---|
[96] | 538 | ! |
---|
| 539 | !-- Calculate density by the equation of state for seawater |
---|
| 540 | CALL eqn_state_seawater( i, j ) |
---|
| 541 | |
---|
[95] | 542 | ENDDO |
---|
| 543 | ENDDO |
---|
| 544 | |
---|
| 545 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 546 | |
---|
| 547 | ENDIF |
---|
| 548 | |
---|
| 549 | ! |
---|
[1] | 550 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 551 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 552 | |
---|
| 553 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 554 | |
---|
| 555 | ! |
---|
| 556 | !-- Scalar/q-tendency terms with communication |
---|
[70] | 557 | sat = tsc(1) |
---|
| 558 | sbt = tsc(2) |
---|
[1] | 559 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 560 | |
---|
| 561 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 562 | ! |
---|
[70] | 563 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 564 | !-- switched on. Thus: |
---|
| 565 | sat = 1.0 |
---|
| 566 | sbt = 1.0 |
---|
| 567 | ENDIF |
---|
[1] | 568 | tend = 0.0 |
---|
| 569 | CALL advec_s_bc( q, 'q' ) |
---|
| 570 | ELSE |
---|
| 571 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 572 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 573 | tend = 0.0 |
---|
| 574 | CALL advec_s_ups( q, 'q' ) |
---|
| 575 | ENDIF |
---|
| 576 | ENDIF |
---|
| 577 | ENDIF |
---|
| 578 | |
---|
| 579 | ! |
---|
| 580 | !-- Scalar/q-tendency terms with no communication |
---|
| 581 | DO i = nxl, nxr |
---|
| 582 | DO j = nys, nyn |
---|
| 583 | ! |
---|
| 584 | !-- Tendency-terms |
---|
| 585 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 586 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 587 | wall_qflux, tend ) |
---|
[1] | 588 | ELSE |
---|
| 589 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 590 | tend(:,j,i) = 0.0 |
---|
| 591 | CALL advec_s_pw( i, j, q ) |
---|
| 592 | ELSE |
---|
| 593 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 594 | tend(:,j,i) = 0.0 |
---|
| 595 | CALL advec_s_up( i, j, q ) |
---|
| 596 | ENDIF |
---|
| 597 | ENDIF |
---|
| 598 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 599 | THEN |
---|
| 600 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
[129] | 601 | qswst_m, wall_qflux, tend ) |
---|
[19] | 602 | ELSE |
---|
| 603 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
[129] | 604 | wall_qflux, tend ) |
---|
[1] | 605 | ENDIF |
---|
| 606 | ENDIF |
---|
| 607 | |
---|
| 608 | ! |
---|
| 609 | !-- If required compute decrease of total water content due to |
---|
| 610 | !-- precipitation |
---|
| 611 | IF ( precipitation ) THEN |
---|
| 612 | CALL calc_precipitation( i, j ) |
---|
| 613 | ENDIF |
---|
| 614 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 615 | |
---|
| 616 | ! |
---|
| 617 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 618 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 619 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 620 | dt_3d * ( & |
---|
| 621 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 622 | ) - & |
---|
| 623 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 624 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 625 | ENDDO |
---|
| 626 | |
---|
| 627 | ! |
---|
| 628 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 629 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 630 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 631 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 632 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 633 | ENDDO |
---|
| 634 | ELSEIF ( intermediate_timestep_count < & |
---|
| 635 | intermediate_timestep_count_max ) THEN |
---|
[19] | 636 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 637 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 638 | ENDDO |
---|
| 639 | ENDIF |
---|
| 640 | ENDIF |
---|
| 641 | |
---|
| 642 | ENDDO |
---|
| 643 | ENDDO |
---|
| 644 | |
---|
| 645 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 646 | |
---|
| 647 | ENDIF |
---|
| 648 | |
---|
| 649 | ! |
---|
| 650 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 651 | !-- energy (TKE) |
---|
| 652 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 653 | |
---|
| 654 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 655 | |
---|
| 656 | ! |
---|
| 657 | !-- TKE-tendency terms with communication |
---|
| 658 | CALL production_e_init |
---|
[70] | 659 | |
---|
| 660 | sat = tsc(1) |
---|
| 661 | sbt = tsc(2) |
---|
[1] | 662 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 663 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 664 | |
---|
| 665 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 666 | ! |
---|
[70] | 667 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 668 | !-- switched on. Thus: |
---|
| 669 | sat = 1.0 |
---|
| 670 | sbt = 1.0 |
---|
| 671 | ENDIF |
---|
[1] | 672 | tend = 0.0 |
---|
| 673 | CALL advec_s_bc( e, 'e' ) |
---|
| 674 | ELSE |
---|
| 675 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 676 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 677 | tend = 0.0 |
---|
| 678 | CALL advec_s_ups( e, 'e' ) |
---|
| 679 | ENDIF |
---|
| 680 | ENDIF |
---|
| 681 | ENDIF |
---|
| 682 | ENDIF |
---|
| 683 | |
---|
| 684 | ! |
---|
| 685 | !-- TKE-tendency terms with no communication |
---|
| 686 | DO i = nxl, nxr |
---|
| 687 | DO j = nys, nyn |
---|
| 688 | ! |
---|
| 689 | !-- Tendency-terms |
---|
| 690 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
| 691 | .NOT. use_upstream_for_tke ) THEN |
---|
[75] | 692 | IF ( .NOT. humidity ) THEN |
---|
[97] | 693 | IF ( ocean ) THEN |
---|
| 694 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 695 | l_grid, rho, prho_reference, rif, tend, & |
---|
| 696 | zu, zw ) |
---|
| 697 | ELSE |
---|
| 698 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 699 | l_grid, pt, pt_reference, rif, tend, & |
---|
| 700 | zu, zw ) |
---|
| 701 | ENDIF |
---|
[1] | 702 | ELSE |
---|
[97] | 703 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 704 | l_grid, vpt, pt_reference, rif, tend, zu, & |
---|
| 705 | zw ) |
---|
[1] | 706 | ENDIF |
---|
| 707 | ELSE |
---|
| 708 | IF ( use_upstream_for_tke ) THEN |
---|
| 709 | tend(:,j,i) = 0.0 |
---|
| 710 | CALL advec_s_up( i, j, e ) |
---|
| 711 | ELSE |
---|
| 712 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 713 | THEN |
---|
| 714 | tend(:,j,i) = 0.0 |
---|
| 715 | CALL advec_s_pw( i, j, e ) |
---|
| 716 | ELSE |
---|
| 717 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 718 | tend(:,j,i) = 0.0 |
---|
| 719 | CALL advec_s_up( i, j, e ) |
---|
| 720 | ENDIF |
---|
| 721 | ENDIF |
---|
| 722 | ENDIF |
---|
| 723 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 724 | THEN |
---|
[75] | 725 | IF ( .NOT. humidity ) THEN |
---|
[1] | 726 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
[97] | 727 | km_m, l_grid, pt_m, pt_reference, & |
