[736] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[736] | 20 | ! Current revisions: |
---|
[1092] | 21 | ! ------------------ |
---|
[1333] | 22 | ! |
---|
[1339] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: prognostic_equations.f90 1339 2014-03-25 15:19:20Z kanani $ |
---|
| 27 | ! |
---|
[1339] | 28 | ! 1337 2014-03-25 15:11:48Z heinze |
---|
| 29 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 30 | ! |
---|
[1333] | 31 | ! 1332 2014-03-25 11:59:43Z suehring |
---|
| 32 | ! Bugfix: call advec_ws or advec_pw for TKE only if NOT use_upstream_for_tke |
---|
| 33 | ! |
---|
[1332] | 34 | ! 1330 2014-03-24 17:29:32Z suehring |
---|
[1331] | 35 | ! In case of SGS-particle velocity advection of TKE is also allowed with |
---|
| 36 | ! dissipative 5th-order scheme. |
---|
| 37 | ! |
---|
[1321] | 38 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 39 | ! ONLY-attribute added to USE-statements, |
---|
| 40 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 41 | ! kinds are defined in new module kinds, |
---|
| 42 | ! old module precision_kind is removed, |
---|
| 43 | ! revision history before 2012 removed, |
---|
| 44 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 45 | ! all variable declaration statements |
---|
[1054] | 46 | ! |
---|
[1319] | 47 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 48 | ! module interfaces removed |
---|
| 49 | ! |
---|
[1258] | 50 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 51 | ! openacc loop vector clauses removed, independent clauses added |
---|
| 52 | ! |
---|
[1247] | 53 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
| 54 | ! enable nudging also for accelerator version |
---|
| 55 | ! |
---|
[1242] | 56 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 57 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
| 58 | ! |
---|
[1182] | 59 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 60 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 61 | ! |
---|
[1132] | 62 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 63 | ! those parts requiring global communication moved to time_integration, |
---|
| 64 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 65 | ! j_north |
---|
| 66 | ! |
---|
[1116] | 67 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 68 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 69 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 70 | ! |
---|
[1112] | 71 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 72 | ! update directives for prognostic quantities removed |
---|
| 73 | ! |
---|
[1107] | 74 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 75 | ! small changes in code formatting |
---|
| 76 | ! |
---|
[1093] | 77 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 78 | ! unused variables removed |
---|
| 79 | ! |
---|
[1054] | 80 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 81 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 82 | ! and rain water content (qr) |
---|
[979] | 83 | ! |
---|
[1053] | 84 | ! currently, only available for cache loop optimization |
---|
[1020] | 85 | ! |
---|
[1037] | 86 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 87 | ! code put under GPL (PALM 3.9) |
---|
| 88 | ! |
---|
[1020] | 89 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 90 | ! non-optimized version of prognostic_equations removed |
---|
| 91 | ! |
---|
[1017] | 92 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 93 | ! new branch prognostic_equations_acc |
---|
| 94 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 95 | ! |
---|
[1002] | 96 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 97 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 98 | ! |
---|
[979] | 99 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 100 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 101 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 102 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 103 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 104 | ! |
---|
[941] | 105 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 106 | ! temperature equation can be switched off |
---|
| 107 | ! |
---|
[736] | 108 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 109 | ! Initial revision |
---|
| 110 | ! |
---|
| 111 | ! |
---|
| 112 | ! Description: |
---|
| 113 | ! ------------ |
---|
| 114 | ! Solving the prognostic equations. |
---|
| 115 | !------------------------------------------------------------------------------! |
---|
| 116 | |
---|
[1320] | 117 | USE arrays_3d, & |
---|
| 118 | ONLY: diss_l_e, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qr, & |
---|
| 119 | diss_l_sa, diss_s_e, diss_s_nr, diss_s_pt, diss_s_q, & |
---|
| 120 | diss_s_qr, diss_s_sa, e, e_p, flux_s_e, flux_s_nr, flux_s_pt, & |
---|
| 121 | flux_s_q, flux_s_qr, flux_s_sa, flux_l_e, flux_l_nr, & |
---|
| 122 | flux_l_pt, flux_l_q, flux_l_qr, flux_l_sa, nr, nr_p, nrsws, & |
---|
| 123 | nrswst, pt, ptdf_x, ptdf_y, pt_init, pt_p, prho, q, q_init, & |
---|
| 124 | q_p, qsws, qswst, qr, qr_p, qrsws, qrswst, rdf, rdf_sc, rho, & |
---|
| 125 | sa, sa_init, sa_p, saswsb, saswst, shf, tend, tend_nr, & |
---|
| 126 | tend_pt, tend_q, tend_qr, te_m, tnr_m, tpt_m, tq_m, tqr_m, & |
---|
| 127 | tsa_m, tswst, tu_m, tv_m, tw_m, u, ug, u_p, v, vg, vpt, v_p, & |
---|
| 128 | w, w_p |
---|
| 129 | |
---|
| 130 | USE control_parameters, & |
---|
| 131 | ONLY: cloud_physics, constant_diffusion, cthf, dp_external, & |
---|
| 132 | dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, humidity, & |
---|
| 133 | icloud_scheme, inflow_l, intermediate_timestep_count, & |
---|
| 134 | intermediate_timestep_count_max, large_scale_subsidence, & |
---|
| 135 | neutral, nudging, ocean, outflow_l, outflow_s, passive_scalar, & |
---|
| 136 | plant_canopy, precipitation, prho_reference, prho_reference, & |
---|
| 137 | prho_reference, pt_reference, pt_reference, pt_reference, & |
---|
| 138 | radiation, scalar_advec, scalar_advec, simulated_time, & |
---|
| 139 | sloping_surface, timestep_scheme, tsc, use_upstream_for_tke, & |
---|
| 140 | use_upstream_for_tke, use_upstream_for_tke, wall_heatflux, & |
---|
| 141 | wall_nrflux, wall_qflux, wall_qflux, wall_qflux, wall_qrflux, & |
---|
| 142 | wall_salinityflux, ws_scheme_mom, ws_scheme_sca |
---|
[736] | 143 | |
---|
[1320] | 144 | USE cpulog, & |
---|
| 145 | ONLY: cpu_log, log_point |
---|
[736] | 146 | |
---|
[1320] | 147 | USE eqn_state_seawater_mod, & |
---|
| 148 | ONLY: eqn_state_seawater |
---|
| 149 | |
---|
| 150 | USE indices, & |
---|
| 151 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlu, nxr, nyn, nys, & |
---|
| 152 | nysv, nzb_s_inner, nzb_u_inner, nzb_v_inner, nzb_w_inner, nzt |
---|
| 153 | |
---|
| 154 | USE advec_ws, & |
---|
| 155 | ONLY: advec_s_ws, advec_s_ws_acc, advec_u_ws, advec_u_ws_acc, & |
---|
| 156 | advec_v_ws, advec_v_ws_acc, advec_w_ws, advec_w_ws_acc |
---|
| 157 | |
---|
| 158 | USE advec_s_pw_mod, & |
---|
| 159 | ONLY: advec_s_pw |
---|
| 160 | |
---|
| 161 | USE advec_s_up_mod, & |
---|
| 162 | ONLY: advec_s_up |
---|
| 163 | |
---|
| 164 | USE advec_u_pw_mod, & |
---|
| 165 | ONLY: advec_u_pw |
---|
| 166 | |
---|
| 167 | USE advec_u_up_mod, & |
---|
| 168 | ONLY: advec_u_up |
---|
| 169 | |
---|
| 170 | USE advec_v_pw_mod, & |
---|
| 171 | ONLY: advec_v_pw |
---|
| 172 | |
---|
| 173 | USE advec_v_up_mod, & |
---|
| 174 | ONLY: advec_v_up |
---|
| 175 | |
---|
| 176 | USE advec_w_pw_mod, & |
---|
| 177 | ONLY: advec_w_pw |
---|
| 178 | |
---|
| 179 | USE advec_w_up_mod, & |
---|
| 180 | ONLY: advec_w_up |
---|
| 181 | |
---|
| 182 | USE buoyancy_mod, & |
---|
| 183 | ONLY: buoyancy, buoyancy_acc |
---|
| 184 | |
---|
| 185 | USE calc_precipitation_mod, & |
---|
| 186 | ONLY: calc_precipitation |
---|
| 187 | |
---|
| 188 | USE calc_radiation_mod, & |
---|
| 189 | ONLY: calc_radiation |
---|
| 190 | |
---|
| 191 | USE coriolis_mod, & |
---|
| 192 | ONLY: coriolis, coriolis_acc |
---|
| 193 | |
---|
| 194 | USE diffusion_e_mod, & |
---|
| 195 | ONLY: diffusion_e, diffusion_e_acc |
---|
| 196 | |
---|
| 197 | USE diffusion_s_mod, & |
---|
| 198 | ONLY: diffusion_s, diffusion_s_acc |
---|
| 199 | |
---|
| 200 | USE diffusion_u_mod, & |
---|
| 201 | ONLY: diffusion_u, diffusion_u_acc |
---|
| 202 | |
---|
| 203 | USE diffusion_v_mod, & |
---|
| 204 | ONLY: diffusion_v, diffusion_v_acc |
---|
| 205 | |
---|
| 206 | USE diffusion_w_mod, & |
---|
| 207 | ONLY: diffusion_w, diffusion_w_acc |
---|
| 208 | |
---|
| 209 | USE impact_of_latent_heat_mod, & |
---|
| 210 | ONLY: impact_of_latent_heat |
---|
| 211 | |
---|
| 212 | USE kinds |
---|
| 213 | |
---|
| 214 | USE microphysics_mod, & |
---|
| 215 | ONLY: microphysics_control |
---|
| 216 | |
---|
| 217 | USE nudge_mod, & |
---|
| 218 | ONLY: nudge |
---|
| 219 | |
---|
| 220 | USE plant_canopy_model_mod, & |
---|
| 221 | ONLY: plant_canopy_model |
---|
| 222 | |
---|
| 223 | USE production_e_mod, & |
---|
| 224 | ONLY: production_e, production_e_acc |
---|
| 225 | |
---|
| 226 | USE subsidence_mod, & |
---|
| 227 | ONLY: subsidence |
---|
| 228 | |
---|
| 229 | USE user_actions_mod, & |
---|
| 230 | ONLY: user_actions |
---|
| 231 | |
---|
| 232 | |
---|
[736] | 233 | PRIVATE |
---|
[1019] | 234 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 235 | prognostic_equations_acc |
---|
[736] | 236 | |
---|
| 237 | INTERFACE prognostic_equations_cache |
---|
| 238 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 239 | END INTERFACE prognostic_equations_cache |
---|
| 240 | |
---|
| 241 | INTERFACE prognostic_equations_vector |
---|
| 242 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 243 | END INTERFACE prognostic_equations_vector |
---|
| 244 | |
---|
