[736] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[736] | 20 | ! Current revisions: |
---|
[1092] | 21 | ! ------------------ |
---|
[1381] | 22 | ! |
---|
| 23 | ! |
---|
[1366] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: prognostic_equations.f90 1381 2014-04-28 12:41:59Z heinze $ |
---|
| 27 | ! |
---|
[1381] | 28 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
| 29 | ! Change order of calls for scalar prognostic quantities: |
---|
| 30 | ! ls_advec -> nudging -> subsidence since initial profiles |
---|
| 31 | ! |
---|
[1380] | 32 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 33 | ! missing variables added to ONLY lists |
---|
| 34 | ! |
---|
| 35 | ! 1365 2014-04-22 15:03:56Z boeske |
---|
[1365] | 36 | ! Calls of ls_advec for large scale advection added, |
---|
| 37 | ! subroutine subsidence is only called if use_subsidence_tendencies = .F., |
---|
| 38 | ! new argument ls_index added to the calls of subsidence |
---|
| 39 | ! +ls_index |
---|
| 40 | ! |
---|
| 41 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
[1361] | 42 | ! Two-moment microphysics moved to the start of prognostic equations. This makes |
---|
| 43 | ! the 3d arrays for tend_q, tend_qr, tend_pt and tend_pt redundant. |
---|
| 44 | ! Additionally, it is allowed to call the microphysics just once during the time |
---|
| 45 | ! step (not at each sub-time step). |
---|
| 46 | ! |
---|
| 47 | ! Two-moment cloud physics added for vector and accelerator optimization. |
---|
| 48 | ! |
---|
| 49 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
[1354] | 50 | ! REAL constants provided with KIND-attribute |
---|
| 51 | ! |
---|
[1353] | 52 | ! 1337 2014-03-25 15:11:48Z heinze |
---|
| 53 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 54 | ! |
---|
| 55 | ! 1332 2014-03-25 11:59:43Z suehring |
---|
[1333] | 56 | ! Bugfix: call advec_ws or advec_pw for TKE only if NOT use_upstream_for_tke |
---|
| 57 | ! |
---|
[1332] | 58 | ! 1330 2014-03-24 17:29:32Z suehring |
---|
[1331] | 59 | ! In case of SGS-particle velocity advection of TKE is also allowed with |
---|
| 60 | ! dissipative 5th-order scheme. |
---|
| 61 | ! |
---|
[1321] | 62 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 63 | ! ONLY-attribute added to USE-statements, |
---|
| 64 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 65 | ! kinds are defined in new module kinds, |
---|
| 66 | ! old module precision_kind is removed, |
---|
| 67 | ! revision history before 2012 removed, |
---|
| 68 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 69 | ! all variable declaration statements |
---|
[1054] | 70 | ! |
---|
[1319] | 71 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 72 | ! module interfaces removed |
---|
| 73 | ! |
---|
[1258] | 74 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 75 | ! openacc loop vector clauses removed, independent clauses added |
---|
| 76 | ! |
---|
[1247] | 77 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
| 78 | ! enable nudging also for accelerator version |
---|
| 79 | ! |
---|
[1242] | 80 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 81 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
| 82 | ! |
---|
[1182] | 83 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 84 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 85 | ! |
---|
[1132] | 86 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 87 | ! those parts requiring global communication moved to time_integration, |
---|
| 88 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 89 | ! j_north |
---|
| 90 | ! |
---|
[1116] | 91 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 92 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 93 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 94 | ! |
---|
[1112] | 95 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 96 | ! update directives for prognostic quantities removed |
---|
| 97 | ! |
---|
[1107] | 98 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 99 | ! small changes in code formatting |
---|
| 100 | ! |
---|
[1093] | 101 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 102 | ! unused variables removed |
---|
| 103 | ! |
---|
[1054] | 104 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 105 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 106 | ! and rain water content (qr) |
---|
[979] | 107 | ! |
---|
[1053] | 108 | ! currently, only available for cache loop optimization |
---|
[1020] | 109 | ! |
---|
[1037] | 110 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 111 | ! code put under GPL (PALM 3.9) |
---|
| 112 | ! |
---|
[1020] | 113 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 114 | ! non-optimized version of prognostic_equations removed |
---|
| 115 | ! |
---|
[1017] | 116 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 117 | ! new branch prognostic_equations_acc |
---|
| 118 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 119 | ! |
---|
[1002] | 120 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 121 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 122 | ! |
---|
[979] | 123 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 124 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 125 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 126 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 127 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 128 | ! |
---|
[941] | 129 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 130 | ! temperature equation can be switched off |
---|
| 131 | ! |
---|
[736] | 132 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 133 | ! Initial revision |
---|
| 134 | ! |
---|
| 135 | ! |
---|
| 136 | ! Description: |
---|
| 137 | ! ------------ |
---|
| 138 | ! Solving the prognostic equations. |
---|
| 139 | !------------------------------------------------------------------------------! |
---|
| 140 | |
---|
[1320] | 141 | USE arrays_3d, & |
---|
| 142 | ONLY: diss_l_e, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qr, & |
---|
| 143 | diss_l_sa, diss_s_e, diss_s_nr, diss_s_pt, diss_s_q, & |
---|
| 144 | diss_s_qr, diss_s_sa, e, e_p, flux_s_e, flux_s_nr, flux_s_pt, & |
---|
| 145 | flux_s_q, flux_s_qr, flux_s_sa, flux_l_e, flux_l_nr, & |
---|
| 146 | flux_l_pt, flux_l_q, flux_l_qr, flux_l_sa, nr, nr_p, nrsws, & |
---|
| 147 | nrswst, pt, ptdf_x, ptdf_y, pt_init, pt_p, prho, q, q_init, & |
---|
[1374] | 148 | q_p, qsws, qswst, qr, qr_p, qrsws, qrswst, rdf, rdf_sc, & |
---|
| 149 | ref_state, rho, sa, sa_init, sa_p, saswsb, saswst, shf, tend, & |
---|
| 150 | te_m, tnr_m, tpt_m, tq_m, tqr_m, tsa_m, tswst, tu_m, tv_m, & |
---|
| 151 | tw_m, u, ug, u_p, v, vg, vpt, v_p, w, w_p |
---|
[1320] | 152 | |
---|
| 153 | USE control_parameters, & |
---|
[1361] | 154 | ONLY: call_microphysics_at_all_substeps, cloud_physics, & |
---|
| 155 | constant_diffusion, cthf, dp_external, & |
---|
[1320] | 156 | dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, humidity, & |
---|
| 157 | icloud_scheme, inflow_l, intermediate_timestep_count, & |
---|
[1365] | 158 | intermediate_timestep_count_max, large_scale_forcing, & |
---|
| 159 | large_scale_subsidence, neutral, nudging, ocean, outflow_l, & |
---|
| 160 | outflow_s, passive_scalar, plant_canopy, precipitation, & |
---|
| 161 | prho_reference, prho_reference, prho_reference, pt_reference, & |
---|
| 162 | pt_reference, pt_reference, radiation, scalar_advec, & |
---|
| 163 | scalar_advec, simulated_time, sloping_surface, timestep_scheme, & |
---|
| 164 | tsc, use_subsidence_tendencies, use_upstream_for_tke, & |
---|
[1320] | 165 | use_upstream_for_tke, use_upstream_for_tke, wall_heatflux, & |
---|
| 166 | wall_nrflux, wall_qflux, wall_qflux, wall_qflux, wall_qrflux, & |
---|
| 167 | wall_salinityflux, ws_scheme_mom, ws_scheme_sca |
---|
[736] | 168 | |
---|
[1320] | 169 | USE cpulog, & |
---|
| 170 | ONLY: cpu_log, log_point |
---|
[736] | 171 | |
---|
[1320] | 172 | USE eqn_state_seawater_mod, & |
---|
| 173 | ONLY: eqn_state_seawater |
---|
| 174 | |
---|
| 175 | USE indices, & |
---|
| 176 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlu, nxr, nyn, nys, & |
---|
| 177 | nysv, nzb_s_inner, nzb_u_inner, nzb_v_inner, nzb_w_inner, nzt |
---|
| 178 | |
---|
| 179 | USE advec_ws, & |
---|
| 180 | ONLY: advec_s_ws, advec_s_ws_acc, advec_u_ws, advec_u_ws_acc, & |
---|
| 181 | advec_v_ws, advec_v_ws_acc, advec_w_ws, advec_w_ws_acc |
---|
| 182 | |
---|
| 183 | USE advec_s_pw_mod, & |
---|
| 184 | ONLY: advec_s_pw |
---|
| 185 | |
---|
| 186 | USE advec_s_up_mod, & |
---|
| 187 | ONLY: advec_s_up |
---|
| 188 | |
---|
| 189 | USE advec_u_pw_mod, & |
---|
| 190 | ONLY: advec_u_pw |
---|
| 191 | |
---|
| 192 | USE advec_u_up_mod, & |
---|
| 193 | ONLY: advec_u_up |
---|
| 194 | |
---|
| 195 | USE advec_v_pw_mod, & |
---|
| 196 | ONLY: advec_v_pw |
---|
| 197 | |
---|
| 198 | USE advec_v_up_mod, & |
---|
| 199 | ONLY: advec_v_up |
---|
| 200 | |
---|
| 201 | USE advec_w_pw_mod, & |
---|
| 202 | ONLY: advec_w_pw |
---|
| 203 | |
---|
| 204 | USE advec_w_up_mod, & |
---|
| 205 | ONLY: advec_w_up |
---|
| 206 | |
---|
| 207 | USE buoyancy_mod, & |
---|
| 208 | ONLY: buoyancy, buoyancy_acc |
---|
| 209 | |
---|
| 210 | USE calc_precipitation_mod, & |
---|
| 211 | ONLY: calc_precipitation |
---|
| 212 | |
---|
| 213 | USE calc_radiation_mod, & |
---|
| 214 | ONLY: calc_radiation |
---|
| 215 | |
---|
| 216 | USE coriolis_mod, & |
---|
| 217 | ONLY: coriolis, coriolis_acc |
---|
| 218 | |
---|
| 219 | USE diffusion_e_mod, & |
---|
| 220 | ONLY: diffusion_e, diffusion_e_acc |
---|
| 221 | |
---|
| 222 | USE diffusion_s_mod, & |
---|
| 223 | ONLY: diffusion_s, diffusion_s_acc |
---|
| 224 | |
---|
| 225 | USE diffusion_u_mod, & |
---|
| 226 | ONLY: diffusion_u, diffusion_u_acc |
---|
| 227 | |
---|
| 228 | USE diffusion_v_mod, & |
---|
| 229 | ONLY: diffusion_v, diffusion_v_acc |
---|
| 230 | |
---|
| 231 | USE diffusion_w_mod, & |
---|
| 232 | ONLY: diffusion_w, diffusion_w_acc |
---|
| 233 | |
---|
| 234 | USE impact_of_latent_heat_mod, & |
---|
| 235 | ONLY: impact_of_latent_heat |
---|
| 236 | |
---|
| 237 | USE kinds |
---|
| 238 | |
---|
[1365] | 239 | USE ls_forcing_mod, & |
---|
| 240 | ONLY: ls_advec |
---|
| 241 | |
---|
[1320] | 242 | USE microphysics_mod, & |
---|
| 243 | ONLY: microphysics_control |
---|
| 244 | |
---|
| 245 | USE nudge_mod, & |
---|
| 246 | ONLY: nudge |
---|
| 247 | |
---|
| 248 | USE plant_canopy_model_mod, & |
---|
| 249 | ONLY: plant_canopy_model |
---|
| 250 | |
---|
| 251 | USE production_e_mod, & |
---|
| 252 | ONLY: production_e, production_e_acc |
---|
| 253 | |
---|
[1374] | 254 | USE statistics, & |
---|
| 255 | ONLY: hom |
---|
| 256 | |
---|
[1320] | 257 | USE subsidence_mod, & |
---|
| 258 | ONLY: subsidence |
---|
| 259 | |
---|
| 260 | USE user_actions_mod, & |
---|
| 261 | ONLY: user_actions |
---|
| 262 | |
---|
| 263 | |
---|
[736] | 264 | PRIVATE |
---|
[1019] | 265 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 266 | prognostic_equations_acc |
---|
[736] | 267 | |
---|
| 268 | INTERFACE prognostic_equations_cache |
---|
| 269 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 270 | END INTERFACE prognostic_equations_cache |
---|
| 271 | |
---|
| 272 | INTERFACE prognostic_equations_vector |
---|
| 273 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 274 | END INTERFACE prognostic_equations_vector |
---|
| 275 | |
---|
[1015] | 276 | INTERFACE prognostic_equations_acc |
---|
| 277 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 278 | END INTERFACE prognostic_equations_acc |
---|
[736] | 279 | |
---|
[1015] | 280 | |
---|
[736] | 281 | CONTAINS |
---|
| 282 | |
---|
| 283 | |
---|
| 284 | SUBROUTINE prognostic_equations_cache |
---|
| 285 | |
---|
| 286 | !------------------------------------------------------------------------------! |
---|