---|
| 728 | rif_m, tend, zu, zw ) |
---|
[1] | 729 | ELSE |
---|
| 730 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
[97] | 731 | km_m, l_grid, vpt_m, pt_reference, & |
---|
| 732 | rif_m, tend, zu, zw ) |
---|
[1] | 733 | ENDIF |
---|
| 734 | ELSE |
---|
[75] | 735 | IF ( .NOT. humidity ) THEN |
---|
[97] | 736 | IF ( ocean ) THEN |
---|
| 737 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 738 | km, l_grid, rho, prho_reference, & |
---|
| 739 | rif, tend, zu, zw ) |
---|
| 740 | ELSE |
---|
| 741 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 742 | km, l_grid, pt, pt_reference, rif, & |
---|
| 743 | tend, zu, zw ) |
---|
| 744 | ENDIF |
---|
[1] | 745 | ELSE |
---|
| 746 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
[97] | 747 | l_grid, vpt, pt_reference, rif, tend, & |
---|
| 748 | zu, zw ) |
---|
[1] | 749 | ENDIF |
---|
| 750 | ENDIF |
---|
| 751 | ENDIF |
---|
| 752 | CALL production_e( i, j ) |
---|
[138] | 753 | |
---|
| 754 | ! |
---|
| 755 | !-- Additional sink term for flows through plant canopies |
---|
| 756 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 4 ) |
---|
| 757 | |
---|
[1] | 758 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 759 | |
---|
| 760 | ! |
---|
| 761 | !-- Prognostic equation for TKE. |
---|
| 762 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 763 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 764 | !-- value is reduced by 90%. |
---|
[19] | 765 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 766 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 767 | dt_3d * ( & |
---|
| 768 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 769 | ) |
---|
| 770 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 771 | ENDDO |
---|
| 772 | |
---|
| 773 | ! |
---|
| 774 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 775 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 776 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 777 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 778 | te_m(k,j,i) = tend(k,j,i) |
---|
| 779 | ENDDO |
---|
| 780 | ELSEIF ( intermediate_timestep_count < & |
---|
| 781 | intermediate_timestep_count_max ) THEN |
---|
[19] | 782 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 783 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 784 | ENDDO |
---|
| 785 | ENDIF |
---|
| 786 | ENDIF |
---|
| 787 | |
---|
| 788 | ENDDO |
---|
| 789 | ENDDO |
---|
| 790 | |
---|
| 791 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 792 | |
---|
| 793 | ENDIF |
---|
| 794 | |
---|
| 795 | |
---|
[63] | 796 | END SUBROUTINE prognostic_equations_noopt |
---|
[1] | 797 | |
---|
| 798 | |
---|
[63] | 799 | SUBROUTINE prognostic_equations_cache |
---|
[1] | 800 | |
---|
| 801 | !------------------------------------------------------------------------------! |
---|
| 802 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 803 | ! be called for the standard Piascek-Williams advection scheme. |
---|
| 804 | ! |
---|
[95] | 805 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 806 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 807 | ! these loops. |
---|
[1] | 808 | ! |
---|
| 809 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 810 | !------------------------------------------------------------------------------! |
---|
| 811 | |
---|
| 812 | IMPLICIT NONE |
---|
| 813 | |
---|
| 814 | CHARACTER (LEN=9) :: time_to_string |
---|
| 815 | INTEGER :: i, j, k |
---|
| 816 | |
---|
| 817 | |
---|
| 818 | ! |
---|
| 819 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 820 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 821 | |
---|
| 822 | |
---|
| 823 | ! |
---|
| 824 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 825 | !-- global communication |
---|
[96] | 826 | CALL calc_mean_profile( pt, 4 ) |
---|
| 827 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 828 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 829 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
| 830 | |
---|
| 831 | |
---|
| 832 | ! |
---|
| 833 | !-- Loop over all prognostic equations |
---|
| 834 | !$OMP PARALLEL private (i,j,k) |
---|
| 835 | !$OMP DO |
---|
[75] | 836 | DO i = nxl, nxr |
---|
| 837 | DO j = nys, nyn |
---|
[1] | 838 | ! |
---|
| 839 | !-- Tendency terms for u-velocity component |
---|
[106] | 840 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
[1] | 841 | |
---|
| 842 | tend(:,j,i) = 0.0 |
---|
| 843 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 844 | CALL advec_u_pw( i, j ) |
---|
| 845 | ELSE |
---|
| 846 | CALL advec_u_up( i, j ) |
---|
| 847 | ENDIF |
---|
| 848 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 849 | THEN |
---|
| 850 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
[102] | 851 | u_m, usws_m, uswst_m, v_m, w_m ) |
---|
[1] | 852 | ELSE |
---|
| 853 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
[102] | 854 | usws, uswst, v, w ) |
---|
[1] | 855 | ENDIF |
---|
| 856 | CALL coriolis( i, j, 1 ) |
---|
[97] | 857 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, & |
---|
| 858 | 4 ) |
---|
[138] | 859 | |
---|
| 860 | ! |
---|
| 861 | !-- Drag by plant canopy |
---|
| 862 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 863 | |
---|
[1] | 864 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 865 | |
---|
| 866 | ! |
---|
| 867 | !-- Prognostic equation for u-velocity component |
---|
| 868 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 869 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 870 | dt_3d * ( & |
---|
| 871 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 872 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 873 | ) - & |
---|
| 874 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 875 | ENDDO |
---|
| 876 | |
---|
| 877 | ! |
---|
| 878 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 879 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 880 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 881 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 882 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 883 | ENDDO |
---|
| 884 | ELSEIF ( intermediate_timestep_count < & |
---|
| 885 | intermediate_timestep_count_max ) THEN |
---|
| 886 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 887 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 888 | ENDDO |
---|
| 889 | ENDIF |
---|
| 890 | ENDIF |
---|
| 891 | |
---|
| 892 | ENDIF |
---|
| 893 | |
---|
| 894 | ! |
---|
| 895 | !-- Tendency terms for v-velocity component |
---|
[106] | 896 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
[1] | 897 | |
---|
| 898 | tend(:,j,i) = 0.0 |
---|
| 899 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 900 | CALL advec_v_pw( i, j ) |
---|
| 901 | ELSE |
---|
| 902 | CALL advec_v_up( i, j ) |
---|
| 903 | ENDIF |
---|