[1015] | 245 | INTERFACE prognostic_equations_acc |
---|
| 246 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 247 | END INTERFACE prognostic_equations_acc |
---|
[736] | 248 | |
---|
[1015] | 249 | |
---|
[736] | 250 | CONTAINS |
---|
| 251 | |
---|
| 252 | |
---|
| 253 | SUBROUTINE prognostic_equations_cache |
---|
| 254 | |
---|
| 255 | !------------------------------------------------------------------------------! |
---|
| 256 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 257 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 258 | ! |
---|
| 259 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 260 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 261 | ! these loops. |
---|
| 262 | ! |
---|
| 263 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 264 | !------------------------------------------------------------------------------! |
---|
| 265 | |
---|
| 266 | IMPLICIT NONE |
---|
| 267 | |
---|
[1320] | 268 | INTEGER(iwp) :: i !: |
---|
| 269 | INTEGER(iwp) :: i_omp_start !: |
---|
| 270 | INTEGER(iwp) :: j !: |
---|
| 271 | INTEGER(iwp) :: k !: |
---|
| 272 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
| 273 | INTEGER(iwp) :: tn = 0 !: |
---|
| 274 | |
---|
| 275 | LOGICAL :: loop_start !: |
---|
[736] | 276 | |
---|
| 277 | |
---|
| 278 | ! |
---|
| 279 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 280 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 281 | |
---|
| 282 | ! |
---|
| 283 | !-- Loop over all prognostic equations |
---|
| 284 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 285 | |
---|
| 286 | !$ tn = omp_get_thread_num() |
---|
| 287 | loop_start = .TRUE. |
---|
| 288 | !$OMP DO |
---|
| 289 | DO i = nxl, nxr |
---|
| 290 | |
---|
| 291 | ! |
---|
| 292 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 293 | !-- later in advec_ws |
---|
| 294 | IF ( loop_start ) THEN |
---|
| 295 | loop_start = .FALSE. |
---|
| 296 | i_omp_start = i |
---|
| 297 | ENDIF |
---|
| 298 | |
---|
| 299 | DO j = nys, nyn |
---|
| 300 | ! |
---|
| 301 | !-- Tendency terms for u-velocity component |
---|
| 302 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 303 | |
---|
[1337] | 304 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 305 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 306 | IF ( ws_scheme_mom ) THEN |
---|
[978] | 307 | IF ( ( inflow_l .OR. outflow_l ) .AND. i_omp_start == nxl ) THEN |
---|
[736] | 308 | CALL advec_u_ws( i, j, i_omp_start + 1, tn ) |
---|
| 309 | ELSE |
---|
| 310 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
| 311 | ENDIF |
---|
| 312 | ELSE |
---|
| 313 | CALL advec_u_pw( i, j ) |
---|
| 314 | ENDIF |
---|
| 315 | ELSE |
---|
| 316 | CALL advec_u_up( i, j ) |
---|
| 317 | ENDIF |
---|
[1001] | 318 | CALL diffusion_u( i, j ) |
---|
[736] | 319 | CALL coriolis( i, j, 1 ) |
---|
[940] | 320 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 321 | CALL buoyancy( i, j, pt, 1 ) |
---|
[940] | 322 | ENDIF |
---|
[736] | 323 | |
---|
| 324 | ! |
---|
| 325 | !-- Drag by plant canopy |
---|
| 326 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 327 | |
---|
| 328 | ! |
---|
| 329 | !-- External pressure gradient |
---|
| 330 | IF ( dp_external ) THEN |
---|
| 331 | DO k = dp_level_ind_b+1, nzt |
---|
| 332 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 333 | ENDDO |
---|
| 334 | ENDIF |
---|
| 335 | |
---|
[1241] | 336 | ! |
---|
| 337 | !-- Nudging |
---|
| 338 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
| 339 | |
---|
[736] | 340 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 341 | ! |
---|
| 342 | !-- Prognostic equation for u-velocity component |
---|
| 343 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 344 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 345 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 346 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 347 | ENDDO |
---|
| 348 | |
---|
| 349 | ! |
---|
| 350 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 351 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 352 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 353 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 354 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 355 | ENDDO |
---|
| 356 | ELSEIF ( intermediate_timestep_count < & |
---|
| 357 | intermediate_timestep_count_max ) THEN |
---|
| 358 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 359 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 360 | ENDDO |
---|
| 361 | ENDIF |
---|
| 362 | ENDIF |
---|
| 363 | |
---|
| 364 | ENDIF |
---|
| 365 | |
---|
| 366 | ! |
---|
| 367 | !-- Tendency terms for v-velocity component |
---|
| 368 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 369 | |
---|
[1337] | 370 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 371 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 372 | IF ( ws_scheme_mom ) THEN |
---|
| 373 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 374 | ELSE |
---|
| 375 | CALL advec_v_pw( i, j ) |
---|
| 376 | ENDIF |
---|
| 377 | ELSE |
---|
| 378 | CALL advec_v_up( i, j ) |
---|
| 379 | ENDIF |
---|
[1001] | 380 | CALL diffusion_v( i, j ) |
---|
[736] | 381 | CALL coriolis( i, j, 2 ) |
---|
| 382 | |
---|
| 383 | ! |
---|
| 384 | !-- Drag by plant canopy |
---|
| 385 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 386 | |
---|
| 387 | ! |
---|
| 388 | !-- External pressure gradient |
---|
| 389 | IF ( dp_external ) THEN |
---|
| 390 | DO k = dp_level_ind_b+1, nzt |
---|
| 391 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 392 | ENDDO |
---|
| 393 | ENDIF |
---|
| 394 | |
---|
[1241] | 395 | ! |
---|
| 396 | !-- Nudging |
---|
| 397 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
| 398 | |
---|
[736] | 399 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 400 | ! |
---|
| 401 | !-- Prognostic equation for v-velocity component |
---|
| 402 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 403 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 404 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 405 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 406 | ENDDO |
---|
| 407 | |
---|
| 408 | ! |
---|
| 409 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 410 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 411 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 412 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 413 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 414 | ENDDO |
---|
| 415 | ELSEIF ( intermediate_timestep_count < & |
---|
| 416 | intermediate_timestep_count_max ) THEN |
---|
| 417 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 418 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 419 | ENDDO |
---|
| 420 | ENDIF |
---|
| 421 | ENDIF |
---|
| 422 | |
---|
| 423 | ENDIF |
---|
| 424 | |
---|
| 425 | ! |
---|
| 426 | !-- Tendency terms for w-velocity component |
---|
[1337] | 427 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 428 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 429 | IF ( ws_scheme_mom ) THEN |
---|
| 430 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 431 | ELSE |
---|
| 432 | CALL advec_w_pw( i, j ) |
---|
| 433 | END IF |
---|
| 434 | ELSE |
---|
| 435 | CALL advec_w_up( i, j ) |
---|
| 436 | ENDIF |
---|
[1001] | 437 | CALL diffusion_w( i, j ) |
---|
[736] | 438 | CALL coriolis( i, j, 3 ) |
---|
[940] | 439 | |
---|
| 440 | IF ( .NOT. neutral ) THEN |
---|
| 441 | IF ( ocean ) THEN |
---|
[1179] | 442 | CALL buoyancy( i, j, rho, 3 ) |
---|
[736] | 443 | ELSE |
---|
[940] | 444 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 445 | CALL buoyancy( i, j, pt, 3 ) |
---|
[940] | 446 | ELSE |
---|
[1179] | 447 | CALL buoyancy( i, j, vpt, 3 ) |
---|
[940] | 448 | ENDIF |
---|
[736] | 449 | ENDIF |
---|
| 450 | ENDIF |
---|
| 451 | |
---|
| 452 | ! |
---|
| 453 | !-- Drag by plant canopy |
---|
| 454 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 455 | |
---|
| 456 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 457 | |
---|
| 458 | ! |
---|
| 459 | !-- Prognostic equation for w-velocity component |
---|
| 460 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 461 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 462 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 463 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 464 | ENDDO |
---|
| 465 | |
---|
| 466 | ! |
---|
| 467 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 468 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 469 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 470 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 471 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 472 | ENDDO |
---|
| 473 | ELSEIF ( intermediate_timestep_count < & |
---|
| 474 | intermediate_timestep_count_max ) THEN |
---|
| 475 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 476 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 477 | ENDDO |
---|
| 478 | ENDIF |
---|
| 479 | ENDIF |
---|
| 480 | ! |
---|
[1115] | 481 | !-- If required, calculate tendencies for total water content, liquid water |
---|
| 482 | !-- potential temperature, rain water content and rain drop concentration |
---|
| 483 | IF ( cloud_physics .AND. icloud_scheme == 0 ) CALL microphysics_control( i, j ) |
---|
[1053] | 484 | ! |
---|
[940] | 485 | !-- If required, compute prognostic equation for potential temperature |
---|
| 486 | IF ( .NOT. neutral ) THEN |
---|
| 487 | ! |
---|
| 488 | !-- Tendency terms for potential temperature |
---|
[1337] | 489 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 490 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 491 | IF ( ws_scheme_sca ) THEN |
---|