| 287 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 288 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 289 | ! |
---|
| 290 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 291 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 292 | ! these loops. |
---|
| 293 | ! |
---|
| 294 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 295 | !------------------------------------------------------------------------------! |
---|
| 296 | |
---|
| 297 | IMPLICIT NONE |
---|
| 298 | |
---|
[1320] | 299 | INTEGER(iwp) :: i !: |
---|
| 300 | INTEGER(iwp) :: i_omp_start !: |
---|
| 301 | INTEGER(iwp) :: j !: |
---|
| 302 | INTEGER(iwp) :: k !: |
---|
| 303 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
| 304 | INTEGER(iwp) :: tn = 0 !: |
---|
| 305 | |
---|
| 306 | LOGICAL :: loop_start !: |
---|
[736] | 307 | |
---|
| 308 | |
---|
| 309 | ! |
---|
| 310 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 311 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 312 | |
---|
| 313 | ! |
---|
| 314 | !-- Loop over all prognostic equations |
---|
| 315 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 316 | |
---|
| 317 | !$ tn = omp_get_thread_num() |
---|
| 318 | loop_start = .TRUE. |
---|
| 319 | !$OMP DO |
---|
| 320 | DO i = nxl, nxr |
---|
| 321 | |
---|
| 322 | ! |
---|
| 323 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 324 | !-- later in advec_ws |
---|
| 325 | IF ( loop_start ) THEN |
---|
| 326 | loop_start = .FALSE. |
---|
| 327 | i_omp_start = i |
---|
| 328 | ENDIF |
---|
[1365] | 329 | |
---|
[736] | 330 | DO j = nys, nyn |
---|
| 331 | ! |
---|
[1361] | 332 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 333 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 334 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 335 | call_microphysics_at_all_substeps ) & |
---|
| 336 | ) THEN |
---|
| 337 | CALL microphysics_control( i, j ) |
---|
| 338 | ENDIF |
---|
| 339 | ! |
---|
[736] | 340 | !-- Tendency terms for u-velocity component |
---|
| 341 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 342 | |
---|
[1337] | 343 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 344 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 345 | IF ( ws_scheme_mom ) THEN |
---|
[978] | 346 | IF ( ( inflow_l .OR. outflow_l ) .AND. i_omp_start == nxl ) THEN |
---|
[736] | 347 | CALL advec_u_ws( i, j, i_omp_start + 1, tn ) |
---|
| 348 | ELSE |
---|
| 349 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
| 350 | ENDIF |
---|
| 351 | ELSE |
---|
| 352 | CALL advec_u_pw( i, j ) |
---|
| 353 | ENDIF |
---|
| 354 | ELSE |
---|
| 355 | CALL advec_u_up( i, j ) |
---|
| 356 | ENDIF |
---|
[1001] | 357 | CALL diffusion_u( i, j ) |
---|
[736] | 358 | CALL coriolis( i, j, 1 ) |
---|
[940] | 359 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 360 | CALL buoyancy( i, j, pt, 1 ) |
---|
[940] | 361 | ENDIF |
---|
[736] | 362 | |
---|
| 363 | ! |
---|
| 364 | !-- Drag by plant canopy |
---|
| 365 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 366 | |
---|
| 367 | ! |
---|
| 368 | !-- External pressure gradient |
---|
| 369 | IF ( dp_external ) THEN |
---|
| 370 | DO k = dp_level_ind_b+1, nzt |
---|
| 371 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 372 | ENDDO |
---|
| 373 | ENDIF |
---|
| 374 | |
---|
[1241] | 375 | ! |
---|
| 376 | !-- Nudging |
---|
| 377 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
| 378 | |
---|
[736] | 379 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 380 | ! |
---|
| 381 | !-- Prognostic equation for u-velocity component |
---|
| 382 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 383 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 384 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 385 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 386 | ENDDO |
---|
| 387 | |
---|
| 388 | ! |
---|
| 389 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 390 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 391 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 392 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 393 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 394 | ENDDO |
---|
| 395 | ELSEIF ( intermediate_timestep_count < & |
---|
| 396 | intermediate_timestep_count_max ) THEN |
---|
| 397 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 398 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 399 | ENDDO |
---|
| 400 | ENDIF |
---|
| 401 | ENDIF |
---|
| 402 | |
---|
| 403 | ENDIF |
---|
| 404 | |
---|
| 405 | ! |
---|
| 406 | !-- Tendency terms for v-velocity component |
---|
| 407 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 408 | |
---|
[1337] | 409 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 410 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 411 | IF ( ws_scheme_mom ) THEN |
---|
| 412 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 413 | ELSE |
---|
| 414 | CALL advec_v_pw( i, j ) |
---|
| 415 | ENDIF |
---|
| 416 | ELSE |
---|
| 417 | CALL advec_v_up( i, j ) |
---|
| 418 | ENDIF |
---|
[1001] | 419 | CALL diffusion_v( i, j ) |
---|
[736] | 420 | CALL coriolis( i, j, 2 ) |
---|
| 421 | |
---|
| 422 | ! |
---|
| 423 | !-- Drag by plant canopy |
---|
| 424 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 425 | |
---|
| 426 | ! |
---|
| 427 | !-- External pressure gradient |
---|
| 428 | IF ( dp_external ) THEN |
---|
| 429 | DO k = dp_level_ind_b+1, nzt |
---|
| 430 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 431 | ENDDO |
---|
| 432 | ENDIF |
---|
| 433 | |
---|
[1241] | 434 | ! |
---|
| 435 | !-- Nudging |
---|
| 436 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
| 437 | |
---|
[736] | 438 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 439 | ! |
---|
| 440 | !-- Prognostic equation for v-velocity component |
---|
| 441 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 442 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 443 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 444 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 445 | ENDDO |
---|
| 446 | |
---|
| 447 | ! |
---|
| 448 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 449 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 450 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 451 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 452 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 453 | ENDDO |
---|
| 454 | ELSEIF ( intermediate_timestep_count < & |
---|
| 455 | intermediate_timestep_count_max ) THEN |
---|
| 456 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 457 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 458 | ENDDO |
---|
| 459 | ENDIF |
---|
| 460 | ENDIF |
---|
| 461 | |
---|
| 462 | ENDIF |
---|
| 463 | |
---|
| 464 | ! |
---|
| 465 | !-- Tendency terms for w-velocity component |
---|
[1337] | 466 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 467 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 468 | IF ( ws_scheme_mom ) THEN |
---|
| 469 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 470 | ELSE |
---|
| 471 | CALL advec_w_pw( i, j ) |
---|
| 472 | END IF |
---|
| 473 | ELSE |
---|
| 474 | CALL advec_w_up( i, j ) |
---|
| 475 | ENDIF |
---|
[1001] | 476 | CALL diffusion_w( i, j ) |
---|
[736] | 477 | CALL coriolis( i, j, 3 ) |
---|
[940] | 478 | |
---|
| 479 | IF ( .NOT. neutral ) THEN |
---|
| 480 | IF ( ocean ) THEN |
---|
[1179] | 481 | CALL buoyancy( i, j, rho, 3 ) |
---|
[736] | 482 | ELSE |
---|
[940] | 483 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 484 | CALL buoyancy( i, j, pt, 3 ) |
---|
[940] | 485 | ELSE |
---|
[1179] | 486 | CALL buoyancy( i, j, vpt, 3 ) |
---|
[940] | 487 | ENDIF |
---|
[736] | 488 | ENDIF |
---|
| 489 | ENDIF |
---|
| 490 | |
---|
| 491 | ! |
---|
| 492 | !-- Drag by plant canopy |
---|
| 493 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 494 | |
---|
| 495 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 496 | |
---|
| 497 | ! |
---|
| 498 | !-- Prognostic equation for w-velocity component |
---|
| 499 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 500 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 501 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 502 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 503 | ENDDO |
---|
| 504 | |
---|
| 505 | ! |
---|
| 506 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 507 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 508 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 509 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 510 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 511 | ENDDO |
---|
| 512 | ELSEIF ( intermediate_timestep_count < & |
---|
| 513 | intermediate_timestep_count_max ) THEN |
---|
| 514 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 515 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 516 | ENDDO |
---|
| 517 | ENDIF |
---|
| 518 | ENDIF |
---|
[1361] | 519 | |
---|
[736] | 520 | ! |
---|
[940] | 521 | !-- If required, compute prognostic equation for potential temperature |
---|
| 522 | IF ( .NOT. neutral ) THEN |
---|
| 523 | ! |
---|
| 524 | !-- Tendency terms for potential temperature |
---|
[1337] | 525 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 526 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 527 | IF ( ws_scheme_sca ) THEN |
---|
| 528 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 529 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 530 | ELSE |
---|
| 531 | CALL advec_s_pw( i, j, pt ) |
---|
| 532 | ENDIF |
---|
| 533 | ELSE |
---|
| 534 | CALL advec_s_up( i, j, pt ) |
---|
| 535 | ENDIF |
---|
[1001] | 536 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 537 | |
---|
| 538 | ! |
---|
[940] | 539 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 540 | !-- processes |
---|
| 541 | IF ( radiation ) THEN |
---|
| 542 | CALL calc_radiation( i, j ) |
---|
| 543 | ENDIF |
---|
[736] | 544 | |
---|
[1106] | 545 | ! |
---|
[1361] | 546 | !-- If required compute impact of latent heat due to precipitation |
---|
| 547 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 548 | precipitation ) THEN |
---|
| 549 | CALL impact_of_latent_heat( i, j ) |
---|
[940] | 550 | ENDIF |
---|
[736] | 551 | |
---|
| 552 | ! |
---|
[940] | 553 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 554 | IF ( plant_canopy .AND. cthf /= 0.0_wp ) THEN |
---|
[940] | 555 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 556 | ENDIF |
---|
[736] | 557 | |
---|
[940] | 558 | ! |
---|
[1365] | 559 | !-- Large scale advection |
---|
| 560 | IF ( large_scale_forcing ) THEN |
---|
| 561 | CALL ls_advec( i, j, simulated_time, 'pt' ) |
---|
| 562 | ENDIF |
---|
| 563 | |
---|
| 564 | ! |
---|
[1380] | 565 | !-- Nudging |
---|
| 566 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
| 567 | |
---|
| 568 | ! |
---|
[1106] | 569 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
[1365] | 570 | IF ( large_scale_subsidence .AND. & |
---|
| 571 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 572 | CALL subsidence( i, j, tend, pt, pt_init, 2 ) |
---|
[940] | 573 | ENDIF |
---|
[736] | 574 | |
---|
[940] | 575 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 576 | |
---|
| 577 | ! |
---|
[940] | 578 | !-- Prognostic equation for potential temperature |
---|
| 579 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 580 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 581 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 582 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 583 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 584 | ENDDO |
---|
[736] | 585 | |
---|
| 586 | ! |
---|
[940] | 587 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 588 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 589 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 590 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 591 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 592 | ENDDO |