| 904 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 905 | THEN |
---|
| 906 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
[102] | 907 | u_m, v_m, vsws_m, vswst_m, w_m ) |
---|
[1] | 908 | ELSE |
---|
| 909 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[102] | 910 | vsws, vswst, w ) |
---|
[1] | 911 | ENDIF |
---|
| 912 | CALL coriolis( i, j, 2 ) |
---|
[138] | 913 | |
---|
| 914 | ! |
---|
| 915 | !-- Drag by plant canopy |
---|
| 916 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 917 | |
---|
[1] | 918 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 919 | |
---|
| 920 | ! |
---|
| 921 | !-- Prognostic equation for v-velocity component |
---|
| 922 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 923 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 924 | dt_3d * ( & |
---|
| 925 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 926 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 927 | ) - & |
---|
| 928 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 929 | ENDDO |
---|
| 930 | |
---|
| 931 | ! |
---|
| 932 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 933 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 934 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 935 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 936 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 937 | ENDDO |
---|
| 938 | ELSEIF ( intermediate_timestep_count < & |
---|
| 939 | intermediate_timestep_count_max ) THEN |
---|
| 940 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 941 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 942 | ENDDO |
---|
| 943 | ENDIF |
---|
| 944 | ENDIF |
---|
| 945 | |
---|
| 946 | ENDIF |
---|
| 947 | |
---|
| 948 | ! |
---|
| 949 | !-- Tendency terms for w-velocity component |
---|
[106] | 950 | tend(:,j,i) = 0.0 |
---|
| 951 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 952 | CALL advec_w_pw( i, j ) |
---|
| 953 | ELSE |
---|
| 954 | CALL advec_w_up( i, j ) |
---|
| 955 | ENDIF |
---|
| 956 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 957 | THEN |
---|
| 958 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
| 959 | km_damp_y, tend, u_m, v_m, w_m ) |
---|
| 960 | ELSE |
---|
| 961 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
| 962 | tend, u, v, w ) |
---|
| 963 | ENDIF |
---|
| 964 | CALL coriolis( i, j, 3 ) |
---|
| 965 | IF ( ocean ) THEN |
---|
| 966 | CALL buoyancy( i, j, rho, prho_reference, 3, 64 ) |
---|
| 967 | ELSE |
---|
| 968 | IF ( .NOT. humidity ) THEN |
---|
| 969 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
| 970 | ELSE |
---|
| 971 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
| 972 | ENDIF |
---|
| 973 | ENDIF |
---|
[138] | 974 | |
---|
| 975 | ! |
---|
| 976 | !-- Drag by plant canopy |
---|
| 977 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 978 | |
---|
[106] | 979 | CALL user_actions( i, j, 'w-tendency' ) |
---|
[1] | 980 | |
---|
[106] | 981 | ! |
---|
| 982 | !-- Prognostic equation for w-velocity component |
---|
| 983 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 984 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 985 | dt_3d * ( & |
---|
| 986 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 987 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 988 | ) - & |
---|
| 989 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 990 | ENDDO |
---|
| 991 | |
---|
| 992 | ! |
---|
| 993 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 994 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 995 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 996 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 997 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 998 | ENDDO |
---|
| 999 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1000 | intermediate_timestep_count_max ) THEN |
---|
| 1001 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1002 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1003 | ENDDO |
---|
| 1004 | ENDIF |
---|
| 1005 | ENDIF |
---|
| 1006 | |
---|
| 1007 | ! |
---|
| 1008 | !-- Tendency terms for potential temperature |
---|
| 1009 | tend(:,j,i) = 0.0 |
---|
| 1010 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1011 | CALL advec_s_pw( i, j, pt ) |
---|
| 1012 | ELSE |
---|
| 1013 | CALL advec_s_up( i, j, pt ) |
---|
| 1014 | ENDIF |
---|
| 1015 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 1016 | THEN |
---|
| 1017 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
[129] | 1018 | tswst_m, wall_heatflux, tend ) |
---|
[106] | 1019 | ELSE |
---|
[129] | 1020 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, & |
---|
| 1021 | wall_heatflux, tend ) |
---|
[106] | 1022 | ENDIF |
---|
| 1023 | |
---|
| 1024 | ! |
---|
| 1025 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 1026 | !-- processes |
---|
| 1027 | IF ( radiation ) THEN |
---|
| 1028 | CALL calc_radiation( i, j ) |
---|
| 1029 | ENDIF |
---|
| 1030 | |
---|
| 1031 | ! |
---|
| 1032 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1033 | IF ( precipitation ) THEN |
---|
| 1034 | CALL impact_of_latent_heat( i, j ) |
---|
| 1035 | ENDIF |
---|
| 1036 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 1037 | |
---|
| 1038 | ! |
---|
| 1039 | !-- Prognostic equation for potential temperature |
---|
| 1040 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1041 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
| 1042 | dt_3d * ( & |
---|
| 1043 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1044 | ) - & |
---|
| 1045 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1046 | ENDDO |
---|
| 1047 | |
---|
| 1048 | ! |
---|
| 1049 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1050 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1051 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1052 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1053 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1054 | ENDDO |
---|
| 1055 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1056 | intermediate_timestep_count_max ) THEN |
---|
| 1057 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1058 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1059 | 5.3125 * tpt_m(k,j,i) |
---|
| 1060 | ENDDO |
---|
| 1061 | ENDIF |
---|
| 1062 | ENDIF |
---|
| 1063 | |
---|
| 1064 | ! |
---|
| 1065 | !-- If required, compute prognostic equation for salinity |
---|
| 1066 | IF ( ocean ) THEN |
---|
| 1067 | |
---|
| 1068 | ! |
---|
| 1069 | !-- Tendency-terms for salinity |
---|
[1] | 1070 | tend(:,j,i) = 0.0 |
---|
[106] | 1071 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
[1] | 1072 | THEN |
---|
[106] | 1073 | CALL advec_s_pw( i, j, sa ) |
---|
[1] | 1074 | ELSE |
---|
[106] | 1075 | CALL advec_s_up( i, j, sa ) |
---|
[1] | 1076 | ENDIF |
---|
[106] | 1077 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