| 492 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 493 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 494 | ELSE |
---|
| 495 | CALL advec_s_pw( i, j, pt ) |
---|
| 496 | ENDIF |
---|
| 497 | ELSE |
---|
| 498 | CALL advec_s_up( i, j, pt ) |
---|
| 499 | ENDIF |
---|
[1001] | 500 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 501 | |
---|
| 502 | ! |
---|
[940] | 503 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 504 | !-- processes |
---|
| 505 | IF ( radiation ) THEN |
---|
| 506 | CALL calc_radiation( i, j ) |
---|
| 507 | ENDIF |
---|
[736] | 508 | |
---|
[1106] | 509 | ! |
---|
[1053] | 510 | !-- Using microphysical tendencies (latent heat) |
---|
| 511 | IF ( cloud_physics ) THEN |
---|
| 512 | IF ( icloud_scheme == 0 ) THEN |
---|
| 513 | tend(:,j,i) = tend(:,j,i) + tend_pt(:,j,i) |
---|
[1106] | 514 | ELSEIF ( icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1053] | 515 | CALL impact_of_latent_heat( i, j ) |
---|
| 516 | ENDIF |
---|
[940] | 517 | ENDIF |
---|
[736] | 518 | |
---|
| 519 | ! |
---|
[940] | 520 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 521 | IF ( plant_canopy .AND. cthf /= 0.0_wp ) THEN |
---|
[940] | 522 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 523 | ENDIF |
---|
[736] | 524 | |
---|
[940] | 525 | ! |
---|
[1106] | 526 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
[940] | 527 | IF ( large_scale_subsidence ) THEN |
---|
| 528 | CALL subsidence( i, j, tend, pt, pt_init ) |
---|
| 529 | ENDIF |
---|
[736] | 530 | |
---|
[1241] | 531 | ! |
---|
| 532 | !-- Nudging |
---|
| 533 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
| 534 | |
---|
[940] | 535 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 536 | |
---|
| 537 | ! |
---|
[940] | 538 | !-- Prognostic equation for potential temperature |
---|
| 539 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 540 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 541 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 542 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 543 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 544 | ENDDO |
---|
[736] | 545 | |
---|
| 546 | ! |
---|
[940] | 547 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 548 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 549 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 550 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 551 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 552 | ENDDO |
---|
| 553 | ELSEIF ( intermediate_timestep_count < & |
---|
| 554 | intermediate_timestep_count_max ) THEN |
---|
| 555 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 556 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 557 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 558 | ENDDO |
---|
| 559 | ENDIF |
---|
[736] | 560 | ENDIF |
---|
[940] | 561 | |
---|
[736] | 562 | ENDIF |
---|
| 563 | |
---|
| 564 | ! |
---|
| 565 | !-- If required, compute prognostic equation for salinity |
---|
| 566 | IF ( ocean ) THEN |
---|
| 567 | |
---|
| 568 | ! |
---|
| 569 | !-- Tendency-terms for salinity |
---|
[1337] | 570 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 571 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 572 | THEN |
---|
| 573 | IF ( ws_scheme_sca ) THEN |
---|
| 574 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 575 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 576 | ELSE |
---|
| 577 | CALL advec_s_pw( i, j, sa ) |
---|
| 578 | ENDIF |
---|
| 579 | ELSE |
---|
| 580 | CALL advec_s_up( i, j, sa ) |
---|
| 581 | ENDIF |
---|
[1001] | 582 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 583 | |
---|
| 584 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 585 | |
---|
| 586 | ! |
---|
| 587 | !-- Prognostic equation for salinity |
---|
| 588 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 589 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 590 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 591 | - tsc(5) * rdf_sc(k) * & |
---|
| 592 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 593 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 594 | ENDDO |
---|
| 595 | |
---|
| 596 | ! |
---|
| 597 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 598 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 599 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 600 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 601 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 602 | ENDDO |
---|
| 603 | ELSEIF ( intermediate_timestep_count < & |
---|
| 604 | intermediate_timestep_count_max ) THEN |
---|
| 605 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 606 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 607 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 608 | ENDDO |
---|
| 609 | ENDIF |
---|
| 610 | ENDIF |
---|
| 611 | |
---|
| 612 | ! |
---|
| 613 | !-- Calculate density by the equation of state for seawater |
---|
| 614 | CALL eqn_state_seawater( i, j ) |
---|
| 615 | |
---|
| 616 | ENDIF |
---|
| 617 | |
---|
| 618 | ! |
---|
| 619 | !-- If required, compute prognostic equation for total water content / |
---|
| 620 | !-- scalar |
---|
| 621 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 622 | |
---|
| 623 | ! |
---|
| 624 | !-- Tendency-terms for total water content / scalar |
---|
[1337] | 625 | tend(:,j,i) = 0.0_wp |
---|
[1001] | 626 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 627 | THEN |
---|
| 628 | IF ( ws_scheme_sca ) THEN |
---|
| 629 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 630 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 631 | ELSE |
---|
| 632 | CALL advec_s_pw( i, j, q ) |
---|
| 633 | ENDIF |
---|
| 634 | ELSE |
---|
| 635 | CALL advec_s_up( i, j, q ) |
---|
| 636 | ENDIF |
---|
[1001] | 637 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[1053] | 638 | |
---|
[736] | 639 | ! |
---|
[1053] | 640 | !-- Using microphysical tendencies |
---|
| 641 | IF ( cloud_physics ) THEN |
---|
| 642 | IF ( icloud_scheme == 0 ) THEN |
---|
| 643 | tend(:,j,i) = tend(:,j,i) + tend_q(:,j,i) |
---|
[1106] | 644 | ELSEIF ( icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1053] | 645 | CALL calc_precipitation( i, j ) |
---|
| 646 | ENDIF |
---|
[736] | 647 | ENDIF |
---|
| 648 | ! |
---|
| 649 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1106] | 650 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
[736] | 651 | |
---|
[1053] | 652 | ! |
---|
[736] | 653 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[940] | 654 | IF ( large_scale_subsidence ) THEN |
---|
| 655 | CALL subsidence( i, j, tend, q, q_init ) |
---|
[736] | 656 | ENDIF |
---|
| 657 | |
---|
[1241] | 658 | ! |
---|
| 659 | !-- Nudging |
---|
| 660 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
| 661 | |
---|
[736] | 662 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 663 | |
---|
| 664 | ! |
---|
| 665 | !-- Prognostic equation for total water content / scalar |
---|
| 666 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 667 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 668 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 669 | - tsc(5) * rdf_sc(k) * & |
---|
| 670 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 671 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 672 | ENDDO |
---|
| 673 | |
---|
| 674 | ! |
---|
| 675 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 676 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 677 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 678 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 679 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 680 | ENDDO |
---|
| 681 | ELSEIF ( intermediate_timestep_count < & |
---|
| 682 | intermediate_timestep_count_max ) THEN |
---|
| 683 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 684 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 685 | 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 686 | ENDDO |
---|
| 687 | ENDIF |
---|
| 688 | ENDIF |
---|
| 689 | |
---|
[1053] | 690 | ! |
---|
| 691 | !-- If required, calculate prognostic equations for rain water content |
---|
| 692 | !-- and rain drop concentration |
---|
[1115] | 693 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 694 | precipitation ) THEN |
---|
[1053] | 695 | ! |
---|
| 696 | !-- Calculate prognostic equation for rain water content |
---|
[1337] | 697 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 698 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 699 | THEN |
---|
| 700 | IF ( ws_scheme_sca ) THEN |
---|
| 701 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 702 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 703 | i_omp_start, tn ) |
---|
| 704 | ELSE |
---|
| 705 | CALL advec_s_pw( i, j, qr ) |
---|
| 706 | ENDIF |
---|
| 707 | ELSE |
---|
| 708 | CALL advec_s_up( i, j, qr ) |
---|
| 709 | ENDIF |
---|
| 710 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 711 | ! |
---|
| 712 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
| 713 | !-- evaporation; if required: sedimentation) |
---|
| 714 | tend(:,j,i) = tend(:,j,i) + tend_qr(:,j,i) |
---|
| 715 | |
---|
[1115] | 716 | CALL user_actions( i, j, 'qr-tendency' ) |
---|
[1053] | 717 | ! |
---|
| 718 | !-- Prognostic equation for rain water content |
---|
| 719 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 720 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 721 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 722 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
[1337] | 723 | IF ( qr_p(k,j,i) < 0.0_wp ) qr_p(k,j,i) = 0.0_wp |
---|
[1053] | 724 | ENDDO |
---|
| 725 | ! |
---|