---|
| 593 | ELSEIF ( intermediate_timestep_count < & |
---|
| 594 | intermediate_timestep_count_max ) THEN |
---|
| 595 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 596 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 597 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 598 | ENDDO |
---|
| 599 | ENDIF |
---|
[736] | 600 | ENDIF |
---|
[940] | 601 | |
---|
[736] | 602 | ENDIF |
---|
| 603 | |
---|
| 604 | ! |
---|
| 605 | !-- If required, compute prognostic equation for salinity |
---|
| 606 | IF ( ocean ) THEN |
---|
| 607 | |
---|
| 608 | ! |
---|
| 609 | !-- Tendency-terms for salinity |
---|
[1337] | 610 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 611 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 612 | THEN |
---|
| 613 | IF ( ws_scheme_sca ) THEN |
---|
| 614 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 615 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 616 | ELSE |
---|
| 617 | CALL advec_s_pw( i, j, sa ) |
---|
| 618 | ENDIF |
---|
| 619 | ELSE |
---|
| 620 | CALL advec_s_up( i, j, sa ) |
---|
| 621 | ENDIF |
---|
[1001] | 622 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 623 | |
---|
| 624 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 625 | |
---|
| 626 | ! |
---|
| 627 | !-- Prognostic equation for salinity |
---|
| 628 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 629 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 630 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 631 | - tsc(5) * rdf_sc(k) * & |
---|
| 632 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 633 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 634 | ENDDO |
---|
| 635 | |
---|
| 636 | ! |
---|
| 637 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 638 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 639 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 640 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 641 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 642 | ENDDO |
---|
| 643 | ELSEIF ( intermediate_timestep_count < & |
---|
| 644 | intermediate_timestep_count_max ) THEN |
---|
| 645 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 646 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 647 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 648 | ENDDO |
---|
| 649 | ENDIF |
---|
| 650 | ENDIF |
---|
| 651 | |
---|
| 652 | ! |
---|
| 653 | !-- Calculate density by the equation of state for seawater |
---|
| 654 | CALL eqn_state_seawater( i, j ) |
---|
| 655 | |
---|
| 656 | ENDIF |
---|
| 657 | |
---|
| 658 | ! |
---|
| 659 | !-- If required, compute prognostic equation for total water content / |
---|
| 660 | !-- scalar |
---|
| 661 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 662 | |
---|
| 663 | ! |
---|
| 664 | !-- Tendency-terms for total water content / scalar |
---|
[1337] | 665 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 666 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 667 | THEN |
---|
| 668 | IF ( ws_scheme_sca ) THEN |
---|
| 669 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 670 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 671 | ELSE |
---|
| 672 | CALL advec_s_pw( i, j, q ) |
---|
| 673 | ENDIF |
---|
| 674 | ELSE |
---|
| 675 | CALL advec_s_up( i, j, q ) |
---|
| 676 | ENDIF |
---|
[1001] | 677 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[1053] | 678 | |
---|
[736] | 679 | ! |
---|
[1361] | 680 | !-- If required compute decrease of total water content due to |
---|
| 681 | !-- precipitation |
---|
| 682 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 683 | precipitation ) THEN |
---|
| 684 | CALL calc_precipitation( i, j ) |
---|
[736] | 685 | ENDIF |
---|
| 686 | ! |
---|
| 687 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1106] | 688 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
[736] | 689 | |
---|
[1053] | 690 | ! |
---|
[1365] | 691 | !-- Large scale advection |
---|
| 692 | IF ( large_scale_forcing ) THEN |
---|
| 693 | CALL ls_advec( i, j, simulated_time, 'q' ) |
---|
| 694 | ENDIF |
---|
| 695 | |
---|
| 696 | ! |
---|
[1380] | 697 | !-- Nudging |
---|
| 698 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
| 699 | |
---|
| 700 | ! |
---|
[736] | 701 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 702 | IF ( large_scale_subsidence .AND. & |
---|
| 703 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 704 | CALL subsidence( i, j, tend, q, q_init, 3 ) |
---|
[736] | 705 | ENDIF |
---|
| 706 | |
---|
| 707 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 708 | |
---|
| 709 | ! |
---|
| 710 | !-- Prognostic equation for total water content / scalar |
---|
| 711 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 712 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 713 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 714 | - tsc(5) * rdf_sc(k) * & |
---|
| 715 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 716 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 717 | ENDDO |
---|
| 718 | |
---|
| 719 | ! |
---|
| 720 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 721 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 722 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 723 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 724 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 725 | ENDDO |
---|
| 726 | ELSEIF ( intermediate_timestep_count < & |
---|
| 727 | intermediate_timestep_count_max ) THEN |
---|
| 728 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 729 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 730 | 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 731 | ENDDO |
---|
| 732 | ENDIF |
---|
| 733 | ENDIF |
---|
| 734 | |
---|
[1053] | 735 | ! |
---|
| 736 | !-- If required, calculate prognostic equations for rain water content |
---|
| 737 | !-- and rain drop concentration |
---|
[1115] | 738 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 739 | precipitation ) THEN |
---|
[1053] | 740 | ! |
---|
| 741 | !-- Calculate prognostic equation for rain water content |
---|
[1337] | 742 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 743 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 744 | THEN |
---|
| 745 | IF ( ws_scheme_sca ) THEN |
---|
| 746 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 747 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 748 | i_omp_start, tn ) |
---|
| 749 | ELSE |
---|
| 750 | CALL advec_s_pw( i, j, qr ) |
---|
| 751 | ENDIF |
---|
| 752 | ELSE |
---|
| 753 | CALL advec_s_up( i, j, qr ) |
---|
| 754 | ENDIF |
---|
| 755 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 756 | |
---|
[1115] | 757 | CALL user_actions( i, j, 'qr-tendency' ) |
---|
[1053] | 758 | ! |
---|
| 759 | !-- Prognostic equation for rain water content |
---|
| 760 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 761 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 762 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 763 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
[1337] | 764 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
[1053] | 765 | ENDDO |
---|
| 766 | ! |
---|
| 767 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 768 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 769 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 770 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 771 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 772 | ENDDO |
---|
| 773 | ELSEIF ( intermediate_timestep_count < & |
---|
| 774 | intermediate_timestep_count_max ) THEN |
---|
| 775 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 776 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 777 | 5.3125_wp * tqr_m(k,j,i) |
---|
[1053] | 778 | ENDDO |
---|
| 779 | ENDIF |
---|
| 780 | ENDIF |
---|
| 781 | |
---|
| 782 | ! |
---|
| 783 | !-- Calculate prognostic equation for rain drop concentration. |
---|
[1337] | 784 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 785 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 786 | IF ( ws_scheme_sca ) THEN |
---|
[1115] | 787 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 788 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 789 | i_omp_start, tn ) |
---|
[1053] | 790 | ELSE |
---|
| 791 | CALL advec_s_pw( i, j, nr ) |
---|
| 792 | ENDIF |
---|
| 793 | ELSE |
---|
| 794 | CALL advec_s_up( i, j, nr ) |
---|
| 795 | ENDIF |
---|
| 796 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
| 797 | |
---|
[1115] | 798 | CALL user_actions( i, j, 'nr-tendency' ) |
---|
[1053] | 799 | ! |
---|
| 800 | !-- Prognostic equation for rain drop concentration |
---|
| 801 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 802 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 803 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 804 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
[1337] | 805 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
[1053] | 806 | ENDDO |
---|
| 807 | ! |
---|
| 808 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 809 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 810 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 811 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 812 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 813 | ENDDO |
---|
| 814 | ELSEIF ( intermediate_timestep_count < & |
---|
| 815 | intermediate_timestep_count_max ) THEN |
---|
| 816 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 817 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 818 | 5.3125_wp * tnr_m(k,j,i) |
---|
[1053] | 819 | ENDDO |
---|
| 820 | ENDIF |
---|
| 821 | ENDIF |
---|
| 822 | |
---|
| 823 | ENDIF |
---|
| 824 | |
---|
[1128] | 825 | ENDIF |
---|
| 826 | |
---|
[736] | 827 | ! |
---|
| 828 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 829 | !-- energy (TKE) |
---|
| 830 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 831 | |
---|
| 832 | ! |
---|
| 833 | !-- Tendency-terms for TKE |
---|
[1337] | 834 | tend(:,j,i) = 0.0_wp |
---|
[1332] | 835 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
| 836 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
[736] | 837 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 838 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 839 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 840 | ELSE |
---|
| 841 | CALL advec_s_pw( i, j, e ) |
---|
| 842 | ENDIF |
---|
| 843 | ELSE |
---|
| 844 | CALL advec_s_up( i, j, e ) |
---|
| 845 | ENDIF |
---|
[1001] | 846 | IF ( .NOT. humidity ) THEN |
---|
| 847 | IF ( ocean ) THEN |
---|
| 848 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 849 | ELSE |
---|
[1001] | 850 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 851 | ENDIF |
---|
| 852 | ELSE |
---|
[1001] | 853 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 854 | ENDIF |
---|
| 855 | CALL production_e( i, j ) |
---|
| 856 | |
---|
| 857 | ! |
---|
| 858 | !-- Additional sink term for flows through plant canopies |
---|
| 859 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 860 | |
---|
| 861 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 862 | |
---|
| 863 | ! |
---|
| 864 | !-- Prognostic equation for TKE. |
---|
| 865 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 866 | !-- reasons in the course of the integration. In such cases the old |
---|
| 867 | !-- TKE value is reduced by 90%. |
---|
| 868 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 869 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 870 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 871 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 872 | ENDDO |
---|
| 873 | |
---|
| 874 | ! |
---|
| 875 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 876 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 877 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 878 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 879 | te_m(k,j,i) = tend(k,j,i) |