[129] | 1078 | wall_salinityflux, tend ) |
---|
[1] | 1079 | |
---|
[106] | 1080 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 1081 | |
---|
[1] | 1082 | ! |
---|
[106] | 1083 | !-- Prognostic equation for salinity |
---|
| 1084 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1085 | sa_p(k,j,i) = tsc(1) * sa(k,j,i) + & |
---|
| 1086 | dt_3d * ( & |
---|
| 1087 | tsc(2) * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 1088 | ) - & |
---|
| 1089 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 1090 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
[1] | 1091 | ENDDO |
---|
| 1092 | |
---|
| 1093 | ! |
---|
| 1094 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1095 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1096 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[106] | 1097 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1098 | tsa_m(k,j,i) = tend(k,j,i) |
---|
[1] | 1099 | ENDDO |
---|
| 1100 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1101 | intermediate_timestep_count_max ) THEN |
---|
[106] | 1102 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1103 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1104 | 5.3125 * tsa_m(k,j,i) |
---|
[1] | 1105 | ENDDO |
---|
| 1106 | ENDIF |
---|
| 1107 | ENDIF |
---|
| 1108 | |
---|
| 1109 | ! |
---|
[106] | 1110 | !-- Calculate density by the equation of state for seawater |
---|
| 1111 | CALL eqn_state_seawater( i, j ) |
---|
| 1112 | |
---|
| 1113 | ENDIF |
---|
| 1114 | |
---|
| 1115 | ! |
---|
| 1116 | !-- If required, compute prognostic equation for total water content / |
---|
| 1117 | !-- scalar |
---|
| 1118 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1119 | |
---|
| 1120 | ! |
---|
| 1121 | !-- Tendency-terms for total water content / scalar |
---|
[1] | 1122 | tend(:,j,i) = 0.0 |
---|
[106] | 1123 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 1124 | THEN |
---|
| 1125 | CALL advec_s_pw( i, j, q ) |
---|
[1] | 1126 | ELSE |
---|
[106] | 1127 | CALL advec_s_up( i, j, q ) |
---|
[1] | 1128 | ENDIF |
---|
[106] | 1129 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
[1] | 1130 | THEN |
---|
[106] | 1131 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
[129] | 1132 | qswst_m, wall_qflux, tend ) |
---|
[1] | 1133 | ELSE |
---|
[106] | 1134 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
[129] | 1135 | wall_qflux, tend ) |
---|
[1] | 1136 | ENDIF |
---|
[106] | 1137 | |
---|
[1] | 1138 | ! |
---|
[106] | 1139 | !-- If required compute decrease of total water content due to |
---|
| 1140 | !-- precipitation |
---|
[1] | 1141 | IF ( precipitation ) THEN |
---|
[106] | 1142 | CALL calc_precipitation( i, j ) |
---|
[1] | 1143 | ENDIF |
---|
[106] | 1144 | CALL user_actions( i, j, 'q-tendency' ) |
---|
[1] | 1145 | |
---|
| 1146 | ! |
---|
[106] | 1147 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 1148 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1149 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
| 1150 | dt_3d * ( & |
---|
| 1151 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1152 | ) - & |
---|
| 1153 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
| 1154 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 1155 | ENDDO |
---|
| 1156 | |
---|
| 1157 | ! |
---|
| 1158 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1159 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1160 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 1161 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1162 | tq_m(k,j,i) = tend(k,j,i) |
---|
[1] | 1163 | ENDDO |
---|
| 1164 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1165 | intermediate_timestep_count_max ) THEN |
---|
[19] | 1166 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1167 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1168 | 5.3125 * tq_m(k,j,i) |
---|
[1] | 1169 | ENDDO |
---|
| 1170 | ENDIF |
---|
| 1171 | ENDIF |
---|
| 1172 | |
---|
[106] | 1173 | ENDIF |
---|
[95] | 1174 | |
---|
| 1175 | ! |
---|
[106] | 1176 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1177 | !-- energy (TKE) |
---|
| 1178 | IF ( .NOT. constant_diffusion ) THEN |
---|
[95] | 1179 | |
---|
| 1180 | ! |
---|
[106] | 1181 | !-- Tendency-terms for TKE |
---|
| 1182 | tend(:,j,i) = 0.0 |
---|
| 1183 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 1184 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
| 1185 | CALL advec_s_pw( i, j, e ) |
---|
| 1186 | ELSE |
---|
| 1187 | CALL advec_s_up( i, j, e ) |
---|
[95] | 1188 | ENDIF |
---|
[106] | 1189 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 1190 | THEN |
---|
| 1191 | IF ( .NOT. humidity ) THEN |
---|
| 1192 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 1193 | km_m, l_grid, pt_m, pt_reference, & |
---|
| 1194 | rif_m, tend, zu, zw ) |
---|
[1] | 1195 | ELSE |
---|
[106] | 1196 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 1197 | km_m, l_grid, vpt_m, pt_reference, & |
---|
| 1198 | rif_m, tend, zu, zw ) |
---|
[1] | 1199 | ENDIF |
---|
[106] | 1200 | ELSE |
---|
| 1201 | IF ( .NOT. humidity ) THEN |
---|
| 1202 | IF ( ocean ) THEN |
---|
| 1203 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 1204 | km, l_grid, rho, prho_reference, & |
---|
| 1205 | rif, tend, zu, zw ) |
---|
[1] | 1206 | ELSE |
---|
[106] | 1207 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 1208 | km, l_grid, pt, pt_reference, rif, & |
---|
| 1209 | tend, zu, zw ) |
---|
[1] | 1210 | ENDIF |
---|
| 1211 | ELSE |
---|
[106] | 1212 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 1213 | l_grid, vpt, pt_reference, rif, tend, & |
---|
| 1214 | zu, zw ) |
---|
[1] | 1215 | ENDIF |
---|
[106] | 1216 | ENDIF |
---|
| 1217 | CALL production_e( i, j ) |
---|
[138] | 1218 | |
---|
| 1219 | ! |
---|
| 1220 | !-- Additional sink term for flows through plant canopies |
---|
| 1221 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 4 ) |
---|
| 1222 | |
---|
[106] | 1223 | CALL user_actions( i, j, 'e-tendency' ) |
---|
[1] | 1224 | |
---|
| 1225 | ! |
---|
[106] | 1226 | !-- Prognostic equation for TKE. |
---|
| 1227 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1228 | !-- reasons in the course of the integration. In such cases the old |
---|
| 1229 | !-- TKE value is reduced by 90%. |
---|
| 1230 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1231 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
| 1232 | dt_3d * ( & |
---|
| 1233 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 1234 | ) |
---|
| 1235 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1236 | ENDDO |
---|
[1] | 1237 | |
---|
| 1238 | ! |
---|
[106] | 1239 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1240 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1241 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1242 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1243 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1244 | ENDDO |