| 726 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 727 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 728 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 729 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 730 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 731 | ENDDO |
---|
| 732 | ELSEIF ( intermediate_timestep_count < & |
---|
| 733 | intermediate_timestep_count_max ) THEN |
---|
| 734 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 735 | tqr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 736 | 5.3125_wp * tqr_m(k,j,i) |
---|
[1053] | 737 | ENDDO |
---|
| 738 | ENDIF |
---|
| 739 | ENDIF |
---|
| 740 | |
---|
| 741 | ! |
---|
| 742 | !-- Calculate prognostic equation for rain drop concentration. |
---|
[1337] | 743 | tend(:,j,i) = 0.0_wp |
---|
[1053] | 744 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 745 | IF ( ws_scheme_sca ) THEN |
---|
[1115] | 746 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 747 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 748 | i_omp_start, tn ) |
---|
[1053] | 749 | ELSE |
---|
| 750 | CALL advec_s_pw( i, j, nr ) |
---|
| 751 | ENDIF |
---|
| 752 | ELSE |
---|
| 753 | CALL advec_s_up( i, j, nr ) |
---|
| 754 | ENDIF |
---|
| 755 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
[1115] | 756 | ! |
---|
[1053] | 757 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
| 758 | !-- selfcollection, breakup, evaporation; |
---|
| 759 | !-- if required: sedimentation) |
---|
| 760 | tend(:,j,i) = tend(:,j,i) + tend_nr(:,j,i) |
---|
| 761 | |
---|
[1115] | 762 | CALL user_actions( i, j, 'nr-tendency' ) |
---|
[1053] | 763 | ! |
---|
| 764 | !-- Prognostic equation for rain drop concentration |
---|
| 765 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 766 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 767 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 768 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
[1337] | 769 | IF ( nr_p(k,j,i) < 0.0_wp ) nr_p(k,j,i) = 0.0_wp |
---|
[1053] | 770 | ENDDO |
---|
| 771 | ! |
---|
| 772 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 773 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 774 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 775 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 776 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 777 | ENDDO |
---|
| 778 | ELSEIF ( intermediate_timestep_count < & |
---|
| 779 | intermediate_timestep_count_max ) THEN |
---|
| 780 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 781 | tnr_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 782 | 5.3125_wp * tnr_m(k,j,i) |
---|
[1053] | 783 | ENDDO |
---|
| 784 | ENDIF |
---|
| 785 | ENDIF |
---|
| 786 | |
---|
| 787 | ENDIF |
---|
| 788 | |
---|
[1128] | 789 | ENDIF |
---|
| 790 | |
---|
[736] | 791 | ! |
---|
| 792 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 793 | !-- energy (TKE) |
---|
| 794 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 795 | |
---|
| 796 | ! |
---|
| 797 | !-- Tendency-terms for TKE |
---|
[1337] | 798 | tend(:,j,i) = 0.0_wp |
---|
[1332] | 799 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
| 800 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
[736] | 801 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 802 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 803 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 804 | ELSE |
---|
| 805 | CALL advec_s_pw( i, j, e ) |
---|
| 806 | ENDIF |
---|
| 807 | ELSE |
---|
| 808 | CALL advec_s_up( i, j, e ) |
---|
| 809 | ENDIF |
---|
[1001] | 810 | IF ( .NOT. humidity ) THEN |
---|
| 811 | IF ( ocean ) THEN |
---|
| 812 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 813 | ELSE |
---|
[1001] | 814 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 815 | ENDIF |
---|
| 816 | ELSE |
---|
[1001] | 817 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 818 | ENDIF |
---|
| 819 | CALL production_e( i, j ) |
---|
| 820 | |
---|
| 821 | ! |
---|
| 822 | !-- Additional sink term for flows through plant canopies |
---|
| 823 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 824 | |
---|
| 825 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 826 | |
---|
| 827 | ! |
---|
| 828 | !-- Prognostic equation for TKE. |
---|
| 829 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 830 | !-- reasons in the course of the integration. In such cases the old |
---|
| 831 | !-- TKE value is reduced by 90%. |
---|
| 832 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 833 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 834 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 835 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 836 | ENDDO |
---|
| 837 | |
---|
| 838 | ! |
---|
| 839 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 840 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 841 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 842 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 843 | te_m(k,j,i) = tend(k,j,i) |
---|
| 844 | ENDDO |
---|
| 845 | ELSEIF ( intermediate_timestep_count < & |
---|
| 846 | intermediate_timestep_count_max ) THEN |
---|
| 847 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 848 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 849 | 5.3125_wp * te_m(k,j,i) |
---|
[736] | 850 | ENDDO |
---|
| 851 | ENDIF |
---|
| 852 | ENDIF |
---|
| 853 | |
---|
| 854 | ENDIF ! TKE equation |
---|
| 855 | |
---|
| 856 | ENDDO |
---|
| 857 | ENDDO |
---|
| 858 | !$OMP END PARALLEL |
---|
| 859 | |
---|
| 860 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 861 | |
---|
| 862 | |
---|
| 863 | END SUBROUTINE prognostic_equations_cache |
---|
| 864 | |
---|
| 865 | |
---|
| 866 | SUBROUTINE prognostic_equations_vector |
---|
| 867 | |
---|
| 868 | !------------------------------------------------------------------------------! |
---|
| 869 | ! Version for vector machines |
---|
| 870 | !------------------------------------------------------------------------------! |
---|
| 871 | |
---|
| 872 | IMPLICIT NONE |
---|
| 873 | |
---|
[1320] | 874 | INTEGER(iwp) :: i !: |
---|
| 875 | INTEGER(iwp) :: j !: |
---|
| 876 | INTEGER(iwp) :: k !: |
---|
[736] | 877 | |
---|
[1320] | 878 | REAL(wp) :: sbt !: |
---|
[736] | 879 | |
---|
[1320] | 880 | |
---|
[736] | 881 | ! |
---|
| 882 | !-- u-velocity component |
---|
| 883 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 884 | |
---|
[1337] | 885 | tend = 0.0_wp |
---|
[1001] | 886 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 887 | IF ( ws_scheme_mom ) THEN |
---|
| 888 | CALL advec_u_ws |
---|
| 889 | ELSE |
---|
| 890 | CALL advec_u_pw |
---|
| 891 | ENDIF |
---|
| 892 | ELSE |
---|
[1001] | 893 | CALL advec_u_up |
---|
[736] | 894 | ENDIF |
---|
[1001] | 895 | CALL diffusion_u |
---|
[736] | 896 | CALL coriolis( 1 ) |
---|
[940] | 897 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 898 | CALL buoyancy( pt, 1 ) |
---|
[940] | 899 | ENDIF |
---|
[736] | 900 | |
---|
| 901 | ! |
---|
| 902 | !-- Drag by plant canopy |
---|
| 903 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 904 | |
---|
| 905 | ! |
---|
| 906 | !-- External pressure gradient |
---|
| 907 | IF ( dp_external ) THEN |
---|
| 908 | DO i = nxlu, nxr |
---|
| 909 | DO j = nys, nyn |
---|
| 910 | DO k = dp_level_ind_b+1, nzt |
---|
| 911 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 912 | ENDDO |
---|
| 913 | ENDDO |
---|
| 914 | ENDDO |
---|
| 915 | ENDIF |
---|
| 916 | |
---|
[1241] | 917 | ! |
---|
| 918 | !-- Nudging |
---|
| 919 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 920 | |
---|
[736] | 921 | CALL user_actions( 'u-tendency' ) |
---|
| 922 | |
---|
| 923 | ! |
---|
| 924 | !-- Prognostic equation for u-velocity component |
---|
| 925 | DO i = nxlu, nxr |
---|
| 926 | DO j = nys, nyn |
---|
| 927 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 928 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 929 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 930 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 931 | ENDDO |
---|
| 932 | ENDDO |
---|
| 933 | ENDDO |
---|
| 934 | |
---|
| 935 | ! |
---|
| 936 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 937 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 938 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 939 | DO i = nxlu, nxr |
---|
| 940 | DO j = nys, nyn |
---|
| 941 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 942 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 943 | ENDDO |
---|
| 944 | ENDDO |
---|
| 945 | ENDDO |
---|
| 946 | ELSEIF ( intermediate_timestep_count < & |
---|
| 947 | intermediate_timestep_count_max ) THEN |
---|
| 948 | DO i = nxlu, nxr |
---|
| 949 | DO j = nys, nyn |
---|
| 950 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1337] | 951 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[736] | 952 | ENDDO |
---|
| 953 | ENDDO |
---|
| 954 | ENDDO |
---|
| 955 | ENDIF |
---|
| 956 | ENDIF |
---|
| 957 | |
---|
| 958 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 959 | |
---|
| 960 | ! |
---|
| 961 | !-- v-velocity component |
---|
| 962 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 963 | |
---|
[1337] | 964 | tend = 0.0_wp |
---|
[1001] | 965 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 966 | IF ( ws_scheme_mom ) THEN |
---|
| 967 | CALL advec_v_ws |
---|
| 968 | ELSE |
---|
| 969 | CALL advec_v_pw |
---|
| 970 | END IF |
---|
| 971 | ELSE |
---|
[1001] | 972 | CALL advec_v_up |
---|
[736] | 973 | ENDIF |
---|
[1001] | 974 | CALL diffusion_v |
---|
[736] | 975 | CALL coriolis( 2 ) |
---|
| 976 | |
---|
| 977 | ! |
---|
| 978 | !-- Drag by plant canopy |
---|
| 979 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 980 | |
---|
| 981 | ! |
---|
| 982 | !-- External pressure gradient |
---|
| 983 | IF ( dp_external ) THEN |
---|