---|
| 880 | ENDDO |
---|
| 881 | ELSEIF ( intermediate_timestep_count < & |
---|
| 882 | intermediate_timestep_count_max ) THEN |
---|
| 883 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 884 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 885 | 5.3125_wp * te_m(k,j,i) |
---|
[736] | 886 | ENDDO |
---|
| 887 | ENDIF |
---|
| 888 | ENDIF |
---|
| 889 | |
---|
| 890 | ENDIF ! TKE equation |
---|
| 891 | |
---|
| 892 | ENDDO |
---|
| 893 | ENDDO |
---|
| 894 | !$OMP END PARALLEL |
---|
| 895 | |
---|
| 896 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 897 | |
---|
| 898 | |
---|
| 899 | END SUBROUTINE prognostic_equations_cache |
---|
| 900 | |
---|
| 901 | |
---|
| 902 | SUBROUTINE prognostic_equations_vector |
---|
| 903 | |
---|
| 904 | !------------------------------------------------------------------------------! |
---|
| 905 | ! Version for vector machines |
---|
| 906 | !------------------------------------------------------------------------------! |
---|
| 907 | |
---|
| 908 | IMPLICIT NONE |
---|
| 909 | |
---|
[1320] | 910 | INTEGER(iwp) :: i !: |
---|
| 911 | INTEGER(iwp) :: j !: |
---|
| 912 | INTEGER(iwp) :: k !: |
---|
[736] | 913 | |
---|
[1320] | 914 | REAL(wp) :: sbt !: |
---|
[736] | 915 | |
---|
[1320] | 916 | |
---|
[736] | 917 | ! |
---|
[1361] | 918 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 919 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 920 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 921 | call_microphysics_at_all_substeps ) & |
---|
| 922 | ) THEN |
---|
| 923 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 924 | CALL microphysics_control |
---|
| 925 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 926 | ENDIF |
---|
| 927 | |
---|
| 928 | ! |
---|
[736] | 929 | !-- u-velocity component |
---|
| 930 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 931 | |
---|
[1337] | 932 | tend = 0.0_wp |
---|
[1001] | 933 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 934 | IF ( ws_scheme_mom ) THEN |
---|
| 935 | CALL advec_u_ws |
---|
| 936 | ELSE |
---|
| 937 | CALL advec_u_pw |
---|
| 938 | ENDIF |
---|
| 939 | ELSE |
---|
[1001] | 940 | CALL advec_u_up |
---|
[736] | 941 | ENDIF |
---|
[1001] | 942 | CALL diffusion_u |
---|
[736] | 943 | CALL coriolis( 1 ) |
---|
[940] | 944 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 945 | CALL buoyancy( pt, 1 ) |
---|
[940] | 946 | ENDIF |
---|
[736] | 947 | |
---|
| 948 | ! |
---|
| 949 | !-- Drag by plant canopy |
---|
| 950 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 951 | |
---|
| 952 | ! |
---|
| 953 | !-- External pressure gradient |
---|
| 954 | IF ( dp_external ) THEN |
---|
| 955 | DO i = nxlu, nxr |
---|
| 956 | DO j = nys, nyn |
---|
| 957 | DO k = dp_level_ind_b+1, nzt |
---|
| 958 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 959 | ENDDO |
---|
| 960 | ENDDO |
---|
| 961 | ENDDO |
---|
| 962 | ENDIF |
---|
| 963 | |
---|
[1241] | 964 | ! |
---|
| 965 | !-- Nudging |
---|
| 966 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 967 | |
---|
[736] | 968 | CALL user_actions( 'u-tendency' ) |
---|
| 969 | |
---|
| 970 | ! |
---|
| 971 | !-- Prognostic equation for u-velocity component |
---|
| 972 | DO i = nxlu, nxr |
---|
| 973 | DO j = nys, nyn |
---|
| 974 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 975 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 976 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 977 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 978 | ENDDO |
---|
| 979 | ENDDO |
---|
| 980 | ENDDO |
---|
| 981 | |
---|
| 982 | ! |
---|
| 983 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 984 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 985 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 986 | DO i = nxlu, nxr |
---|
| 987 | DO j = nys, nyn |
---|
| 988 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 989 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 990 | ENDDO |
---|
| 991 | ENDDO |
---|
| 992 | ENDDO |
---|
| 993 | ELSEIF ( intermediate_timestep_count < & |
---|
| 994 | intermediate_timestep_count_max ) THEN |
---|
| 995 | DO i = nxlu, nxr |
---|
| 996 | DO j = nys, nyn |
---|
| 997 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 998 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 999 | ENDDO |
---|
| 1000 | ENDDO |
---|
| 1001 | ENDDO |
---|
| 1002 | ENDIF |
---|
| 1003 | ENDIF |
---|
| 1004 | |
---|
| 1005 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1006 | |
---|
| 1007 | ! |
---|
| 1008 | !-- v-velocity component |
---|
| 1009 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1010 | |
---|
[1337] | 1011 | tend = 0.0_wp |
---|
[1001] | 1012 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1013 | IF ( ws_scheme_mom ) THEN |
---|
| 1014 | CALL advec_v_ws |
---|
| 1015 | ELSE |
---|
| 1016 | CALL advec_v_pw |
---|
| 1017 | END IF |
---|
| 1018 | ELSE |
---|
[1001] | 1019 | CALL advec_v_up |
---|
[736] | 1020 | ENDIF |
---|
[1001] | 1021 | CALL diffusion_v |
---|
[736] | 1022 | CALL coriolis( 2 ) |
---|
| 1023 | |
---|
| 1024 | ! |
---|
| 1025 | !-- Drag by plant canopy |
---|
| 1026 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1027 | |
---|
| 1028 | ! |
---|
| 1029 | !-- External pressure gradient |
---|
| 1030 | IF ( dp_external ) THEN |
---|
| 1031 | DO i = nxl, nxr |
---|
| 1032 | DO j = nysv, nyn |
---|
| 1033 | DO k = dp_level_ind_b+1, nzt |
---|
| 1034 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1035 | ENDDO |
---|
| 1036 | ENDDO |
---|
| 1037 | ENDDO |
---|
| 1038 | ENDIF |
---|
| 1039 | |
---|
[1241] | 1040 | ! |
---|
| 1041 | !-- Nudging |
---|
| 1042 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1043 | |
---|
[736] | 1044 | CALL user_actions( 'v-tendency' ) |
---|
| 1045 | |
---|
| 1046 | ! |
---|
| 1047 | !-- Prognostic equation for v-velocity component |
---|
| 1048 | DO i = nxl, nxr |
---|
| 1049 | DO j = nysv, nyn |
---|
| 1050 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 1051 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1052 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 1053 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 1054 | ENDDO |
---|
| 1055 | ENDDO |
---|
| 1056 | ENDDO |
---|
| 1057 | |
---|
| 1058 | ! |
---|
| 1059 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1060 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1061 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1062 | DO i = nxl, nxr |
---|
| 1063 | DO j = nysv, nyn |
---|
| 1064 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1065 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1066 | ENDDO |
---|
| 1067 | ENDDO |
---|
| 1068 | ENDDO |
---|
| 1069 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1070 | intermediate_timestep_count_max ) THEN |
---|
| 1071 | DO i = nxl, nxr |
---|
| 1072 | DO j = nysv, nyn |
---|
| 1073 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 1074 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 1075 | ENDDO |
---|
| 1076 | ENDDO |
---|
| 1077 | ENDDO |
---|
| 1078 | ENDIF |
---|
| 1079 | ENDIF |
---|
| 1080 | |
---|
| 1081 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1082 | |
---|
| 1083 | ! |
---|
| 1084 | !-- w-velocity component |
---|
| 1085 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1086 | |
---|
[1353] | 1087 | tend = 0.0_wp |
---|
[1001] | 1088 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1089 | IF ( ws_scheme_mom ) THEN |
---|
| 1090 | CALL advec_w_ws |
---|
| 1091 | ELSE |
---|
| 1092 | CALL advec_w_pw |
---|
| 1093 | ENDIF |
---|
| 1094 | ELSE |
---|
[1001] | 1095 | CALL advec_w_up |
---|
[736] | 1096 | ENDIF |
---|
[1001] | 1097 | CALL diffusion_w |
---|
[736] | 1098 | CALL coriolis( 3 ) |
---|
[940] | 1099 | |
---|
| 1100 | IF ( .NOT. neutral ) THEN |
---|
| 1101 | IF ( ocean ) THEN |
---|
[1179] | 1102 | CALL buoyancy( rho, 3 ) |
---|
[736] | 1103 | ELSE |
---|
[940] | 1104 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1105 | CALL buoyancy( pt, 3 ) |
---|
[940] | 1106 | ELSE |
---|
[1179] | 1107 | CALL buoyancy( vpt, 3 ) |
---|
[940] | 1108 | ENDIF |
---|
[736] | 1109 | ENDIF |
---|
| 1110 | ENDIF |
---|
| 1111 | |
---|
| 1112 | ! |
---|
| 1113 | !-- Drag by plant canopy |
---|
| 1114 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1115 | |
---|
| 1116 | CALL user_actions( 'w-tendency' ) |
---|
| 1117 | |
---|
| 1118 | ! |
---|
| 1119 | !-- Prognostic equation for w-velocity component |
---|
| 1120 | DO i = nxl, nxr |
---|
| 1121 | DO j = nys, nyn |
---|
| 1122 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 1123 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1124 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1125 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 1126 | ENDDO |
---|
| 1127 | ENDDO |
---|
| 1128 | ENDDO |
---|
| 1129 | |
---|
| 1130 | ! |
---|
| 1131 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1132 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1133 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1134 | DO i = nxl, nxr |
---|
| 1135 | DO j = nys, nyn |
---|
| 1136 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1137 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1138 | ENDDO |
---|
| 1139 | ENDDO |
---|
| 1140 | ENDDO |
---|
| 1141 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1142 | intermediate_timestep_count_max ) THEN |
---|
| 1143 | DO i = nxl, nxr |
---|
| 1144 | DO j = nys, nyn |
---|
| 1145 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 1146 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 1147 | ENDDO |
---|
| 1148 | ENDDO |
---|
| 1149 | ENDDO |
---|
| 1150 | ENDIF |
---|
| 1151 | ENDIF |
---|
| 1152 | |
---|
| 1153 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1154 | |
---|
[940] | 1155 | |
---|
[736] | 1156 | ! |
---|
[940] | 1157 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1158 | IF ( .NOT. neutral ) THEN |
---|
[736] | 1159 | |
---|
[940] | 1160 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1161 | |
---|
[736] | 1162 | ! |
---|
[940] | 1163 | !-- pt-tendency terms with communication |
---|
| 1164 | sbt = tsc(2) |
---|
| 1165 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 1166 | |
---|
[940] | 1167 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 1168 | ! |
---|
[1001] | 1169 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1170 | sbt = 1.0_wp |
---|
[940] | 1171 | ENDIF |
---|
[1337] | 1172 | tend = 0.0_wp |
---|
[940] | 1173 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 1174 | |
---|
[736] | 1175 | ENDIF |
---|
[940] | 1176 | |
---|
| 1177 | ! |
---|
| 1178 | !-- pt-tendency terms with no communication |
---|
[1001] | 1179 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1180 | tend = 0.0_wp |
---|
[1001] | 1181 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 1182 | IF ( ws_scheme_sca ) THEN |
---|
| 1183 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1184 | ELSE |
---|
| 1185 | CALL advec_s_pw( pt ) |
---|
| 1186 | ENDIF |
---|
| 1187 | ELSE |
---|
[1001] | 1188 | CALL advec_s_up( pt ) |
---|
[940] | 1189 | ENDIF |
---|
[736] | 1190 | ENDIF |
---|
| 1191 | |
---|
[1001] | 1192 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1193 | |
---|
[736] | 1194 | ! |
---|
[940] | 1195 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1196 | IF ( radiation ) THEN |
---|
| 1197 | CALL calc_radiation |
---|
| 1198 | ENDIF |
---|
[736] | 1199 | |
---|
| 1200 | ! |
---|
[940] | 1201 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 1202 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[940] | 1203 | CALL impact_of_latent_heat |
---|
| 1204 | ENDIF |
---|
[736] | 1205 | |
---|
| 1206 | ! |
---|
