[736] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[736] | 20 | ! Current revisions: |
---|
[1092] | 21 | ! ------------------ |
---|
[1366] | 22 | ! |
---|
| 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: prognostic_equations.f90 1366 2014-04-22 15:06:33Z raasch $ |
---|
| 27 | ! |
---|
| 28 | ! 1365 2014-04-22 15:03:56Z boeske |
---|
[1365] | 29 | ! Calls of ls_advec for large scale advection added, |
---|
| 30 | ! subroutine subsidence is only called if use_subsidence_tendencies = .F., |
---|
| 31 | ! new argument ls_index added to the calls of subsidence |
---|
| 32 | ! +ls_index |
---|
| 33 | ! |
---|
| 34 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
[1361] | 35 | ! Two-moment microphysics moved to the start of prognostic equations. This makes |
---|
| 36 | ! the 3d arrays for tend_q, tend_qr, tend_pt and tend_pt redundant. |
---|
| 37 | ! Additionally, it is allowed to call the microphysics just once during the time |
---|
| 38 | ! step (not at each sub-time step). |
---|
| 39 | ! |
---|
| 40 | ! Two-moment cloud physics added for vector and accelerator optimization. |
---|
| 41 | ! |
---|
| 42 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
[1354] | 43 | ! REAL constants provided with KIND-attribute |
---|
| 44 | ! |
---|
[1353] | 45 | ! 1337 2014-03-25 15:11:48Z heinze |
---|
| 46 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 47 | ! |
---|
| 48 | ! 1332 2014-03-25 11:59:43Z suehring |
---|
[1333] | 49 | ! Bugfix: call advec_ws or advec_pw for TKE only if NOT use_upstream_for_tke |
---|
| 50 | ! |
---|
[1332] | 51 | ! 1330 2014-03-24 17:29:32Z suehring |
---|
[1331] | 52 | ! In case of SGS-particle velocity advection of TKE is also allowed with |
---|
| 53 | ! dissipative 5th-order scheme. |
---|
| 54 | ! |
---|
[1321] | 55 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 56 | ! ONLY-attribute added to USE-statements, |
---|
| 57 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 58 | ! kinds are defined in new module kinds, |
---|
| 59 | ! old module precision_kind is removed, |
---|
| 60 | ! revision history before 2012 removed, |
---|
| 61 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 62 | ! all variable declaration statements |
---|
[1054] | 63 | ! |
---|
[1319] | 64 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 65 | ! module interfaces removed |
---|
| 66 | ! |
---|
[1258] | 67 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 68 | ! openacc loop vector clauses removed, independent clauses added |
---|
| 69 | ! |
---|
[1247] | 70 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
| 71 | ! enable nudging also for accelerator version |
---|
| 72 | ! |
---|
[1242] | 73 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 74 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
| 75 | ! |
---|
[1182] | 76 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 77 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 78 | ! |
---|
[1132] | 79 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 80 | ! those parts requiring global communication moved to time_integration, |
---|
| 81 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 82 | ! j_north |
---|
| 83 | ! |
---|
[1116] | 84 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 85 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 86 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 87 | ! |
---|
[1112] | 88 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 89 | ! update directives for prognostic quantities removed |
---|
| 90 | ! |
---|
[1107] | 91 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 92 | ! small changes in code formatting |
---|
| 93 | ! |
---|
[1093] | 94 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 95 | ! unused variables removed |
---|
| 96 | ! |
---|
[1054] | 97 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 98 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 99 | ! and rain water content (qr) |
---|
[979] | 100 | ! |
---|
[1053] | 101 | ! currently, only available for cache loop optimization |
---|
[1020] | 102 | ! |
---|
[1037] | 103 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 104 | ! code put under GPL (PALM 3.9) |
---|
| 105 | ! |
---|
[1020] | 106 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 107 | ! non-optimized version of prognostic_equations removed |
---|
| 108 | ! |
---|
[1017] | 109 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 110 | ! new branch prognostic_equations_acc |
---|
| 111 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 112 | ! |
---|
[1002] | 113 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 114 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 115 | ! |
---|
[979] | 116 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 117 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 118 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 119 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 120 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 121 | ! |
---|
[941] | 122 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 123 | ! temperature equation can be switched off |
---|
| 124 | ! |
---|
[736] | 125 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 126 | ! Initial revision |
---|
| 127 | ! |
---|
| 128 | ! |
---|
| 129 | ! Description: |
---|
| 130 | ! ------------ |
---|
| 131 | ! Solving the prognostic equations. |
---|
| 132 | !------------------------------------------------------------------------------! |
---|
| 133 | |
---|
[1320] | 134 | USE arrays_3d, & |
---|
| 135 | ONLY: diss_l_e, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qr, & |
---|
| 136 | diss_l_sa, diss_s_e, diss_s_nr, diss_s_pt, diss_s_q, & |
---|
| 137 | diss_s_qr, diss_s_sa, e, e_p, flux_s_e, flux_s_nr, flux_s_pt, & |
---|
| 138 | flux_s_q, flux_s_qr, flux_s_sa, flux_l_e, flux_l_nr, & |
---|
| 139 | flux_l_pt, flux_l_q, flux_l_qr, flux_l_sa, nr, nr_p, nrsws, & |
---|
| 140 | nrswst, pt, ptdf_x, ptdf_y, pt_init, pt_p, prho, q, q_init, & |
---|
| 141 | q_p, qsws, qswst, qr, qr_p, qrsws, qrswst, rdf, rdf_sc, rho, & |
---|
[1361] | 142 | sa, sa_init, sa_p, saswsb, saswst, shf, tend, te_m, tnr_m, & |
---|
| 143 | tpt_m, tq_m, tqr_m, tsa_m, tswst, tu_m, tv_m, tw_m, u, ug, u_p, & |
---|
| 144 | v, vg, vpt, v_p, w, w_p |
---|
[1320] | 145 | |
---|
| 146 | USE control_parameters, & |
---|
[1361] | 147 | ONLY: call_microphysics_at_all_substeps, cloud_physics, & |
---|
| 148 | constant_diffusion, cthf, dp_external, & |
---|
[1320] | 149 | dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, humidity, & |
---|
| 150 | icloud_scheme, inflow_l, intermediate_timestep_count, & |
---|
[1365] | 151 | intermediate_timestep_count_max, large_scale_forcing, & |
---|
| 152 | large_scale_subsidence, neutral, nudging, ocean, outflow_l, & |
---|
| 153 | outflow_s, passive_scalar, plant_canopy, precipitation, & |
---|
| 154 | prho_reference, prho_reference, prho_reference, pt_reference, & |
---|
| 155 | pt_reference, pt_reference, radiation, scalar_advec, & |
---|
| 156 | scalar_advec, simulated_time, sloping_surface, timestep_scheme, & |
---|
| 157 | tsc, use_subsidence_tendencies, use_upstream_for_tke, & |
---|
[1320] | 158 | use_upstream_for_tke, use_upstream_for_tke, wall_heatflux, & |
---|
| 159 | wall_nrflux, wall_qflux, wall_qflux, wall_qflux, wall_qrflux, & |
---|
| 160 | wall_salinityflux, ws_scheme_mom, ws_scheme_sca |
---|
[736] | 161 | |
---|
[1320] | 162 | USE cpulog, & |
---|
| 163 | ONLY: cpu_log, log_point |
---|
[736] | 164 | |
---|
[1320] | 165 | USE eqn_state_seawater_mod, & |
---|
| 166 | ONLY: eqn_state_seawater |
---|
| 167 | |
---|
| 168 | USE indices, & |
---|
| 169 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlu, nxr, nyn, nys, & |
---|
| 170 | nysv, nzb_s_inner, nzb_u_inner, nzb_v_inner, nzb_w_inner, nzt |
---|
| 171 | |
---|
| 172 | USE advec_ws, & |
---|
| 173 | ONLY: advec_s_ws, advec_s_ws_acc, advec_u_ws, advec_u_ws_acc, & |
---|
| 174 | advec_v_ws, advec_v_ws_acc, advec_w_ws, advec_w_ws_acc |
---|
| 175 | |
---|
| 176 | USE advec_s_pw_mod, & |
---|
| 177 | ONLY: advec_s_pw |
---|
| 178 | |
---|
| 179 | USE advec_s_up_mod, & |
---|
| 180 | ONLY: advec_s_up |
---|
| 181 | |
---|
| 182 | USE advec_u_pw_mod, & |
---|
| 183 | ONLY: advec_u_pw |
---|
| 184 | |
---|
| 185 | USE advec_u_up_mod, & |
---|
| 186 | ONLY: advec_u_up |
---|
| 187 | |
---|
| 188 | USE advec_v_pw_mod, & |
---|
| 189 | ONLY: advec_v_pw |
---|
| 190 | |
---|
| 191 | USE advec_v_up_mod, & |
---|
| 192 | ONLY: advec_v_up |
---|
| 193 | |
---|
| 194 | USE advec_w_pw_mod, & |
---|
| 195 | ONLY: advec_w_pw |
---|
| 196 | |
---|
| 197 | USE advec_w_up_mod, & |
---|
| 198 | ONLY: advec_w_up |
---|
| 199 | |
---|
| 200 | USE buoyancy_mod, & |
---|
| 201 | ONLY: buoyancy, buoyancy_acc |
---|
| 202 | |
---|
| 203 | USE calc_precipitation_mod, & |
---|
| 204 | ONLY: calc_precipitation |
---|
| 205 | |
---|
| 206 | USE calc_radiation_mod, & |
---|
| 207 | ONLY: calc_radiation |
---|
| 208 | |
---|
| 209 | USE coriolis_mod, & |
---|
| 210 | ONLY: coriolis, coriolis_acc |
---|
| 211 | |
---|
| 212 | USE diffusion_e_mod, & |
---|
| 213 | ONLY: diffusion_e, diffusion_e_acc |
---|
| 214 | |
---|
| 215 | USE diffusion_s_mod, & |
---|
| 216 | ONLY: diffusion_s, diffusion_s_acc |
---|
| 217 | |
---|
| 218 | USE diffusion_u_mod, & |
---|
| 219 | ONLY: diffusion_u, diffusion_u_acc |
---|
| 220 | |
---|
| 221 | USE diffusion_v_mod, & |
---|
| 222 | ONLY: diffusion_v, diffusion_v_acc |
---|
| 223 | |
---|
| 224 | USE diffusion_w_mod, & |
---|
| 225 | ONLY: diffusion_w, diffusion_w_acc |
---|
| 226 | |
---|
| 227 | USE impact_of_latent_heat_mod, & |
---|
| 228 | ONLY: impact_of_latent_heat |
---|
| 229 | |
---|
| 230 | USE kinds |
---|
| 231 | |
---|
[1365] | 232 | USE ls_forcing_mod, & |
---|
| 233 | ONLY: ls_advec |
---|
| 234 | |
---|
[1320] | 235 | USE microphysics_mod, & |
---|
| 236 | ONLY: microphysics_control |
---|
| 237 | |
---|
| 238 | USE nudge_mod, & |
---|
| 239 | ONLY: nudge |
---|
| 240 | |
---|
| 241 | USE plant_canopy_model_mod, & |
---|
| 242 | ONLY: plant_canopy_model |
---|
| 243 | |
---|
| 244 | USE production_e_mod, & |
---|
| 245 | ONLY: production_e, production_e_acc |
---|
| 246 | |
---|
| 247 | USE subsidence_mod, & |
---|
| 248 | ONLY: subsidence |
---|
| 249 | |
---|
| 250 | USE user_actions_mod, & |
---|
| 251 | ONLY: user_actions |
---|
| 252 | |
---|
| 253 | |
---|
[736] | 254 | PRIVATE |
---|
[1019] | 255 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 256 | prognostic_equations_acc |
---|
[736] | 257 | |
---|
| 258 | INTERFACE prognostic_equations_cache |
---|
| 259 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 260 | END INTERFACE prognostic_equations_cache |
---|
| 261 | |
---|
| 262 | INTERFACE prognostic_equations_vector |
---|
| 263 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 264 | END INTERFACE prognostic_equations_vector |
---|
| 265 | |
---|
[1015] | 266 | INTERFACE prognostic_equations_acc |
---|
| 267 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 268 | END INTERFACE prognostic_equations_acc |
---|
[736] | 269 | |
---|
[1015] | 270 | |
---|
[736] | 271 | CONTAINS |
---|
| 272 | |
---|
| 273 | |
---|
| 274 | SUBROUTINE prognostic_equations_cache |
---|
| 275 | |
---|
| 276 | !------------------------------------------------------------------------------! |
---|
| 277 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 278 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 279 | ! |
---|
| 280 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 281 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 282 | ! these loops. |
---|
| 283 | ! |
---|
| 284 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 285 | !------------------------------------------------------------------------------! |
---|
| 286 | |
---|
