[736] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[736] | 20 | ! Current revisions: |
---|
[1092] | 21 | ! ------------------ |
---|
[1354] | 22 | ! |
---|
| 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: prognostic_equations.f90 1354 2014-04-08 15:22:57Z witha $ |
---|
| 27 | ! |
---|
[1354] | 28 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 29 | ! REAL constants provided with KIND-attribute |
---|
| 30 | ! |
---|
[1353] | 31 | ! 1337 2014-03-25 15:11:48Z heinze |
---|
| 32 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 33 | ! |
---|
| 34 | ! 1332 2014-03-25 11:59:43Z suehring |
---|
[1333] | 35 | ! Bugfix: call advec_ws or advec_pw for TKE only if NOT use_upstream_for_tke |
---|
| 36 | ! |
---|
[1332] | 37 | ! 1330 2014-03-24 17:29:32Z suehring |
---|
[1331] | 38 | ! In case of SGS-particle velocity advection of TKE is also allowed with |
---|
| 39 | ! dissipative 5th-order scheme. |
---|
| 40 | ! |
---|
[1321] | 41 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 42 | ! ONLY-attribute added to USE-statements, |
---|
| 43 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 44 | ! kinds are defined in new module kinds, |
---|
| 45 | ! old module precision_kind is removed, |
---|
| 46 | ! revision history before 2012 removed, |
---|
| 47 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 48 | ! all variable declaration statements |
---|
[1054] | 49 | ! |
---|
[1319] | 50 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 51 | ! module interfaces removed |
---|
| 52 | ! |
---|
[1258] | 53 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 54 | ! openacc loop vector clauses removed, independent clauses added |
---|
| 55 | ! |
---|
[1247] | 56 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
| 57 | ! enable nudging also for accelerator version |
---|
| 58 | ! |
---|
[1242] | 59 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 60 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
| 61 | ! |
---|
[1182] | 62 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 63 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 64 | ! |
---|
[1132] | 65 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 66 | ! those parts requiring global communication moved to time_integration, |
---|
| 67 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 68 | ! j_north |
---|
| 69 | ! |
---|
[1116] | 70 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 71 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 72 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 73 | ! |
---|
[1112] | 74 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 75 | ! update directives for prognostic quantities removed |
---|
| 76 | ! |
---|
[1107] | 77 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 78 | ! small changes in code formatting |
---|
| 79 | ! |
---|
[1093] | 80 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 81 | ! unused variables removed |
---|
| 82 | ! |
---|
[1054] | 83 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 84 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 85 | ! and rain water content (qr) |
---|
[979] | 86 | ! |
---|
[1053] | 87 | ! currently, only available for cache loop optimization |
---|
[1020] | 88 | ! |
---|
[1037] | 89 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 90 | ! code put under GPL (PALM 3.9) |
---|
| 91 | ! |
---|
[1020] | 92 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 93 | ! non-optimized version of prognostic_equations removed |
---|
| 94 | ! |
---|
[1017] | 95 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 96 | ! new branch prognostic_equations_acc |
---|
| 97 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 98 | ! |
---|
[1002] | 99 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 100 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 101 | ! |
---|
[979] | 102 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 103 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 104 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 105 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 106 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 107 | ! |
---|
[941] | 108 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 109 | ! temperature equation can be switched off |
---|
| 110 | ! |
---|
[736] | 111 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 112 | ! Initial revision |
---|
| 113 | ! |
---|
| 114 | ! |
---|
| 115 | ! Description: |
---|
| 116 | ! ------------ |
---|
| 117 | ! Solving the prognostic equations. |
---|
| 118 | !------------------------------------------------------------------------------! |
---|
| 119 | |
---|
[1320] | 120 | USE arrays_3d, & |
---|
| 121 | ONLY: diss_l_e, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qr, & |
---|
| 122 | diss_l_sa, diss_s_e, diss_s_nr, diss_s_pt, diss_s_q, & |
---|
| 123 | diss_s_qr, diss_s_sa, e, e_p, flux_s_e, flux_s_nr, flux_s_pt, & |
---|
| 124 | flux_s_q, flux_s_qr, flux_s_sa, flux_l_e, flux_l_nr, & |
---|
| 125 | flux_l_pt, flux_l_q, flux_l_qr, flux_l_sa, nr, nr_p, nrsws, & |
---|
| 126 | nrswst, pt, ptdf_x, ptdf_y, pt_init, pt_p, prho, q, q_init, & |
---|
| 127 | q_p, qsws, qswst, qr, qr_p, qrsws, qrswst, rdf, rdf_sc, rho, & |
---|
| 128 | sa, sa_init, sa_p, saswsb, saswst, shf, tend, tend_nr, & |
---|
| 129 | tend_pt, tend_q, tend_qr, te_m, tnr_m, tpt_m, tq_m, tqr_m, & |
---|
| 130 | tsa_m, tswst, tu_m, tv_m, tw_m, u, ug, u_p, v, vg, vpt, v_p, & |
---|
| 131 | w, w_p |
---|
| 132 | |
---|
| 133 | USE control_parameters, & |
---|
| 134 | ONLY: cloud_physics, constant_diffusion, cthf, dp_external, & |
---|
| 135 | dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, humidity, & |
---|
| 136 | icloud_scheme, inflow_l, intermediate_timestep_count, & |
---|
| 137 | intermediate_timestep_count_max, large_scale_subsidence, & |
---|
| 138 | neutral, nudging, ocean, outflow_l, outflow_s, passive_scalar, & |
---|
| 139 | plant_canopy, precipitation, prho_reference, prho_reference, & |
---|
| 140 | prho_reference, pt_reference, pt_reference, pt_reference, & |
---|
| 141 | radiation, scalar_advec, scalar_advec, simulated_time, & |
---|
| 142 | sloping_surface, timestep_scheme, tsc, use_upstream_for_tke, & |
---|
| 143 | use_upstream_for_tke, use_upstream_for_tke, wall_heatflux, & |
---|
| 144 | wall_nrflux, wall_qflux, wall_qflux, wall_qflux, wall_qrflux, & |
---|
| 145 | wall_salinityflux, ws_scheme_mom, ws_scheme_sca |
---|
[736] | 146 | |
---|
[1320] | 147 | USE cpulog, & |
---|
| 148 | ONLY: cpu_log, log_point |
---|
[736] | 149 | |
---|
[1320] | 150 | USE eqn_state_seawater_mod, & |
---|
| 151 | ONLY: eqn_state_seawater |
---|
| 152 | |
---|
| 153 | USE indices, & |
---|
| 154 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlu, nxr, nyn, nys, & |
---|
| 155 | nysv, nzb_s_inner, nzb_u_inner, nzb_v_inner, nzb_w_inner, nzt |
---|
| 156 | |
---|
| 157 | USE advec_ws, & |
---|
| 158 | ONLY: advec_s_ws, advec_s_ws_acc, advec_u_ws, advec_u_ws_acc, & |
---|
| 159 | advec_v_ws, advec_v_ws_acc, advec_w_ws, advec_w_ws_acc |
---|
| 160 | |
---|
| 161 | USE advec_s_pw_mod, & |
---|
| 162 | ONLY: advec_s_pw |
---|
| 163 | |
---|
| 164 | USE advec_s_up_mod, & |
---|
| 165 | ONLY: advec_s_up |
---|
| 166 | |
---|
| 167 | USE advec_u_pw_mod, & |
---|
| 168 | ONLY: advec_u_pw |
---|
| 169 | |
---|
| 170 | USE advec_u_up_mod, & |
---|
| 171 | ONLY: advec_u_up |
---|
| 172 | |
---|
| 173 | USE advec_v_pw_mod, & |
---|
| 174 | ONLY: advec_v_pw |
---|
| 175 | |
---|
| 176 | USE advec_v_up_mod, & |
---|
| 177 | ONLY: advec_v_up |
---|
| 178 | |
---|
| 179 | USE advec_w_pw_mod, & |
---|
| 180 | ONLY: advec_w_pw |
---|
| 181 | |
---|
| 182 | USE advec_w_up_mod, & |
---|
| 183 | ONLY: advec_w_up |
---|
| 184 | |
---|
| 185 | USE buoyancy_mod, & |
---|
| 186 | ONLY: buoyancy, buoyancy_acc |
---|
| 187 | |
---|
| 188 | USE calc_precipitation_mod, & |
---|
| 189 | ONLY: calc_precipitation |
---|
| 190 | |
---|
| 191 | USE calc_radiation_mod, & |
---|
| 192 | ONLY: calc_radiation |
---|
| 193 | |
---|
| 194 | USE coriolis_mod, & |
---|
| 195 | ONLY: coriolis, coriolis_acc |
---|
| 196 | |
---|
| 197 | USE diffusion_e_mod, & |
---|
| 198 | ONLY: diffusion_e, diffusion_e_acc |
---|
| 199 | |
---|
| 200 | USE diffusion_s_mod, & |
---|
| 201 | ONLY: diffusion_s, diffusion_s_acc |
---|
| 202 | |
---|
| 203 | USE diffusion_u_mod, & |
---|
| 204 | ONLY: diffusion_u, diffusion_u_acc |
---|
| 205 | |
---|
| 206 | USE diffusion_v_mod, & |
---|
| 207 | ONLY: diffusion_v, diffusion_v_acc |
---|
| 208 | |
---|
| 209 | USE diffusion_w_mod, & |
---|
| 210 | ONLY: diffusion_w, diffusion_w_acc |
---|
| 211 | |
---|
| 212 | USE impact_of_latent_heat_mod, & |
---|
| 213 | ONLY: impact_of_latent_heat |
---|
| 214 | |
---|
| 215 | USE kinds |
---|
| 216 | |
---|
| 217 | USE microphysics_mod, & |
---|
| 218 | ONLY: microphysics_control |
---|
| 219 | |
---|
| 220 | USE nudge_mod, & |
---|
| 221 | ONLY: nudge |
---|
| 222 | |
---|
| 223 | USE plant_canopy_model_mod, & |
---|
| 224 | ONLY: plant_canopy_model |
---|
| 225 | |
---|
| 226 | USE production_e_mod, & |
---|
| 227 | ONLY: production_e, production_e_acc |
---|
| 228 | |
---|
| 229 | USE subsidence_mod, & |
---|
| 230 | ONLY: subsidence |
---|
| 231 | |
---|
| 232 | USE user_actions_mod, & |
---|
| 233 | ONLY: user_actions |
---|
| 234 | |
---|
| 235 | |
---|
[736] | 236 | PRIVATE |
---|
[1019] | 237 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 238 | prognostic_equations_acc |
---|
[736] | 239 | |
---|
| 240 | INTERFACE prognostic_equations_cache |
---|
| 241 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 242 | END INTERFACE prognostic_equations_cache |
---|
| 243 | |
---|
| 244 | INTERFACE prognostic_equations_vector |
---|
| 245 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 246 | END INTERFACE prognostic_equations_vector |
---|
| 247 | |
---|
[1015] | 248 | INTERFACE prognostic_equations_acc |
---|
| 249 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 250 | END INTERFACE prognostic_equations_acc |
---|
[736] | 251 | |
---|
[1015] | 252 | |
---|
[736] | 253 | CONTAINS |