---|
| 1245 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1246 | intermediate_timestep_count_max ) THEN |
---|
| 1247 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1248 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1249 | 5.3125 * te_m(k,j,i) |
---|
| 1250 | ENDDO |
---|
[1] | 1251 | ENDIF |
---|
[106] | 1252 | ENDIF |
---|
[1] | 1253 | |
---|
[106] | 1254 | ENDIF ! TKE equation |
---|
[1] | 1255 | |
---|
| 1256 | ENDDO |
---|
| 1257 | ENDDO |
---|
| 1258 | !$OMP END PARALLEL |
---|
| 1259 | |
---|
| 1260 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 1261 | |
---|
| 1262 | |
---|
[63] | 1263 | END SUBROUTINE prognostic_equations_cache |
---|
[1] | 1264 | |
---|
| 1265 | |
---|
[63] | 1266 | SUBROUTINE prognostic_equations_vector |
---|
[1] | 1267 | |
---|
| 1268 | !------------------------------------------------------------------------------! |
---|
| 1269 | ! Version for vector machines |
---|
| 1270 | !------------------------------------------------------------------------------! |
---|
| 1271 | |
---|
| 1272 | IMPLICIT NONE |
---|
| 1273 | |
---|
| 1274 | CHARACTER (LEN=9) :: time_to_string |
---|
| 1275 | INTEGER :: i, j, k |
---|
| 1276 | REAL :: sat, sbt |
---|
| 1277 | |
---|
| 1278 | ! |
---|
| 1279 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 1280 | !-- global communication |
---|
[96] | 1281 | CALL calc_mean_profile( pt, 4 ) |
---|
| 1282 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 1283 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 1284 | |
---|
| 1285 | ! |
---|
| 1286 | !-- u-velocity component |
---|
| 1287 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1288 | |
---|
| 1289 | ! |
---|
| 1290 | !-- u-tendency terms with communication |
---|
| 1291 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1292 | tend = 0.0 |
---|
| 1293 | CALL advec_u_ups |
---|
| 1294 | ENDIF |
---|
| 1295 | |
---|
| 1296 | ! |
---|
| 1297 | !-- u-tendency terms with no communication |
---|
| 1298 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1299 | tend = 0.0 |
---|
| 1300 | CALL advec_u_pw |
---|
| 1301 | ELSE |
---|
| 1302 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1303 | tend = 0.0 |
---|
| 1304 | CALL advec_u_up |
---|
| 1305 | ENDIF |
---|
| 1306 | ENDIF |
---|
| 1307 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[102] | 1308 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, & |
---|
| 1309 | uswst_m, v_m, w_m ) |
---|
[1] | 1310 | ELSE |
---|
[102] | 1311 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, uswst, v, w ) |
---|
[1] | 1312 | ENDIF |
---|
| 1313 | CALL coriolis( 1 ) |
---|
[97] | 1314 | IF ( sloping_surface ) CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
[138] | 1315 | |
---|
| 1316 | ! |
---|
| 1317 | !-- Drag by plant canopy |
---|
| 1318 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1319 | |
---|
[1] | 1320 | CALL user_actions( 'u-tendency' ) |
---|
| 1321 | |
---|
| 1322 | ! |
---|
| 1323 | !-- Prognostic equation for u-velocity component |
---|
[106] | 1324 | DO i = nxlu, nxr |
---|
[1] | 1325 | DO j = nys, nyn |
---|
| 1326 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1327 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 1328 | dt_3d * ( & |
---|
| 1329 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 1330 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 1331 | ) - & |
---|
| 1332 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1333 | ENDDO |
---|
| 1334 | ENDDO |
---|
| 1335 | ENDDO |
---|
| 1336 | |
---|
| 1337 | ! |
---|
| 1338 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1339 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1340 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[106] | 1341 | DO i = nxlu, nxr |
---|
[1] | 1342 | DO j = nys, nyn |
---|
| 1343 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1344 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1345 | ENDDO |
---|
| 1346 | ENDDO |
---|
| 1347 | ENDDO |
---|
| 1348 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1349 | intermediate_timestep_count_max ) THEN |
---|
[106] | 1350 | DO i = nxlu, nxr |
---|
[1] | 1351 | DO j = nys, nyn |
---|
| 1352 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1353 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 1354 | ENDDO |
---|
| 1355 | ENDDO |
---|
| 1356 | ENDDO |
---|
| 1357 | ENDIF |
---|
| 1358 | ENDIF |
---|
| 1359 | |
---|
| 1360 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1361 | |
---|
| 1362 | ! |
---|
| 1363 | !-- v-velocity component |
---|
| 1364 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1365 | |
---|
| 1366 | ! |
---|
| 1367 | !-- v-tendency terms with communication |
---|
| 1368 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1369 | tend = 0.0 |
---|
| 1370 | CALL advec_v_ups |
---|
| 1371 | ENDIF |
---|
| 1372 | |
---|
| 1373 | ! |
---|
| 1374 | !-- v-tendency terms with no communication |
---|
| 1375 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1376 | tend = 0.0 |
---|
| 1377 | CALL advec_v_pw |
---|
| 1378 | ELSE |
---|
| 1379 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1380 | tend = 0.0 |
---|
| 1381 | CALL advec_v_up |
---|
| 1382 | ENDIF |
---|
| 1383 | ENDIF |
---|
| 1384 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1385 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
[102] | 1386 | vswst_m, w_m ) |
---|
[1] | 1387 | ELSE |
---|
[102] | 1388 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, vswst, w ) |
---|
[1] | 1389 | ENDIF |
---|
| 1390 | CALL coriolis( 2 ) |
---|
[138] | 1391 | |
---|
| 1392 | ! |
---|
| 1393 | !-- Drag by plant canopy |
---|
| 1394 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
[1] | 1395 | CALL user_actions( 'v-tendency' ) |
---|
| 1396 | |
---|
| 1397 | ! |
---|
| 1398 | !-- Prognostic equation for v-velocity component |
---|
| 1399 | DO i = nxl, nxr |
---|
[106] | 1400 | DO j = nysv, nyn |
---|
[1] | 1401 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1402 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 1403 | dt_3d * ( & |
---|
| 1404 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 1405 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 1406 | ) - & |
---|
| 1407 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1408 | ENDDO |
---|
| 1409 | ENDDO |
---|
| 1410 | ENDDO |
---|
| 1411 | |
---|
| 1412 | ! |
---|
| 1413 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1414 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1415 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1416 | DO i = nxl, nxr |
---|
[106] | 1417 | DO j = nysv, nyn |
---|
[1] | 1418 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1419 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1420 | ENDDO |
---|
| 1421 | ENDDO |