| 287 | IMPLICIT NONE |
---|
| 288 | |
---|
[1320] | 289 | INTEGER(iwp) :: i !: |
---|
| 290 | INTEGER(iwp) :: i_omp_start !: |
---|
| 291 | INTEGER(iwp) :: j !: |
---|
| 292 | INTEGER(iwp) :: k !: |
---|
| 293 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
| 294 | INTEGER(iwp) :: tn = 0 !: |
---|
| 295 | |
---|
| 296 | LOGICAL :: loop_start !: |
---|
[736] | 297 | |
---|
| 298 | |
---|
| 299 | ! |
---|
| 300 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 301 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 302 | |
---|
| 303 | ! |
---|
| 304 | !-- Loop over all prognostic equations |
---|
| 305 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 306 | |
---|
| 307 | !$ tn = omp_get_thread_num() |
---|
| 308 | loop_start = .TRUE. |
---|
| 309 | !$OMP DO |
---|
| 310 | DO i = nxl, nxr |
---|
| 311 | |
---|
| 312 | ! |
---|
| 313 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 314 | !-- later in advec_ws |
---|
| 315 | IF ( loop_start ) THEN |
---|
| 316 | loop_start = .FALSE. |
---|
| 317 | i_omp_start = i |
---|
| 318 | ENDIF |
---|
[1365] | 319 | |
---|
[736] | 320 | DO j = nys, nyn |
---|
| 321 | ! |
---|
[1361] | 322 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 323 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 324 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 325 | call_microphysics_at_all_substeps ) & |
---|
| 326 | ) THEN |
---|
| 327 | CALL microphysics_control( i, j ) |
---|
| 328 | ENDIF |
---|
| 329 | ! |
---|
[736] | 330 | !-- Tendency terms for u-velocity component |
---|
| 331 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 332 | |
---|
[1337] | 333 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 334 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 335 | IF ( ws_scheme_mom ) THEN |
---|
[978] | 336 | IF ( ( inflow_l .OR. outflow_l ) .AND. i_omp_start == nxl ) THEN |
---|
[736] | 337 | CALL advec_u_ws( i, j, i_omp_start + 1, tn ) |
---|
| 338 | ELSE |
---|
| 339 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
| 340 | ENDIF |
---|
| 341 | ELSE |
---|
| 342 | CALL advec_u_pw( i, j ) |
---|
| 343 | ENDIF |
---|
| 344 | ELSE |
---|
| 345 | CALL advec_u_up( i, j ) |
---|
| 346 | ENDIF |
---|
[1001] | 347 | CALL diffusion_u( i, j ) |
---|
[736] | 348 | CALL coriolis( i, j, 1 ) |
---|
[940] | 349 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 350 | CALL buoyancy( i, j, pt, 1 ) |
---|
[940] | 351 | ENDIF |
---|
[736] | 352 | |
---|
| 353 | ! |
---|
| 354 | !-- Drag by plant canopy |
---|
| 355 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 356 | |
---|
| 357 | ! |
---|
| 358 | !-- External pressure gradient |
---|
| 359 | IF ( dp_external ) THEN |
---|
| 360 | DO k = dp_level_ind_b+1, nzt |
---|
| 361 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 362 | ENDDO |
---|
| 363 | ENDIF |
---|
| 364 | |
---|
[1241] | 365 | ! |
---|
| 366 | !-- Nudging |
---|
| 367 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
| 368 | |
---|
[736] | 369 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 370 | ! |
---|
| 371 | !-- Prognostic equation for u-velocity component |
---|
| 372 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 373 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 374 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 375 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 376 | ENDDO |
---|
| 377 | |
---|
| 378 | ! |
---|
| 379 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 380 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 381 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 382 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 383 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 384 | ENDDO |
---|
| 385 | ELSEIF ( intermediate_timestep_count < & |
---|
| 386 | intermediate_timestep_count_max ) THEN |
---|
| 387 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 388 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 389 | ENDDO |
---|
| 390 | ENDIF |
---|
| 391 | ENDIF |
---|
| 392 | |
---|
| 393 | ENDIF |
---|
| 394 | |
---|
| 395 | ! |
---|
| 396 | !-- Tendency terms for v-velocity component |
---|
| 397 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 398 | |
---|
[1337] | 399 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 400 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 401 | IF ( ws_scheme_mom ) THEN |
---|
| 402 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 403 | ELSE |
---|
| 404 | CALL advec_v_pw( i, j ) |
---|
| 405 | ENDIF |
---|
| 406 | ELSE |
---|
| 407 | CALL advec_v_up( i, j ) |
---|
| 408 | ENDIF |
---|
[1001] | 409 | CALL diffusion_v( i, j ) |
---|
[736] | 410 | CALL coriolis( i, j, 2 ) |
---|
| 411 | |
---|
| 412 | ! |
---|
| 413 | !-- Drag by plant canopy |
---|
| 414 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 415 | |
---|
| 416 | ! |
---|
| 417 | !-- External pressure gradient |
---|
| 418 | IF ( dp_external ) THEN |
---|
| 419 | DO k = dp_level_ind_b+1, nzt |
---|
| 420 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 421 | ENDDO |
---|
| 422 | ENDIF |
---|
| 423 | |
---|
[1241] | 424 | ! |
---|
| 425 | !-- Nudging |
---|
| 426 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
| 427 | |
---|
[736] | 428 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 429 | ! |
---|
| 430 | !-- Prognostic equation for v-velocity component |
---|
| 431 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 432 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 433 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 434 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 435 | ENDDO |
---|
| 436 | |
---|
| 437 | ! |
---|
| 438 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 439 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 440 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 441 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 442 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 443 | ENDDO |
---|
| 444 | ELSEIF ( intermediate_timestep_count < & |
---|
| 445 | intermediate_timestep_count_max ) THEN |
---|
| 446 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 447 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 448 | ENDDO |
---|
| 449 | ENDIF |
---|
| 450 | ENDIF |
---|
| 451 | |
---|
| 452 | ENDIF |
---|
| 453 | |
---|
| 454 | ! |
---|
| 455 | !-- Tendency terms for w-velocity component |
---|
[1337] | 456 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 457 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 458 | IF ( ws_scheme_mom ) THEN |
---|
| 459 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 460 | ELSE |
---|
| 461 | CALL advec_w_pw( i, j ) |
---|
| 462 | END IF |
---|
| 463 | ELSE |
---|
| 464 | CALL advec_w_up( i, j ) |
---|
| 465 | ENDIF |
---|
[1001] | 466 | CALL diffusion_w( i, j ) |
---|
[736] | 467 | CALL coriolis( i, j, 3 ) |
---|
[940] | 468 | |
---|
| 469 | IF ( .NOT. neutral ) THEN |
---|
| 470 | IF ( ocean ) THEN |
---|
[1179] | 471 | CALL buoyancy( i, j, rho, 3 ) |
---|
[736] | 472 | ELSE |
---|
[940] | 473 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 474 | CALL buoyancy( i, j, pt, 3 ) |
---|
[940] | 475 | ELSE |
---|
[1179] | 476 | CALL buoyancy( i, j, vpt, 3 ) |
---|
[940] | 477 | ENDIF |
---|
[736] | 478 | ENDIF |
---|
| 479 | ENDIF |
---|
| 480 | |
---|
| 481 | ! |
---|
| 482 | !-- Drag by plant canopy |
---|
| 483 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 484 | |
---|
| 485 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 486 | |
---|
| 487 | ! |
---|
| 488 | !-- Prognostic equation for w-velocity component |
---|
| 489 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 490 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 491 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 492 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 493 | ENDDO |
---|
| 494 | |
---|
| 495 | ! |
---|
| 496 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 497 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 498 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 499 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 500 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 501 | ENDDO |
---|
| 502 | ELSEIF ( intermediate_timestep_count < & |
---|
| 503 | intermediate_timestep_count_max ) THEN |
---|
| 504 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 505 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 506 | ENDDO |
---|
| 507 | ENDIF |
---|
| 508 | ENDIF |
---|
[1361] | 509 | |
---|
[736] | 510 | ! |
---|
[940] | 511 | !-- If required, compute prognostic equation for potential temperature |
---|
| 512 | IF ( .NOT. neutral ) THEN |
---|
| 513 | ! |
---|
| 514 | !-- Tendency terms for potential temperature |
---|
[1337] | 515 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 516 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 517 | IF ( ws_scheme_sca ) THEN |
---|
| 518 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 519 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 520 | ELSE |
---|
| 521 | CALL advec_s_pw( i, j, pt ) |
---|
| 522 | ENDIF |
---|
| 523 | ELSE |
---|
| 524 | CALL advec_s_up( i, j, pt ) |
---|
| 525 | ENDIF |
---|
[1001] | 526 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 527 | |
---|
| 528 | ! |
---|
[940] | 529 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 530 | !-- processes |
---|
| 531 | IF ( radiation ) THEN |
---|
| 532 | CALL calc_radiation( i, j ) |
---|
| 533 | ENDIF |
---|
[736] | 534 | |
---|
[1106] | 535 | ! |
---|
[1361] | 536 | !-- If required compute impact of latent heat due to precipitation |
---|
| 537 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 538 | precipitation ) THEN |
---|
| 539 | CALL impact_of_latent_heat( i, j ) |
---|
[940] | 540 | ENDIF |
---|
[736] | 541 | |
---|
| 542 | ! |
---|
[940] | 543 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 544 | IF ( plant_canopy .AND. cthf /= 0.0_wp ) THEN |
---|
[940] | 545 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 546 | ENDIF |
---|
[736] | 547 | |
---|
[940] | 548 | ! |
---|
[1365] | 549 | !-- Large scale advection |
---|
| 550 | IF ( large_scale_forcing ) THEN |
---|
| 551 | CALL ls_advec( i, j, simulated_time, 'pt' ) |
---|
| 552 | ENDIF |
---|
| 553 | |
---|
| 554 | ! |
---|
[1106] | 555 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
[1365] | 556 | IF ( large_scale_subsidence .AND. & |
---|
| 557 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 558 | CALL subsidence( i, j, tend, pt, pt_init, 2 ) |
---|
[940] | 559 | ENDIF |
---|
[736] | 560 | |
---|
[1241] | 561 | ! |
---|
| 562 | !-- Nudging |
---|
| 563 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
| 564 | |
---|
[940] | 565 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 566 | |
---|
| 567 | ! |
---|
[940] | 568 | !-- Prognostic equation for potential temperature |
---|
| 569 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 570 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 571 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 572 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 573 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 574 | ENDDO |
---|
[736] | 575 | |
---|
| 576 | ! |
---|
[940] | 577 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 578 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 579 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 580 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 581 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 582 | ENDDO |
---|
| 583 | ELSEIF ( intermediate_timestep_count < & |
---|
| 584 | intermediate_timestep_count_max ) THEN |
---|
| 585 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 586 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 587 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 588 | ENDDO |
---|
| 589 | ENDIF |