---|
| 254 | |
---|
| 255 | |
---|
| 256 | SUBROUTINE prognostic_equations_cache |
---|
| 257 | |
---|
| 258 | !------------------------------------------------------------------------------! |
---|
| 259 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 260 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 261 | ! |
---|
| 262 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 263 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 264 | ! these loops. |
---|
| 265 | ! |
---|
| 266 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 267 | !------------------------------------------------------------------------------! |
---|
| 268 | |
---|
| 269 | IMPLICIT NONE |
---|
| 270 | |
---|
[1320] | 271 | INTEGER(iwp) :: i !: |
---|
| 272 | INTEGER(iwp) :: i_omp_start !: |
---|
| 273 | INTEGER(iwp) :: j !: |
---|
| 274 | INTEGER(iwp) :: k !: |
---|
| 275 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
| 276 | INTEGER(iwp) :: tn = 0 !: |
---|
| 277 | |
---|
| 278 | LOGICAL :: loop_start !: |
---|
[736] | 279 | |
---|
| 280 | |
---|
| 281 | ! |
---|
| 282 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 283 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 284 | |
---|
| 285 | ! |
---|
| 286 | !-- Loop over all prognostic equations |
---|
| 287 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 288 | |
---|
| 289 | !$ tn = omp_get_thread_num() |
---|
| 290 | loop_start = .TRUE. |
---|
| 291 | !$OMP DO |
---|
| 292 | DO i = nxl, nxr |
---|
| 293 | |
---|
| 294 | ! |
---|
| 295 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 296 | !-- later in advec_ws |
---|
| 297 | IF ( loop_start ) THEN |
---|
| 298 | loop_start = .FALSE. |
---|
| 299 | i_omp_start = i |
---|
| 300 | ENDIF |
---|
| 301 | |
---|
| 302 | DO j = nys, nyn |
---|
| 303 | ! |
---|
| 304 | !-- Tendency terms for u-velocity component |
---|
| 305 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 306 | |
---|
[1337] | 307 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 308 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 309 | IF ( ws_scheme_mom ) THEN |
---|
[978] | 310 | IF ( ( inflow_l .OR. outflow_l ) .AND. i_omp_start == nxl ) THEN |
---|
[736] | 311 | CALL advec_u_ws( i, j, i_omp_start + 1, tn ) |
---|
| 312 | ELSE |
---|
| 313 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
| 314 | ENDIF |
---|
| 315 | ELSE |
---|
| 316 | CALL advec_u_pw( i, j ) |
---|
| 317 | ENDIF |
---|
| 318 | ELSE |
---|
| 319 | CALL advec_u_up( i, j ) |
---|
| 320 | ENDIF |
---|
[1001] | 321 | CALL diffusion_u( i, j ) |
---|
[736] | 322 | CALL coriolis( i, j, 1 ) |
---|
[940] | 323 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 324 | CALL buoyancy( i, j, pt, 1 ) |
---|
[940] | 325 | ENDIF |
---|
[736] | 326 | |
---|
| 327 | ! |
---|
| 328 | !-- Drag by plant canopy |
---|
| 329 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 330 | |
---|
| 331 | ! |
---|
| 332 | !-- External pressure gradient |
---|
| 333 | IF ( dp_external ) THEN |
---|
| 334 | DO k = dp_level_ind_b+1, nzt |
---|
| 335 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 336 | ENDDO |
---|
| 337 | ENDIF |
---|
| 338 | |
---|
[1241] | 339 | ! |
---|
| 340 | !-- Nudging |
---|
| 341 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
| 342 | |
---|
[736] | 343 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 344 | ! |
---|
| 345 | !-- Prognostic equation for u-velocity component |
---|
| 346 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 347 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 348 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 349 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 350 | ENDDO |
---|
| 351 | |
---|
| 352 | ! |
---|
| 353 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 354 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 355 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 356 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 357 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 358 | ENDDO |
---|
| 359 | ELSEIF ( intermediate_timestep_count < & |
---|
| 360 | intermediate_timestep_count_max ) THEN |
---|
| 361 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 362 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 363 | ENDDO |
---|
| 364 | ENDIF |
---|
| 365 | ENDIF |
---|
| 366 | |
---|
| 367 | ENDIF |
---|
| 368 | |
---|
| 369 | ! |
---|
| 370 | !-- Tendency terms for v-velocity component |
---|
| 371 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 372 | |
---|
[1337] | 373 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 374 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 375 | IF ( ws_scheme_mom ) THEN |
---|
| 376 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 377 | ELSE |
---|
| 378 | CALL advec_v_pw( i, j ) |
---|
| 379 | ENDIF |
---|
| 380 | ELSE |
---|
| 381 | CALL advec_v_up( i, j ) |
---|
| 382 | ENDIF |
---|
[1001] | 383 | CALL diffusion_v( i, j ) |
---|
[736] | 384 | CALL coriolis( i, j, 2 ) |
---|
| 385 | |
---|
| 386 | ! |
---|
| 387 | !-- Drag by plant canopy |
---|
| 388 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 389 | |
---|
| 390 | ! |
---|
| 391 | !-- External pressure gradient |
---|
| 392 | IF ( dp_external ) THEN |
---|
| 393 | DO k = dp_level_ind_b+1, nzt |
---|
| 394 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 395 | ENDDO |
---|
| 396 | ENDIF |
---|
| 397 | |
---|
[1241] | 398 | ! |
---|
| 399 | !-- Nudging |
---|
| 400 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
| 401 | |
---|
[736] | 402 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 403 | ! |
---|
| 404 | !-- Prognostic equation for v-velocity component |
---|
| 405 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 406 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 407 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 408 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 409 | ENDDO |
---|
| 410 | |
---|
| 411 | ! |
---|
| 412 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 413 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 414 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 415 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 416 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 417 | ENDDO |
---|
| 418 | ELSEIF ( intermediate_timestep_count < & |
---|
| 419 | intermediate_timestep_count_max ) THEN |
---|
| 420 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 421 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 422 | ENDDO |
---|
| 423 | ENDIF |
---|
| 424 | ENDIF |
---|
| 425 | |
---|
| 426 | ENDIF |
---|
| 427 | |
---|
| 428 | ! |
---|
| 429 | !-- Tendency terms for w-velocity component |
---|
[1337] | 430 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 431 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 432 | IF ( ws_scheme_mom ) THEN |
---|
| 433 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 434 | ELSE |
---|
| 435 | CALL advec_w_pw( i, j ) |
---|
| 436 | END IF |
---|
| 437 | ELSE |
---|
| 438 | CALL advec_w_up( i, j ) |
---|
| 439 | ENDIF |
---|
[1001] | 440 | CALL diffusion_w( i, j ) |
---|
[736] | 441 | CALL coriolis( i, j, 3 ) |
---|
[940] | 442 | |
---|
| 443 | IF ( .NOT. neutral ) THEN |
---|
| 444 | IF ( ocean ) THEN |
---|
[1179] | 445 | CALL buoyancy( i, j, rho, 3 ) |
---|
[736] | 446 | ELSE |
---|
[940] | 447 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 448 | CALL buoyancy( i, j, pt, 3 ) |
---|
[940] | 449 | ELSE |
---|
[1179] | 450 | CALL buoyancy( i, j, vpt, 3 ) |
---|
[940] | 451 | ENDIF |
---|
[736] | 452 | ENDIF |
---|
| 453 | ENDIF |
---|
| 454 | |
---|
| 455 | ! |
---|
| 456 | !-- Drag by plant canopy |
---|
| 457 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 458 | |
---|
| 459 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 460 | |
---|
| 461 | ! |
---|
| 462 | !-- Prognostic equation for w-velocity component |
---|
| 463 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 464 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 465 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 466 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 467 | ENDDO |
---|
| 468 | |
---|
| 469 | ! |
---|
| 470 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 471 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 472 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 473 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 474 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 475 | ENDDO |
---|
| 476 | ELSEIF ( intermediate_timestep_count < & |
---|
| 477 | intermediate_timestep_count_max ) THEN |
---|
| 478 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 479 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 480 | ENDDO |
---|
| 481 | ENDIF |
---|
| 482 | ENDIF |
---|
| 483 | ! |
---|
[1115] | 484 | !-- If required, calculate tendencies for total water content, liquid water |
---|
| 485 | !-- potential temperature, rain water content and rain drop concentration |
---|
| 486 | IF ( cloud_physics .AND. icloud_scheme == 0 ) CALL microphysics_control( i, j ) |
---|
[1053] | 487 | ! |
---|
[940] | 488 | !-- If required, compute prognostic equation for potential temperature |
---|
| 489 | IF ( .NOT. neutral ) THEN |
---|
| 490 | ! |
---|
| 491 | !-- Tendency terms for potential temperature |
---|
[1337] | 492 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 493 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 494 | IF ( ws_scheme_sca ) THEN |
---|
| 495 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 496 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 497 | ELSE |
---|
| 498 | CALL advec_s_pw( i, j, pt ) |
---|
| 499 | ENDIF |
---|
| 500 | ELSE |
---|
| 501 | CALL advec_s_up( i, j, pt ) |
---|
| 502 | ENDIF |
---|
[1001] | 503 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 504 | |
---|
| 505 | ! |
---|
[940] | 506 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 507 | !-- processes |
---|
| 508 | IF ( radiation ) THEN |
---|
| 509 | CALL calc_radiation( i, j ) |
---|
| 510 | ENDIF |
---|
[736] | 511 | |
---|
[1106] | 512 | ! |
---|