---|
| 1422 | ENDDO |
---|
| 1423 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1424 | intermediate_timestep_count_max ) THEN |
---|
| 1425 | DO i = nxl, nxr |
---|
[106] | 1426 | DO j = nysv, nyn |
---|
[1] | 1427 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1428 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1429 | ENDDO |
---|
| 1430 | ENDDO |
---|
| 1431 | ENDDO |
---|
| 1432 | ENDIF |
---|
| 1433 | ENDIF |
---|
| 1434 | |
---|
| 1435 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1436 | |
---|
| 1437 | ! |
---|
| 1438 | !-- w-velocity component |
---|
| 1439 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1440 | |
---|
| 1441 | ! |
---|
| 1442 | !-- w-tendency terms with communication |
---|
| 1443 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1444 | tend = 0.0 |
---|
| 1445 | CALL advec_w_ups |
---|
| 1446 | ENDIF |
---|
| 1447 | |
---|
| 1448 | ! |
---|
| 1449 | !-- w-tendency terms with no communication |
---|
| 1450 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1451 | tend = 0.0 |
---|
| 1452 | CALL advec_w_pw |
---|
| 1453 | ELSE |
---|
| 1454 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1455 | tend = 0.0 |
---|
| 1456 | CALL advec_w_up |
---|
| 1457 | ENDIF |
---|
| 1458 | ENDIF |
---|
| 1459 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1460 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
[57] | 1461 | v_m, w_m ) |
---|
[1] | 1462 | ELSE |
---|
[57] | 1463 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w ) |
---|
[1] | 1464 | ENDIF |
---|
| 1465 | CALL coriolis( 3 ) |
---|
[97] | 1466 | IF ( ocean ) THEN |
---|
| 1467 | CALL buoyancy( rho, prho_reference, 3, 64 ) |
---|
[1] | 1468 | ELSE |
---|
[97] | 1469 | IF ( .NOT. humidity ) THEN |
---|
| 1470 | CALL buoyancy( pt, pt_reference, 3, 4 ) |
---|
| 1471 | ELSE |
---|
| 1472 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
| 1473 | ENDIF |
---|
[1] | 1474 | ENDIF |
---|
[138] | 1475 | |
---|
| 1476 | ! |
---|
| 1477 | !-- Drag by plant canopy |
---|
| 1478 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1479 | |
---|
[1] | 1480 | CALL user_actions( 'w-tendency' ) |
---|
| 1481 | |
---|
| 1482 | ! |
---|
| 1483 | !-- Prognostic equation for w-velocity component |
---|
| 1484 | DO i = nxl, nxr |
---|
| 1485 | DO j = nys, nyn |
---|
| 1486 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1487 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 1488 | dt_3d * ( & |
---|
| 1489 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 1490 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 1491 | ) - & |
---|
| 1492 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1493 | ENDDO |
---|
| 1494 | ENDDO |
---|
| 1495 | ENDDO |
---|
| 1496 | |
---|
| 1497 | ! |
---|
| 1498 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1499 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1500 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1501 | DO i = nxl, nxr |
---|
| 1502 | DO j = nys, nyn |
---|
| 1503 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1504 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1505 | ENDDO |
---|
| 1506 | ENDDO |
---|
| 1507 | ENDDO |
---|
| 1508 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1509 | intermediate_timestep_count_max ) THEN |
---|
| 1510 | DO i = nxl, nxr |
---|
| 1511 | DO j = nys, nyn |
---|
| 1512 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1513 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1514 | ENDDO |
---|
| 1515 | ENDDO |
---|
| 1516 | ENDDO |
---|
| 1517 | ENDIF |
---|
| 1518 | ENDIF |
---|
| 1519 | |
---|
| 1520 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1521 | |
---|
| 1522 | ! |
---|
| 1523 | !-- potential temperature |
---|
| 1524 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1525 | |
---|
| 1526 | ! |
---|
| 1527 | !-- pt-tendency terms with communication |
---|
[63] | 1528 | sat = tsc(1) |
---|
| 1529 | sbt = tsc(2) |
---|
[1] | 1530 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1531 | |
---|
| 1532 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1533 | ! |
---|
[63] | 1534 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1535 | !-- switched on. Thus: |
---|
| 1536 | sat = 1.0 |
---|
| 1537 | sbt = 1.0 |
---|
| 1538 | ENDIF |
---|
[1] | 1539 | tend = 0.0 |
---|
| 1540 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1541 | ELSE |
---|
| 1542 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 1543 | tend = 0.0 |
---|
| 1544 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 1545 | ENDIF |
---|
| 1546 | ENDIF |
---|
| 1547 | |
---|
| 1548 | ! |
---|
| 1549 | !-- pt-tendency terms with no communication |
---|
| 1550 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 1551 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
| 1552 | tend ) |
---|
[1] | 1553 | ELSE |
---|
| 1554 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1555 | tend = 0.0 |
---|
| 1556 | CALL advec_s_pw( pt ) |
---|
| 1557 | ELSE |
---|
| 1558 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1559 | tend = 0.0 |
---|
| 1560 | CALL advec_s_up( pt ) |
---|
| 1561 | ENDIF |
---|
| 1562 | ENDIF |
---|
| 1563 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[129] | 1564 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tswst_m, & |
---|
| 1565 | wall_heatflux, tend ) |
---|
[1] | 1566 | ELSE |
---|
[129] | 1567 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, wall_heatflux, & |
---|
| 1568 | tend ) |
---|
[1] | 1569 | ENDIF |
---|
| 1570 | ENDIF |
---|
| 1571 | |
---|
| 1572 | ! |
---|
| 1573 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 1574 | !-- processes |
---|
| 1575 | IF ( radiation ) THEN |
---|
| 1576 | CALL calc_radiation |
---|
| 1577 | ENDIF |
---|
| 1578 | |
---|
| 1579 | ! |
---|
| 1580 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1581 | IF ( precipitation ) THEN |
---|
| 1582 | CALL impact_of_latent_heat |
---|
| 1583 | ENDIF |
---|
| 1584 | CALL user_actions( 'pt-tendency' ) |
---|
| 1585 | |
---|
| 1586 | ! |
---|
| 1587 | !-- Prognostic equation for potential temperature |
---|
| 1588 | DO i = nxl, nxr |
---|
| 1589 | DO j = nys, nyn |
---|
[19] | 1590 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1591 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 1592 | dt_3d * ( & |
---|
| 1593 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1594 | ) - & |
---|
| 1595 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1596 | ENDDO |
---|
| 1597 | ENDDO |
---|
| 1598 | ENDDO |
---|
| 1599 | |
---|
| 1600 | ! |
---|
| 1601 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1602 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1603 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1604 | DO i = nxl, nxr |
---|
| 1605 | DO j = nys, nyn |
---|
[19] | 1606 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1607 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1608 | ENDDO |