---|
[736] | 590 | ENDIF |
---|
[940] | 591 | |
---|
[736] | 592 | ENDIF |
---|
| 593 | |
---|
| 594 | ! |
---|
| 595 | !-- If required, compute prognostic equation for salinity |
---|
| 596 | IF ( ocean ) THEN |
---|
| 597 | |
---|
| 598 | ! |
---|
| 599 | !-- Tendency-terms for salinity |
---|
[1337] | 600 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 601 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 602 | THEN |
---|
| 603 | IF ( ws_scheme_sca ) THEN |
---|
| 604 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 605 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 606 | ELSE |
---|
| 607 | CALL advec_s_pw( i, j, sa ) |
---|
| 608 | ENDIF |
---|
| 609 | ELSE |
---|
| 610 | CALL advec_s_up( i, j, sa ) |
---|
| 611 | ENDIF |
---|
[1001] | 612 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 613 | |
---|
| 614 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 615 | |
---|
| 616 | ! |
---|
| 617 | !-- Prognostic equation for salinity |
---|
| 618 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 619 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 620 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 621 | - tsc(5) * rdf_sc(k) * & |
---|
| 622 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 623 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 624 | ENDDO |
---|
| 625 | |
---|
| 626 | ! |
---|
| 627 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 628 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 629 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 630 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 631 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 632 | ENDDO |
---|
| 633 | ELSEIF ( intermediate_timestep_count < & |
---|
| 634 | intermediate_timestep_count_max ) THEN |
---|
| 635 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 636 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 637 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 638 | ENDDO |
---|
| 639 | ENDIF |
---|
| 640 | ENDIF |
---|
| 641 | |
---|
| 642 | ! |
---|
| 643 | !-- Calculate density by the equation of state for seawater |
---|
| 644 | CALL eqn_state_seawater( i, j ) |
---|
| 645 | |
---|
| 646 | ENDIF |
---|
| 647 | |
---|
| 648 | ! |
---|
| 649 | !-- If required, compute prognostic equation for total water content / |
---|
| 650 | !-- scalar |
---|
| 651 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 652 | |
---|
| 653 | ! |
---|
| 654 | !-- Tendency-terms for total water content / scalar |
---|
[1337] | 655 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 656 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 657 | THEN |
---|
| 658 | IF ( ws_scheme_sca ) THEN |
---|
| 659 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 660 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 661 | ELSE |
---|
| 662 | CALL advec_s_pw( i, j, q ) |
---|
| 663 | ENDIF |
---|
| 664 | ELSE |
---|
| 665 | CALL advec_s_up( i, j, q ) |
---|
| 666 | ENDIF |
---|
[1001] | 667 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[1053] | 668 | |
---|
[736] | 669 | ! |
---|
[1361] | 670 | !-- If required compute decrease of total water content due to |
---|
| 671 | !-- precipitation |
---|
| 672 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. & |
---|
| 673 | precipitation ) THEN |
---|
| 674 | CALL calc_precipitation( i, j ) |
---|
[736] | 675 | ENDIF |
---|
| 676 | ! |
---|
| 677 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1106] | 678 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
[736] | 679 | |
---|
[1053] | 680 | ! |
---|
[1365] | 681 | !-- Large scale advection |
---|
| 682 | IF ( large_scale_forcing ) THEN |
---|
| 683 | CALL ls_advec( i, j, simulated_time, 'q' ) |
---|
| 684 | ENDIF |
---|
| 685 | |
---|
| 686 | ! |
---|
[736] | 687 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 688 | IF ( large_scale_subsidence .AND. & |
---|
| 689 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 690 | CALL subsidence( i, j, tend, q, q_init, 3 ) |
---|
[736] | 691 | ENDIF |
---|
| 692 | |
---|
[1241] | 693 | ! |
---|
| 694 | !-- Nudging |
---|
| 695 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
| 696 | |
---|
[736] | 697 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 698 | |
---|
| 699 | ! |
---|
| 700 | !-- Prognostic equation for total water content / scalar |
---|
| 701 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 702 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 703 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 704 | - tsc(5) * rdf_sc(k) * & |
---|
| 705 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 706 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 707 | ENDDO |
---|
| 708 | |
---|
| 709 | ! |
---|
| 710 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 711 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 712 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 713 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 714 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 715 | ENDDO |
---|
| 716 | ELSEIF ( intermediate_timestep_count < & |
---|
| 717 | intermediate_timestep_count_max ) THEN |
---|
| 718 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 719 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 720 | 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 721 | ENDDO |
---|
| 722 | ENDIF |
---|
| 723 | ENDIF |
---|
| 724 | |
---|
[1053] | 725 | ! |
---|
| 726 | !-- If required, calculate prognostic equations for rain water content |
---|
| 727 | !-- and rain drop concentration |
---|
[1115] | 728 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 729 | precipitation ) THEN |
---|
[1053] | 730 | ! |
---|
| 731 | !-- Calculate prognostic equation for rain water content |
---|
[1337] | 732 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 733 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 734 | THEN |
---|
| 735 | IF ( ws_scheme_sca ) THEN |
---|
| 736 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 737 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 738 | i_omp_start, tn ) |
---|
| 739 | ELSE |
---|
| 740 | CALL advec_s_pw( i, j, qr ) |
---|
| 741 | ENDIF |
---|
| 742 | ELSE |
---|
| 743 | CALL advec_s_up( i, j, qr ) |
---|
| 744 | ENDIF |
---|
| 745 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 746 | |
---|
[1115] | 747 | CALL user_actions( i, j, 'qr-tendency' ) |
---|
[1053] | 748 | ! |
---|
| 749 | !-- Prognostic equation for rain water content |
---|
| 750 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 751 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 752 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 753 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
[1337] | 754 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
[1053] | 755 | ENDDO |
---|
| 756 | ! |
---|
| 757 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 758 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 759 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 760 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 761 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 762 | ENDDO |
---|
| 763 | ELSEIF ( intermediate_timestep_count < & |
---|
| 764 | intermediate_timestep_count_max ) THEN |
---|
| 765 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 766 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 767 | 5.3125_wp * tqr_m(k,j,i) |
---|
[1053] | 768 | ENDDO |
---|
| 769 | ENDIF |
---|
| 770 | ENDIF |
---|
| 771 | |
---|
| 772 | ! |
---|
| 773 | !-- Calculate prognostic equation for rain drop concentration. |
---|
[1337] | 774 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 775 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 776 | IF ( ws_scheme_sca ) THEN |
---|
[1115] | 777 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 778 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 779 | i_omp_start, tn ) |
---|
[1053] | 780 | ELSE |
---|
| 781 | CALL advec_s_pw( i, j, nr ) |
---|
| 782 | ENDIF |
---|
| 783 | ELSE |
---|
| 784 | CALL advec_s_up( i, j, nr ) |
---|
| 785 | ENDIF |
---|
| 786 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
| 787 | |
---|
[1115] | 788 | CALL user_actions( i, j, 'nr-tendency' ) |
---|
[1053] | 789 | ! |
---|
| 790 | !-- Prognostic equation for rain drop concentration |
---|
| 791 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 792 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 793 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 794 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
[1337] | 795 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
[1053] | 796 | ENDDO |
---|
| 797 | ! |
---|
| 798 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 799 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 800 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 801 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 802 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 803 | ENDDO |
---|
| 804 | ELSEIF ( intermediate_timestep_count < & |
---|
| 805 | intermediate_timestep_count_max ) THEN |
---|
| 806 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 807 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 808 | 5.3125_wp * tnr_m(k,j,i) |
---|
[1053] | 809 | ENDDO |
---|
| 810 | ENDIF |
---|
| 811 | ENDIF |
---|
| 812 | |
---|
| 813 | ENDIF |
---|
| 814 | |
---|
[1128] | 815 | ENDIF |
---|
| 816 | |
---|
[736] | 817 | ! |
---|
| 818 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 819 | !-- energy (TKE) |
---|
| 820 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 821 | |
---|
| 822 | ! |
---|
| 823 | !-- Tendency-terms for TKE |
---|
[1337] | 824 | tend(:,j,i) = 0.0_wp |
---|
[1332] | 825 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
| 826 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
[736] | 827 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 828 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 829 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 830 | ELSE |
---|
| 831 | CALL advec_s_pw( i, j, e ) |
---|
| 832 | ENDIF |
---|
| 833 | ELSE |
---|
| 834 | CALL advec_s_up( i, j, e ) |
---|
| 835 | ENDIF |
---|
[1001] | 836 | IF ( .NOT. humidity ) THEN |
---|
| 837 | IF ( ocean ) THEN |
---|
| 838 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 839 | ELSE |
---|
[1001] | 840 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 841 | ENDIF |
---|
| 842 | ELSE |
---|
[1001] | 843 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 844 | ENDIF |
---|
| 845 | CALL production_e( i, j ) |
---|
| 846 | |
---|
| 847 | ! |
---|
| 848 | !-- Additional sink term for flows through plant canopies |
---|
| 849 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 850 | |
---|
| 851 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 852 | |
---|
| 853 | ! |
---|
| 854 | !-- Prognostic equation for TKE. |
---|
| 855 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 856 | !-- reasons in the course of the integration. In such cases the old |
---|
| 857 | !-- TKE value is reduced by 90%. |
---|
| 858 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 859 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 860 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 861 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 862 | ENDDO |
---|
| 863 | |
---|
| 864 | ! |
---|
| 865 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 866 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 867 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 868 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 869 | te_m(k,j,i) = tend(k,j,i) |
---|
| 870 | ENDDO |
---|
| 871 | ELSEIF ( intermediate_timestep_count < & |
---|
| 872 | intermediate_timestep_count_max ) THEN |
---|