| 984 | DO i = nxl, nxr |
---|
| 985 | DO j = nysv, nyn |
---|
| 986 | DO k = dp_level_ind_b+1, nzt |
---|
| 987 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 988 | ENDDO |
---|
| 989 | ENDDO |
---|
| 990 | ENDDO |
---|
| 991 | ENDIF |
---|
| 992 | |
---|
[1241] | 993 | ! |
---|
| 994 | !-- Nudging |
---|
| 995 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 996 | |
---|
[736] | 997 | CALL user_actions( 'v-tendency' ) |
---|
| 998 | |
---|
| 999 | ! |
---|
| 1000 | !-- Prognostic equation for v-velocity component |
---|
| 1001 | DO i = nxl, nxr |
---|
| 1002 | DO j = nysv, nyn |
---|
| 1003 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 1004 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1005 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 1006 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 1007 | ENDDO |
---|
| 1008 | ENDDO |
---|
| 1009 | ENDDO |
---|
| 1010 | |
---|
| 1011 | ! |
---|
| 1012 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1013 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1014 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1015 | DO i = nxl, nxr |
---|
| 1016 | DO j = nysv, nyn |
---|
| 1017 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1018 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1019 | ENDDO |
---|
| 1020 | ENDDO |
---|
| 1021 | ENDDO |
---|
| 1022 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1023 | intermediate_timestep_count_max ) THEN |
---|
| 1024 | DO i = nxl, nxr |
---|
| 1025 | DO j = nysv, nyn |
---|
| 1026 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1337] | 1027 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[736] | 1028 | ENDDO |
---|
| 1029 | ENDDO |
---|
| 1030 | ENDDO |
---|
| 1031 | ENDIF |
---|
| 1032 | ENDIF |
---|
| 1033 | |
---|
| 1034 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1035 | |
---|
| 1036 | ! |
---|
| 1037 | !-- w-velocity component |
---|
| 1038 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1039 | |
---|
[1001] | 1040 | tend = 0.0 |
---|
| 1041 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1042 | IF ( ws_scheme_mom ) THEN |
---|
| 1043 | CALL advec_w_ws |
---|
| 1044 | ELSE |
---|
| 1045 | CALL advec_w_pw |
---|
| 1046 | ENDIF |
---|
| 1047 | ELSE |
---|
[1001] | 1048 | CALL advec_w_up |
---|
[736] | 1049 | ENDIF |
---|
[1001] | 1050 | CALL diffusion_w |
---|
[736] | 1051 | CALL coriolis( 3 ) |
---|
[940] | 1052 | |
---|
| 1053 | IF ( .NOT. neutral ) THEN |
---|
| 1054 | IF ( ocean ) THEN |
---|
[1179] | 1055 | CALL buoyancy( rho, 3 ) |
---|
[736] | 1056 | ELSE |
---|
[940] | 1057 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1058 | CALL buoyancy( pt, 3 ) |
---|
[940] | 1059 | ELSE |
---|
[1179] | 1060 | CALL buoyancy( vpt, 3 ) |
---|
[940] | 1061 | ENDIF |
---|
[736] | 1062 | ENDIF |
---|
| 1063 | ENDIF |
---|
| 1064 | |
---|
| 1065 | ! |
---|
| 1066 | !-- Drag by plant canopy |
---|
| 1067 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1068 | |
---|
| 1069 | CALL user_actions( 'w-tendency' ) |
---|
| 1070 | |
---|
| 1071 | ! |
---|
| 1072 | !-- Prognostic equation for w-velocity component |
---|
| 1073 | DO i = nxl, nxr |
---|
| 1074 | DO j = nys, nyn |
---|
| 1075 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 1076 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1077 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1078 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 1079 | ENDDO |
---|
| 1080 | ENDDO |
---|
| 1081 | ENDDO |
---|
| 1082 | |
---|
| 1083 | ! |
---|
| 1084 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1085 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1086 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1087 | DO i = nxl, nxr |
---|
| 1088 | DO j = nys, nyn |
---|
| 1089 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1090 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1091 | ENDDO |
---|
| 1092 | ENDDO |
---|
| 1093 | ENDDO |
---|
| 1094 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1095 | intermediate_timestep_count_max ) THEN |
---|
| 1096 | DO i = nxl, nxr |
---|
| 1097 | DO j = nys, nyn |
---|
| 1098 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1337] | 1099 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[736] | 1100 | ENDDO |
---|
| 1101 | ENDDO |
---|
| 1102 | ENDDO |
---|
| 1103 | ENDIF |
---|
| 1104 | ENDIF |
---|
| 1105 | |
---|
| 1106 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1107 | |
---|
[940] | 1108 | |
---|
[736] | 1109 | ! |
---|
[940] | 1110 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1111 | IF ( .NOT. neutral ) THEN |
---|
[736] | 1112 | |
---|
[940] | 1113 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1114 | |
---|
[736] | 1115 | ! |
---|
[940] | 1116 | !-- pt-tendency terms with communication |
---|
| 1117 | sbt = tsc(2) |
---|
| 1118 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 1119 | |
---|
[940] | 1120 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 1121 | ! |
---|
[1001] | 1122 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[940] | 1123 | sbt = 1.0 |
---|
| 1124 | ENDIF |
---|
[1337] | 1125 | tend = 0.0_wp |
---|
[940] | 1126 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 1127 | |
---|
[736] | 1128 | ENDIF |
---|
[940] | 1129 | |
---|
| 1130 | ! |
---|
| 1131 | !-- pt-tendency terms with no communication |
---|
[1001] | 1132 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1133 | tend = 0.0_wp |
---|
[1001] | 1134 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 1135 | IF ( ws_scheme_sca ) THEN |
---|
| 1136 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1137 | ELSE |
---|
| 1138 | CALL advec_s_pw( pt ) |
---|
| 1139 | ENDIF |
---|
| 1140 | ELSE |
---|
[1001] | 1141 | CALL advec_s_up( pt ) |
---|
[940] | 1142 | ENDIF |
---|
[736] | 1143 | ENDIF |
---|
| 1144 | |
---|
[1001] | 1145 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1146 | |
---|
[736] | 1147 | ! |
---|
[940] | 1148 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1149 | IF ( radiation ) THEN |
---|
| 1150 | CALL calc_radiation |
---|
| 1151 | ENDIF |
---|
[736] | 1152 | |
---|
| 1153 | ! |
---|
[940] | 1154 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1155 | IF ( precipitation ) THEN |
---|
| 1156 | CALL impact_of_latent_heat |
---|
| 1157 | ENDIF |
---|
[736] | 1158 | |
---|
| 1159 | ! |
---|
[940] | 1160 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 1161 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[940] | 1162 | CALL plant_canopy_model( 4 ) |
---|
| 1163 | ENDIF |
---|
[736] | 1164 | |
---|
[940] | 1165 | ! |
---|
| 1166 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1167 | IF ( large_scale_subsidence ) THEN |
---|
| 1168 | CALL subsidence( tend, pt, pt_init ) |
---|
| 1169 | ENDIF |
---|
[736] | 1170 | |
---|
[1241] | 1171 | ! |
---|
| 1172 | !-- Nudging |
---|
| 1173 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1174 | |
---|
[940] | 1175 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 1176 | |
---|
| 1177 | ! |
---|
[940] | 1178 | !-- Prognostic equation for potential temperature |
---|
| 1179 | DO i = nxl, nxr |
---|
| 1180 | DO j = nys, nyn |
---|
| 1181 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1182 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1183 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1184 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1185 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 1186 | ENDDO |
---|
[736] | 1187 | ENDDO |
---|
| 1188 | ENDDO |
---|
| 1189 | |
---|
| 1190 | ! |
---|
[940] | 1191 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1192 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1193 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1194 | DO i = nxl, nxr |
---|
| 1195 | DO j = nys, nyn |
---|
| 1196 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1197 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1198 | ENDDO |
---|
[736] | 1199 | ENDDO |
---|
| 1200 | ENDDO |
---|
[940] | 1201 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1202 | intermediate_timestep_count_max ) THEN |
---|
| 1203 | DO i = nxl, nxr |
---|
| 1204 | DO j = nys, nyn |
---|
| 1205 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1206 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1207 | 5.3125_wp * tpt_m(k,j,i) |
---|
[940] | 1208 | ENDDO |
---|
[736] | 1209 | ENDDO |
---|
| 1210 | ENDDO |
---|
[940] | 1211 | ENDIF |
---|
[736] | 1212 | ENDIF |
---|
[940] | 1213 | |
---|
| 1214 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1215 | |
---|
[736] | 1216 | ENDIF |
---|
| 1217 | |
---|
| 1218 | ! |
---|
| 1219 | !-- If required, compute prognostic equation for salinity |
---|
| 1220 | IF ( ocean ) THEN |
---|
| 1221 | |
---|
| 1222 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1223 | |
---|
| 1224 | ! |
---|
| 1225 | !-- sa-tendency terms with communication |
---|
| 1226 | sbt = tsc(2) |
---|
| 1227 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1228 | |
---|
| 1229 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1230 | ! |
---|
[1001] | 1231 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[736] | 1232 | sbt = 1.0 |
---|
| 1233 | ENDIF |
---|
[1337] | 1234 | tend = 0.0_wp |
---|
[736] | 1235 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1236 | |
---|
[736] | 1237 | ENDIF |
---|
| 1238 | |
---|
| 1239 | ! |
---|
| 1240 | !-- sa-tendency terms with no communication |
---|
[1001] | 1241 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1242 | tend = 0.0 |
---|
| 1243 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1244 | IF ( ws_scheme_sca ) THEN |
---|
| 1245 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1246 | ELSE |
---|
| 1247 | CALL advec_s_pw( sa ) |