[1053] | 513 | !-- Using microphysical tendencies (latent heat) |
---|
| 514 | IF ( cloud_physics ) THEN |
---|
| 515 | IF ( icloud_scheme == 0 ) THEN |
---|
| 516 | tend(:,j,i) = tend(:,j,i) + tend_pt(:,j,i) |
---|
[1106] | 517 | ELSEIF ( icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1053] | 518 | CALL impact_of_latent_heat( i, j ) |
---|
| 519 | ENDIF |
---|
[940] | 520 | ENDIF |
---|
[736] | 521 | |
---|
| 522 | ! |
---|
[940] | 523 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 524 | IF ( plant_canopy .AND. cthf /= 0.0_wp ) THEN |
---|
[940] | 525 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 526 | ENDIF |
---|
[736] | 527 | |
---|
[940] | 528 | ! |
---|
[1106] | 529 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
[940] | 530 | IF ( large_scale_subsidence ) THEN |
---|
| 531 | CALL subsidence( i, j, tend, pt, pt_init ) |
---|
| 532 | ENDIF |
---|
[736] | 533 | |
---|
[1241] | 534 | ! |
---|
| 535 | !-- Nudging |
---|
| 536 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
| 537 | |
---|
[940] | 538 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 539 | |
---|
| 540 | ! |
---|
[940] | 541 | !-- Prognostic equation for potential temperature |
---|
| 542 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 543 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 544 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 545 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 546 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 547 | ENDDO |
---|
[736] | 548 | |
---|
| 549 | ! |
---|
[940] | 550 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 551 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 552 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 553 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 554 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 555 | ENDDO |
---|
| 556 | ELSEIF ( intermediate_timestep_count < & |
---|
| 557 | intermediate_timestep_count_max ) THEN |
---|
| 558 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 559 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 560 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 561 | ENDDO |
---|
| 562 | ENDIF |
---|
[736] | 563 | ENDIF |
---|
[940] | 564 | |
---|
[736] | 565 | ENDIF |
---|
| 566 | |
---|
| 567 | ! |
---|
| 568 | !-- If required, compute prognostic equation for salinity |
---|
| 569 | IF ( ocean ) THEN |
---|
| 570 | |
---|
| 571 | ! |
---|
| 572 | !-- Tendency-terms for salinity |
---|
[1337] | 573 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 574 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 575 | THEN |
---|
| 576 | IF ( ws_scheme_sca ) THEN |
---|
| 577 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 578 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 579 | ELSE |
---|
| 580 | CALL advec_s_pw( i, j, sa ) |
---|
| 581 | ENDIF |
---|
| 582 | ELSE |
---|
| 583 | CALL advec_s_up( i, j, sa ) |
---|
| 584 | ENDIF |
---|
[1001] | 585 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 586 | |
---|
| 587 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 588 | |
---|
| 589 | ! |
---|
| 590 | !-- Prognostic equation for salinity |
---|
| 591 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 592 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 593 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 594 | - tsc(5) * rdf_sc(k) * & |
---|
| 595 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 596 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 597 | ENDDO |
---|
| 598 | |
---|
| 599 | ! |
---|
| 600 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 601 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 602 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 603 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 604 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 605 | ENDDO |
---|
| 606 | ELSEIF ( intermediate_timestep_count < & |
---|
| 607 | intermediate_timestep_count_max ) THEN |
---|
| 608 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 609 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 610 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 611 | ENDDO |
---|
| 612 | ENDIF |
---|
| 613 | ENDIF |
---|
| 614 | |
---|
| 615 | ! |
---|
| 616 | !-- Calculate density by the equation of state for seawater |
---|
| 617 | CALL eqn_state_seawater( i, j ) |
---|
| 618 | |
---|
| 619 | ENDIF |
---|
| 620 | |
---|
| 621 | ! |
---|
| 622 | !-- If required, compute prognostic equation for total water content / |
---|
| 623 | !-- scalar |
---|
| 624 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 625 | |
---|
| 626 | ! |
---|
| 627 | !-- Tendency-terms for total water content / scalar |
---|
[1337] | 628 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 629 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 630 | THEN |
---|
| 631 | IF ( ws_scheme_sca ) THEN |
---|
| 632 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 633 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 634 | ELSE |
---|
| 635 | CALL advec_s_pw( i, j, q ) |
---|
| 636 | ENDIF |
---|
| 637 | ELSE |
---|
| 638 | CALL advec_s_up( i, j, q ) |
---|
| 639 | ENDIF |
---|
[1001] | 640 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[1053] | 641 | |
---|
[736] | 642 | ! |
---|
[1053] | 643 | !-- Using microphysical tendencies |
---|
| 644 | IF ( cloud_physics ) THEN |
---|
| 645 | IF ( icloud_scheme == 0 ) THEN |
---|
| 646 | tend(:,j,i) = tend(:,j,i) + tend_q(:,j,i) |
---|
[1106] | 647 | ELSEIF ( icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1053] | 648 | CALL calc_precipitation( i, j ) |
---|
| 649 | ENDIF |
---|
[736] | 650 | ENDIF |
---|
| 651 | ! |
---|
| 652 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1106] | 653 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
[736] | 654 | |
---|
[1053] | 655 | ! |
---|
[736] | 656 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[940] | 657 | IF ( large_scale_subsidence ) THEN |
---|
| 658 | CALL subsidence( i, j, tend, q, q_init ) |
---|
[736] | 659 | ENDIF |
---|
| 660 | |
---|
[1241] | 661 | ! |
---|
| 662 | !-- Nudging |
---|
| 663 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
| 664 | |
---|
[736] | 665 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 666 | |
---|
| 667 | ! |
---|
| 668 | !-- Prognostic equation for total water content / scalar |
---|
| 669 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 670 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 671 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 672 | - tsc(5) * rdf_sc(k) * & |
---|
| 673 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 674 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 675 | ENDDO |
---|
| 676 | |
---|
| 677 | ! |
---|
| 678 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 679 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 680 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 681 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 682 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 683 | ENDDO |
---|
| 684 | ELSEIF ( intermediate_timestep_count < & |
---|
| 685 | intermediate_timestep_count_max ) THEN |
---|
| 686 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 687 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 688 | 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 689 | ENDDO |
---|
| 690 | ENDIF |
---|
| 691 | ENDIF |
---|
| 692 | |
---|
[1053] | 693 | ! |
---|
| 694 | !-- If required, calculate prognostic equations for rain water content |
---|
| 695 | !-- and rain drop concentration |
---|
[1115] | 696 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 697 | precipitation ) THEN |
---|
[1053] | 698 | ! |
---|
| 699 | !-- Calculate prognostic equation for rain water content |
---|
[1337] | 700 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 701 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 702 | THEN |
---|
| 703 | IF ( ws_scheme_sca ) THEN |
---|
| 704 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 705 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 706 | i_omp_start, tn ) |
---|
| 707 | ELSE |
---|
| 708 | CALL advec_s_pw( i, j, qr ) |
---|
| 709 | ENDIF |
---|
| 710 | ELSE |
---|
| 711 | CALL advec_s_up( i, j, qr ) |
---|
| 712 | ENDIF |
---|
| 713 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 714 | ! |
---|
| 715 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
| 716 | !-- evaporation; if required: sedimentation) |
---|
| 717 | tend(:,j,i) = tend(:,j,i) + tend_qr(:,j,i) |
---|
| 718 | |
---|
[1115] | 719 | CALL user_actions( i, j, 'qr-tendency' ) |
---|
[1053] | 720 | ! |
---|
| 721 | !-- Prognostic equation for rain water content |
---|
| 722 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 723 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 724 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 725 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
[1337] | 726 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
[1053] | 727 | ENDDO |
---|
| 728 | ! |
---|
| 729 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 730 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 731 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 732 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 733 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 734 | ENDDO |
---|
| 735 | ELSEIF ( intermediate_timestep_count < & |
---|
| 736 | intermediate_timestep_count_max ) THEN |
---|
| 737 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 738 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 739 | 5.3125_wp * tqr_m(k,j,i) |
---|
[1053] | 740 | ENDDO |
---|
| 741 | ENDIF |
---|
| 742 | ENDIF |
---|
| 743 | |
---|
| 744 | ! |
---|
| 745 | !-- Calculate prognostic equation for rain drop concentration. |
---|
[1337] | 746 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 747 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 748 | IF ( ws_scheme_sca ) THEN |
---|
[1115] | 749 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 750 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 751 | i_omp_start, tn ) |