| 873 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 874 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 875 | 5.3125_wp * te_m(k,j,i) |
---|
[736] | 876 | ENDDO |
---|
| 877 | ENDIF |
---|
| 878 | ENDIF |
---|
| 879 | |
---|
| 880 | ENDIF ! TKE equation |
---|
| 881 | |
---|
| 882 | ENDDO |
---|
| 883 | ENDDO |
---|
| 884 | !$OMP END PARALLEL |
---|
| 885 | |
---|
| 886 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 887 | |
---|
| 888 | |
---|
| 889 | END SUBROUTINE prognostic_equations_cache |
---|
| 890 | |
---|
| 891 | |
---|
| 892 | SUBROUTINE prognostic_equations_vector |
---|
| 893 | |
---|
| 894 | !------------------------------------------------------------------------------! |
---|
| 895 | ! Version for vector machines |
---|
| 896 | !------------------------------------------------------------------------------! |
---|
| 897 | |
---|
| 898 | IMPLICIT NONE |
---|
| 899 | |
---|
[1320] | 900 | INTEGER(iwp) :: i !: |
---|
| 901 | INTEGER(iwp) :: j !: |
---|
| 902 | INTEGER(iwp) :: k !: |
---|
[736] | 903 | |
---|
[1320] | 904 | REAL(wp) :: sbt !: |
---|
[736] | 905 | |
---|
[1320] | 906 | |
---|
[736] | 907 | ! |
---|
[1361] | 908 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 909 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 910 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 911 | call_microphysics_at_all_substeps ) & |
---|
| 912 | ) THEN |
---|
| 913 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 914 | CALL microphysics_control |
---|
| 915 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 916 | ENDIF |
---|
| 917 | |
---|
| 918 | ! |
---|
[736] | 919 | !-- u-velocity component |
---|
| 920 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 921 | |
---|
[1337] | 922 | tend = 0.0_wp |
---|
[1001] | 923 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 924 | IF ( ws_scheme_mom ) THEN |
---|
| 925 | CALL advec_u_ws |
---|
| 926 | ELSE |
---|
| 927 | CALL advec_u_pw |
---|
| 928 | ENDIF |
---|
| 929 | ELSE |
---|
[1001] | 930 | CALL advec_u_up |
---|
[736] | 931 | ENDIF |
---|
[1001] | 932 | CALL diffusion_u |
---|
[736] | 933 | CALL coriolis( 1 ) |
---|
[940] | 934 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 935 | CALL buoyancy( pt, 1 ) |
---|
[940] | 936 | ENDIF |
---|
[736] | 937 | |
---|
| 938 | ! |
---|
| 939 | !-- Drag by plant canopy |
---|
| 940 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 941 | |
---|
| 942 | ! |
---|
| 943 | !-- External pressure gradient |
---|
| 944 | IF ( dp_external ) THEN |
---|
| 945 | DO i = nxlu, nxr |
---|
| 946 | DO j = nys, nyn |
---|
| 947 | DO k = dp_level_ind_b+1, nzt |
---|
| 948 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 949 | ENDDO |
---|
| 950 | ENDDO |
---|
| 951 | ENDDO |
---|
| 952 | ENDIF |
---|
| 953 | |
---|
[1241] | 954 | ! |
---|
| 955 | !-- Nudging |
---|
| 956 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 957 | |
---|
[736] | 958 | CALL user_actions( 'u-tendency' ) |
---|
| 959 | |
---|
| 960 | ! |
---|
| 961 | !-- Prognostic equation for u-velocity component |
---|
| 962 | DO i = nxlu, nxr |
---|
| 963 | DO j = nys, nyn |
---|
| 964 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 965 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 966 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 967 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 968 | ENDDO |
---|
| 969 | ENDDO |
---|
| 970 | ENDDO |
---|
| 971 | |
---|
| 972 | ! |
---|
| 973 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 974 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 975 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 976 | DO i = nxlu, nxr |
---|
| 977 | DO j = nys, nyn |
---|
| 978 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 979 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 980 | ENDDO |
---|
| 981 | ENDDO |
---|
| 982 | ENDDO |
---|
| 983 | ELSEIF ( intermediate_timestep_count < & |
---|
| 984 | intermediate_timestep_count_max ) THEN |
---|
| 985 | DO i = nxlu, nxr |
---|
| 986 | DO j = nys, nyn |
---|
| 987 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 988 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 989 | ENDDO |
---|
| 990 | ENDDO |
---|
| 991 | ENDDO |
---|
| 992 | ENDIF |
---|
| 993 | ENDIF |
---|
| 994 | |
---|
| 995 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 996 | |
---|
| 997 | ! |
---|
| 998 | !-- v-velocity component |
---|
| 999 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1000 | |
---|
[1337] | 1001 | tend = 0.0_wp |
---|
[1001] | 1002 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1003 | IF ( ws_scheme_mom ) THEN |
---|
| 1004 | CALL advec_v_ws |
---|
| 1005 | ELSE |
---|
| 1006 | CALL advec_v_pw |
---|
| 1007 | END IF |
---|
| 1008 | ELSE |
---|
[1001] | 1009 | CALL advec_v_up |
---|
[736] | 1010 | ENDIF |
---|
[1001] | 1011 | CALL diffusion_v |
---|
[736] | 1012 | CALL coriolis( 2 ) |
---|
| 1013 | |
---|
| 1014 | ! |
---|
| 1015 | !-- Drag by plant canopy |
---|
| 1016 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1017 | |
---|
| 1018 | ! |
---|
| 1019 | !-- External pressure gradient |
---|
| 1020 | IF ( dp_external ) THEN |
---|
| 1021 | DO i = nxl, nxr |
---|
| 1022 | DO j = nysv, nyn |
---|
| 1023 | DO k = dp_level_ind_b+1, nzt |
---|
| 1024 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1025 | ENDDO |
---|
| 1026 | ENDDO |
---|
| 1027 | ENDDO |
---|
| 1028 | ENDIF |
---|
| 1029 | |
---|
[1241] | 1030 | ! |
---|
| 1031 | !-- Nudging |
---|
| 1032 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1033 | |
---|
[736] | 1034 | CALL user_actions( 'v-tendency' ) |
---|
| 1035 | |
---|
| 1036 | ! |
---|
| 1037 | !-- Prognostic equation for v-velocity component |
---|
| 1038 | DO i = nxl, nxr |
---|
| 1039 | DO j = nysv, nyn |
---|
| 1040 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 1041 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1042 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 1043 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 1044 | ENDDO |
---|
| 1045 | ENDDO |
---|
| 1046 | ENDDO |
---|
| 1047 | |
---|
| 1048 | ! |
---|
| 1049 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1050 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1051 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1052 | DO i = nxl, nxr |
---|
| 1053 | DO j = nysv, nyn |
---|
| 1054 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1055 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1056 | ENDDO |
---|
| 1057 | ENDDO |
---|
| 1058 | ENDDO |
---|
| 1059 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1060 | intermediate_timestep_count_max ) THEN |
---|
| 1061 | DO i = nxl, nxr |
---|
| 1062 | DO j = nysv, nyn |
---|
| 1063 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 1064 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 1065 | ENDDO |
---|
| 1066 | ENDDO |
---|
| 1067 | ENDDO |
---|
| 1068 | ENDIF |
---|
| 1069 | ENDIF |
---|
| 1070 | |
---|
| 1071 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1072 | |
---|
| 1073 | ! |
---|
| 1074 | !-- w-velocity component |
---|
| 1075 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1076 | |
---|
[1353] | 1077 | tend = 0.0_wp |
---|
[1001] | 1078 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1079 | IF ( ws_scheme_mom ) THEN |
---|
| 1080 | CALL advec_w_ws |
---|
| 1081 | ELSE |
---|
| 1082 | CALL advec_w_pw |
---|
| 1083 | ENDIF |
---|
| 1084 | ELSE |
---|
[1001] | 1085 | CALL advec_w_up |
---|
[736] | 1086 | ENDIF |
---|
[1001] | 1087 | CALL diffusion_w |
---|
[736] | 1088 | CALL coriolis( 3 ) |
---|
[940] | 1089 | |
---|
| 1090 | IF ( .NOT. neutral ) THEN |
---|
| 1091 | IF ( ocean ) THEN |
---|
[1179] | 1092 | CALL buoyancy( rho, 3 ) |
---|
[736] | 1093 | ELSE |
---|
[940] | 1094 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1095 | CALL buoyancy( pt, 3 ) |
---|
[940] | 1096 | ELSE |
---|
[1179] | 1097 | CALL buoyancy( vpt, 3 ) |
---|
[940] | 1098 | ENDIF |
---|
[736] | 1099 | ENDIF |
---|
| 1100 | ENDIF |
---|
| 1101 | |
---|
| 1102 | ! |
---|
| 1103 | !-- Drag by plant canopy |
---|
| 1104 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1105 | |
---|
| 1106 | CALL user_actions( 'w-tendency' ) |
---|
| 1107 | |
---|
| 1108 | ! |
---|
| 1109 | !-- Prognostic equation for w-velocity component |
---|
| 1110 | DO i = nxl, nxr |
---|
| 1111 | DO j = nys, nyn |
---|
| 1112 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 1113 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1114 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1115 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 1116 | ENDDO |
---|
| 1117 | ENDDO |
---|
| 1118 | ENDDO |
---|
| 1119 | |
---|
| 1120 | ! |
---|
| 1121 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1122 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1123 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1124 | DO i = nxl, nxr |
---|
| 1125 | DO j = nys, nyn |
---|
| 1126 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1127 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1128 | ENDDO |
---|
| 1129 | ENDDO |
---|
| 1130 | ENDDO |
---|
| 1131 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1132 | intermediate_timestep_count_max ) THEN |
---|
| 1133 | DO i = nxl, nxr |
---|
| 1134 | DO j = nys, nyn |
---|
| 1135 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 1136 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 1137 | ENDDO |
---|
| 1138 | ENDDO |
---|
| 1139 | ENDDO |
---|
| 1140 | ENDIF |
---|
| 1141 | ENDIF |
---|
| 1142 | |
---|
| 1143 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1144 | |
---|
[940] | 1145 | |
---|
[736] | 1146 | ! |
---|
[940] | 1147 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1148 | IF ( .NOT. neutral ) THEN |
---|
[736] | 1149 | |
---|
[940] | 1150 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1151 | |
---|
[736] | 1152 | ! |
---|
[940] | 1153 | !-- pt-tendency terms with communication |
---|
| 1154 | sbt = tsc(2) |
---|
| 1155 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 1156 | |
---|
[940] | 1157 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 1158 | ! |
---|
[1001] | 1159 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1160 | sbt = 1.0_wp |
---|
[940] | 1161 | ENDIF |
---|
[1337] | 1162 | tend = 0.0_wp |
---|
[940] | 1163 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 1164 | |
---|
[736] | 1165 | ENDIF |
---|
[940] | 1166 | |
---|
| 1167 | ! |
---|
| 1168 | !-- pt-tendency terms with no communication |
---|
[1001] | 1169 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1170 | tend = 0.0_wp |
---|
[1001] | 1171 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 1172 | IF ( ws_scheme_sca ) THEN |
---|
| 1173 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1174 | ELSE |
---|
| 1175 | CALL advec_s_pw( pt ) |
---|
| 1176 | ENDIF |
---|
| 1177 | ELSE |
---|
[1001] | 1178 | CALL advec_s_up( pt ) |
---|
[940] | 1179 | ENDIF |
---|
[736] | 1180 | ENDIF |
---|
| 1181 | |
---|
[1001] | 1182 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1183 | |
---|
[736] | 1184 | ! |
---|
[940] | 1185 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1186 | IF ( radiation ) THEN |
---|
| 1187 | CALL calc_radiation |
---|
| 1188 | ENDIF |
---|
[736] | 1189 | |
---|
| 1190 | ! |
---|
[940] | 1191 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 1192 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[940] | 1193 | CALL impact_of_latent_heat |
---|
| 1194 | ENDIF |
---|
[736] | 1195 | |
---|
| 1196 | ! |
---|
[940] | 1197 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 1198 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[940] | 1199 | CALL plant_canopy_model( 4 ) |
---|
| 1200 | ENDIF |
---|
[736] | 1201 | |
---|
[940] | 1202 | ! |
---|
[1365] | 1203 | !-- Large scale advection |
---|
| 1204 | IF ( large_scale_forcing ) THEN |
---|