---|
| 1248 | ENDIF |
---|
| 1249 | ELSE |
---|
[1001] | 1250 | CALL advec_s_up( sa ) |
---|
[736] | 1251 | ENDIF |
---|
| 1252 | ENDIF |
---|
[1001] | 1253 | |
---|
| 1254 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1255 | |
---|
| 1256 | CALL user_actions( 'sa-tendency' ) |
---|
| 1257 | |
---|
| 1258 | ! |
---|
| 1259 | !-- Prognostic equation for salinity |
---|
| 1260 | DO i = nxl, nxr |
---|
| 1261 | DO j = nys, nyn |
---|
| 1262 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1263 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1264 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1265 | - tsc(5) * rdf_sc(k) * & |
---|
| 1266 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 1267 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[736] | 1268 | ENDDO |
---|
| 1269 | ENDDO |
---|
| 1270 | ENDDO |
---|
| 1271 | |
---|
| 1272 | ! |
---|
| 1273 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1274 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1275 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1276 | DO i = nxl, nxr |
---|
| 1277 | DO j = nys, nyn |
---|
| 1278 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1279 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1280 | ENDDO |
---|
| 1281 | ENDDO |
---|
| 1282 | ENDDO |
---|
| 1283 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1284 | intermediate_timestep_count_max ) THEN |
---|
| 1285 | DO i = nxl, nxr |
---|
| 1286 | DO j = nys, nyn |
---|
| 1287 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1288 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
| 1289 | 5.3125_wp * tsa_m(k,j,i) |
---|
[736] | 1290 | ENDDO |
---|
| 1291 | ENDDO |
---|
| 1292 | ENDDO |
---|
| 1293 | ENDIF |
---|
| 1294 | ENDIF |
---|
| 1295 | |
---|
| 1296 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1297 | |
---|
| 1298 | ! |
---|
| 1299 | !-- Calculate density by the equation of state for seawater |
---|
| 1300 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1301 | CALL eqn_state_seawater |
---|
| 1302 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1303 | |
---|
| 1304 | ENDIF |
---|
| 1305 | |
---|
| 1306 | ! |
---|
| 1307 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1308 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1309 | |
---|
| 1310 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1311 | |
---|
| 1312 | ! |
---|
| 1313 | !-- Scalar/q-tendency terms with communication |
---|
| 1314 | sbt = tsc(2) |
---|
| 1315 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1316 | |
---|
| 1317 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1318 | ! |
---|
[1001] | 1319 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1320 | sbt = 1.0_wp |
---|
[736] | 1321 | ENDIF |
---|
[1337] | 1322 | tend = 0.0_wp |
---|
[736] | 1323 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1324 | |
---|
[736] | 1325 | ENDIF |
---|
| 1326 | |
---|
| 1327 | ! |
---|
| 1328 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1329 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1330 | tend = 0.0_wp |
---|
[1001] | 1331 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1332 | IF ( ws_scheme_sca ) THEN |
---|
| 1333 | CALL advec_s_ws( q, 'q' ) |
---|
| 1334 | ELSE |
---|
| 1335 | CALL advec_s_pw( q ) |
---|
| 1336 | ENDIF |
---|
| 1337 | ELSE |
---|
[1001] | 1338 | CALL advec_s_up( q ) |
---|
[736] | 1339 | ENDIF |
---|
| 1340 | ENDIF |
---|
[1001] | 1341 | |
---|
| 1342 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1343 | |
---|
| 1344 | ! |
---|
| 1345 | !-- If required compute decrease of total water content due to |
---|
| 1346 | !-- precipitation |
---|
| 1347 | IF ( precipitation ) THEN |
---|
| 1348 | CALL calc_precipitation |
---|
| 1349 | ENDIF |
---|
| 1350 | |
---|
| 1351 | ! |
---|
| 1352 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1353 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1354 | |
---|
| 1355 | ! |
---|
| 1356 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[940] | 1357 | IF ( large_scale_subsidence ) THEN |
---|
| 1358 | CALL subsidence( tend, q, q_init ) |
---|
[736] | 1359 | ENDIF |
---|
| 1360 | |
---|
[1241] | 1361 | ! |
---|
| 1362 | !-- Nudging |
---|
| 1363 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1364 | |
---|
[736] | 1365 | CALL user_actions( 'q-tendency' ) |
---|
| 1366 | |
---|
| 1367 | ! |
---|
| 1368 | !-- Prognostic equation for total water content / scalar |
---|
| 1369 | DO i = nxl, nxr |
---|
| 1370 | DO j = nys, nyn |
---|
| 1371 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1372 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1373 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1374 | - tsc(5) * rdf_sc(k) * & |
---|
| 1375 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 1376 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[736] | 1377 | ENDDO |
---|
| 1378 | ENDDO |
---|
| 1379 | ENDDO |
---|
| 1380 | |
---|
| 1381 | ! |
---|
| 1382 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1383 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1384 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1385 | DO i = nxl, nxr |
---|
| 1386 | DO j = nys, nyn |
---|
| 1387 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1388 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1389 | ENDDO |
---|
| 1390 | ENDDO |
---|
| 1391 | ENDDO |
---|
| 1392 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1393 | intermediate_timestep_count_max ) THEN |
---|
| 1394 | DO i = nxl, nxr |
---|
| 1395 | DO j = nys, nyn |
---|
| 1396 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1397 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[736] | 1398 | ENDDO |
---|
| 1399 | ENDDO |
---|
| 1400 | ENDDO |
---|
| 1401 | ENDIF |
---|
| 1402 | ENDIF |
---|
| 1403 | |
---|
| 1404 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1405 | |
---|
| 1406 | ENDIF |
---|
| 1407 | |
---|
| 1408 | ! |
---|
| 1409 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1410 | !-- energy (TKE) |
---|
| 1411 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1412 | |
---|
| 1413 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1414 | |
---|
| 1415 | sbt = tsc(2) |
---|
| 1416 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1417 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1418 | |
---|
| 1419 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1420 | ! |
---|
[1001] | 1421 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1422 | sbt = 1.0_wp |
---|
[736] | 1423 | ENDIF |
---|
[1337] | 1424 | tend = 0.0_wp |
---|
[736] | 1425 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1426 | |
---|
[736] | 1427 | ENDIF |
---|
| 1428 | ENDIF |
---|
| 1429 | |
---|
| 1430 | ! |
---|
| 1431 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1432 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1433 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 1434 | tend = 0.0_wp |
---|
[736] | 1435 | CALL advec_s_up( e ) |
---|
| 1436 | ELSE |
---|
[1337] | 1437 | tend = 0.0_wp |
---|
[1001] | 1438 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1439 | IF ( ws_scheme_sca ) THEN |
---|
| 1440 | CALL advec_s_ws( e, 'e' ) |
---|
| 1441 | ELSE |
---|
| 1442 | CALL advec_s_pw( e ) |
---|
| 1443 | ENDIF |
---|
| 1444 | ELSE |
---|
[1001] | 1445 | CALL advec_s_up( e ) |
---|
[736] | 1446 | ENDIF |
---|
| 1447 | ENDIF |
---|
[1001] | 1448 | ENDIF |
---|
| 1449 | |
---|
| 1450 | IF ( .NOT. humidity ) THEN |
---|
| 1451 | IF ( ocean ) THEN |
---|
| 1452 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1453 | ELSE |
---|
[1001] | 1454 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1455 | ENDIF |
---|
[1001] | 1456 | ELSE |
---|
| 1457 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1458 | ENDIF |
---|
[1001] | 1459 | |
---|
[736] | 1460 | CALL production_e |
---|
| 1461 | |
---|
| 1462 | ! |
---|
| 1463 | !-- Additional sink term for flows through plant canopies |
---|
| 1464 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1465 | CALL user_actions( 'e-tendency' ) |
---|
| 1466 | |
---|
| 1467 | ! |
---|
| 1468 | !-- Prognostic equation for TKE. |
---|
| 1469 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1470 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1471 | !-- value is reduced by 90%. |
---|
| 1472 | DO i = nxl, nxr |
---|
| 1473 | DO j = nys, nyn |
---|
| 1474 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1475 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1476 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 1477 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[736] | 1478 | ENDDO |
---|
| 1479 | ENDDO |
---|
| 1480 | ENDDO |
---|
| 1481 | |
---|
| 1482 | ! |
---|
| 1483 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1484 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1485 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1486 | DO i = nxl, nxr |
---|
| 1487 | DO j = nys, nyn |
---|
| 1488 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1489 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1490 | ENDDO |
---|
| 1491 | ENDDO |
---|
| 1492 | ENDDO |
---|
| 1493 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1494 | intermediate_timestep_count_max ) THEN |
---|
| 1495 | DO i = nxl, nxr |
---|
| 1496 | DO j = nys, nyn |
---|
| 1497 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1337] | 1498 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[736] | 1499 | ENDDO |
---|
| 1500 | ENDDO |
---|
| 1501 | ENDDO |
---|
| 1502 | ENDIF |
---|
| 1503 | ENDIF |
---|
| 1504 | |
---|
| 1505 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1506 | |
---|
| 1507 | ENDIF |
---|
| 1508 | |
---|
| 1509 | |
---|
| 1510 | END SUBROUTINE prognostic_equations_vector |
---|