[940] | 1207 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 1208 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[940] | 1209 | CALL plant_canopy_model( 4 ) |
---|
| 1210 | ENDIF |
---|
[736] | 1211 | |
---|
[940] | 1212 | ! |
---|
[1365] | 1213 | !-- Large scale advection |
---|
| 1214 | IF ( large_scale_forcing ) THEN |
---|
| 1215 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 1216 | ENDIF |
---|
| 1217 | |
---|
| 1218 | ! |
---|
[1380] | 1219 | !-- Nudging |
---|
| 1220 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1221 | |
---|
| 1222 | ! |
---|
[940] | 1223 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1224 | IF ( large_scale_subsidence .AND. & |
---|
| 1225 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1226 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[940] | 1227 | ENDIF |
---|
[736] | 1228 | |
---|
[940] | 1229 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 1230 | |
---|
| 1231 | ! |
---|
[940] | 1232 | !-- Prognostic equation for potential temperature |
---|
| 1233 | DO i = nxl, nxr |
---|
| 1234 | DO j = nys, nyn |
---|
| 1235 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1236 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1237 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1238 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1239 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 1240 | ENDDO |
---|
[736] | 1241 | ENDDO |
---|
| 1242 | ENDDO |
---|
| 1243 | |
---|
| 1244 | ! |
---|
[940] | 1245 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1246 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1247 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1248 | DO i = nxl, nxr |
---|
| 1249 | DO j = nys, nyn |
---|
| 1250 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1251 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1252 | ENDDO |
---|
[736] | 1253 | ENDDO |
---|
| 1254 | ENDDO |
---|
[940] | 1255 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1256 | intermediate_timestep_count_max ) THEN |
---|
| 1257 | DO i = nxl, nxr |
---|
| 1258 | DO j = nys, nyn |
---|
| 1259 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1260 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1261 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 1262 | ENDDO |
---|
[736] | 1263 | ENDDO |
---|
| 1264 | ENDDO |
---|
[940] | 1265 | ENDIF |
---|
[736] | 1266 | ENDIF |
---|
[940] | 1267 | |
---|
| 1268 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1269 | |
---|
[736] | 1270 | ENDIF |
---|
| 1271 | |
---|
| 1272 | ! |
---|
| 1273 | !-- If required, compute prognostic equation for salinity |
---|
| 1274 | IF ( ocean ) THEN |
---|
| 1275 | |
---|
| 1276 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1277 | |
---|
| 1278 | ! |
---|
| 1279 | !-- sa-tendency terms with communication |
---|
| 1280 | sbt = tsc(2) |
---|
| 1281 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1282 | |
---|
| 1283 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1284 | ! |
---|
[1001] | 1285 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1286 | sbt = 1.0_wp |
---|
[736] | 1287 | ENDIF |
---|
[1337] | 1288 | tend = 0.0_wp |
---|
[736] | 1289 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1290 | |
---|
[736] | 1291 | ENDIF |
---|
| 1292 | |
---|
| 1293 | ! |
---|
| 1294 | !-- sa-tendency terms with no communication |
---|
[1001] | 1295 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1353] | 1296 | tend = 0.0_wp |
---|
[1001] | 1297 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1298 | IF ( ws_scheme_sca ) THEN |
---|
| 1299 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1300 | ELSE |
---|
| 1301 | CALL advec_s_pw( sa ) |
---|
| 1302 | ENDIF |
---|
| 1303 | ELSE |
---|
[1001] | 1304 | CALL advec_s_up( sa ) |
---|
[736] | 1305 | ENDIF |
---|
| 1306 | ENDIF |
---|
[1001] | 1307 | |
---|
| 1308 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1309 | |
---|
| 1310 | CALL user_actions( 'sa-tendency' ) |
---|
| 1311 | |
---|
| 1312 | ! |
---|
| 1313 | !-- Prognostic equation for salinity |
---|
| 1314 | DO i = nxl, nxr |
---|
| 1315 | DO j = nys, nyn |
---|
| 1316 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1317 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1318 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1319 | - tsc(5) * rdf_sc(k) * & |
---|
| 1320 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 1321 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 1322 | ENDDO |
---|
| 1323 | ENDDO |
---|
| 1324 | ENDDO |
---|
| 1325 | |
---|
| 1326 | ! |
---|
| 1327 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1328 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1329 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1330 | DO i = nxl, nxr |
---|
| 1331 | DO j = nys, nyn |
---|
| 1332 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1333 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1334 | ENDDO |
---|
| 1335 | ENDDO |
---|
| 1336 | ENDDO |
---|
| 1337 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1338 | intermediate_timestep_count_max ) THEN |
---|
| 1339 | DO i = nxl, nxr |
---|
| 1340 | DO j = nys, nyn |
---|
| 1341 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1342 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1343 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 1344 | ENDDO |
---|
| 1345 | ENDDO |
---|
| 1346 | ENDDO |
---|
| 1347 | ENDIF |
---|
| 1348 | ENDIF |
---|
| 1349 | |
---|
| 1350 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1351 | |
---|
| 1352 | ! |
---|
| 1353 | !-- Calculate density by the equation of state for seawater |
---|
| 1354 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1355 | CALL eqn_state_seawater |
---|
| 1356 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1357 | |
---|
| 1358 | ENDIF |
---|
| 1359 | |
---|
| 1360 | ! |
---|
| 1361 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1362 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1363 | |
---|
| 1364 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1365 | |
---|
| 1366 | ! |
---|
| 1367 | !-- Scalar/q-tendency terms with communication |
---|
| 1368 | sbt = tsc(2) |
---|
| 1369 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1370 | |
---|
| 1371 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1372 | ! |
---|
[1001] | 1373 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1374 | sbt = 1.0_wp |
---|
[736] | 1375 | ENDIF |
---|
[1337] | 1376 | tend = 0.0_wp |
---|
[736] | 1377 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1378 | |
---|
[736] | 1379 | ENDIF |
---|
| 1380 | |
---|
| 1381 | ! |
---|
| 1382 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1383 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1384 | tend = 0.0_wp |
---|
[1001] | 1385 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1386 | IF ( ws_scheme_sca ) THEN |
---|
| 1387 | CALL advec_s_ws( q, 'q' ) |
---|
| 1388 | ELSE |
---|
| 1389 | CALL advec_s_pw( q ) |
---|
| 1390 | ENDIF |
---|
| 1391 | ELSE |
---|
[1001] | 1392 | CALL advec_s_up( q ) |
---|
[736] | 1393 | ENDIF |
---|
| 1394 | ENDIF |
---|
[1001] | 1395 | |
---|
| 1396 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1397 | |
---|
| 1398 | ! |
---|
| 1399 | !-- If required compute decrease of total water content due to |
---|
| 1400 | !-- precipitation |
---|
[1361] | 1401 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[736] | 1402 | CALL calc_precipitation |
---|
| 1403 | ENDIF |
---|
| 1404 | |
---|
| 1405 | ! |
---|
| 1406 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1407 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
[1365] | 1408 | |
---|
[736] | 1409 | ! |
---|
[1365] | 1410 | !-- Large scale advection |
---|
| 1411 | IF ( large_scale_forcing ) THEN |
---|
| 1412 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 1413 | ENDIF |
---|
| 1414 | |
---|
| 1415 | ! |
---|
[1380] | 1416 | !-- Nudging |
---|
| 1417 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1418 | |
---|
| 1419 | ! |
---|
[736] | 1420 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1421 | IF ( large_scale_subsidence .AND. & |
---|
| 1422 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1423 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[736] | 1424 | ENDIF |
---|
| 1425 | |
---|
| 1426 | CALL user_actions( 'q-tendency' ) |
---|
| 1427 | |
---|
| 1428 | ! |
---|
| 1429 | !-- Prognostic equation for total water content / scalar |
---|
| 1430 | DO i = nxl, nxr |
---|
| 1431 | DO j = nys, nyn |
---|
| 1432 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1433 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1434 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1435 | - tsc(5) * rdf_sc(k) * & |
---|
| 1436 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 1437 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 1438 | ENDDO |
---|
| 1439 | ENDDO |
---|
| 1440 | ENDDO |
---|
| 1441 | |
---|
| 1442 | ! |
---|
| 1443 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1444 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1445 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1446 | DO i = nxl, nxr |
---|
| 1447 | DO j = nys, nyn |
---|
| 1448 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1449 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1450 | ENDDO |
---|
| 1451 | ENDDO |
---|
| 1452 | ENDDO |
---|
| 1453 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1454 | intermediate_timestep_count_max ) THEN |
---|
| 1455 | DO i = nxl, nxr |
---|
| 1456 | DO j = nys, nyn |
---|
| 1457 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1458 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 1459 | ENDDO |
---|
| 1460 | ENDDO |
---|
| 1461 | ENDDO |
---|
| 1462 | ENDIF |
---|
| 1463 | ENDIF |
---|
| 1464 | |
---|
| 1465 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1466 | |
---|
[1361] | 1467 | ! |
---|
| 1468 | !-- If required, calculate prognostic equations for rain water content |
---|
| 1469 | !-- and rain drop concentration |
---|
| 1470 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 1471 | |
---|
| 1472 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 1473 | |
---|
| 1474 | ! |
---|
| 1475 | !-- Calculate prognostic equation for rain water content |
---|
| 1476 | sbt = tsc(2) |
---|
| 1477 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1478 | |
---|
| 1479 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1480 | ! |
---|
| 1481 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1482 | sbt = 1.0_wp |
---|
| 1483 | ENDIF |
---|
| 1484 | tend = 0.0_wp |
---|
| 1485 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 1486 | |
---|
| 1487 | ENDIF |
---|
| 1488 | |
---|
| 1489 | ! |
---|
| 1490 | !-- qr-tendency terms with no communication |
---|
| 1491 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1492 | tend = 0.0_wp |
---|
| 1493 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1494 | IF ( ws_scheme_sca ) THEN |
---|
| 1495 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 1496 | ELSE |
---|
| 1497 | CALL advec_s_pw( qr ) |
---|
| 1498 | ENDIF |
---|
| 1499 | ELSE |
---|
| 1500 | CALL advec_s_up( qr ) |
---|
| 1501 | ENDIF |
---|
| 1502 | ENDIF |
---|
| 1503 | |
---|
| 1504 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 1505 | |
---|
| 1506 | CALL user_actions( 'qr-tendency' ) |
---|
| 1507 | |
---|
| 1508 | ! |
---|
| 1509 | !-- Prognostic equation for rain water content |
---|
| 1510 | DO i = nxl, nxr |
---|
| 1511 | DO j = nys, nyn |
---|
| 1512 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1513 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1514 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 1515 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 1516 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 1517 | ENDDO |
---|
| 1518 | ENDDO |
---|
| 1519 | ENDDO |
---|
| 1520 | |
---|
| 1521 | ! |