---|
[1053] | 752 | ELSE |
---|
| 753 | CALL advec_s_pw( i, j, nr ) |
---|
| 754 | ENDIF |
---|
| 755 | ELSE |
---|
| 756 | CALL advec_s_up( i, j, nr ) |
---|
| 757 | ENDIF |
---|
| 758 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
[1115] | 759 | ! |
---|
[1053] | 760 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
| 761 | !-- selfcollection, breakup, evaporation; |
---|
| 762 | !-- if required: sedimentation) |
---|
| 763 | tend(:,j,i) = tend(:,j,i) + tend_nr(:,j,i) |
---|
| 764 | |
---|
[1115] | 765 | CALL user_actions( i, j, 'nr-tendency' ) |
---|
[1053] | 766 | ! |
---|
| 767 | !-- Prognostic equation for rain drop concentration |
---|
| 768 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 769 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 770 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 771 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
[1337] | 772 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
[1053] | 773 | ENDDO |
---|
| 774 | ! |
---|
| 775 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 776 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 777 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 778 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 779 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 780 | ENDDO |
---|
| 781 | ELSEIF ( intermediate_timestep_count < & |
---|
| 782 | intermediate_timestep_count_max ) THEN |
---|
| 783 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 784 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 785 | 5.3125_wp * tnr_m(k,j,i) |
---|
[1053] | 786 | ENDDO |
---|
| 787 | ENDIF |
---|
| 788 | ENDIF |
---|
| 789 | |
---|
| 790 | ENDIF |
---|
| 791 | |
---|
[1128] | 792 | ENDIF |
---|
| 793 | |
---|
[736] | 794 | ! |
---|
| 795 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 796 | !-- energy (TKE) |
---|
| 797 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 798 | |
---|
| 799 | ! |
---|
| 800 | !-- Tendency-terms for TKE |
---|
[1337] | 801 | tend(:,j,i) = 0.0_wp |
---|
[1332] | 802 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
| 803 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
[736] | 804 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 805 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 806 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 807 | ELSE |
---|
| 808 | CALL advec_s_pw( i, j, e ) |
---|
| 809 | ENDIF |
---|
| 810 | ELSE |
---|
| 811 | CALL advec_s_up( i, j, e ) |
---|
| 812 | ENDIF |
---|
[1001] | 813 | IF ( .NOT. humidity ) THEN |
---|
| 814 | IF ( ocean ) THEN |
---|
| 815 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 816 | ELSE |
---|
[1001] | 817 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 818 | ENDIF |
---|
| 819 | ELSE |
---|
[1001] | 820 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 821 | ENDIF |
---|
| 822 | CALL production_e( i, j ) |
---|
| 823 | |
---|
| 824 | ! |
---|
| 825 | !-- Additional sink term for flows through plant canopies |
---|
| 826 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 827 | |
---|
| 828 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 829 | |
---|
| 830 | ! |
---|
| 831 | !-- Prognostic equation for TKE. |
---|
| 832 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 833 | !-- reasons in the course of the integration. In such cases the old |
---|
| 834 | !-- TKE value is reduced by 90%. |
---|
| 835 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 836 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 837 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 838 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 839 | ENDDO |
---|
| 840 | |
---|
| 841 | ! |
---|
| 842 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 843 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 844 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 845 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 846 | te_m(k,j,i) = tend(k,j,i) |
---|
| 847 | ENDDO |
---|
| 848 | ELSEIF ( intermediate_timestep_count < & |
---|
| 849 | intermediate_timestep_count_max ) THEN |
---|
| 850 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 851 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 852 | 5.3125_wp * te_m(k,j,i) |
---|
[736] | 853 | ENDDO |
---|
| 854 | ENDIF |
---|
| 855 | ENDIF |
---|
| 856 | |
---|
| 857 | ENDIF ! TKE equation |
---|
| 858 | |
---|
| 859 | ENDDO |
---|
| 860 | ENDDO |
---|
| 861 | !$OMP END PARALLEL |
---|
| 862 | |
---|
| 863 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 864 | |
---|
| 865 | |
---|
| 866 | END SUBROUTINE prognostic_equations_cache |
---|
| 867 | |
---|
| 868 | |
---|
| 869 | SUBROUTINE prognostic_equations_vector |
---|
| 870 | |
---|
| 871 | !------------------------------------------------------------------------------! |
---|
| 872 | ! Version for vector machines |
---|
| 873 | !------------------------------------------------------------------------------! |
---|
| 874 | |
---|
| 875 | IMPLICIT NONE |
---|
| 876 | |
---|
[1320] | 877 | INTEGER(iwp) :: i !: |
---|
| 878 | INTEGER(iwp) :: j !: |
---|
| 879 | INTEGER(iwp) :: k !: |
---|
[736] | 880 | |
---|
[1320] | 881 | REAL(wp) :: sbt !: |
---|
[736] | 882 | |
---|
[1320] | 883 | |
---|
[736] | 884 | ! |
---|
| 885 | !-- u-velocity component |
---|
| 886 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 887 | |
---|
[1337] | 888 | tend = 0.0_wp |
---|
[1001] | 889 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 890 | IF ( ws_scheme_mom ) THEN |
---|
| 891 | CALL advec_u_ws |
---|
| 892 | ELSE |
---|
| 893 | CALL advec_u_pw |
---|
| 894 | ENDIF |
---|
| 895 | ELSE |
---|
[1001] | 896 | CALL advec_u_up |
---|
[736] | 897 | ENDIF |
---|
[1001] | 898 | CALL diffusion_u |
---|
[736] | 899 | CALL coriolis( 1 ) |
---|
[940] | 900 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 901 | CALL buoyancy( pt, 1 ) |
---|
[940] | 902 | ENDIF |
---|
[736] | 903 | |
---|
| 904 | ! |
---|
| 905 | !-- Drag by plant canopy |
---|
| 906 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 907 | |
---|
| 908 | ! |
---|
| 909 | !-- External pressure gradient |
---|
| 910 | IF ( dp_external ) THEN |
---|
| 911 | DO i = nxlu, nxr |
---|
| 912 | DO j = nys, nyn |
---|
| 913 | DO k = dp_level_ind_b+1, nzt |
---|
| 914 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 915 | ENDDO |
---|
| 916 | ENDDO |
---|
| 917 | ENDDO |
---|
| 918 | ENDIF |
---|
| 919 | |
---|
[1241] | 920 | ! |
---|
| 921 | !-- Nudging |
---|
| 922 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 923 | |
---|
[736] | 924 | CALL user_actions( 'u-tendency' ) |
---|
| 925 | |
---|
| 926 | ! |
---|
| 927 | !-- Prognostic equation for u-velocity component |
---|
| 928 | DO i = nxlu, nxr |
---|
| 929 | DO j = nys, nyn |
---|
| 930 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 931 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 932 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 933 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 934 | ENDDO |
---|
| 935 | ENDDO |
---|
| 936 | ENDDO |
---|
| 937 | |
---|
| 938 | ! |
---|
| 939 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 940 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 941 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 942 | DO i = nxlu, nxr |
---|
| 943 | DO j = nys, nyn |
---|
| 944 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 945 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 946 | ENDDO |
---|
| 947 | ENDDO |
---|
| 948 | ENDDO |
---|
| 949 | ELSEIF ( intermediate_timestep_count < & |
---|
| 950 | intermediate_timestep_count_max ) THEN |
---|
| 951 | DO i = nxlu, nxr |
---|
| 952 | DO j = nys, nyn |
---|
| 953 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 954 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 955 | ENDDO |
---|
| 956 | ENDDO |
---|
| 957 | ENDDO |
---|
| 958 | ENDIF |
---|
| 959 | ENDIF |
---|
| 960 | |
---|
| 961 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 962 | |
---|
| 963 | ! |
---|
| 964 | !-- v-velocity component |
---|
| 965 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 966 | |
---|
[1337] | 967 | tend = 0.0_wp |
---|
[1001] | 968 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 969 | IF ( ws_scheme_mom ) THEN |
---|
| 970 | CALL advec_v_ws |
---|
| 971 | ELSE |
---|
| 972 | CALL advec_v_pw |
---|
| 973 | END IF |
---|
| 974 | ELSE |
---|
[1001] | 975 | CALL advec_v_up |
---|
[736] | 976 | ENDIF |
---|
[1001] | 977 | CALL diffusion_v |
---|
[736] | 978 | CALL coriolis( 2 ) |
---|
| 979 | |
---|
| 980 | ! |
---|
| 981 | !-- Drag by plant canopy |
---|
| 982 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 983 | |
---|
| 984 | ! |
---|
| 985 | !-- External pressure gradient |
---|
| 986 | IF ( dp_external ) THEN |
---|
| 987 | DO i = nxl, nxr |
---|
| 988 | DO j = nysv, nyn |
---|
| 989 | DO k = dp_level_ind_b+1, nzt |
---|
| 990 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 991 | ENDDO |
---|
| 992 | ENDDO |
---|
| 993 | ENDDO |
---|
| 994 | ENDIF |
---|
| 995 | |
---|
[1241] | 996 | ! |
---|
| 997 | !-- Nudging |
---|
| 998 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 999 | |
---|
[736] | 1000 | CALL user_actions( 'v-tendency' ) |
---|
| 1001 | |
---|
| 1002 | ! |
---|
| 1003 | !-- Prognostic equation for v-velocity component |
---|
| 1004 | DO i = nxl, nxr |
---|
| 1005 | DO j = nysv, nyn |
---|
| 1006 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 1007 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1008 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 1009 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 1010 | ENDDO |
---|
| 1011 | ENDDO |
---|
| 1012 | ENDDO |
---|
| 1013 | |
---|
| 1014 | ! |
---|
| 1015 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1016 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1017 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1018 | DO i = nxl, nxr |
---|
| 1019 | DO j = nysv, nyn |
---|
| 1020 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1021 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1022 | ENDDO |
---|