---|
| 1609 | ENDDO |
---|
| 1610 | ENDDO |
---|
| 1611 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1612 | intermediate_timestep_count_max ) THEN |
---|
| 1613 | DO i = nxl, nxr |
---|
| 1614 | DO j = nys, nyn |
---|
[19] | 1615 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1616 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 1617 | ENDDO |
---|
| 1618 | ENDDO |
---|
| 1619 | ENDDO |
---|
| 1620 | ENDIF |
---|
| 1621 | ENDIF |
---|
| 1622 | |
---|
| 1623 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1624 | |
---|
| 1625 | ! |
---|
[95] | 1626 | !-- If required, compute prognostic equation for salinity |
---|
| 1627 | IF ( ocean ) THEN |
---|
| 1628 | |
---|
| 1629 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1630 | |
---|
| 1631 | ! |
---|
| 1632 | !-- sa-tendency terms with communication |
---|
| 1633 | sat = tsc(1) |
---|
| 1634 | sbt = tsc(2) |
---|
| 1635 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1636 | |
---|
| 1637 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1638 | ! |
---|
| 1639 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1640 | !-- switched on. Thus: |
---|
| 1641 | sat = 1.0 |
---|
| 1642 | sbt = 1.0 |
---|
| 1643 | ENDIF |
---|
| 1644 | tend = 0.0 |
---|
| 1645 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 1646 | ELSE |
---|
| 1647 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1648 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1649 | tend = 0.0 |
---|
| 1650 | CALL advec_s_ups( sa, 'sa' ) |
---|
| 1651 | ENDIF |
---|
| 1652 | ENDIF |
---|
| 1653 | ENDIF |
---|
| 1654 | |
---|
| 1655 | ! |
---|
[129] | 1656 | !-- sa-tendency terms with no communication |
---|
[95] | 1657 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 1658 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 1659 | wall_salinityflux, tend ) |
---|
[95] | 1660 | ELSE |
---|
| 1661 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1662 | tend = 0.0 |
---|
| 1663 | CALL advec_s_pw( sa ) |
---|
| 1664 | ELSE |
---|
| 1665 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1666 | tend = 0.0 |
---|
| 1667 | CALL advec_s_up( sa ) |
---|
| 1668 | ENDIF |
---|
| 1669 | ENDIF |
---|
[129] | 1670 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 1671 | wall_salinityflux, tend ) |
---|
[95] | 1672 | ENDIF |
---|
| 1673 | |
---|
| 1674 | CALL user_actions( 'sa-tendency' ) |
---|
| 1675 | |
---|
| 1676 | ! |
---|
| 1677 | !-- Prognostic equation for salinity |
---|
| 1678 | DO i = nxl, nxr |
---|
| 1679 | DO j = nys, nyn |
---|
| 1680 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1681 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
| 1682 | dt_3d * ( & |
---|
| 1683 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 1684 | ) - & |
---|
| 1685 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 1686 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1687 | ENDDO |
---|
| 1688 | ENDDO |
---|
| 1689 | ENDDO |
---|
| 1690 | |
---|
| 1691 | ! |
---|
| 1692 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1693 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1694 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1695 | DO i = nxl, nxr |
---|
| 1696 | DO j = nys, nyn |
---|
| 1697 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1698 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1699 | ENDDO |
---|
| 1700 | ENDDO |
---|
| 1701 | ENDDO |
---|
| 1702 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1703 | intermediate_timestep_count_max ) THEN |
---|
| 1704 | DO i = nxl, nxr |
---|
| 1705 | DO j = nys, nyn |
---|
| 1706 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1707 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1708 | 5.3125 * tsa_m(k,j,i) |
---|
| 1709 | ENDDO |
---|
| 1710 | ENDDO |
---|
| 1711 | ENDDO |
---|
| 1712 | ENDIF |
---|
| 1713 | ENDIF |
---|
| 1714 | |
---|
| 1715 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1716 | |
---|
[96] | 1717 | ! |
---|
| 1718 | !-- Calculate density by the equation of state for seawater |
---|
| 1719 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1720 | CALL eqn_state_seawater |
---|
| 1721 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1722 | |
---|
[95] | 1723 | ENDIF |
---|
| 1724 | |
---|
| 1725 | ! |
---|
[1] | 1726 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 1727 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 1728 | |
---|
| 1729 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1730 | |
---|
| 1731 | ! |
---|
| 1732 | !-- Scalar/q-tendency terms with communication |
---|
[63] | 1733 | sat = tsc(1) |
---|
| 1734 | sbt = tsc(2) |
---|
[1] | 1735 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1736 | |
---|
| 1737 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1738 | ! |
---|
[63] | 1739 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1740 | !-- switched on. Thus: |
---|
| 1741 | sat = 1.0 |
---|
| 1742 | sbt = 1.0 |
---|
| 1743 | ENDIF |
---|
[1] | 1744 | tend = 0.0 |
---|
| 1745 | CALL advec_s_bc( q, 'q' ) |
---|
| 1746 | ELSE |
---|
| 1747 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1748 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1749 | tend = 0.0 |
---|
| 1750 | CALL advec_s_ups( q, 'q' ) |
---|
| 1751 | ENDIF |
---|
| 1752 | ENDIF |
---|
| 1753 | ENDIF |
---|
| 1754 | |
---|
| 1755 | ! |
---|
| 1756 | !-- Scalar/q-tendency terms with no communication |
---|
| 1757 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[129] | 1758 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, wall_qflux, tend ) |
---|
[1] | 1759 | ELSE |
---|
| 1760 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1761 | tend = 0.0 |
---|
| 1762 | CALL advec_s_pw( q ) |
---|
| 1763 | ELSE |
---|
| 1764 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1765 | tend = 0.0 |
---|
| 1766 | CALL advec_s_up( q ) |
---|
| 1767 | ENDIF |
---|
| 1768 | ENDIF |
---|
| 1769 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[129] | 1770 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, qswst_m, & |
---|
| 1771 | wall_qflux, tend ) |
---|
[1] | 1772 | ELSE |
---|
[129] | 1773 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 1774 | wall_qflux, tend ) |
---|
[1] | 1775 | ENDIF |
---|
| 1776 | ENDIF |
---|
| 1777 | |
---|
| 1778 | ! |
---|
| 1779 | !-- If required compute decrease of total water content due to |
---|
| 1780 | !-- precipitation |
---|
| 1781 | IF ( precipitation ) THEN |
---|
| 1782 | CALL calc_precipitation |
---|
| 1783 | ENDIF |
---|
| 1784 | CALL user_actions( 'q-tendency' ) |
---|
| 1785 | |
---|
| 1786 | ! |
---|
| 1787 | !-- Prognostic equation for total water content / scalar |
---|
| 1788 | DO i = nxl, nxr |
---|
| 1789 | DO j = nys, nyn |
---|
[19] | 1790 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1791 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 1792 | dt_3d * ( & |