---|
| 1522 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1523 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1524 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1525 | DO i = nxl, nxr |
---|
| 1526 | DO j = nys, nyn |
---|
| 1527 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1528 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 1529 | ENDDO |
---|
| 1530 | ENDDO |
---|
| 1531 | ENDDO |
---|
| 1532 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1533 | intermediate_timestep_count_max ) THEN |
---|
| 1534 | DO i = nxl, nxr |
---|
| 1535 | DO j = nys, nyn |
---|
| 1536 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1537 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1538 | tqr_m(k,j,i) |
---|
| 1539 | ENDDO |
---|
| 1540 | ENDDO |
---|
| 1541 | ENDDO |
---|
| 1542 | ENDIF |
---|
| 1543 | ENDIF |
---|
| 1544 | |
---|
| 1545 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 1546 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 1547 | |
---|
| 1548 | ! |
---|
| 1549 | !-- Calculate prognostic equation for rain drop concentration |
---|
| 1550 | sbt = tsc(2) |
---|
| 1551 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1552 | |
---|
| 1553 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1554 | ! |
---|
| 1555 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1556 | sbt = 1.0_wp |
---|
| 1557 | ENDIF |
---|
| 1558 | tend = 0.0_wp |
---|
| 1559 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 1560 | |
---|
| 1561 | ENDIF |
---|
| 1562 | |
---|
| 1563 | ! |
---|
| 1564 | !-- nr-tendency terms with no communication |
---|
| 1565 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1566 | tend = 0.0_wp |
---|
| 1567 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1568 | IF ( ws_scheme_sca ) THEN |
---|
| 1569 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 1570 | ELSE |
---|
| 1571 | CALL advec_s_pw( nr ) |
---|
| 1572 | ENDIF |
---|
| 1573 | ELSE |
---|
| 1574 | CALL advec_s_up( nr ) |
---|
| 1575 | ENDIF |
---|
| 1576 | ENDIF |
---|
| 1577 | |
---|
| 1578 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 1579 | |
---|
| 1580 | CALL user_actions( 'nr-tendency' ) |
---|
| 1581 | |
---|
| 1582 | ! |
---|
| 1583 | !-- Prognostic equation for rain drop concentration |
---|
| 1584 | DO i = nxl, nxr |
---|
| 1585 | DO j = nys, nyn |
---|
| 1586 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1587 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1588 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 1589 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 1590 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 1591 | ENDDO |
---|
| 1592 | ENDDO |
---|
| 1593 | ENDDO |
---|
| 1594 | |
---|
| 1595 | ! |
---|
| 1596 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1597 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1598 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1599 | DO i = nxl, nxr |
---|
| 1600 | DO j = nys, nyn |
---|
| 1601 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1602 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 1603 | ENDDO |
---|
| 1604 | ENDDO |
---|
| 1605 | ENDDO |
---|
| 1606 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1607 | intermediate_timestep_count_max ) THEN |
---|
| 1608 | DO i = nxl, nxr |
---|
| 1609 | DO j = nys, nyn |
---|
| 1610 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1611 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1612 | tnr_m(k,j,i) |
---|
| 1613 | ENDDO |
---|
| 1614 | ENDDO |
---|
| 1615 | ENDDO |
---|
| 1616 | ENDIF |
---|
| 1617 | ENDIF |
---|
| 1618 | |
---|
| 1619 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 1620 | |
---|
| 1621 | ENDIF |
---|
| 1622 | |
---|
[736] | 1623 | ENDIF |
---|
| 1624 | |
---|
| 1625 | ! |
---|
| 1626 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1627 | !-- energy (TKE) |
---|
| 1628 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1629 | |
---|
| 1630 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1631 | |
---|
| 1632 | sbt = tsc(2) |
---|
| 1633 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1634 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1635 | |
---|
| 1636 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1637 | ! |
---|
[1001] | 1638 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1639 | sbt = 1.0_wp |
---|
[736] | 1640 | ENDIF |
---|
[1337] | 1641 | tend = 0.0_wp |
---|
[736] | 1642 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1643 | |
---|
[736] | 1644 | ENDIF |
---|
| 1645 | ENDIF |
---|
| 1646 | |
---|
| 1647 | ! |
---|
| 1648 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1649 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1650 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 1651 | tend = 0.0_wp |
---|
[736] | 1652 | CALL advec_s_up( e ) |
---|
| 1653 | ELSE |
---|
[1337] | 1654 | tend = 0.0_wp |
---|
[1001] | 1655 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1656 | IF ( ws_scheme_sca ) THEN |
---|
| 1657 | CALL advec_s_ws( e, 'e' ) |
---|
| 1658 | ELSE |
---|
| 1659 | CALL advec_s_pw( e ) |
---|
| 1660 | ENDIF |
---|
| 1661 | ELSE |
---|
[1001] | 1662 | CALL advec_s_up( e ) |
---|
[736] | 1663 | ENDIF |
---|
| 1664 | ENDIF |
---|
[1001] | 1665 | ENDIF |
---|
| 1666 | |
---|
| 1667 | IF ( .NOT. humidity ) THEN |
---|
| 1668 | IF ( ocean ) THEN |
---|
| 1669 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1670 | ELSE |
---|
[1001] | 1671 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1672 | ENDIF |
---|
[1001] | 1673 | ELSE |
---|
| 1674 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1675 | ENDIF |
---|
[1001] | 1676 | |
---|
[736] | 1677 | CALL production_e |
---|
| 1678 | |
---|
| 1679 | ! |
---|
| 1680 | !-- Additional sink term for flows through plant canopies |
---|
| 1681 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1682 | CALL user_actions( 'e-tendency' ) |
---|
| 1683 | |
---|
| 1684 | ! |
---|
| 1685 | !-- Prognostic equation for TKE. |
---|
| 1686 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1687 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1688 | !-- value is reduced by 90%. |
---|
| 1689 | DO i = nxl, nxr |
---|
| 1690 | DO j = nys, nyn |
---|
| 1691 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1692 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1693 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 1694 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 1695 | ENDDO |
---|
| 1696 | ENDDO |
---|
| 1697 | ENDDO |
---|
| 1698 | |
---|
| 1699 | ! |
---|
| 1700 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1701 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1702 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1703 | DO i = nxl, nxr |
---|
| 1704 | DO j = nys, nyn |
---|
| 1705 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1706 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1707 | ENDDO |
---|
| 1708 | ENDDO |
---|
| 1709 | ENDDO |
---|
| 1710 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1711 | intermediate_timestep_count_max ) THEN |
---|
| 1712 | DO i = nxl, nxr |
---|
| 1713 | DO j = nys, nyn |
---|
| 1714 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1715 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[736] | 1716 | ENDDO |
---|
| 1717 | ENDDO |
---|
| 1718 | ENDDO |
---|
| 1719 | ENDIF |
---|
| 1720 | ENDIF |
---|
| 1721 | |
---|
| 1722 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1723 | |
---|
| 1724 | ENDIF |
---|
| 1725 | |
---|
| 1726 | END SUBROUTINE prognostic_equations_vector |
---|
| 1727 | |
---|
| 1728 | |
---|
[1015] | 1729 | SUBROUTINE prognostic_equations_acc |
---|
| 1730 | |
---|
| 1731 | !------------------------------------------------------------------------------! |
---|
| 1732 | ! Version for accelerator boards |
---|
| 1733 | !------------------------------------------------------------------------------! |
---|
| 1734 | |
---|
| 1735 | IMPLICIT NONE |
---|
| 1736 | |
---|
[1320] | 1737 | INTEGER(iwp) :: i !: |
---|
| 1738 | INTEGER(iwp) :: j !: |
---|
| 1739 | INTEGER(iwp) :: k !: |
---|
| 1740 | INTEGER(iwp) :: runge_step !: |
---|
[1015] | 1741 | |
---|
[1320] | 1742 | REAL(wp) :: sbt !: |
---|
| 1743 | |
---|
[1015] | 1744 | ! |
---|
| 1745 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1746 | runge_step = 0 |
---|
| 1747 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1748 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1749 | runge_step = 1 |
---|
| 1750 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1751 | intermediate_timestep_count_max ) THEN |
---|
| 1752 | runge_step = 2 |
---|
| 1753 | ENDIF |
---|
| 1754 | ENDIF |
---|
| 1755 | |
---|
| 1756 | ! |
---|
[1361] | 1757 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 1758 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 1759 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 1760 | call_microphysics_at_all_substeps ) & |
---|
| 1761 | ) THEN |
---|
| 1762 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 1763 | CALL microphysics_control |
---|
| 1764 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 1765 | ENDIF |
---|
| 1766 | |
---|
| 1767 | ! |
---|
[1015] | 1768 | !-- u-velocity component |
---|
[1374] | 1769 | !++ Statistics still not completely ported to accelerators |
---|
[1179] | 1770 | !$acc update device( hom, ref_state ) |
---|
[1015] | 1771 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1772 | |
---|
| 1773 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1774 | IF ( ws_scheme_mom ) THEN |
---|
| 1775 | CALL advec_u_ws_acc |
---|
| 1776 | ELSE |
---|
[1337] | 1777 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1778 | CALL advec_u_pw |
---|
| 1779 | ENDIF |
---|
| 1780 | ELSE |
---|
| 1781 | CALL advec_u_up |
---|
| 1782 | ENDIF |
---|
| 1783 | CALL diffusion_u_acc |
---|
| 1784 | CALL coriolis_acc( 1 ) |
---|
| 1785 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 1786 | CALL buoyancy( pt, 1 ) |
---|
[1015] | 1787 | ENDIF |
---|
| 1788 | |
---|
| 1789 | ! |
---|
| 1790 | !-- Drag by plant canopy |
---|
| 1791 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1792 | |
---|
| 1793 | ! |
---|
| 1794 | !-- External pressure gradient |
---|
| 1795 | IF ( dp_external ) THEN |
---|
[1128] | 1796 | DO i = i_left, i_right |
---|
| 1797 | DO j = j_south, j_north |
---|
[1015] | 1798 | DO k = dp_level_ind_b+1, nzt |
---|
| 1799 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1800 | ENDDO |
---|
| 1801 | ENDDO |
---|
| 1802 | ENDDO |
---|
| 1803 | ENDIF |
---|
| 1804 | |
---|
[1246] | 1805 | ! |
---|
| 1806 | !-- Nudging |
---|
| 1807 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 1808 | |
---|
[1015] | 1809 | CALL user_actions( 'u-tendency' ) |
---|
| 1810 | |
---|
| 1811 | ! |
---|
| 1812 | !-- Prognostic equation for u-velocity component |
---|
| 1813 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, ug, u_p ) |
---|
[1257] | 1814 | !$acc loop independent |
---|
[1128] | 1815 | DO i = i_left, i_right |
---|
[1257] | 1816 | !$acc loop independent |
---|
[1128] | 1817 | DO j = j_south, j_north |
---|
[1257] | 1818 | !$acc loop independent |
---|
[1015] | 1819 | DO k = 1, nzt |
---|
| 1820 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1821 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1822 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 1823 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1824 | ! |
---|
| 1825 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1826 | IF ( runge_step == 1 ) THEN |
---|
| 1827 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1828 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1829 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[1015] | 1830 | ENDIF |
---|
| 1831 | ENDIF |
---|
| 1832 | ENDDO |
---|
| 1833 | ENDDO |
---|
| 1834 | ENDDO |
---|
| 1835 | !$acc end kernels |