| 1205 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 1206 | ENDIF |
---|
| 1207 | |
---|
| 1208 | ! |
---|
[940] | 1209 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1210 | IF ( large_scale_subsidence .AND. & |
---|
| 1211 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1212 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[940] | 1213 | ENDIF |
---|
[736] | 1214 | |
---|
[1241] | 1215 | ! |
---|
| 1216 | !-- Nudging |
---|
| 1217 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1218 | |
---|
[940] | 1219 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 1220 | |
---|
| 1221 | ! |
---|
[940] | 1222 | !-- Prognostic equation for potential temperature |
---|
| 1223 | DO i = nxl, nxr |
---|
| 1224 | DO j = nys, nyn |
---|
| 1225 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1226 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1227 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1228 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1229 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 1230 | ENDDO |
---|
[736] | 1231 | ENDDO |
---|
| 1232 | ENDDO |
---|
| 1233 | |
---|
| 1234 | ! |
---|
[940] | 1235 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1236 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1237 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1238 | DO i = nxl, nxr |
---|
| 1239 | DO j = nys, nyn |
---|
| 1240 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1241 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1242 | ENDDO |
---|
[736] | 1243 | ENDDO |
---|
| 1244 | ENDDO |
---|
[940] | 1245 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1246 | intermediate_timestep_count_max ) THEN |
---|
| 1247 | DO i = nxl, nxr |
---|
| 1248 | DO j = nys, nyn |
---|
| 1249 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1250 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1251 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 1252 | ENDDO |
---|
[736] | 1253 | ENDDO |
---|
| 1254 | ENDDO |
---|
[940] | 1255 | ENDIF |
---|
[736] | 1256 | ENDIF |
---|
[940] | 1257 | |
---|
| 1258 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1259 | |
---|
[736] | 1260 | ENDIF |
---|
| 1261 | |
---|
| 1262 | ! |
---|
| 1263 | !-- If required, compute prognostic equation for salinity |
---|
| 1264 | IF ( ocean ) THEN |
---|
| 1265 | |
---|
| 1266 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1267 | |
---|
| 1268 | ! |
---|
| 1269 | !-- sa-tendency terms with communication |
---|
| 1270 | sbt = tsc(2) |
---|
| 1271 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1272 | |
---|
| 1273 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1274 | ! |
---|
[1001] | 1275 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1276 | sbt = 1.0_wp |
---|
[736] | 1277 | ENDIF |
---|
[1337] | 1278 | tend = 0.0_wp |
---|
[736] | 1279 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1280 | |
---|
[736] | 1281 | ENDIF |
---|
| 1282 | |
---|
| 1283 | ! |
---|
| 1284 | !-- sa-tendency terms with no communication |
---|
[1001] | 1285 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1353] | 1286 | tend = 0.0_wp |
---|
[1001] | 1287 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1288 | IF ( ws_scheme_sca ) THEN |
---|
| 1289 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1290 | ELSE |
---|
| 1291 | CALL advec_s_pw( sa ) |
---|
| 1292 | ENDIF |
---|
| 1293 | ELSE |
---|
[1001] | 1294 | CALL advec_s_up( sa ) |
---|
[736] | 1295 | ENDIF |
---|
| 1296 | ENDIF |
---|
[1001] | 1297 | |
---|
| 1298 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1299 | |
---|
| 1300 | CALL user_actions( 'sa-tendency' ) |
---|
| 1301 | |
---|
| 1302 | ! |
---|
| 1303 | !-- Prognostic equation for salinity |
---|
| 1304 | DO i = nxl, nxr |
---|
| 1305 | DO j = nys, nyn |
---|
| 1306 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1307 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1308 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1309 | - tsc(5) * rdf_sc(k) * & |
---|
| 1310 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 1311 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 1312 | ENDDO |
---|
| 1313 | ENDDO |
---|
| 1314 | ENDDO |
---|
| 1315 | |
---|
| 1316 | ! |
---|
| 1317 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1318 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1319 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1320 | DO i = nxl, nxr |
---|
| 1321 | DO j = nys, nyn |
---|
| 1322 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1323 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1324 | ENDDO |
---|
| 1325 | ENDDO |
---|
| 1326 | ENDDO |
---|
| 1327 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1328 | intermediate_timestep_count_max ) THEN |
---|
| 1329 | DO i = nxl, nxr |
---|
| 1330 | DO j = nys, nyn |
---|
| 1331 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1332 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1333 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 1334 | ENDDO |
---|
| 1335 | ENDDO |
---|
| 1336 | ENDDO |
---|
| 1337 | ENDIF |
---|
| 1338 | ENDIF |
---|
| 1339 | |
---|
| 1340 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1341 | |
---|
| 1342 | ! |
---|
| 1343 | !-- Calculate density by the equation of state for seawater |
---|
| 1344 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1345 | CALL eqn_state_seawater |
---|
| 1346 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1347 | |
---|
| 1348 | ENDIF |
---|
| 1349 | |
---|
| 1350 | ! |
---|
| 1351 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1352 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1353 | |
---|
| 1354 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1355 | |
---|
| 1356 | ! |
---|
| 1357 | !-- Scalar/q-tendency terms with communication |
---|
| 1358 | sbt = tsc(2) |
---|
| 1359 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1360 | |
---|
| 1361 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1362 | ! |
---|
[1001] | 1363 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1364 | sbt = 1.0_wp |
---|
[736] | 1365 | ENDIF |
---|
[1337] | 1366 | tend = 0.0_wp |
---|
[736] | 1367 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1368 | |
---|
[736] | 1369 | ENDIF |
---|
| 1370 | |
---|
| 1371 | ! |
---|
| 1372 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1373 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1374 | tend = 0.0_wp |
---|
[1001] | 1375 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1376 | IF ( ws_scheme_sca ) THEN |
---|
| 1377 | CALL advec_s_ws( q, 'q' ) |
---|
| 1378 | ELSE |
---|
| 1379 | CALL advec_s_pw( q ) |
---|
| 1380 | ENDIF |
---|
| 1381 | ELSE |
---|
[1001] | 1382 | CALL advec_s_up( q ) |
---|
[736] | 1383 | ENDIF |
---|
| 1384 | ENDIF |
---|
[1001] | 1385 | |
---|
| 1386 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1387 | |
---|
| 1388 | ! |
---|
| 1389 | !-- If required compute decrease of total water content due to |
---|
| 1390 | !-- precipitation |
---|
[1361] | 1391 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[736] | 1392 | CALL calc_precipitation |
---|
| 1393 | ENDIF |
---|
| 1394 | |
---|
| 1395 | ! |
---|
| 1396 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1397 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
[1365] | 1398 | |
---|
[736] | 1399 | ! |
---|
[1365] | 1400 | !-- Large scale advection |
---|
| 1401 | IF ( large_scale_forcing ) THEN |
---|
| 1402 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 1403 | ENDIF |
---|
| 1404 | |
---|
| 1405 | ! |
---|
[736] | 1406 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 1407 | IF ( large_scale_subsidence .AND. & |
---|
| 1408 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 1409 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[736] | 1410 | ENDIF |
---|
| 1411 | |
---|
[1241] | 1412 | ! |
---|
| 1413 | !-- Nudging |
---|
| 1414 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1415 | |
---|
[736] | 1416 | CALL user_actions( 'q-tendency' ) |
---|
| 1417 | |
---|
| 1418 | ! |
---|
| 1419 | !-- Prognostic equation for total water content / scalar |
---|
| 1420 | DO i = nxl, nxr |
---|
| 1421 | DO j = nys, nyn |
---|
| 1422 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1423 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1424 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1425 | - tsc(5) * rdf_sc(k) * & |
---|
| 1426 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 1427 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 1428 | ENDDO |
---|
| 1429 | ENDDO |
---|
| 1430 | ENDDO |
---|
| 1431 | |
---|
| 1432 | ! |
---|
| 1433 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1434 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1435 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1436 | DO i = nxl, nxr |
---|
| 1437 | DO j = nys, nyn |
---|
| 1438 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1439 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1440 | ENDDO |
---|
| 1441 | ENDDO |
---|
| 1442 | ENDDO |
---|
| 1443 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1444 | intermediate_timestep_count_max ) THEN |
---|
| 1445 | DO i = nxl, nxr |
---|
| 1446 | DO j = nys, nyn |
---|
| 1447 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1448 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 1449 | ENDDO |
---|
| 1450 | ENDDO |
---|
| 1451 | ENDDO |
---|
| 1452 | ENDIF |
---|
| 1453 | ENDIF |
---|
| 1454 | |
---|
| 1455 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1456 | |
---|
[1361] | 1457 | ! |
---|
| 1458 | !-- If required, calculate prognostic equations for rain water content |
---|
| 1459 | !-- and rain drop concentration |
---|
| 1460 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 1461 | |
---|
| 1462 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 1463 | |
---|
| 1464 | ! |
---|
| 1465 | !-- Calculate prognostic equation for rain water content |
---|
| 1466 | sbt = tsc(2) |
---|
| 1467 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1468 | |
---|
| 1469 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1470 | ! |
---|
| 1471 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1472 | sbt = 1.0_wp |
---|
| 1473 | ENDIF |
---|
| 1474 | tend = 0.0_wp |
---|
| 1475 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 1476 | |
---|
| 1477 | ENDIF |
---|
| 1478 | |
---|
| 1479 | ! |
---|
| 1480 | !-- qr-tendency terms with no communication |
---|
| 1481 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1482 | tend = 0.0_wp |
---|
| 1483 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1484 | IF ( ws_scheme_sca ) THEN |
---|
| 1485 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 1486 | ELSE |
---|
| 1487 | CALL advec_s_pw( qr ) |
---|
| 1488 | ENDIF |
---|
| 1489 | ELSE |
---|
| 1490 | CALL advec_s_up( qr ) |
---|
| 1491 | ENDIF |
---|
| 1492 | ENDIF |
---|
| 1493 | |
---|
| 1494 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 1495 | |
---|
| 1496 | CALL user_actions( 'qr-tendency' ) |
---|
| 1497 | |
---|
| 1498 | ! |
---|
| 1499 | !-- Prognostic equation for rain water content |
---|
| 1500 | DO i = nxl, nxr |
---|
| 1501 | DO j = nys, nyn |
---|
| 1502 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1503 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1504 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 1505 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 1506 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 1507 | ENDDO |
---|
| 1508 | ENDDO |
---|
| 1509 | ENDDO |
---|
| 1510 | |
---|
| 1511 | ! |
---|
| 1512 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1513 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1514 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1515 | DO i = nxl, nxr |
---|
| 1516 | DO j = nys, nyn |
---|