| 1511 | |
---|
| 1512 | |
---|
[1015] | 1513 | SUBROUTINE prognostic_equations_acc |
---|
| 1514 | |
---|
| 1515 | !------------------------------------------------------------------------------! |
---|
| 1516 | ! Version for accelerator boards |
---|
| 1517 | !------------------------------------------------------------------------------! |
---|
| 1518 | |
---|
| 1519 | IMPLICIT NONE |
---|
| 1520 | |
---|
[1320] | 1521 | INTEGER(iwp) :: i !: |
---|
| 1522 | INTEGER(iwp) :: j !: |
---|
| 1523 | INTEGER(iwp) :: k !: |
---|
| 1524 | INTEGER(iwp) :: runge_step !: |
---|
[1015] | 1525 | |
---|
[1320] | 1526 | REAL(wp) :: sbt !: |
---|
| 1527 | |
---|
[1015] | 1528 | ! |
---|
| 1529 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1530 | runge_step = 0 |
---|
| 1531 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1532 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1533 | runge_step = 1 |
---|
| 1534 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1535 | intermediate_timestep_count_max ) THEN |
---|
| 1536 | runge_step = 2 |
---|
| 1537 | ENDIF |
---|
| 1538 | ENDIF |
---|
| 1539 | |
---|
| 1540 | ! |
---|
| 1541 | !-- u-velocity component |
---|
| 1542 | !++ Statistics still not ported to accelerators |
---|
[1179] | 1543 | !$acc update device( hom, ref_state ) |
---|
[1015] | 1544 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1545 | |
---|
| 1546 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1547 | IF ( ws_scheme_mom ) THEN |
---|
| 1548 | CALL advec_u_ws_acc |
---|
| 1549 | ELSE |
---|
[1337] | 1550 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1551 | CALL advec_u_pw |
---|
| 1552 | ENDIF |
---|
| 1553 | ELSE |
---|
| 1554 | CALL advec_u_up |
---|
| 1555 | ENDIF |
---|
| 1556 | CALL diffusion_u_acc |
---|
| 1557 | CALL coriolis_acc( 1 ) |
---|
| 1558 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 1559 | CALL buoyancy( pt, 1 ) |
---|
[1015] | 1560 | ENDIF |
---|
| 1561 | |
---|
| 1562 | ! |
---|
| 1563 | !-- Drag by plant canopy |
---|
| 1564 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1565 | |
---|
| 1566 | ! |
---|
| 1567 | !-- External pressure gradient |
---|
| 1568 | IF ( dp_external ) THEN |
---|
[1128] | 1569 | DO i = i_left, i_right |
---|
| 1570 | DO j = j_south, j_north |
---|
[1015] | 1571 | DO k = dp_level_ind_b+1, nzt |
---|
| 1572 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1573 | ENDDO |
---|
| 1574 | ENDDO |
---|
| 1575 | ENDDO |
---|
| 1576 | ENDIF |
---|
| 1577 | |
---|
[1246] | 1578 | ! |
---|
| 1579 | !-- Nudging |
---|
| 1580 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 1581 | |
---|
[1015] | 1582 | CALL user_actions( 'u-tendency' ) |
---|
| 1583 | |
---|
| 1584 | ! |
---|
| 1585 | !-- Prognostic equation for u-velocity component |
---|
| 1586 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, ug, u_p ) |
---|
[1257] | 1587 | !$acc loop independent |
---|
[1128] | 1588 | DO i = i_left, i_right |
---|
[1257] | 1589 | !$acc loop independent |
---|
[1128] | 1590 | DO j = j_south, j_north |
---|
[1257] | 1591 | !$acc loop independent |
---|
[1015] | 1592 | DO k = 1, nzt |
---|
| 1593 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1594 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1595 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 1596 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1597 | ! |
---|
| 1598 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1599 | IF ( runge_step == 1 ) THEN |
---|
| 1600 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1601 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1602 | tu_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tu_m(k,j,i) |
---|
[1015] | 1603 | ENDIF |
---|
| 1604 | ENDIF |
---|
| 1605 | ENDDO |
---|
| 1606 | ENDDO |
---|
| 1607 | ENDDO |
---|
| 1608 | !$acc end kernels |
---|
| 1609 | |
---|
| 1610 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1611 | |
---|
| 1612 | ! |
---|
| 1613 | !-- v-velocity component |
---|
| 1614 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1615 | |
---|
| 1616 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1617 | IF ( ws_scheme_mom ) THEN |
---|
| 1618 | CALL advec_v_ws_acc |
---|
| 1619 | ELSE |
---|
[1337] | 1620 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1621 | CALL advec_v_pw |
---|
| 1622 | END IF |
---|
| 1623 | ELSE |
---|
| 1624 | CALL advec_v_up |
---|
| 1625 | ENDIF |
---|
| 1626 | CALL diffusion_v_acc |
---|
| 1627 | CALL coriolis_acc( 2 ) |
---|
| 1628 | |
---|
| 1629 | ! |
---|
| 1630 | !-- Drag by plant canopy |
---|
| 1631 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1632 | |
---|
| 1633 | ! |
---|
| 1634 | !-- External pressure gradient |
---|
| 1635 | IF ( dp_external ) THEN |
---|
[1128] | 1636 | DO i = i_left, i_right |
---|
| 1637 | DO j = j_south, j_north |
---|
[1015] | 1638 | DO k = dp_level_ind_b+1, nzt |
---|
| 1639 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1640 | ENDDO |
---|
| 1641 | ENDDO |
---|
| 1642 | ENDDO |
---|
| 1643 | ENDIF |
---|
| 1644 | |
---|
[1246] | 1645 | ! |
---|
| 1646 | !-- Nudging |
---|
| 1647 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1648 | |
---|
[1015] | 1649 | CALL user_actions( 'v-tendency' ) |
---|
| 1650 | |
---|
| 1651 | ! |
---|
| 1652 | !-- Prognostic equation for v-velocity component |
---|
| 1653 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, vg, v_p ) |
---|
[1257] | 1654 | !$acc loop independent |
---|
[1128] | 1655 | DO i = i_left, i_right |
---|
[1257] | 1656 | !$acc loop independent |
---|
[1128] | 1657 | DO j = j_south, j_north |
---|
[1257] | 1658 | !$acc loop independent |
---|
[1015] | 1659 | DO k = 1, nzt |
---|
| 1660 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1661 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1662 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 1663 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1664 | ! |
---|
| 1665 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1666 | IF ( runge_step == 1 ) THEN |
---|
| 1667 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1668 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1669 | tv_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tv_m(k,j,i) |
---|
[1015] | 1670 | ENDIF |
---|
| 1671 | ENDIF |
---|
| 1672 | ENDDO |
---|
| 1673 | ENDDO |
---|
| 1674 | ENDDO |
---|
| 1675 | !$acc end kernels |
---|
| 1676 | |
---|
| 1677 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1678 | |
---|
| 1679 | ! |
---|
| 1680 | !-- w-velocity component |
---|
| 1681 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1682 | |
---|
| 1683 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1684 | IF ( ws_scheme_mom ) THEN |
---|
| 1685 | CALL advec_w_ws_acc |
---|
| 1686 | ELSE |
---|
[1337] | 1687 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1688 | CALL advec_w_pw |
---|
| 1689 | ENDIF |
---|
| 1690 | ELSE |
---|
| 1691 | CALL advec_w_up |
---|
| 1692 | ENDIF |
---|
| 1693 | CALL diffusion_w_acc |
---|
| 1694 | CALL coriolis_acc( 3 ) |
---|
| 1695 | |
---|
| 1696 | IF ( .NOT. neutral ) THEN |
---|
| 1697 | IF ( ocean ) THEN |
---|
[1179] | 1698 | CALL buoyancy( rho, 3 ) |
---|
[1015] | 1699 | ELSE |
---|
| 1700 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1701 | CALL buoyancy_acc( pt, 3 ) |
---|
[1015] | 1702 | ELSE |
---|
[1179] | 1703 | CALL buoyancy( vpt, 3 ) |
---|
[1015] | 1704 | ENDIF |
---|
| 1705 | ENDIF |
---|
| 1706 | ENDIF |
---|
| 1707 | |
---|
| 1708 | ! |
---|
| 1709 | !-- Drag by plant canopy |
---|
| 1710 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1711 | |
---|
| 1712 | CALL user_actions( 'w-tendency' ) |
---|
| 1713 | |
---|
| 1714 | ! |
---|
| 1715 | !-- Prognostic equation for w-velocity component |
---|
| 1716 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
[1257] | 1717 | !$acc loop independent |
---|
[1128] | 1718 | DO i = i_left, i_right |
---|
[1257] | 1719 | !$acc loop independent |
---|
[1128] | 1720 | DO j = j_south, j_north |
---|
[1257] | 1721 | !$acc loop independent |
---|
[1015] | 1722 | DO k = 1, nzt-1 |
---|
| 1723 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 1724 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1725 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1726 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1727 | ! |
---|
| 1728 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1729 | IF ( runge_step == 1 ) THEN |
---|
| 1730 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1731 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1732 | tw_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tw_m(k,j,i) |
---|
[1015] | 1733 | ENDIF |
---|
| 1734 | ENDIF |
---|
| 1735 | ENDDO |
---|
| 1736 | ENDDO |
---|
| 1737 | ENDDO |
---|
| 1738 | !$acc end kernels |
---|
| 1739 | |
---|
| 1740 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1741 | |
---|
| 1742 | |
---|
| 1743 | ! |
---|
| 1744 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1745 | IF ( .NOT. neutral ) THEN |
---|
| 1746 | |
---|
| 1747 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1748 | |
---|
| 1749 | ! |
---|
| 1750 | !-- pt-tendency terms with communication |
---|
| 1751 | sbt = tsc(2) |
---|
| 1752 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1753 | |
---|
| 1754 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1755 | ! |
---|
| 1756 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1757 | sbt = 1.0 |
---|
| 1758 | ENDIF |
---|
[1337] | 1759 | tend = 0.0_wp |
---|
[1015] | 1760 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1761 | |
---|
| 1762 | ENDIF |
---|
| 1763 | |
---|
| 1764 | ! |
---|
| 1765 | !-- pt-tendency terms with no communication |
---|
| 1766 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1767 | tend = 0.0_wp |