---|
| 1836 | |
---|
| 1837 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1838 | |
---|
| 1839 | ! |
---|
| 1840 | !-- v-velocity component |
---|
| 1841 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1842 | |
---|
| 1843 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1844 | IF ( ws_scheme_mom ) THEN |
---|
| 1845 | CALL advec_v_ws_acc |
---|
| 1846 | ELSE |
---|
[1337] | 1847 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1848 | CALL advec_v_pw |
---|
| 1849 | END IF |
---|
| 1850 | ELSE |
---|
| 1851 | CALL advec_v_up |
---|
| 1852 | ENDIF |
---|
| 1853 | CALL diffusion_v_acc |
---|
| 1854 | CALL coriolis_acc( 2 ) |
---|
| 1855 | |
---|
| 1856 | ! |
---|
| 1857 | !-- Drag by plant canopy |
---|
| 1858 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1859 | |
---|
| 1860 | ! |
---|
| 1861 | !-- External pressure gradient |
---|
| 1862 | IF ( dp_external ) THEN |
---|
[1128] | 1863 | DO i = i_left, i_right |
---|
| 1864 | DO j = j_south, j_north |
---|
[1015] | 1865 | DO k = dp_level_ind_b+1, nzt |
---|
| 1866 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1867 | ENDDO |
---|
| 1868 | ENDDO |
---|
| 1869 | ENDDO |
---|
| 1870 | ENDIF |
---|
| 1871 | |
---|
[1246] | 1872 | ! |
---|
| 1873 | !-- Nudging |
---|
| 1874 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1875 | |
---|
[1015] | 1876 | CALL user_actions( 'v-tendency' ) |
---|
| 1877 | |
---|
| 1878 | ! |
---|
| 1879 | !-- Prognostic equation for v-velocity component |
---|
| 1880 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, vg, v_p ) |
---|
[1257] | 1881 | !$acc loop independent |
---|
[1128] | 1882 | DO i = i_left, i_right |
---|
[1257] | 1883 | !$acc loop independent |
---|
[1128] | 1884 | DO j = j_south, j_north |
---|
[1257] | 1885 | !$acc loop independent |
---|
[1015] | 1886 | DO k = 1, nzt |
---|
| 1887 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1888 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1889 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 1890 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1891 | ! |
---|
| 1892 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1893 | IF ( runge_step == 1 ) THEN |
---|
| 1894 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1895 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1896 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[1015] | 1897 | ENDIF |
---|
| 1898 | ENDIF |
---|
| 1899 | ENDDO |
---|
| 1900 | ENDDO |
---|
| 1901 | ENDDO |
---|
| 1902 | !$acc end kernels |
---|
| 1903 | |
---|
| 1904 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1905 | |
---|
| 1906 | ! |
---|
| 1907 | !-- w-velocity component |
---|
| 1908 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1909 | |
---|
| 1910 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1911 | IF ( ws_scheme_mom ) THEN |
---|
| 1912 | CALL advec_w_ws_acc |
---|
| 1913 | ELSE |
---|
[1337] | 1914 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1915 | CALL advec_w_pw |
---|
| 1916 | ENDIF |
---|
| 1917 | ELSE |
---|
| 1918 | CALL advec_w_up |
---|
| 1919 | ENDIF |
---|
| 1920 | CALL diffusion_w_acc |
---|
| 1921 | CALL coriolis_acc( 3 ) |
---|
| 1922 | |
---|
| 1923 | IF ( .NOT. neutral ) THEN |
---|
| 1924 | IF ( ocean ) THEN |
---|
[1179] | 1925 | CALL buoyancy( rho, 3 ) |
---|
[1015] | 1926 | ELSE |
---|
| 1927 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1928 | CALL buoyancy_acc( pt, 3 ) |
---|
[1015] | 1929 | ELSE |
---|
[1179] | 1930 | CALL buoyancy( vpt, 3 ) |
---|
[1015] | 1931 | ENDIF |
---|
| 1932 | ENDIF |
---|
| 1933 | ENDIF |
---|
| 1934 | |
---|
| 1935 | ! |
---|
| 1936 | !-- Drag by plant canopy |
---|
| 1937 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1938 | |
---|
| 1939 | CALL user_actions( 'w-tendency' ) |
---|
| 1940 | |
---|
| 1941 | ! |
---|
| 1942 | !-- Prognostic equation for w-velocity component |
---|
| 1943 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
[1257] | 1944 | !$acc loop independent |
---|
[1128] | 1945 | DO i = i_left, i_right |
---|
[1257] | 1946 | !$acc loop independent |
---|
[1128] | 1947 | DO j = j_south, j_north |
---|
[1257] | 1948 | !$acc loop independent |
---|
[1015] | 1949 | DO k = 1, nzt-1 |
---|
| 1950 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 1951 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1952 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1953 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1954 | ! |
---|
| 1955 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1956 | IF ( runge_step == 1 ) THEN |
---|
| 1957 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1958 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1959 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[1015] | 1960 | ENDIF |
---|
| 1961 | ENDIF |
---|
| 1962 | ENDDO |
---|
| 1963 | ENDDO |
---|
| 1964 | ENDDO |
---|
| 1965 | !$acc end kernels |
---|
| 1966 | |
---|
| 1967 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1968 | |
---|
| 1969 | |
---|
| 1970 | ! |
---|
| 1971 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1972 | IF ( .NOT. neutral ) THEN |
---|
| 1973 | |
---|
| 1974 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1975 | |
---|
| 1976 | ! |
---|
| 1977 | !-- pt-tendency terms with communication |
---|
| 1978 | sbt = tsc(2) |
---|
| 1979 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1980 | |
---|
| 1981 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1982 | ! |
---|
| 1983 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1984 | sbt = 1.0_wp |
---|
[1015] | 1985 | ENDIF |
---|
[1337] | 1986 | tend = 0.0_wp |
---|
[1015] | 1987 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1988 | |
---|
| 1989 | ENDIF |
---|
| 1990 | |
---|
| 1991 | ! |
---|
| 1992 | !-- pt-tendency terms with no communication |
---|
| 1993 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1994 | tend = 0.0_wp |
---|
[1015] | 1995 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1996 | IF ( ws_scheme_sca ) THEN |
---|
| 1997 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 1998 | ELSE |
---|
[1337] | 1999 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2000 | CALL advec_s_pw( pt ) |
---|
| 2001 | ENDIF |
---|
| 2002 | ELSE |
---|
| 2003 | CALL advec_s_up( pt ) |
---|
| 2004 | ENDIF |
---|
| 2005 | ENDIF |
---|
| 2006 | |
---|
| 2007 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 2008 | |
---|
| 2009 | ! |
---|
| 2010 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 2011 | IF ( radiation ) THEN |
---|
| 2012 | CALL calc_radiation |
---|
| 2013 | ENDIF |
---|
| 2014 | |
---|
| 2015 | ! |
---|
| 2016 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 2017 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2018 | CALL impact_of_latent_heat |
---|
| 2019 | ENDIF |
---|
| 2020 | |
---|
| 2021 | ! |
---|
| 2022 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 2023 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[1015] | 2024 | CALL plant_canopy_model( 4 ) |
---|
| 2025 | ENDIF |
---|
| 2026 | |
---|
| 2027 | ! |
---|
[1365] | 2028 | !-- Large scale advection |
---|
| 2029 | IF ( large_scale_forcing ) THEN |
---|
| 2030 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 2031 | ENDIF |
---|
| 2032 | |
---|
| 2033 | ! |
---|
[1380] | 2034 | !-- Nudging |
---|
| 2035 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 2036 | |
---|
| 2037 | ! |
---|
[1015] | 2038 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2039 | IF ( large_scale_subsidence .AND. & |
---|
| 2040 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2041 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[1015] | 2042 | ENDIF |
---|
| 2043 | |
---|
| 2044 | CALL user_actions( 'pt-tendency' ) |
---|
| 2045 | |
---|
| 2046 | ! |
---|
| 2047 | !-- Prognostic equation for potential temperature |
---|
| 2048 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 2049 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
[1257] | 2050 | !$acc loop independent |
---|
[1128] | 2051 | DO i = i_left, i_right |
---|
[1257] | 2052 | !$acc loop independent |
---|
[1128] | 2053 | DO j = j_south, j_north |
---|
[1257] | 2054 | !$acc loop independent |
---|
[1015] | 2055 | DO k = 1, nzt |
---|
| 2056 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2057 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2058 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 2059 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 2060 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 2061 | ! |
---|
| 2062 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2063 | IF ( runge_step == 1 ) THEN |
---|
| 2064 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 2065 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2066 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tpt_m(k,j,i) |
---|
[1015] | 2067 | ENDIF |
---|
| 2068 | ENDIF |
---|
| 2069 | ENDDO |
---|
| 2070 | ENDDO |
---|
| 2071 | ENDDO |
---|
| 2072 | !$acc end kernels |
---|
| 2073 | |
---|
| 2074 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 2075 | |
---|
| 2076 | ENDIF |
---|
| 2077 | |
---|
| 2078 | ! |
---|
| 2079 | !-- If required, compute prognostic equation for salinity |
---|
| 2080 | IF ( ocean ) THEN |
---|
| 2081 | |
---|
| 2082 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 2083 | |
---|
| 2084 | ! |
---|
| 2085 | !-- sa-tendency terms with communication |
---|
| 2086 | sbt = tsc(2) |
---|
| 2087 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2088 | |
---|
| 2089 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2090 | ! |
---|
| 2091 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2092 | sbt = 1.0_wp |
---|
[1015] | 2093 | ENDIF |
---|
[1337] | 2094 | tend = 0.0_wp |
---|
[1015] | 2095 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 2096 | |
---|
| 2097 | ENDIF |
---|
| 2098 | |
---|
| 2099 | ! |
---|
| 2100 | !-- sa-tendency terms with no communication |
---|
| 2101 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2102 | tend = 0.0_wp |
---|
[1015] | 2103 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2104 | IF ( ws_scheme_sca ) THEN |
---|
| 2105 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 2106 | ELSE |
---|
| 2107 | CALL advec_s_pw( sa ) |
---|
| 2108 | ENDIF |
---|
| 2109 | ELSE |
---|
| 2110 | CALL advec_s_up( sa ) |
---|
| 2111 | ENDIF |
---|
| 2112 | ENDIF |
---|
| 2113 | |
---|
| 2114 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 2115 | |
---|
| 2116 | CALL user_actions( 'sa-tendency' ) |
---|
| 2117 | |
---|
| 2118 | ! |
---|
| 2119 | !-- Prognostic equation for salinity |
---|
[1128] | 2120 | DO i = i_left, i_right |
---|
| 2121 | DO j = j_south, j_north |
---|
[1015] | 2122 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2123 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2124 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 2125 | - tsc(5) * rdf_sc(k) * & |
---|
| 2126 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 2127 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[1015] | 2128 | ! |
---|
| 2129 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2130 | IF ( runge_step == 1 ) THEN |
---|
| 2131 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 2132 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2133 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tsa_m(k,j,i) |
---|
[1015] | 2134 | ENDIF |
---|
| 2135 | ENDDO |
---|
| 2136 | ENDDO |
---|
| 2137 | ENDDO |
---|
| 2138 | |
---|
| 2139 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 2140 | |
---|
| 2141 | ! |
---|
| 2142 | !-- Calculate density by the equation of state for seawater |
---|
| 2143 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 2144 | CALL eqn_state_seawater |
---|
| 2145 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 2146 | |
---|
| 2147 | ENDIF |
---|
| 2148 | |
---|
| 2149 | ! |
---|