| 1023 | ENDDO |
---|
| 1024 | ENDDO |
---|
| 1025 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1026 | intermediate_timestep_count_max ) THEN |
---|
| 1027 | DO i = nxl, nxr |
---|
| 1028 | DO j = nysv, nyn |
---|
| 1029 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 1030 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 1031 | ENDDO |
---|
| 1032 | ENDDO |
---|
| 1033 | ENDDO |
---|
| 1034 | ENDIF |
---|
| 1035 | ENDIF |
---|
| 1036 | |
---|
| 1037 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1038 | |
---|
| 1039 | ! |
---|
| 1040 | !-- w-velocity component |
---|
| 1041 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1042 | |
---|
[1353] | 1043 | tend = 0.0_wp |
---|
[1001] | 1044 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1045 | IF ( ws_scheme_mom ) THEN |
---|
| 1046 | CALL advec_w_ws |
---|
| 1047 | ELSE |
---|
| 1048 | CALL advec_w_pw |
---|
| 1049 | ENDIF |
---|
| 1050 | ELSE |
---|
[1001] | 1051 | CALL advec_w_up |
---|
[736] | 1052 | ENDIF |
---|
[1001] | 1053 | CALL diffusion_w |
---|
[736] | 1054 | CALL coriolis( 3 ) |
---|
[940] | 1055 | |
---|
| 1056 | IF ( .NOT. neutral ) THEN |
---|
| 1057 | IF ( ocean ) THEN |
---|
[1179] | 1058 | CALL buoyancy( rho, 3 ) |
---|
[736] | 1059 | ELSE |
---|
[940] | 1060 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1061 | CALL buoyancy( pt, 3 ) |
---|
[940] | 1062 | ELSE |
---|
[1179] | 1063 | CALL buoyancy( vpt, 3 ) |
---|
[940] | 1064 | ENDIF |
---|
[736] | 1065 | ENDIF |
---|
| 1066 | ENDIF |
---|
| 1067 | |
---|
| 1068 | ! |
---|
| 1069 | !-- Drag by plant canopy |
---|
| 1070 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1071 | |
---|
| 1072 | CALL user_actions( 'w-tendency' ) |
---|
| 1073 | |
---|
| 1074 | ! |
---|
| 1075 | !-- Prognostic equation for w-velocity component |
---|
| 1076 | DO i = nxl, nxr |
---|
| 1077 | DO j = nys, nyn |
---|
| 1078 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 1079 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1080 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1081 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 1082 | ENDDO |
---|
| 1083 | ENDDO |
---|
| 1084 | ENDDO |
---|
| 1085 | |
---|
| 1086 | ! |
---|
| 1087 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1088 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1089 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1090 | DO i = nxl, nxr |
---|
| 1091 | DO j = nys, nyn |
---|
| 1092 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1093 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1094 | ENDDO |
---|
| 1095 | ENDDO |
---|
| 1096 | ENDDO |
---|
| 1097 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1098 | intermediate_timestep_count_max ) THEN |
---|
| 1099 | DO i = nxl, nxr |
---|
| 1100 | DO j = nys, nyn |
---|
| 1101 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 1102 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 1103 | ENDDO |
---|
| 1104 | ENDDO |
---|
| 1105 | ENDDO |
---|
| 1106 | ENDIF |
---|
| 1107 | ENDIF |
---|
| 1108 | |
---|
| 1109 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1110 | |
---|
[940] | 1111 | |
---|
[736] | 1112 | ! |
---|
[940] | 1113 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1114 | IF ( .NOT. neutral ) THEN |
---|
[736] | 1115 | |
---|
[940] | 1116 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1117 | |
---|
[736] | 1118 | ! |
---|
[940] | 1119 | !-- pt-tendency terms with communication |
---|
| 1120 | sbt = tsc(2) |
---|
| 1121 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 1122 | |
---|
[940] | 1123 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 1124 | ! |
---|
[1001] | 1125 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1126 | sbt = 1.0_wp |
---|
[940] | 1127 | ENDIF |
---|
[1337] | 1128 | tend = 0.0_wp |
---|
[940] | 1129 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 1130 | |
---|
[736] | 1131 | ENDIF |
---|
[940] | 1132 | |
---|
| 1133 | ! |
---|
| 1134 | !-- pt-tendency terms with no communication |
---|
[1001] | 1135 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1136 | tend = 0.0_wp |
---|
[1001] | 1137 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 1138 | IF ( ws_scheme_sca ) THEN |
---|
| 1139 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1140 | ELSE |
---|
| 1141 | CALL advec_s_pw( pt ) |
---|
| 1142 | ENDIF |
---|
| 1143 | ELSE |
---|
[1001] | 1144 | CALL advec_s_up( pt ) |
---|
[940] | 1145 | ENDIF |
---|
[736] | 1146 | ENDIF |
---|
| 1147 | |
---|
[1001] | 1148 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1149 | |
---|
[736] | 1150 | ! |
---|
[940] | 1151 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1152 | IF ( radiation ) THEN |
---|
| 1153 | CALL calc_radiation |
---|
| 1154 | ENDIF |
---|
[736] | 1155 | |
---|
| 1156 | ! |
---|
[940] | 1157 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1158 | IF ( precipitation ) THEN |
---|
| 1159 | CALL impact_of_latent_heat |
---|
| 1160 | ENDIF |
---|
[736] | 1161 | |
---|
| 1162 | ! |
---|
[940] | 1163 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 1164 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[940] | 1165 | CALL plant_canopy_model( 4 ) |
---|
| 1166 | ENDIF |
---|
[736] | 1167 | |
---|
[940] | 1168 | ! |
---|
| 1169 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1170 | IF ( large_scale_subsidence ) THEN |
---|
| 1171 | CALL subsidence( tend, pt, pt_init ) |
---|
| 1172 | ENDIF |
---|
[736] | 1173 | |
---|
[1241] | 1174 | ! |
---|
| 1175 | !-- Nudging |
---|
| 1176 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1177 | |
---|
[940] | 1178 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 1179 | |
---|
| 1180 | ! |
---|
[940] | 1181 | !-- Prognostic equation for potential temperature |
---|
| 1182 | DO i = nxl, nxr |
---|
| 1183 | DO j = nys, nyn |
---|
| 1184 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1185 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1186 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1187 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1188 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 1189 | ENDDO |
---|
[736] | 1190 | ENDDO |
---|
| 1191 | ENDDO |
---|
| 1192 | |
---|
| 1193 | ! |
---|
[940] | 1194 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1195 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1196 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1197 | DO i = nxl, nxr |
---|
| 1198 | DO j = nys, nyn |
---|
| 1199 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1200 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1201 | ENDDO |
---|
[736] | 1202 | ENDDO |
---|
| 1203 | ENDDO |
---|
[940] | 1204 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1205 | intermediate_timestep_count_max ) THEN |
---|
| 1206 | DO i = nxl, nxr |
---|
| 1207 | DO j = nys, nyn |
---|
| 1208 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1209 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1210 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 1211 | ENDDO |
---|
[736] | 1212 | ENDDO |
---|
| 1213 | ENDDO |
---|
[940] | 1214 | ENDIF |
---|
[736] | 1215 | ENDIF |
---|
[940] | 1216 | |
---|
| 1217 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1218 | |
---|
[736] | 1219 | ENDIF |
---|
| 1220 | |
---|
| 1221 | ! |
---|
| 1222 | !-- If required, compute prognostic equation for salinity |
---|
| 1223 | IF ( ocean ) THEN |
---|
| 1224 | |
---|
| 1225 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1226 | |
---|
| 1227 | ! |
---|
| 1228 | !-- sa-tendency terms with communication |
---|
| 1229 | sbt = tsc(2) |
---|
| 1230 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1231 | |
---|
| 1232 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1233 | ! |
---|
[1001] | 1234 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1235 | sbt = 1.0_wp |
---|
[736] | 1236 | ENDIF |
---|
[1337] | 1237 | tend = 0.0_wp |
---|
[736] | 1238 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1239 | |
---|
[736] | 1240 | ENDIF |
---|
| 1241 | |
---|
| 1242 | ! |
---|
| 1243 | !-- sa-tendency terms with no communication |
---|
[1001] | 1244 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1353] | 1245 | tend = 0.0_wp |
---|
[1001] | 1246 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1247 | IF ( ws_scheme_sca ) THEN |
---|
| 1248 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1249 | ELSE |
---|
| 1250 | CALL advec_s_pw( sa ) |
---|
| 1251 | ENDIF |
---|
| 1252 | ELSE |
---|
[1001] | 1253 | CALL advec_s_up( sa ) |
---|
[736] | 1254 | ENDIF |
---|
| 1255 | ENDIF |
---|
[1001] | 1256 | |
---|
| 1257 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1258 | |
---|
| 1259 | CALL user_actions( 'sa-tendency' ) |
---|
| 1260 | |
---|
| 1261 | ! |
---|
| 1262 | !-- Prognostic equation for salinity |
---|
| 1263 | DO i = nxl, nxr |
---|
| 1264 | DO j = nys, nyn |
---|
| 1265 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1266 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1267 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1268 | - tsc(5) * rdf_sc(k) * & |
---|
| 1269 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 1270 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 1271 | ENDDO |
---|
| 1272 | ENDDO |
---|
| 1273 | ENDDO |
---|
| 1274 | |
---|
| 1275 | ! |
---|
| 1276 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1277 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1278 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1279 | DO i = nxl, nxr |
---|
| 1280 | DO j = nys, nyn |
---|
| 1281 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1282 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1283 | ENDDO |
---|
| 1284 | ENDDO |
---|
| 1285 | ENDDO |
---|
| 1286 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1287 | intermediate_timestep_count_max ) THEN |
---|
| 1288 | DO i = nxl, nxr |
---|
| 1289 | DO j = nys, nyn |
---|
| 1290 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1291 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1292 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 1293 | ENDDO |
---|