---|
| 1793 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1794 | ) - & |
---|
| 1795 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 1796 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 1797 | ENDDO |
---|
| 1798 | ENDDO |
---|
| 1799 | ENDDO |
---|
| 1800 | |
---|
| 1801 | ! |
---|
| 1802 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1803 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1804 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1805 | DO i = nxl, nxr |
---|
| 1806 | DO j = nys, nyn |
---|
[19] | 1807 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1808 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1809 | ENDDO |
---|
| 1810 | ENDDO |
---|
| 1811 | ENDDO |
---|
| 1812 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1813 | intermediate_timestep_count_max ) THEN |
---|
| 1814 | DO i = nxl, nxr |
---|
| 1815 | DO j = nys, nyn |
---|
[19] | 1816 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1817 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1818 | ENDDO |
---|
| 1819 | ENDDO |
---|
| 1820 | ENDDO |
---|
| 1821 | ENDIF |
---|
| 1822 | ENDIF |
---|
| 1823 | |
---|
| 1824 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1825 | |
---|
| 1826 | ENDIF |
---|
| 1827 | |
---|
| 1828 | ! |
---|
| 1829 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1830 | !-- energy (TKE) |
---|
| 1831 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1832 | |
---|
| 1833 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1834 | |
---|
| 1835 | ! |
---|
| 1836 | !-- TKE-tendency terms with communication |
---|
| 1837 | CALL production_e_init |
---|
[63] | 1838 | |
---|
| 1839 | sat = tsc(1) |
---|
| 1840 | sbt = tsc(2) |
---|
[1] | 1841 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1842 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1843 | |
---|
| 1844 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1845 | ! |
---|
[63] | 1846 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1847 | !-- switched on. Thus: |
---|
| 1848 | sat = 1.0 |
---|
| 1849 | sbt = 1.0 |
---|
| 1850 | ENDIF |
---|
[1] | 1851 | tend = 0.0 |
---|
| 1852 | CALL advec_s_bc( e, 'e' ) |
---|
| 1853 | ELSE |
---|
| 1854 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1855 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1856 | tend = 0.0 |
---|
| 1857 | CALL advec_s_ups( e, 'e' ) |
---|
| 1858 | ENDIF |
---|
| 1859 | ENDIF |
---|
| 1860 | ENDIF |
---|
| 1861 | ENDIF |
---|
| 1862 | |
---|
| 1863 | ! |
---|
| 1864 | !-- TKE-tendency terms with no communication |
---|
| 1865 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
| 1866 | THEN |
---|
[75] | 1867 | IF ( .NOT. humidity ) THEN |
---|
[97] | 1868 | IF ( ocean ) THEN |
---|
| 1869 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, rho, & |
---|
| 1870 | prho_reference, rif, tend, zu, zw ) |
---|
| 1871 | ELSE |
---|
| 1872 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
| 1873 | pt_reference, rif, tend, zu, zw ) |
---|
| 1874 | ENDIF |
---|
[1] | 1875 | ELSE |
---|
| 1876 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
[97] | 1877 | pt_reference, rif, tend, zu, zw ) |
---|
[1] | 1878 | ENDIF |
---|
| 1879 | ELSE |
---|
| 1880 | IF ( use_upstream_for_tke ) THEN |
---|
| 1881 | tend = 0.0 |
---|
| 1882 | CALL advec_s_up( e ) |
---|
| 1883 | ELSE |
---|
| 1884 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1885 | tend = 0.0 |
---|
| 1886 | CALL advec_s_pw( e ) |
---|
| 1887 | ELSE |
---|
| 1888 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1889 | tend = 0.0 |
---|
| 1890 | CALL advec_s_up( e ) |
---|
| 1891 | ENDIF |
---|
| 1892 | ENDIF |
---|
| 1893 | ENDIF |
---|
| 1894 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[75] | 1895 | IF ( .NOT. humidity ) THEN |
---|
[1] | 1896 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
[97] | 1897 | pt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
[1] | 1898 | ELSE |
---|
| 1899 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
[97] | 1900 | vpt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
[1] | 1901 | ENDIF |
---|
| 1902 | ELSE |
---|
[75] | 1903 | IF ( .NOT. humidity ) THEN |
---|
[97] | 1904 | IF ( ocean ) THEN |
---|
| 1905 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
| 1906 | rho, prho_reference, rif, tend, zu, zw ) |
---|
| 1907 | ELSE |
---|
| 1908 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
| 1909 | pt, pt_reference, rif, tend, zu, zw ) |
---|
| 1910 | ENDIF |
---|
[1] | 1911 | ELSE |
---|
| 1912 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
[97] | 1913 | pt_reference, rif, tend, zu, zw ) |
---|
[1] | 1914 | ENDIF |
---|
| 1915 | ENDIF |
---|
| 1916 | ENDIF |
---|
| 1917 | CALL production_e |
---|
[138] | 1918 | |
---|
| 1919 | ! |
---|
| 1920 | !-- Additional sink term for flows through plant canopies |
---|
| 1921 | IF ( plant_canopy ) CALL plant_canopy_model( 4 ) |
---|
[1] | 1922 | CALL user_actions( 'e-tendency' ) |
---|
| 1923 | |
---|
| 1924 | ! |
---|
| 1925 | !-- Prognostic equation for TKE. |
---|
| 1926 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1927 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1928 | !-- value is reduced by 90%. |
---|
| 1929 | DO i = nxl, nxr |
---|
| 1930 | DO j = nys, nyn |
---|
[19] | 1931 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1932 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 1933 | dt_3d * ( & |
---|
| 1934 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 1935 | ) |
---|
| 1936 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1937 | ENDDO |
---|
| 1938 | ENDDO |
---|
| 1939 | ENDDO |
---|
| 1940 | |
---|
| 1941 | ! |
---|
| 1942 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1943 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1944 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1945 | DO i = nxl, nxr |
---|
| 1946 | DO j = nys, nyn |
---|
[19] | 1947 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1948 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1949 | ENDDO |
---|
| 1950 | ENDDO |
---|
| 1951 | ENDDO |
---|
| 1952 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1953 | intermediate_timestep_count_max ) THEN |
---|
| 1954 | DO i = nxl, nxr |
---|
| 1955 | DO j = nys, nyn |
---|
[19] | 1956 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1957 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 1958 | ENDDO |
---|
| 1959 | ENDDO |
---|
| 1960 | ENDDO |
---|
| 1961 | ENDIF |
---|
| 1962 | ENDIF |
---|
| 1963 | |
---|
| 1964 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1965 | |
---|
| 1966 | ENDIF |
---|
| 1967 | |
---|
| 1968 | |
---|
[63] | 1969 | END SUBROUTINE prognostic_equations_vector |
---|
[1] | 1970 | |
---|
| 1971 | |
---|
| 1972 | END MODULE prognostic_equations_mod |
---|