| 1517 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1518 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 1519 | ENDDO |
---|
| 1520 | ENDDO |
---|
| 1521 | ENDDO |
---|
| 1522 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1523 | intermediate_timestep_count_max ) THEN |
---|
| 1524 | DO i = nxl, nxr |
---|
| 1525 | DO j = nys, nyn |
---|
| 1526 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1527 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1528 | tqr_m(k,j,i) |
---|
| 1529 | ENDDO |
---|
| 1530 | ENDDO |
---|
| 1531 | ENDDO |
---|
| 1532 | ENDIF |
---|
| 1533 | ENDIF |
---|
| 1534 | |
---|
| 1535 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 1536 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 1537 | |
---|
| 1538 | ! |
---|
| 1539 | !-- Calculate prognostic equation for rain drop concentration |
---|
| 1540 | sbt = tsc(2) |
---|
| 1541 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1542 | |
---|
| 1543 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1544 | ! |
---|
| 1545 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1546 | sbt = 1.0_wp |
---|
| 1547 | ENDIF |
---|
| 1548 | tend = 0.0_wp |
---|
| 1549 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 1550 | |
---|
| 1551 | ENDIF |
---|
| 1552 | |
---|
| 1553 | ! |
---|
| 1554 | !-- nr-tendency terms with no communication |
---|
| 1555 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1556 | tend = 0.0_wp |
---|
| 1557 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1558 | IF ( ws_scheme_sca ) THEN |
---|
| 1559 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 1560 | ELSE |
---|
| 1561 | CALL advec_s_pw( nr ) |
---|
| 1562 | ENDIF |
---|
| 1563 | ELSE |
---|
| 1564 | CALL advec_s_up( nr ) |
---|
| 1565 | ENDIF |
---|
| 1566 | ENDIF |
---|
| 1567 | |
---|
| 1568 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 1569 | |
---|
| 1570 | CALL user_actions( 'nr-tendency' ) |
---|
| 1571 | |
---|
| 1572 | ! |
---|
| 1573 | !-- Prognostic equation for rain drop concentration |
---|
| 1574 | DO i = nxl, nxr |
---|
| 1575 | DO j = nys, nyn |
---|
| 1576 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1577 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1578 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 1579 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 1580 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 1581 | ENDDO |
---|
| 1582 | ENDDO |
---|
| 1583 | ENDDO |
---|
| 1584 | |
---|
| 1585 | ! |
---|
| 1586 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1587 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1588 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1589 | DO i = nxl, nxr |
---|
| 1590 | DO j = nys, nyn |
---|
| 1591 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1592 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 1593 | ENDDO |
---|
| 1594 | ENDDO |
---|
| 1595 | ENDDO |
---|
| 1596 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1597 | intermediate_timestep_count_max ) THEN |
---|
| 1598 | DO i = nxl, nxr |
---|
| 1599 | DO j = nys, nyn |
---|
| 1600 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1601 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 1602 | tnr_m(k,j,i) |
---|
| 1603 | ENDDO |
---|
| 1604 | ENDDO |
---|
| 1605 | ENDDO |
---|
| 1606 | ENDIF |
---|
| 1607 | ENDIF |
---|
| 1608 | |
---|
| 1609 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 1610 | |
---|
| 1611 | ENDIF |
---|
| 1612 | |
---|
[736] | 1613 | ENDIF |
---|
| 1614 | |
---|
| 1615 | ! |
---|
| 1616 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1617 | !-- energy (TKE) |
---|
| 1618 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1619 | |
---|
| 1620 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1621 | |
---|
| 1622 | sbt = tsc(2) |
---|
| 1623 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1624 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1625 | |
---|
| 1626 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1627 | ! |
---|
[1001] | 1628 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1629 | sbt = 1.0_wp |
---|
[736] | 1630 | ENDIF |
---|
[1337] | 1631 | tend = 0.0_wp |
---|
[736] | 1632 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1633 | |
---|
[736] | 1634 | ENDIF |
---|
| 1635 | ENDIF |
---|
| 1636 | |
---|
| 1637 | ! |
---|
| 1638 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1639 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1640 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 1641 | tend = 0.0_wp |
---|
[736] | 1642 | CALL advec_s_up( e ) |
---|
| 1643 | ELSE |
---|
[1337] | 1644 | tend = 0.0_wp |
---|
[1001] | 1645 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1646 | IF ( ws_scheme_sca ) THEN |
---|
| 1647 | CALL advec_s_ws( e, 'e' ) |
---|
| 1648 | ELSE |
---|
| 1649 | CALL advec_s_pw( e ) |
---|
| 1650 | ENDIF |
---|
| 1651 | ELSE |
---|
[1001] | 1652 | CALL advec_s_up( e ) |
---|
[736] | 1653 | ENDIF |
---|
| 1654 | ENDIF |
---|
[1001] | 1655 | ENDIF |
---|
| 1656 | |
---|
| 1657 | IF ( .NOT. humidity ) THEN |
---|
| 1658 | IF ( ocean ) THEN |
---|
| 1659 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1660 | ELSE |
---|
[1001] | 1661 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1662 | ENDIF |
---|
[1001] | 1663 | ELSE |
---|
| 1664 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1665 | ENDIF |
---|
[1001] | 1666 | |
---|
[736] | 1667 | CALL production_e |
---|
| 1668 | |
---|
| 1669 | ! |
---|
| 1670 | !-- Additional sink term for flows through plant canopies |
---|
| 1671 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1672 | CALL user_actions( 'e-tendency' ) |
---|
| 1673 | |
---|
| 1674 | ! |
---|
| 1675 | !-- Prognostic equation for TKE. |
---|
| 1676 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1677 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1678 | !-- value is reduced by 90%. |
---|
| 1679 | DO i = nxl, nxr |
---|
| 1680 | DO j = nys, nyn |
---|
| 1681 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1682 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1683 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 1684 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 1685 | ENDDO |
---|
| 1686 | ENDDO |
---|
| 1687 | ENDDO |
---|
| 1688 | |
---|
| 1689 | ! |
---|
| 1690 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1691 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1692 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1693 | DO i = nxl, nxr |
---|
| 1694 | DO j = nys, nyn |
---|
| 1695 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1696 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1697 | ENDDO |
---|
| 1698 | ENDDO |
---|
| 1699 | ENDDO |
---|
| 1700 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1701 | intermediate_timestep_count_max ) THEN |
---|
| 1702 | DO i = nxl, nxr |
---|
| 1703 | DO j = nys, nyn |
---|
| 1704 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1705 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[736] | 1706 | ENDDO |
---|
| 1707 | ENDDO |
---|
| 1708 | ENDDO |
---|
| 1709 | ENDIF |
---|
| 1710 | ENDIF |
---|
| 1711 | |
---|
| 1712 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1713 | |
---|
| 1714 | ENDIF |
---|
| 1715 | |
---|
| 1716 | END SUBROUTINE prognostic_equations_vector |
---|
| 1717 | |
---|
| 1718 | |
---|
[1015] | 1719 | SUBROUTINE prognostic_equations_acc |
---|
| 1720 | |
---|
| 1721 | !------------------------------------------------------------------------------! |
---|
| 1722 | ! Version for accelerator boards |
---|
| 1723 | !------------------------------------------------------------------------------! |
---|
| 1724 | |
---|
| 1725 | IMPLICIT NONE |
---|
| 1726 | |
---|
[1320] | 1727 | INTEGER(iwp) :: i !: |
---|
| 1728 | INTEGER(iwp) :: j !: |
---|
| 1729 | INTEGER(iwp) :: k !: |
---|
| 1730 | INTEGER(iwp) :: runge_step !: |
---|
[1015] | 1731 | |
---|
[1320] | 1732 | REAL(wp) :: sbt !: |
---|
| 1733 | |
---|
[1015] | 1734 | ! |
---|
| 1735 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1736 | runge_step = 0 |
---|
| 1737 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1738 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1739 | runge_step = 1 |
---|
| 1740 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1741 | intermediate_timestep_count_max ) THEN |
---|
| 1742 | runge_step = 2 |
---|
| 1743 | ENDIF |
---|
| 1744 | ENDIF |
---|
| 1745 | |
---|
| 1746 | ! |
---|
[1361] | 1747 | !-- If required, calculate cloud microphysical impacts (two-moment scheme) |
---|
| 1748 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 1749 | ( intermediate_timestep_count == 1 .OR. & |
---|
| 1750 | call_microphysics_at_all_substeps ) & |
---|
| 1751 | ) THEN |
---|
| 1752 | CALL cpu_log( log_point(51), 'microphysics', 'start' ) |
---|
| 1753 | CALL microphysics_control |
---|
| 1754 | CALL cpu_log( log_point(51), 'microphysics', 'stop' ) |
---|
| 1755 | ENDIF |
---|
| 1756 | |
---|
| 1757 | ! |
---|
[1015] | 1758 | !-- u-velocity component |
---|
| 1759 | !++ Statistics still not ported to accelerators |
---|
[1179] | 1760 | !$acc update device( hom, ref_state ) |
---|
[1015] | 1761 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1762 | |
---|
| 1763 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1764 | IF ( ws_scheme_mom ) THEN |
---|
| 1765 | CALL advec_u_ws_acc |
---|
| 1766 | ELSE |
---|
[1337] | 1767 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1768 | CALL advec_u_pw |
---|
| 1769 | ENDIF |
---|
| 1770 | ELSE |
---|
| 1771 | CALL advec_u_up |
---|
| 1772 | ENDIF |
---|
| 1773 | CALL diffusion_u_acc |
---|
| 1774 | CALL coriolis_acc( 1 ) |
---|
| 1775 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 1776 | CALL buoyancy( pt, 1 ) |
---|
[1015] | 1777 | ENDIF |
---|
| 1778 | |
---|
| 1779 | ! |
---|
| 1780 | !-- Drag by plant canopy |
---|
| 1781 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1782 | |
---|
| 1783 | ! |
---|
| 1784 | !-- External pressure gradient |
---|
| 1785 | IF ( dp_external ) THEN |
---|
[1128] | 1786 | DO i = i_left, i_right |
---|
| 1787 | DO j = j_south, j_north |
---|
[1015] | 1788 | DO k = dp_level_ind_b+1, nzt |
---|
| 1789 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1790 | ENDDO |
---|
| 1791 | ENDDO |
---|
| 1792 | ENDDO |
---|
| 1793 | ENDIF |
---|
| 1794 | |
---|
[1246] | 1795 | ! |
---|
| 1796 | !-- Nudging |
---|
| 1797 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 1798 | |
---|
[1015] | 1799 | CALL user_actions( 'u-tendency' ) |
---|
| 1800 | |
---|
| 1801 | ! |
---|
| 1802 | !-- Prognostic equation for u-velocity component |
---|
| 1803 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, ug, u_p ) |
---|
[1257] | 1804 | !$acc loop independent |
---|
[1128] | 1805 | DO i = i_left, i_right |
---|
[1257] | 1806 | !$acc loop independent |
---|
[1128] | 1807 | DO j = j_south, j_north |
---|
[1257] | 1808 | !$acc loop independent |
---|
[1015] | 1809 | DO k = 1, nzt |
---|
| 1810 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1811 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1812 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 1813 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1814 | ! |
---|
| 1815 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1816 | IF ( runge_step == 1 ) THEN |
---|
| 1817 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1818 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1819 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[1015] | 1820 | ENDIF |
---|
| 1821 | ENDIF |
---|
| 1822 | ENDDO |
---|
| 1823 | ENDDO |
---|
| 1824 | ENDDO |
---|
| 1825 | !$acc end kernels |
---|
| 1826 | |
---|
| 1827 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1828 | |
---|
| 1829 | ! |
---|
| 1830 | !-- v-velocity component |
---|