| 1294 | ENDDO |
---|
| 1295 | ENDDO |
---|
| 1296 | ENDIF |
---|
| 1297 | ENDIF |
---|
| 1298 | |
---|
| 1299 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1300 | |
---|
| 1301 | ! |
---|
| 1302 | !-- Calculate density by the equation of state for seawater |
---|
| 1303 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1304 | CALL eqn_state_seawater |
---|
| 1305 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1306 | |
---|
| 1307 | ENDIF |
---|
| 1308 | |
---|
| 1309 | ! |
---|
| 1310 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1311 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1312 | |
---|
| 1313 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1314 | |
---|
| 1315 | ! |
---|
| 1316 | !-- Scalar/q-tendency terms with communication |
---|
| 1317 | sbt = tsc(2) |
---|
| 1318 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1319 | |
---|
| 1320 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1321 | ! |
---|
[1001] | 1322 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1323 | sbt = 1.0_wp |
---|
[736] | 1324 | ENDIF |
---|
[1337] | 1325 | tend = 0.0_wp |
---|
[736] | 1326 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1327 | |
---|
[736] | 1328 | ENDIF |
---|
| 1329 | |
---|
| 1330 | ! |
---|
| 1331 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1332 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1333 | tend = 0.0_wp |
---|
[1001] | 1334 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1335 | IF ( ws_scheme_sca ) THEN |
---|
| 1336 | CALL advec_s_ws( q, 'q' ) |
---|
| 1337 | ELSE |
---|
| 1338 | CALL advec_s_pw( q ) |
---|
| 1339 | ENDIF |
---|
| 1340 | ELSE |
---|
[1001] | 1341 | CALL advec_s_up( q ) |
---|
[736] | 1342 | ENDIF |
---|
| 1343 | ENDIF |
---|
[1001] | 1344 | |
---|
| 1345 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1346 | |
---|
| 1347 | ! |
---|
| 1348 | !-- If required compute decrease of total water content due to |
---|
| 1349 | !-- precipitation |
---|
| 1350 | IF ( precipitation ) THEN |
---|
| 1351 | CALL calc_precipitation |
---|
| 1352 | ENDIF |
---|
| 1353 | |
---|
| 1354 | ! |
---|
| 1355 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1356 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1357 | |
---|
| 1358 | ! |
---|
| 1359 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[940] | 1360 | IF ( large_scale_subsidence ) THEN |
---|
| 1361 | CALL subsidence( tend, q, q_init ) |
---|
[736] | 1362 | ENDIF |
---|
| 1363 | |
---|
[1241] | 1364 | ! |
---|
| 1365 | !-- Nudging |
---|
| 1366 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1367 | |
---|
[736] | 1368 | CALL user_actions( 'q-tendency' ) |
---|
| 1369 | |
---|
| 1370 | ! |
---|
| 1371 | !-- Prognostic equation for total water content / scalar |
---|
| 1372 | DO i = nxl, nxr |
---|
| 1373 | DO j = nys, nyn |
---|
| 1374 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1375 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1376 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1377 | - tsc(5) * rdf_sc(k) * & |
---|
| 1378 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 1379 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 1380 | ENDDO |
---|
| 1381 | ENDDO |
---|
| 1382 | ENDDO |
---|
| 1383 | |
---|
| 1384 | ! |
---|
| 1385 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1386 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1387 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1388 | DO i = nxl, nxr |
---|
| 1389 | DO j = nys, nyn |
---|
| 1390 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1391 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1392 | ENDDO |
---|
| 1393 | ENDDO |
---|
| 1394 | ENDDO |
---|
| 1395 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1396 | intermediate_timestep_count_max ) THEN |
---|
| 1397 | DO i = nxl, nxr |
---|
| 1398 | DO j = nys, nyn |
---|
| 1399 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1400 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 1401 | ENDDO |
---|
| 1402 | ENDDO |
---|
| 1403 | ENDDO |
---|
| 1404 | ENDIF |
---|
| 1405 | ENDIF |
---|
| 1406 | |
---|
| 1407 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1408 | |
---|
| 1409 | ENDIF |
---|
| 1410 | |
---|
| 1411 | ! |
---|
| 1412 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1413 | !-- energy (TKE) |
---|
| 1414 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1415 | |
---|
| 1416 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1417 | |
---|
| 1418 | sbt = tsc(2) |
---|
| 1419 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1420 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1421 | |
---|
| 1422 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1423 | ! |
---|
[1001] | 1424 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1425 | sbt = 1.0_wp |
---|
[736] | 1426 | ENDIF |
---|
[1337] | 1427 | tend = 0.0_wp |
---|
[736] | 1428 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1429 | |
---|
[736] | 1430 | ENDIF |
---|
| 1431 | ENDIF |
---|
| 1432 | |
---|
| 1433 | ! |
---|
| 1434 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1435 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1436 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 1437 | tend = 0.0_wp |
---|
[736] | 1438 | CALL advec_s_up( e ) |
---|
| 1439 | ELSE |
---|
[1337] | 1440 | tend = 0.0_wp |
---|
[1001] | 1441 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1442 | IF ( ws_scheme_sca ) THEN |
---|
| 1443 | CALL advec_s_ws( e, 'e' ) |
---|
| 1444 | ELSE |
---|
| 1445 | CALL advec_s_pw( e ) |
---|
| 1446 | ENDIF |
---|
| 1447 | ELSE |
---|
[1001] | 1448 | CALL advec_s_up( e ) |
---|
[736] | 1449 | ENDIF |
---|
| 1450 | ENDIF |
---|
[1001] | 1451 | ENDIF |
---|
| 1452 | |
---|
| 1453 | IF ( .NOT. humidity ) THEN |
---|
| 1454 | IF ( ocean ) THEN |
---|
| 1455 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1456 | ELSE |
---|
[1001] | 1457 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1458 | ENDIF |
---|
[1001] | 1459 | ELSE |
---|
| 1460 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1461 | ENDIF |
---|
[1001] | 1462 | |
---|
[736] | 1463 | CALL production_e |
---|
| 1464 | |
---|
| 1465 | ! |
---|
| 1466 | !-- Additional sink term for flows through plant canopies |
---|
| 1467 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1468 | CALL user_actions( 'e-tendency' ) |
---|
| 1469 | |
---|
| 1470 | ! |
---|
| 1471 | !-- Prognostic equation for TKE. |
---|
| 1472 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1473 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1474 | !-- value is reduced by 90%. |
---|
| 1475 | DO i = nxl, nxr |
---|
| 1476 | DO j = nys, nyn |
---|
| 1477 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1478 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1479 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 1480 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 1481 | ENDDO |
---|
| 1482 | ENDDO |
---|
| 1483 | ENDDO |
---|
| 1484 | |
---|
| 1485 | ! |
---|
| 1486 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1487 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1488 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1489 | DO i = nxl, nxr |
---|
| 1490 | DO j = nys, nyn |
---|
| 1491 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1492 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1493 | ENDDO |
---|
| 1494 | ENDDO |
---|
| 1495 | ENDDO |
---|
| 1496 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1497 | intermediate_timestep_count_max ) THEN |
---|
| 1498 | DO i = nxl, nxr |
---|
| 1499 | DO j = nys, nyn |
---|
| 1500 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1501 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[736] | 1502 | ENDDO |
---|
| 1503 | ENDDO |
---|
| 1504 | ENDDO |
---|
| 1505 | ENDIF |
---|
| 1506 | ENDIF |
---|
| 1507 | |
---|
| 1508 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1509 | |
---|
| 1510 | ENDIF |
---|
| 1511 | |
---|
| 1512 | |
---|
| 1513 | END SUBROUTINE prognostic_equations_vector |
---|
| 1514 | |
---|
| 1515 | |
---|
[1015] | 1516 | SUBROUTINE prognostic_equations_acc |
---|
| 1517 | |
---|
| 1518 | !------------------------------------------------------------------------------! |
---|
| 1519 | ! Version for accelerator boards |
---|
| 1520 | !------------------------------------------------------------------------------! |
---|
| 1521 | |
---|
| 1522 | IMPLICIT NONE |
---|
| 1523 | |
---|
[1320] | 1524 | INTEGER(iwp) :: i !: |
---|
| 1525 | INTEGER(iwp) :: j !: |
---|
| 1526 | INTEGER(iwp) :: k !: |
---|
| 1527 | INTEGER(iwp) :: runge_step !: |
---|
[1015] | 1528 | |
---|
[1320] | 1529 | REAL(wp) :: sbt !: |
---|
| 1530 | |
---|
[1015] | 1531 | ! |
---|
| 1532 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1533 | runge_step = 0 |
---|
| 1534 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1535 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1536 | runge_step = 1 |
---|
| 1537 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1538 | intermediate_timestep_count_max ) THEN |
---|
| 1539 | runge_step = 2 |
---|
| 1540 | ENDIF |
---|
| 1541 | ENDIF |
---|
| 1542 | |
---|
| 1543 | ! |
---|
| 1544 | !-- u-velocity component |
---|
| 1545 | !++ Statistics still not ported to accelerators |
---|
[1179] | 1546 | !$acc update device( hom, ref_state ) |
---|
[1015] | 1547 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1548 | |
---|
| 1549 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1550 | IF ( ws_scheme_mom ) THEN |
---|
| 1551 | CALL advec_u_ws_acc |
---|
| 1552 | ELSE |
---|
[1337] | 1553 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1554 | CALL advec_u_pw |
---|
| 1555 | ENDIF |
---|
| 1556 | ELSE |
---|
| 1557 | CALL advec_u_up |
---|
| 1558 | ENDIF |
---|
| 1559 | CALL diffusion_u_acc |
---|
| 1560 | CALL coriolis_acc( 1 ) |
---|
| 1561 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 1562 | CALL buoyancy( pt, 1 ) |
---|
[1015] | 1563 | ENDIF |
---|
| 1564 | |
---|
| 1565 | ! |
---|
| 1566 | !-- Drag by plant canopy |
---|
| 1567 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1568 | |