| 2150 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 2151 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 2152 | |
---|
| 2153 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 2154 | |
---|
| 2155 | ! |
---|
| 2156 | !-- Scalar/q-tendency terms with communication |
---|
| 2157 | sbt = tsc(2) |
---|
| 2158 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2159 | |
---|
| 2160 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2161 | ! |
---|
| 2162 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2163 | sbt = 1.0_wp |
---|
[1015] | 2164 | ENDIF |
---|
[1337] | 2165 | tend = 0.0_wp |
---|
[1015] | 2166 | CALL advec_s_bc( q, 'q' ) |
---|
| 2167 | |
---|
| 2168 | ENDIF |
---|
| 2169 | |
---|
| 2170 | ! |
---|
| 2171 | !-- Scalar/q-tendency terms with no communication |
---|
| 2172 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2173 | tend = 0.0_wp |
---|
[1015] | 2174 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2175 | IF ( ws_scheme_sca ) THEN |
---|
| 2176 | CALL advec_s_ws( q, 'q' ) |
---|
| 2177 | ELSE |
---|
| 2178 | CALL advec_s_pw( q ) |
---|
| 2179 | ENDIF |
---|
| 2180 | ELSE |
---|
| 2181 | CALL advec_s_up( q ) |
---|
| 2182 | ENDIF |
---|
| 2183 | ENDIF |
---|
| 2184 | |
---|
| 2185 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 2186 | |
---|
| 2187 | ! |
---|
| 2188 | !-- If required compute decrease of total water content due to |
---|
| 2189 | !-- precipitation |
---|
[1361] | 2190 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2191 | CALL calc_precipitation |
---|
| 2192 | ENDIF |
---|
| 2193 | |
---|
| 2194 | ! |
---|
| 2195 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 2196 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 2197 | |
---|
| 2198 | ! |
---|
[1365] | 2199 | !-- Large scale advection |
---|
| 2200 | IF ( large_scale_forcing ) THEN |
---|
| 2201 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 2202 | ENDIF |
---|
| 2203 | |
---|
| 2204 | ! |
---|
[1380] | 2205 | !-- Nudging |
---|
| 2206 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 2207 | |
---|
| 2208 | ! |
---|
[1015] | 2209 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2210 | IF ( large_scale_subsidence .AND. & |
---|
| 2211 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2212 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[1015] | 2213 | ENDIF |
---|
| 2214 | |
---|
| 2215 | CALL user_actions( 'q-tendency' ) |
---|
| 2216 | |
---|
| 2217 | ! |
---|
| 2218 | !-- Prognostic equation for total water content / scalar |
---|
[1128] | 2219 | DO i = i_left, i_right |
---|
| 2220 | DO j = j_south, j_north |
---|
[1015] | 2221 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2222 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2223 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 2224 | - tsc(5) * rdf_sc(k) * & |
---|
| 2225 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 2226 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[1015] | 2227 | ! |
---|
| 2228 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2229 | IF ( runge_step == 1 ) THEN |
---|
| 2230 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 2231 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2232 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[1015] | 2233 | ENDIF |
---|
| 2234 | ENDDO |
---|
| 2235 | ENDDO |
---|
| 2236 | ENDDO |
---|
| 2237 | |
---|
| 2238 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 2239 | |
---|
[1361] | 2240 | ! |
---|
| 2241 | !-- If required, calculate prognostic equations for rain water content |
---|
| 2242 | !-- and rain drop concentration |
---|
| 2243 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 2244 | |
---|
| 2245 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 2246 | ! |
---|
| 2247 | !-- qr-tendency terms with communication |
---|
| 2248 | sbt = tsc(2) |
---|
| 2249 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2250 | |
---|
| 2251 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2252 | ! |
---|
| 2253 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2254 | sbt = 1.0_wp |
---|
| 2255 | ENDIF |
---|
| 2256 | tend = 0.0_wp |
---|
| 2257 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 2258 | |
---|
| 2259 | ENDIF |
---|
| 2260 | |
---|
| 2261 | ! |
---|
| 2262 | !-- qr-tendency terms with no communication |
---|
| 2263 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2264 | tend = 0.0_wp |
---|
| 2265 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2266 | IF ( ws_scheme_sca ) THEN |
---|
| 2267 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 2268 | ELSE |
---|
| 2269 | CALL advec_s_pw( qr ) |
---|
| 2270 | ENDIF |
---|
| 2271 | ELSE |
---|
| 2272 | CALL advec_s_up( qr ) |
---|
| 2273 | ENDIF |
---|
| 2274 | ENDIF |
---|
| 2275 | |
---|
| 2276 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 2277 | |
---|
| 2278 | CALL user_actions( 'qr-tendency' ) |
---|
| 2279 | |
---|
| 2280 | ! |
---|
| 2281 | !-- Prognostic equation for rain water content |
---|
| 2282 | DO i = i_left, i_right |
---|
| 2283 | DO j = j_south, j_north |
---|
| 2284 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2285 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2286 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 2287 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 2288 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 2289 | ! |
---|
| 2290 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2291 | IF ( runge_step == 1 ) THEN |
---|
| 2292 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 2293 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2294 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2295 | tqr_m(k,j,i) |
---|
| 2296 | ENDIF |
---|
| 2297 | ENDDO |
---|
| 2298 | ENDDO |
---|
| 2299 | ENDDO |
---|
| 2300 | |
---|
| 2301 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 2302 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 2303 | |
---|
| 2304 | ! |
---|
| 2305 | !-- nr-tendency terms with communication |
---|
| 2306 | sbt = tsc(2) |
---|
| 2307 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2308 | |
---|
| 2309 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2310 | ! |
---|
| 2311 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2312 | sbt = 1.0_wp |
---|
| 2313 | ENDIF |
---|
| 2314 | tend = 0.0_wp |
---|
| 2315 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 2316 | |
---|
| 2317 | ENDIF |
---|
| 2318 | |
---|
| 2319 | ! |
---|
| 2320 | !-- nr-tendency terms with no communication |
---|
| 2321 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2322 | tend = 0.0_wp |
---|
| 2323 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2324 | IF ( ws_scheme_sca ) THEN |
---|
| 2325 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 2326 | ELSE |
---|
| 2327 | CALL advec_s_pw( nr ) |
---|
| 2328 | ENDIF |
---|
| 2329 | ELSE |
---|
| 2330 | CALL advec_s_up( nr ) |
---|
| 2331 | ENDIF |
---|
| 2332 | ENDIF |
---|
| 2333 | |
---|
| 2334 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 2335 | |
---|
| 2336 | CALL user_actions( 'nr-tendency' ) |
---|
| 2337 | |
---|
| 2338 | ! |
---|
| 2339 | !-- Prognostic equation for rain drop concentration |
---|
| 2340 | DO i = i_left, i_right |
---|
| 2341 | DO j = j_south, j_north |
---|
| 2342 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2343 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2344 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 2345 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 2346 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 2347 | ! |
---|
| 2348 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2349 | IF ( runge_step == 1 ) THEN |
---|
| 2350 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 2351 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2352 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2353 | tnr_m(k,j,i) |
---|
| 2354 | ENDIF |
---|
| 2355 | ENDDO |
---|
| 2356 | ENDDO |
---|
| 2357 | ENDDO |
---|
| 2358 | |
---|
| 2359 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 2360 | |
---|
| 2361 | ENDIF |
---|
| 2362 | |
---|
[1015] | 2363 | ENDIF |
---|
| 2364 | |
---|
| 2365 | ! |
---|
| 2366 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 2367 | !-- energy (TKE) |
---|
| 2368 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 2369 | |
---|
| 2370 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 2371 | |
---|
| 2372 | sbt = tsc(2) |
---|
| 2373 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 2374 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2375 | |
---|
| 2376 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2377 | ! |
---|
| 2378 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2379 | sbt = 1.0_wp |
---|
[1015] | 2380 | ENDIF |
---|
[1337] | 2381 | tend = 0.0_wp |
---|
[1015] | 2382 | CALL advec_s_bc( e, 'e' ) |
---|
| 2383 | |
---|
| 2384 | ENDIF |
---|
| 2385 | ENDIF |
---|
| 2386 | |
---|
| 2387 | ! |
---|
| 2388 | !-- TKE-tendency terms with no communication |
---|
| 2389 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 2390 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 2391 | tend = 0.0_wp |
---|
[1015] | 2392 | CALL advec_s_up( e ) |
---|
| 2393 | ELSE |
---|
| 2394 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2395 | IF ( ws_scheme_sca ) THEN |
---|
| 2396 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 2397 | ELSE |
---|
[1337] | 2398 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2399 | CALL advec_s_pw( e ) |
---|
| 2400 | ENDIF |
---|
| 2401 | ELSE |
---|
[1337] | 2402 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2403 | CALL advec_s_up( e ) |
---|
| 2404 | ENDIF |
---|
| 2405 | ENDIF |
---|
| 2406 | ENDIF |
---|
| 2407 | |
---|
| 2408 | IF ( .NOT. humidity ) THEN |
---|
| 2409 | IF ( ocean ) THEN |
---|
| 2410 | CALL diffusion_e( prho, prho_reference ) |
---|
| 2411 | ELSE |
---|
| 2412 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 2413 | ENDIF |
---|
| 2414 | ELSE |
---|
| 2415 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 2416 | ENDIF |
---|
| 2417 | |
---|
| 2418 | CALL production_e_acc |
---|
| 2419 | |
---|
| 2420 | ! |
---|
| 2421 | !-- Additional sink term for flows through plant canopies |
---|
| 2422 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 2423 | CALL user_actions( 'e-tendency' ) |
---|
| 2424 | |
---|
| 2425 | ! |
---|
| 2426 | !-- Prognostic equation for TKE. |
---|
| 2427 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2428 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2429 | !-- value is reduced by 90%. |
---|
| 2430 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
[1257] | 2431 | !$acc loop independent |
---|
[1128] | 2432 | DO i = i_left, i_right |
---|
[1257] | 2433 | !$acc loop independent |
---|
[1128] | 2434 | DO j = j_south, j_north |
---|
[1257] | 2435 | !$acc loop independent |
---|
[1015] | 2436 | DO k = 1, nzt |
---|
| 2437 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2438 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2439 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 2440 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[1015] | 2441 | ! |
---|
| 2442 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2443 | IF ( runge_step == 1 ) THEN |
---|
| 2444 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2445 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2446 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[1015] | 2447 | ENDIF |
---|
| 2448 | ENDIF |
---|
| 2449 | ENDDO |
---|
| 2450 | ENDDO |
---|
| 2451 | ENDDO |
---|
| 2452 | !$acc end kernels |
---|
| 2453 | |
---|
| 2454 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2455 | |
---|
| 2456 | ENDIF |
---|
| 2457 | |
---|
| 2458 | END SUBROUTINE prognostic_equations_acc |
---|
| 2459 | |
---|
| 2460 | |
---|
[736] | 2461 | END MODULE prognostic_equations_mod |
---|