| 1831 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1832 | |
---|
| 1833 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1834 | IF ( ws_scheme_mom ) THEN |
---|
| 1835 | CALL advec_v_ws_acc |
---|
| 1836 | ELSE |
---|
[1337] | 1837 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1838 | CALL advec_v_pw |
---|
| 1839 | END IF |
---|
| 1840 | ELSE |
---|
| 1841 | CALL advec_v_up |
---|
| 1842 | ENDIF |
---|
| 1843 | CALL diffusion_v_acc |
---|
| 1844 | CALL coriolis_acc( 2 ) |
---|
| 1845 | |
---|
| 1846 | ! |
---|
| 1847 | !-- Drag by plant canopy |
---|
| 1848 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1849 | |
---|
| 1850 | ! |
---|
| 1851 | !-- External pressure gradient |
---|
| 1852 | IF ( dp_external ) THEN |
---|
[1128] | 1853 | DO i = i_left, i_right |
---|
| 1854 | DO j = j_south, j_north |
---|
[1015] | 1855 | DO k = dp_level_ind_b+1, nzt |
---|
| 1856 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1857 | ENDDO |
---|
| 1858 | ENDDO |
---|
| 1859 | ENDDO |
---|
| 1860 | ENDIF |
---|
| 1861 | |
---|
[1246] | 1862 | ! |
---|
| 1863 | !-- Nudging |
---|
| 1864 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1865 | |
---|
[1015] | 1866 | CALL user_actions( 'v-tendency' ) |
---|
| 1867 | |
---|
| 1868 | ! |
---|
| 1869 | !-- Prognostic equation for v-velocity component |
---|
| 1870 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, vg, v_p ) |
---|
[1257] | 1871 | !$acc loop independent |
---|
[1128] | 1872 | DO i = i_left, i_right |
---|
[1257] | 1873 | !$acc loop independent |
---|
[1128] | 1874 | DO j = j_south, j_north |
---|
[1257] | 1875 | !$acc loop independent |
---|
[1015] | 1876 | DO k = 1, nzt |
---|
| 1877 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1878 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1879 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 1880 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1881 | ! |
---|
| 1882 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1883 | IF ( runge_step == 1 ) THEN |
---|
| 1884 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1885 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1886 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[1015] | 1887 | ENDIF |
---|
| 1888 | ENDIF |
---|
| 1889 | ENDDO |
---|
| 1890 | ENDDO |
---|
| 1891 | ENDDO |
---|
| 1892 | !$acc end kernels |
---|
| 1893 | |
---|
| 1894 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1895 | |
---|
| 1896 | ! |
---|
| 1897 | !-- w-velocity component |
---|
| 1898 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1899 | |
---|
| 1900 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1901 | IF ( ws_scheme_mom ) THEN |
---|
| 1902 | CALL advec_w_ws_acc |
---|
| 1903 | ELSE |
---|
[1337] | 1904 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1905 | CALL advec_w_pw |
---|
| 1906 | ENDIF |
---|
| 1907 | ELSE |
---|
| 1908 | CALL advec_w_up |
---|
| 1909 | ENDIF |
---|
| 1910 | CALL diffusion_w_acc |
---|
| 1911 | CALL coriolis_acc( 3 ) |
---|
| 1912 | |
---|
| 1913 | IF ( .NOT. neutral ) THEN |
---|
| 1914 | IF ( ocean ) THEN |
---|
[1179] | 1915 | CALL buoyancy( rho, 3 ) |
---|
[1015] | 1916 | ELSE |
---|
| 1917 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1918 | CALL buoyancy_acc( pt, 3 ) |
---|
[1015] | 1919 | ELSE |
---|
[1179] | 1920 | CALL buoyancy( vpt, 3 ) |
---|
[1015] | 1921 | ENDIF |
---|
| 1922 | ENDIF |
---|
| 1923 | ENDIF |
---|
| 1924 | |
---|
| 1925 | ! |
---|
| 1926 | !-- Drag by plant canopy |
---|
| 1927 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1928 | |
---|
| 1929 | CALL user_actions( 'w-tendency' ) |
---|
| 1930 | |
---|
| 1931 | ! |
---|
| 1932 | !-- Prognostic equation for w-velocity component |
---|
| 1933 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
[1257] | 1934 | !$acc loop independent |
---|
[1128] | 1935 | DO i = i_left, i_right |
---|
[1257] | 1936 | !$acc loop independent |
---|
[1128] | 1937 | DO j = j_south, j_north |
---|
[1257] | 1938 | !$acc loop independent |
---|
[1015] | 1939 | DO k = 1, nzt-1 |
---|
| 1940 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 1941 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1942 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1943 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1944 | ! |
---|
| 1945 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1946 | IF ( runge_step == 1 ) THEN |
---|
| 1947 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1948 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1949 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[1015] | 1950 | ENDIF |
---|
| 1951 | ENDIF |
---|
| 1952 | ENDDO |
---|
| 1953 | ENDDO |
---|
| 1954 | ENDDO |
---|
| 1955 | !$acc end kernels |
---|
| 1956 | |
---|
| 1957 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1958 | |
---|
| 1959 | |
---|
| 1960 | ! |
---|
| 1961 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1962 | IF ( .NOT. neutral ) THEN |
---|
| 1963 | |
---|
| 1964 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1965 | |
---|
| 1966 | ! |
---|
| 1967 | !-- pt-tendency terms with communication |
---|
| 1968 | sbt = tsc(2) |
---|
| 1969 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1970 | |
---|
| 1971 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1972 | ! |
---|
| 1973 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1974 | sbt = 1.0_wp |
---|
[1015] | 1975 | ENDIF |
---|
[1337] | 1976 | tend = 0.0_wp |
---|
[1015] | 1977 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1978 | |
---|
| 1979 | ENDIF |
---|
| 1980 | |
---|
| 1981 | ! |
---|
| 1982 | !-- pt-tendency terms with no communication |
---|
| 1983 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1984 | tend = 0.0_wp |
---|
[1015] | 1985 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1986 | IF ( ws_scheme_sca ) THEN |
---|
| 1987 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 1988 | ELSE |
---|
[1337] | 1989 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1990 | CALL advec_s_pw( pt ) |
---|
| 1991 | ENDIF |
---|
| 1992 | ELSE |
---|
| 1993 | CALL advec_s_up( pt ) |
---|
| 1994 | ENDIF |
---|
| 1995 | ENDIF |
---|
| 1996 | |
---|
| 1997 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 1998 | |
---|
| 1999 | ! |
---|
| 2000 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 2001 | IF ( radiation ) THEN |
---|
| 2002 | CALL calc_radiation |
---|
| 2003 | ENDIF |
---|
| 2004 | |
---|
| 2005 | ! |
---|
| 2006 | !-- If required compute impact of latent heat due to precipitation |
---|
[1361] | 2007 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2008 | CALL impact_of_latent_heat |
---|
| 2009 | ENDIF |
---|
| 2010 | |
---|
| 2011 | ! |
---|
| 2012 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 2013 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[1015] | 2014 | CALL plant_canopy_model( 4 ) |
---|
| 2015 | ENDIF |
---|
| 2016 | |
---|
| 2017 | ! |
---|
[1365] | 2018 | !-- Large scale advection |
---|
| 2019 | IF ( large_scale_forcing ) THEN |
---|
| 2020 | CALL ls_advec( simulated_time, 'pt' ) |
---|
| 2021 | ENDIF |
---|
| 2022 | |
---|
| 2023 | ! |
---|
[1015] | 2024 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2025 | IF ( large_scale_subsidence .AND. & |
---|
| 2026 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2027 | CALL subsidence( tend, pt, pt_init, 2 ) |
---|
[1015] | 2028 | ENDIF |
---|
| 2029 | |
---|
[1246] | 2030 | ! |
---|
| 2031 | !-- Nudging |
---|
| 2032 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 2033 | |
---|
[1015] | 2034 | CALL user_actions( 'pt-tendency' ) |
---|
| 2035 | |
---|
| 2036 | ! |
---|
| 2037 | !-- Prognostic equation for potential temperature |
---|
| 2038 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 2039 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
[1257] | 2040 | !$acc loop independent |
---|
[1128] | 2041 | DO i = i_left, i_right |
---|
[1257] | 2042 | !$acc loop independent |
---|
[1128] | 2043 | DO j = j_south, j_north |
---|
[1257] | 2044 | !$acc loop independent |
---|
[1015] | 2045 | DO k = 1, nzt |
---|
| 2046 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2047 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2048 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 2049 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 2050 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 2051 | ! |
---|
| 2052 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2053 | IF ( runge_step == 1 ) THEN |
---|
| 2054 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 2055 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2056 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tpt_m(k,j,i) |
---|
[1015] | 2057 | ENDIF |
---|
| 2058 | ENDIF |
---|
| 2059 | ENDDO |
---|
| 2060 | ENDDO |
---|
| 2061 | ENDDO |
---|
| 2062 | !$acc end kernels |
---|
| 2063 | |
---|
| 2064 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 2065 | |
---|
| 2066 | ENDIF |
---|
| 2067 | |
---|
| 2068 | ! |
---|
| 2069 | !-- If required, compute prognostic equation for salinity |
---|
| 2070 | IF ( ocean ) THEN |
---|
| 2071 | |
---|
| 2072 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 2073 | |
---|
| 2074 | ! |
---|
| 2075 | !-- sa-tendency terms with communication |
---|
| 2076 | sbt = tsc(2) |
---|
| 2077 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2078 | |
---|
| 2079 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2080 | ! |
---|
| 2081 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2082 | sbt = 1.0_wp |
---|
[1015] | 2083 | ENDIF |
---|
[1337] | 2084 | tend = 0.0_wp |
---|
[1015] | 2085 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 2086 | |
---|
| 2087 | ENDIF |
---|
| 2088 | |
---|
| 2089 | ! |
---|
| 2090 | !-- sa-tendency terms with no communication |
---|
| 2091 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2092 | tend = 0.0_wp |
---|
[1015] | 2093 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2094 | IF ( ws_scheme_sca ) THEN |
---|
| 2095 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 2096 | ELSE |
---|
| 2097 | CALL advec_s_pw( sa ) |
---|
| 2098 | ENDIF |
---|
| 2099 | ELSE |
---|
| 2100 | CALL advec_s_up( sa ) |
---|
| 2101 | ENDIF |
---|
| 2102 | ENDIF |
---|
| 2103 | |
---|
| 2104 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 2105 | |
---|
| 2106 | CALL user_actions( 'sa-tendency' ) |
---|
| 2107 | |
---|
| 2108 | ! |
---|
| 2109 | !-- Prognostic equation for salinity |
---|
[1128] | 2110 | DO i = i_left, i_right |
---|
| 2111 | DO j = j_south, j_north |
---|
[1015] | 2112 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2113 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2114 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 2115 | - tsc(5) * rdf_sc(k) * & |
---|
| 2116 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 2117 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[1015] | 2118 | ! |
---|
| 2119 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2120 | IF ( runge_step == 1 ) THEN |
---|
| 2121 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 2122 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2123 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tsa_m(k,j,i) |
---|
[1015] | 2124 | ENDIF |
---|
| 2125 | ENDDO |
---|
| 2126 | ENDDO |
---|
| 2127 | ENDDO |
---|
| 2128 | |
---|
| 2129 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 2130 | |
---|
| 2131 | ! |
---|
| 2132 | !-- Calculate density by the equation of state for seawater |
---|
| 2133 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 2134 | CALL eqn_state_seawater |
---|
| 2135 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 2136 | |
---|
| 2137 | ENDIF |
---|
| 2138 | |
---|
| 2139 | ! |
---|
| 2140 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 2141 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 2142 | |