---|
| 1569 | ! |
---|
| 1570 | !-- External pressure gradient |
---|
| 1571 | IF ( dp_external ) THEN |
---|
[1128] | 1572 | DO i = i_left, i_right |
---|
| 1573 | DO j = j_south, j_north |
---|
[1015] | 1574 | DO k = dp_level_ind_b+1, nzt |
---|
| 1575 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1576 | ENDDO |
---|
| 1577 | ENDDO |
---|
| 1578 | ENDDO |
---|
| 1579 | ENDIF |
---|
| 1580 | |
---|
[1246] | 1581 | ! |
---|
| 1582 | !-- Nudging |
---|
| 1583 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 1584 | |
---|
[1015] | 1585 | CALL user_actions( 'u-tendency' ) |
---|
| 1586 | |
---|
| 1587 | ! |
---|
| 1588 | !-- Prognostic equation for u-velocity component |
---|
| 1589 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, ug, u_p ) |
---|
[1257] | 1590 | !$acc loop independent |
---|
[1128] | 1591 | DO i = i_left, i_right |
---|
[1257] | 1592 | !$acc loop independent |
---|
[1128] | 1593 | DO j = j_south, j_north |
---|
[1257] | 1594 | !$acc loop independent |
---|
[1015] | 1595 | DO k = 1, nzt |
---|
| 1596 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1597 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1598 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 1599 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1600 | ! |
---|
| 1601 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1602 | IF ( runge_step == 1 ) THEN |
---|
| 1603 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1604 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1605 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[1015] | 1606 | ENDIF |
---|
| 1607 | ENDIF |
---|
| 1608 | ENDDO |
---|
| 1609 | ENDDO |
---|
| 1610 | ENDDO |
---|
| 1611 | !$acc end kernels |
---|
| 1612 | |
---|
| 1613 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1614 | |
---|
| 1615 | ! |
---|
| 1616 | !-- v-velocity component |
---|
| 1617 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1618 | |
---|
| 1619 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1620 | IF ( ws_scheme_mom ) THEN |
---|
| 1621 | CALL advec_v_ws_acc |
---|
| 1622 | ELSE |
---|
[1337] | 1623 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1624 | CALL advec_v_pw |
---|
| 1625 | END IF |
---|
| 1626 | ELSE |
---|
| 1627 | CALL advec_v_up |
---|
| 1628 | ENDIF |
---|
| 1629 | CALL diffusion_v_acc |
---|
| 1630 | CALL coriolis_acc( 2 ) |
---|
| 1631 | |
---|
| 1632 | ! |
---|
| 1633 | !-- Drag by plant canopy |
---|
| 1634 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1635 | |
---|
| 1636 | ! |
---|
| 1637 | !-- External pressure gradient |
---|
| 1638 | IF ( dp_external ) THEN |
---|
[1128] | 1639 | DO i = i_left, i_right |
---|
| 1640 | DO j = j_south, j_north |
---|
[1015] | 1641 | DO k = dp_level_ind_b+1, nzt |
---|
| 1642 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1643 | ENDDO |
---|
| 1644 | ENDDO |
---|
| 1645 | ENDDO |
---|
| 1646 | ENDIF |
---|
| 1647 | |
---|
[1246] | 1648 | ! |
---|
| 1649 | !-- Nudging |
---|
| 1650 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1651 | |
---|
[1015] | 1652 | CALL user_actions( 'v-tendency' ) |
---|
| 1653 | |
---|
| 1654 | ! |
---|
| 1655 | !-- Prognostic equation for v-velocity component |
---|
| 1656 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, vg, v_p ) |
---|
[1257] | 1657 | !$acc loop independent |
---|
[1128] | 1658 | DO i = i_left, i_right |
---|
[1257] | 1659 | !$acc loop independent |
---|
[1128] | 1660 | DO j = j_south, j_north |
---|
[1257] | 1661 | !$acc loop independent |
---|
[1015] | 1662 | DO k = 1, nzt |
---|
| 1663 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1664 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1665 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 1666 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1667 | ! |
---|
| 1668 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1669 | IF ( runge_step == 1 ) THEN |
---|
| 1670 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1671 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1672 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[1015] | 1673 | ENDIF |
---|
| 1674 | ENDIF |
---|
| 1675 | ENDDO |
---|
| 1676 | ENDDO |
---|
| 1677 | ENDDO |
---|
| 1678 | !$acc end kernels |
---|
| 1679 | |
---|
| 1680 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1681 | |
---|
| 1682 | ! |
---|
| 1683 | !-- w-velocity component |
---|
| 1684 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1685 | |
---|
| 1686 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1687 | IF ( ws_scheme_mom ) THEN |
---|
| 1688 | CALL advec_w_ws_acc |
---|
| 1689 | ELSE |
---|
[1337] | 1690 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1691 | CALL advec_w_pw |
---|
| 1692 | ENDIF |
---|
| 1693 | ELSE |
---|
| 1694 | CALL advec_w_up |
---|
| 1695 | ENDIF |
---|
| 1696 | CALL diffusion_w_acc |
---|
| 1697 | CALL coriolis_acc( 3 ) |
---|
| 1698 | |
---|
| 1699 | IF ( .NOT. neutral ) THEN |
---|
| 1700 | IF ( ocean ) THEN |
---|
[1179] | 1701 | CALL buoyancy( rho, 3 ) |
---|
[1015] | 1702 | ELSE |
---|
| 1703 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1704 | CALL buoyancy_acc( pt, 3 ) |
---|
[1015] | 1705 | ELSE |
---|
[1179] | 1706 | CALL buoyancy( vpt, 3 ) |
---|
[1015] | 1707 | ENDIF |
---|
| 1708 | ENDIF |
---|
| 1709 | ENDIF |
---|
| 1710 | |
---|
| 1711 | ! |
---|
| 1712 | !-- Drag by plant canopy |
---|
| 1713 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1714 | |
---|
| 1715 | CALL user_actions( 'w-tendency' ) |
---|
| 1716 | |
---|
| 1717 | ! |
---|
| 1718 | !-- Prognostic equation for w-velocity component |
---|
| 1719 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
[1257] | 1720 | !$acc loop independent |
---|
[1128] | 1721 | DO i = i_left, i_right |
---|
[1257] | 1722 | !$acc loop independent |
---|
[1128] | 1723 | DO j = j_south, j_north |
---|
[1257] | 1724 | !$acc loop independent |
---|
[1015] | 1725 | DO k = 1, nzt-1 |
---|
| 1726 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 1727 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1728 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1729 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1730 | ! |
---|
| 1731 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1732 | IF ( runge_step == 1 ) THEN |
---|
| 1733 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1734 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1735 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[1015] | 1736 | ENDIF |
---|
| 1737 | ENDIF |
---|
| 1738 | ENDDO |
---|
| 1739 | ENDDO |
---|
| 1740 | ENDDO |
---|
| 1741 | !$acc end kernels |
---|
| 1742 | |
---|
| 1743 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1744 | |
---|
| 1745 | |
---|
| 1746 | ! |
---|
| 1747 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1748 | IF ( .NOT. neutral ) THEN |
---|
| 1749 | |
---|
| 1750 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1751 | |
---|
| 1752 | ! |
---|
| 1753 | !-- pt-tendency terms with communication |
---|
| 1754 | sbt = tsc(2) |
---|
| 1755 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1756 | |
---|
| 1757 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1758 | ! |
---|
| 1759 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1353] | 1760 | sbt = 1.0_wp |
---|
[1015] | 1761 | ENDIF |
---|
[1337] | 1762 | tend = 0.0_wp |
---|
[1015] | 1763 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1764 | |
---|
| 1765 | ENDIF |
---|
| 1766 | |
---|
| 1767 | ! |
---|
| 1768 | !-- pt-tendency terms with no communication |
---|
| 1769 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1770 | tend = 0.0_wp |
---|
[1015] | 1771 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1772 | IF ( ws_scheme_sca ) THEN |
---|
| 1773 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 1774 | ELSE |
---|
[1337] | 1775 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1776 | CALL advec_s_pw( pt ) |
---|
| 1777 | ENDIF |
---|
| 1778 | ELSE |
---|
| 1779 | CALL advec_s_up( pt ) |
---|
| 1780 | ENDIF |
---|
| 1781 | ENDIF |
---|
| 1782 | |
---|
| 1783 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 1784 | |
---|
| 1785 | ! |
---|
| 1786 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1787 | IF ( radiation ) THEN |
---|
| 1788 | CALL calc_radiation |
---|
| 1789 | ENDIF |
---|
| 1790 | |
---|
| 1791 | ! |
---|
| 1792 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1793 | IF ( precipitation ) THEN |
---|
| 1794 | CALL impact_of_latent_heat |
---|
| 1795 | ENDIF |
---|
| 1796 | |
---|
| 1797 | ! |
---|
| 1798 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 1799 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[1015] | 1800 | CALL plant_canopy_model( 4 ) |
---|
| 1801 | ENDIF |
---|
| 1802 | |
---|
| 1803 | ! |
---|
| 1804 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1805 | IF ( large_scale_subsidence ) THEN |
---|
| 1806 | CALL subsidence( tend, pt, pt_init ) |
---|
| 1807 | ENDIF |
---|
| 1808 | |
---|
[1246] | 1809 | ! |
---|
| 1810 | !-- Nudging |
---|
| 1811 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1812 | |
---|
[1015] | 1813 | CALL user_actions( 'pt-tendency' ) |
---|
| 1814 | |
---|
| 1815 | ! |
---|
| 1816 | !-- Prognostic equation for potential temperature |
---|
| 1817 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 1818 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
[1257] | 1819 | !$acc loop independent |
---|
[1128] | 1820 | DO i = i_left, i_right |
---|
[1257] | 1821 | !$acc loop independent |
---|
[1128] | 1822 | DO j = j_south, j_north |
---|
[1257] | 1823 | !$acc loop independent |
---|
[1015] | 1824 | DO k = 1, nzt |
---|
| 1825 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 1826 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1827 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1828 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1829 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 1830 | ! |
---|
| 1831 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1832 | IF ( runge_step == 1 ) THEN |
---|