---|
| 2143 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 2144 | |
---|
| 2145 | ! |
---|
| 2146 | !-- Scalar/q-tendency terms with communication |
---|
| 2147 | sbt = tsc(2) |
---|
| 2148 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2149 | |
---|
| 2150 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2151 | ! |
---|
| 2152 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2153 | sbt = 1.0_wp |
---|
[1015] | 2154 | ENDIF |
---|
[1337] | 2155 | tend = 0.0_wp |
---|
[1015] | 2156 | CALL advec_s_bc( q, 'q' ) |
---|
| 2157 | |
---|
| 2158 | ENDIF |
---|
| 2159 | |
---|
| 2160 | ! |
---|
| 2161 | !-- Scalar/q-tendency terms with no communication |
---|
| 2162 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 2163 | tend = 0.0_wp |
---|
[1015] | 2164 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2165 | IF ( ws_scheme_sca ) THEN |
---|
| 2166 | CALL advec_s_ws( q, 'q' ) |
---|
| 2167 | ELSE |
---|
| 2168 | CALL advec_s_pw( q ) |
---|
| 2169 | ENDIF |
---|
| 2170 | ELSE |
---|
| 2171 | CALL advec_s_up( q ) |
---|
| 2172 | ENDIF |
---|
| 2173 | ENDIF |
---|
| 2174 | |
---|
| 2175 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 2176 | |
---|
| 2177 | ! |
---|
| 2178 | !-- If required compute decrease of total water content due to |
---|
| 2179 | !-- precipitation |
---|
[1361] | 2180 | IF ( cloud_physics .AND. icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1015] | 2181 | CALL calc_precipitation |
---|
| 2182 | ENDIF |
---|
| 2183 | |
---|
| 2184 | ! |
---|
| 2185 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 2186 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 2187 | |
---|
| 2188 | ! |
---|
[1365] | 2189 | !-- Large scale advection |
---|
| 2190 | IF ( large_scale_forcing ) THEN |
---|
| 2191 | CALL ls_advec( simulated_time, 'q' ) |
---|
| 2192 | ENDIF |
---|
| 2193 | |
---|
| 2194 | ! |
---|
[1015] | 2195 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[1365] | 2196 | IF ( large_scale_subsidence .AND. & |
---|
| 2197 | .NOT. use_subsidence_tendencies ) THEN |
---|
| 2198 | CALL subsidence( tend, q, q_init, 3 ) |
---|
[1015] | 2199 | ENDIF |
---|
| 2200 | |
---|
[1246] | 2201 | ! |
---|
| 2202 | !-- Nudging |
---|
| 2203 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 2204 | |
---|
[1015] | 2205 | CALL user_actions( 'q-tendency' ) |
---|
| 2206 | |
---|
| 2207 | ! |
---|
| 2208 | !-- Prognostic equation for total water content / scalar |
---|
[1128] | 2209 | DO i = i_left, i_right |
---|
| 2210 | DO j = j_south, j_north |
---|
[1015] | 2211 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2212 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2213 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 2214 | - tsc(5) * rdf_sc(k) * & |
---|
| 2215 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 2216 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[1015] | 2217 | ! |
---|
| 2218 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2219 | IF ( runge_step == 1 ) THEN |
---|
| 2220 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 2221 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2222 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[1015] | 2223 | ENDIF |
---|
| 2224 | ENDDO |
---|
| 2225 | ENDDO |
---|
| 2226 | ENDDO |
---|
| 2227 | |
---|
| 2228 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 2229 | |
---|
[1361] | 2230 | ! |
---|
| 2231 | !-- If required, calculate prognostic equations for rain water content |
---|
| 2232 | !-- and rain drop concentration |
---|
| 2233 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 2234 | |
---|
| 2235 | CALL cpu_log( log_point(52), 'qr-equation', 'start' ) |
---|
| 2236 | ! |
---|
| 2237 | !-- qr-tendency terms with communication |
---|
| 2238 | sbt = tsc(2) |
---|
| 2239 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2240 | |
---|
| 2241 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2242 | ! |
---|
| 2243 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2244 | sbt = 1.0_wp |
---|
| 2245 | ENDIF |
---|
| 2246 | tend = 0.0_wp |
---|
| 2247 | CALL advec_s_bc( qr, 'qr' ) |
---|
| 2248 | |
---|
| 2249 | ENDIF |
---|
| 2250 | |
---|
| 2251 | ! |
---|
| 2252 | !-- qr-tendency terms with no communication |
---|
| 2253 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2254 | tend = 0.0_wp |
---|
| 2255 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2256 | IF ( ws_scheme_sca ) THEN |
---|
| 2257 | CALL advec_s_ws( qr, 'qr' ) |
---|
| 2258 | ELSE |
---|
| 2259 | CALL advec_s_pw( qr ) |
---|
| 2260 | ENDIF |
---|
| 2261 | ELSE |
---|
| 2262 | CALL advec_s_up( qr ) |
---|
| 2263 | ENDIF |
---|
| 2264 | ENDIF |
---|
| 2265 | |
---|
| 2266 | CALL diffusion_s( qr, qrsws, qrswst, wall_qrflux ) |
---|
| 2267 | |
---|
| 2268 | CALL user_actions( 'qr-tendency' ) |
---|
| 2269 | |
---|
| 2270 | ! |
---|
| 2271 | !-- Prognostic equation for rain water content |
---|
| 2272 | DO i = i_left, i_right |
---|
| 2273 | DO j = j_south, j_north |
---|
| 2274 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2275 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2276 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 2277 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 2278 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
| 2279 | ! |
---|
| 2280 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2281 | IF ( runge_step == 1 ) THEN |
---|
| 2282 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 2283 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2284 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2285 | tqr_m(k,j,i) |
---|
| 2286 | ENDIF |
---|
| 2287 | ENDDO |
---|
| 2288 | ENDDO |
---|
| 2289 | ENDDO |
---|
| 2290 | |
---|
| 2291 | CALL cpu_log( log_point(52), 'qr-equation', 'stop' ) |
---|
| 2292 | CALL cpu_log( log_point(53), 'nr-equation', 'start' ) |
---|
| 2293 | |
---|
| 2294 | ! |
---|
| 2295 | !-- nr-tendency terms with communication |
---|
| 2296 | sbt = tsc(2) |
---|
| 2297 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2298 | |
---|
| 2299 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2300 | ! |
---|
| 2301 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2302 | sbt = 1.0_wp |
---|
| 2303 | ENDIF |
---|
| 2304 | tend = 0.0_wp |
---|
| 2305 | CALL advec_s_bc( nr, 'nr' ) |
---|
| 2306 | |
---|
| 2307 | ENDIF |
---|
| 2308 | |
---|
| 2309 | ! |
---|
| 2310 | !-- nr-tendency terms with no communication |
---|
| 2311 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 2312 | tend = 0.0_wp |
---|
| 2313 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2314 | IF ( ws_scheme_sca ) THEN |
---|
| 2315 | CALL advec_s_ws( nr, 'nr' ) |
---|
| 2316 | ELSE |
---|
| 2317 | CALL advec_s_pw( nr ) |
---|
| 2318 | ENDIF |
---|
| 2319 | ELSE |
---|
| 2320 | CALL advec_s_up( nr ) |
---|
| 2321 | ENDIF |
---|
| 2322 | ENDIF |
---|
| 2323 | |
---|
| 2324 | CALL diffusion_s( nr, nrsws, nrswst, wall_nrflux ) |
---|
| 2325 | |
---|
| 2326 | CALL user_actions( 'nr-tendency' ) |
---|
| 2327 | |
---|
| 2328 | ! |
---|
| 2329 | !-- Prognostic equation for rain drop concentration |
---|
| 2330 | DO i = i_left, i_right |
---|
| 2331 | DO j = j_south, j_north |
---|
| 2332 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 2333 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2334 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 2335 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 2336 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
| 2337 | ! |
---|
| 2338 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2339 | IF ( runge_step == 1 ) THEN |
---|
| 2340 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 2341 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2342 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * & |
---|
| 2343 | tnr_m(k,j,i) |
---|
| 2344 | ENDIF |
---|
| 2345 | ENDDO |
---|
| 2346 | ENDDO |
---|
| 2347 | ENDDO |
---|
| 2348 | |
---|
| 2349 | CALL cpu_log( log_point(53), 'nr-equation', 'stop' ) |
---|
| 2350 | |
---|
| 2351 | ENDIF |
---|
| 2352 | |
---|
[1015] | 2353 | ENDIF |
---|
| 2354 | |
---|
| 2355 | ! |
---|
| 2356 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 2357 | !-- energy (TKE) |
---|
| 2358 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 2359 | |
---|
| 2360 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 2361 | |
---|
| 2362 | sbt = tsc(2) |
---|
| 2363 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 2364 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2365 | |
---|
| 2366 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2367 | ! |
---|
| 2368 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2369 | sbt = 1.0_wp |
---|
[1015] | 2370 | ENDIF |
---|
[1337] | 2371 | tend = 0.0_wp |
---|
[1015] | 2372 | CALL advec_s_bc( e, 'e' ) |
---|
| 2373 | |
---|
| 2374 | ENDIF |
---|
| 2375 | ENDIF |
---|
| 2376 | |
---|
| 2377 | ! |
---|
| 2378 | !-- TKE-tendency terms with no communication |
---|
| 2379 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 2380 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 2381 | tend = 0.0_wp |
---|
[1015] | 2382 | CALL advec_s_up( e ) |
---|
| 2383 | ELSE |
---|
| 2384 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2385 | IF ( ws_scheme_sca ) THEN |
---|
| 2386 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 2387 | ELSE |
---|
[1337] | 2388 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2389 | CALL advec_s_pw( e ) |
---|
| 2390 | ENDIF |
---|
| 2391 | ELSE |
---|
[1337] | 2392 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2393 | CALL advec_s_up( e ) |
---|
| 2394 | ENDIF |
---|
| 2395 | ENDIF |
---|
| 2396 | ENDIF |
---|
| 2397 | |
---|
| 2398 | IF ( .NOT. humidity ) THEN |
---|
| 2399 | IF ( ocean ) THEN |
---|
| 2400 | CALL diffusion_e( prho, prho_reference ) |
---|
| 2401 | ELSE |
---|
| 2402 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 2403 | ENDIF |
---|
| 2404 | ELSE |
---|
| 2405 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 2406 | ENDIF |
---|
| 2407 | |
---|
| 2408 | CALL production_e_acc |
---|
| 2409 | |
---|
| 2410 | ! |
---|
| 2411 | !-- Additional sink term for flows through plant canopies |
---|
| 2412 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 2413 | CALL user_actions( 'e-tendency' ) |
---|
| 2414 | |
---|
| 2415 | ! |
---|
| 2416 | !-- Prognostic equation for TKE. |
---|
| 2417 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2418 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2419 | !-- value is reduced by 90%. |
---|
| 2420 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
[1257] | 2421 | !$acc loop independent |
---|
[1128] | 2422 | DO i = i_left, i_right |
---|
[1257] | 2423 | !$acc loop independent |
---|
[1128] | 2424 | DO j = j_south, j_north |
---|
[1257] | 2425 | !$acc loop independent |
---|
[1015] | 2426 | DO k = 1, nzt |
---|
| 2427 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2428 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2429 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 2430 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[1015] | 2431 | ! |
---|
| 2432 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2433 | IF ( runge_step == 1 ) THEN |
---|
| 2434 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2435 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2436 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[1015] | 2437 | ENDIF |
---|
| 2438 | ENDIF |
---|
| 2439 | ENDDO |
---|
| 2440 | ENDDO |
---|
| 2441 | ENDDO |
---|
| 2442 | !$acc end kernels |
---|
| 2443 | |
---|
| 2444 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2445 | |
---|
| 2446 | ENDIF |
---|
| 2447 | |
---|
| 2448 | END SUBROUTINE prognostic_equations_acc |
---|
| 2449 | |
---|
| 2450 | |
---|
[736] | 2451 | END MODULE prognostic_equations_mod |
---|