| 1833 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1834 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1835 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tpt_m(k,j,i) |
---|
[1015] | 1836 | ENDIF |
---|
| 1837 | ENDIF |
---|
| 1838 | ENDDO |
---|
| 1839 | ENDDO |
---|
| 1840 | ENDDO |
---|
| 1841 | !$acc end kernels |
---|
| 1842 | |
---|
| 1843 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1844 | |
---|
| 1845 | ENDIF |
---|
| 1846 | |
---|
| 1847 | ! |
---|
| 1848 | !-- If required, compute prognostic equation for salinity |
---|
| 1849 | IF ( ocean ) THEN |
---|
| 1850 | |
---|
| 1851 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1852 | |
---|
| 1853 | ! |
---|
| 1854 | !-- sa-tendency terms with communication |
---|
| 1855 | sbt = tsc(2) |
---|
| 1856 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1857 | |
---|
| 1858 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1859 | ! |
---|
| 1860 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1861 | sbt = 1.0_wp |
---|
[1015] | 1862 | ENDIF |
---|
[1337] | 1863 | tend = 0.0_wp |
---|
[1015] | 1864 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 1865 | |
---|
| 1866 | ENDIF |
---|
| 1867 | |
---|
| 1868 | ! |
---|
| 1869 | !-- sa-tendency terms with no communication |
---|
| 1870 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1871 | tend = 0.0_wp |
---|
[1015] | 1872 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1873 | IF ( ws_scheme_sca ) THEN |
---|
| 1874 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1875 | ELSE |
---|
| 1876 | CALL advec_s_pw( sa ) |
---|
| 1877 | ENDIF |
---|
| 1878 | ELSE |
---|
| 1879 | CALL advec_s_up( sa ) |
---|
| 1880 | ENDIF |
---|
| 1881 | ENDIF |
---|
| 1882 | |
---|
| 1883 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 1884 | |
---|
| 1885 | CALL user_actions( 'sa-tendency' ) |
---|
| 1886 | |
---|
| 1887 | ! |
---|
| 1888 | !-- Prognostic equation for salinity |
---|
[1128] | 1889 | DO i = i_left, i_right |
---|
| 1890 | DO j = j_south, j_north |
---|
[1015] | 1891 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1892 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1893 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1894 | - tsc(5) * rdf_sc(k) * & |
---|
| 1895 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 1896 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[1015] | 1897 | ! |
---|
| 1898 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1899 | IF ( runge_step == 1 ) THEN |
---|
| 1900 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1901 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1902 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tsa_m(k,j,i) |
---|
[1015] | 1903 | ENDIF |
---|
| 1904 | ENDDO |
---|
| 1905 | ENDDO |
---|
| 1906 | ENDDO |
---|
| 1907 | |
---|
| 1908 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1909 | |
---|
| 1910 | ! |
---|
| 1911 | !-- Calculate density by the equation of state for seawater |
---|
| 1912 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1913 | CALL eqn_state_seawater |
---|
| 1914 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1915 | |
---|
| 1916 | ENDIF |
---|
| 1917 | |
---|
| 1918 | ! |
---|
| 1919 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1920 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1921 | |
---|
| 1922 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1923 | |
---|
| 1924 | ! |
---|
| 1925 | !-- Scalar/q-tendency terms with communication |
---|
| 1926 | sbt = tsc(2) |
---|
| 1927 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1928 | |
---|
| 1929 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1930 | ! |
---|
| 1931 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1932 | sbt = 1.0_wp |
---|
[1015] | 1933 | ENDIF |
---|
[1337] | 1934 | tend = 0.0_wp |
---|
[1015] | 1935 | CALL advec_s_bc( q, 'q' ) |
---|
| 1936 | |
---|
| 1937 | ENDIF |
---|
| 1938 | |
---|
| 1939 | ! |
---|
| 1940 | !-- Scalar/q-tendency terms with no communication |
---|
| 1941 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1942 | tend = 0.0_wp |
---|
[1015] | 1943 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1944 | IF ( ws_scheme_sca ) THEN |
---|
| 1945 | CALL advec_s_ws( q, 'q' ) |
---|
| 1946 | ELSE |
---|
| 1947 | CALL advec_s_pw( q ) |
---|
| 1948 | ENDIF |
---|
| 1949 | ELSE |
---|
| 1950 | CALL advec_s_up( q ) |
---|
| 1951 | ENDIF |
---|
| 1952 | ENDIF |
---|
| 1953 | |
---|
| 1954 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 1955 | |
---|
| 1956 | ! |
---|
| 1957 | !-- If required compute decrease of total water content due to |
---|
| 1958 | !-- precipitation |
---|
| 1959 | IF ( precipitation ) THEN |
---|
| 1960 | CALL calc_precipitation |
---|
| 1961 | ENDIF |
---|
| 1962 | |
---|
| 1963 | ! |
---|
| 1964 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1965 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1966 | |
---|
| 1967 | ! |
---|
| 1968 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1969 | IF ( large_scale_subsidence ) THEN |
---|
| 1970 | CALL subsidence( tend, q, q_init ) |
---|
| 1971 | ENDIF |
---|
| 1972 | |
---|
[1246] | 1973 | ! |
---|
| 1974 | !-- Nudging |
---|
| 1975 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1976 | |
---|
[1015] | 1977 | CALL user_actions( 'q-tendency' ) |
---|
| 1978 | |
---|
| 1979 | ! |
---|
| 1980 | !-- Prognostic equation for total water content / scalar |
---|
[1128] | 1981 | DO i = i_left, i_right |
---|
| 1982 | DO j = j_south, j_north |
---|
[1015] | 1983 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1984 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1985 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1986 | - tsc(5) * rdf_sc(k) * & |
---|
| 1987 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 1988 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[1015] | 1989 | ! |
---|
| 1990 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1991 | IF ( runge_step == 1 ) THEN |
---|
| 1992 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1993 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1994 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[1015] | 1995 | ENDIF |
---|
| 1996 | ENDDO |
---|
| 1997 | ENDDO |
---|
| 1998 | ENDDO |
---|
| 1999 | |
---|
| 2000 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 2001 | |
---|
| 2002 | ENDIF |
---|
| 2003 | |
---|
| 2004 | ! |
---|
| 2005 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 2006 | !-- energy (TKE) |
---|
| 2007 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 2008 | |
---|
| 2009 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 2010 | |
---|
| 2011 | sbt = tsc(2) |
---|
| 2012 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 2013 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2014 | |
---|
| 2015 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2016 | ! |
---|
| 2017 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2018 | sbt = 1.0_wp |
---|
[1015] | 2019 | ENDIF |
---|
[1337] | 2020 | tend = 0.0_wp |
---|
[1015] | 2021 | CALL advec_s_bc( e, 'e' ) |
---|
| 2022 | |
---|
| 2023 | ENDIF |
---|
| 2024 | ENDIF |
---|
| 2025 | |
---|
| 2026 | ! |
---|
| 2027 | !-- TKE-tendency terms with no communication |
---|
| 2028 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 2029 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 2030 | tend = 0.0_wp |
---|
[1015] | 2031 | CALL advec_s_up( e ) |
---|
| 2032 | ELSE |
---|
| 2033 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2034 | IF ( ws_scheme_sca ) THEN |
---|
| 2035 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 2036 | ELSE |
---|
[1337] | 2037 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2038 | CALL advec_s_pw( e ) |
---|
| 2039 | ENDIF |
---|
| 2040 | ELSE |
---|
[1337] | 2041 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2042 | CALL advec_s_up( e ) |
---|
| 2043 | ENDIF |
---|
| 2044 | ENDIF |
---|
| 2045 | ENDIF |
---|
| 2046 | |
---|
| 2047 | IF ( .NOT. humidity ) THEN |
---|
| 2048 | IF ( ocean ) THEN |
---|
| 2049 | CALL diffusion_e( prho, prho_reference ) |
---|
| 2050 | ELSE |
---|
| 2051 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 2052 | ENDIF |
---|
| 2053 | ELSE |
---|
| 2054 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 2055 | ENDIF |
---|
| 2056 | |
---|
| 2057 | CALL production_e_acc |
---|
| 2058 | |
---|
| 2059 | ! |
---|
| 2060 | !-- Additional sink term for flows through plant canopies |
---|
| 2061 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 2062 | CALL user_actions( 'e-tendency' ) |
---|
| 2063 | |
---|
| 2064 | ! |
---|
| 2065 | !-- Prognostic equation for TKE. |
---|
| 2066 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2067 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2068 | !-- value is reduced by 90%. |
---|
| 2069 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
[1257] | 2070 | !$acc loop independent |
---|
[1128] | 2071 | DO i = i_left, i_right |
---|
[1257] | 2072 | !$acc loop independent |
---|
[1128] | 2073 | DO j = j_south, j_north |
---|
[1257] | 2074 | !$acc loop independent |
---|
[1015] | 2075 | DO k = 1, nzt |
---|
| 2076 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2077 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2078 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 2079 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[1015] | 2080 | ! |
---|
| 2081 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2082 | IF ( runge_step == 1 ) THEN |
---|
| 2083 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2084 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2085 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[1015] | 2086 | ENDIF |
---|
| 2087 | ENDIF |
---|
| 2088 | ENDDO |
---|
| 2089 | ENDDO |
---|
| 2090 | ENDDO |
---|
| 2091 | !$acc end kernels |
---|
| 2092 | |
---|
| 2093 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2094 | |
---|
| 2095 | ENDIF |
---|
| 2096 | |
---|
| 2097 | |
---|
| 2098 | END SUBROUTINE prognostic_equations_acc |
---|
| 2099 | |
---|
| 2100 | |
---|
[736] | 2101 | END MODULE prognostic_equations_mod |
---|