---|
[1015] | 1768 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1769 | IF ( ws_scheme_sca ) THEN |
---|
| 1770 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 1771 | ELSE |
---|
[1337] | 1772 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 1773 | CALL advec_s_pw( pt ) |
---|
| 1774 | ENDIF |
---|
| 1775 | ELSE |
---|
| 1776 | CALL advec_s_up( pt ) |
---|
| 1777 | ENDIF |
---|
| 1778 | ENDIF |
---|
| 1779 | |
---|
| 1780 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 1781 | |
---|
| 1782 | ! |
---|
| 1783 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1784 | IF ( radiation ) THEN |
---|
| 1785 | CALL calc_radiation |
---|
| 1786 | ENDIF |
---|
| 1787 | |
---|
| 1788 | ! |
---|
| 1789 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1790 | IF ( precipitation ) THEN |
---|
| 1791 | CALL impact_of_latent_heat |
---|
| 1792 | ENDIF |
---|
| 1793 | |
---|
| 1794 | ! |
---|
| 1795 | !-- Consideration of heat sources within the plant canopy |
---|
[1337] | 1796 | IF ( plant_canopy .AND. ( cthf /= 0.0_wp ) ) THEN |
---|
[1015] | 1797 | CALL plant_canopy_model( 4 ) |
---|
| 1798 | ENDIF |
---|
| 1799 | |
---|
| 1800 | ! |
---|
| 1801 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1802 | IF ( large_scale_subsidence ) THEN |
---|
| 1803 | CALL subsidence( tend, pt, pt_init ) |
---|
| 1804 | ENDIF |
---|
| 1805 | |
---|
[1246] | 1806 | ! |
---|
| 1807 | !-- Nudging |
---|
| 1808 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1809 | |
---|
[1015] | 1810 | CALL user_actions( 'pt-tendency' ) |
---|
| 1811 | |
---|
| 1812 | ! |
---|
| 1813 | !-- Prognostic equation for potential temperature |
---|
| 1814 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 1815 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
[1257] | 1816 | !$acc loop independent |
---|
[1128] | 1817 | DO i = i_left, i_right |
---|
[1257] | 1818 | !$acc loop independent |
---|
[1128] | 1819 | DO j = j_south, j_north |
---|
[1257] | 1820 | !$acc loop independent |
---|
[1015] | 1821 | DO k = 1, nzt |
---|
| 1822 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 1823 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1824 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1825 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1826 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 1827 | ! |
---|
| 1828 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1829 | IF ( runge_step == 1 ) THEN |
---|
| 1830 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1831 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1832 | tpt_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tpt_m(k,j,i) |
---|
[1015] | 1833 | ENDIF |
---|
| 1834 | ENDIF |
---|
| 1835 | ENDDO |
---|
| 1836 | ENDDO |
---|
| 1837 | ENDDO |
---|
| 1838 | !$acc end kernels |
---|
| 1839 | |
---|
| 1840 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1841 | |
---|
| 1842 | ENDIF |
---|
| 1843 | |
---|
| 1844 | ! |
---|
| 1845 | !-- If required, compute prognostic equation for salinity |
---|
| 1846 | IF ( ocean ) THEN |
---|
| 1847 | |
---|
| 1848 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1849 | |
---|
| 1850 | ! |
---|
| 1851 | !-- sa-tendency terms with communication |
---|
| 1852 | sbt = tsc(2) |
---|
| 1853 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1854 | |
---|
| 1855 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1856 | ! |
---|
| 1857 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1858 | sbt = 1.0_wp |
---|
[1015] | 1859 | ENDIF |
---|
[1337] | 1860 | tend = 0.0_wp |
---|
[1015] | 1861 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 1862 | |
---|
| 1863 | ENDIF |
---|
| 1864 | |
---|
| 1865 | ! |
---|
| 1866 | !-- sa-tendency terms with no communication |
---|
| 1867 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1868 | tend = 0.0_wp |
---|
[1015] | 1869 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1870 | IF ( ws_scheme_sca ) THEN |
---|
| 1871 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1872 | ELSE |
---|
| 1873 | CALL advec_s_pw( sa ) |
---|
| 1874 | ENDIF |
---|
| 1875 | ELSE |
---|
| 1876 | CALL advec_s_up( sa ) |
---|
| 1877 | ENDIF |
---|
| 1878 | ENDIF |
---|
| 1879 | |
---|
| 1880 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 1881 | |
---|
| 1882 | CALL user_actions( 'sa-tendency' ) |
---|
| 1883 | |
---|
| 1884 | ! |
---|
| 1885 | !-- Prognostic equation for salinity |
---|
[1128] | 1886 | DO i = i_left, i_right |
---|
| 1887 | DO j = j_south, j_north |
---|
[1015] | 1888 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1889 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1890 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1891 | - tsc(5) * rdf_sc(k) * & |
---|
| 1892 | ( sa(k,j,i) - sa_init(k) ) |
---|
[1337] | 1893 | IF ( sa_p(k,j,i) < 0.0_wp ) sa_p(k,j,i) = 0.1_wp * sa(k,j,i) |
---|
[1015] | 1894 | ! |
---|
| 1895 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1896 | IF ( runge_step == 1 ) THEN |
---|
| 1897 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1898 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1899 | tsa_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tsa_m(k,j,i) |
---|
[1015] | 1900 | ENDIF |
---|
| 1901 | ENDDO |
---|
| 1902 | ENDDO |
---|
| 1903 | ENDDO |
---|
| 1904 | |
---|
| 1905 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1906 | |
---|
| 1907 | ! |
---|
| 1908 | !-- Calculate density by the equation of state for seawater |
---|
| 1909 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1910 | CALL eqn_state_seawater |
---|
| 1911 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1912 | |
---|
| 1913 | ENDIF |
---|
| 1914 | |
---|
| 1915 | ! |
---|
| 1916 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1917 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1918 | |
---|
| 1919 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1920 | |
---|
| 1921 | ! |
---|
| 1922 | !-- Scalar/q-tendency terms with communication |
---|
| 1923 | sbt = tsc(2) |
---|
| 1924 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1925 | |
---|
| 1926 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1927 | ! |
---|
| 1928 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 1929 | sbt = 1.0_wp |
---|
[1015] | 1930 | ENDIF |
---|
[1337] | 1931 | tend = 0.0_wp |
---|
[1015] | 1932 | CALL advec_s_bc( q, 'q' ) |
---|
| 1933 | |
---|
| 1934 | ENDIF |
---|
| 1935 | |
---|
| 1936 | ! |
---|
| 1937 | !-- Scalar/q-tendency terms with no communication |
---|
| 1938 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
[1337] | 1939 | tend = 0.0_wp |
---|
[1015] | 1940 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1941 | IF ( ws_scheme_sca ) THEN |
---|
| 1942 | CALL advec_s_ws( q, 'q' ) |
---|
| 1943 | ELSE |
---|
| 1944 | CALL advec_s_pw( q ) |
---|
| 1945 | ENDIF |
---|
| 1946 | ELSE |
---|
| 1947 | CALL advec_s_up( q ) |
---|
| 1948 | ENDIF |
---|
| 1949 | ENDIF |
---|
| 1950 | |
---|
| 1951 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 1952 | |
---|
| 1953 | ! |
---|
| 1954 | !-- If required compute decrease of total water content due to |
---|
| 1955 | !-- precipitation |
---|
| 1956 | IF ( precipitation ) THEN |
---|
| 1957 | CALL calc_precipitation |
---|
| 1958 | ENDIF |
---|
| 1959 | |
---|
| 1960 | ! |
---|
| 1961 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1962 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1963 | |
---|
| 1964 | ! |
---|
| 1965 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1966 | IF ( large_scale_subsidence ) THEN |
---|
| 1967 | CALL subsidence( tend, q, q_init ) |
---|
| 1968 | ENDIF |
---|
| 1969 | |
---|
[1246] | 1970 | ! |
---|
| 1971 | !-- Nudging |
---|
| 1972 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1973 | |
---|
[1015] | 1974 | CALL user_actions( 'q-tendency' ) |
---|
| 1975 | |
---|
| 1976 | ! |
---|
| 1977 | !-- Prognostic equation for total water content / scalar |
---|
[1128] | 1978 | DO i = i_left, i_right |
---|
| 1979 | DO j = j_south, j_north |
---|
[1015] | 1980 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1981 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1982 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1983 | - tsc(5) * rdf_sc(k) * & |
---|
| 1984 | ( q(k,j,i) - q_init(k) ) |
---|
[1337] | 1985 | IF ( q_p(k,j,i) < 0.0_wp ) q_p(k,j,i) = 0.1_wp * q(k,j,i) |
---|
[1015] | 1986 | ! |
---|
| 1987 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1988 | IF ( runge_step == 1 ) THEN |
---|
| 1989 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1990 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 1991 | tq_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * tq_m(k,j,i) |
---|
[1015] | 1992 | ENDIF |
---|
| 1993 | ENDDO |
---|
| 1994 | ENDDO |
---|
| 1995 | ENDDO |
---|
| 1996 | |
---|
| 1997 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1998 | |
---|
| 1999 | ENDIF |
---|
| 2000 | |
---|
| 2001 | ! |
---|
| 2002 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 2003 | !-- energy (TKE) |
---|
| 2004 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 2005 | |
---|
| 2006 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 2007 | |
---|
| 2008 | sbt = tsc(2) |
---|
| 2009 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 2010 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2011 | |
---|
| 2012 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2013 | ! |
---|
| 2014 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[1337] | 2015 | sbt = 1.0_wp |
---|
[1015] | 2016 | ENDIF |
---|
[1337] | 2017 | tend = 0.0_wp |
---|
[1015] | 2018 | CALL advec_s_bc( e, 'e' ) |
---|
| 2019 | |
---|
| 2020 | ENDIF |
---|
| 2021 | ENDIF |
---|
| 2022 | |
---|
| 2023 | ! |
---|
| 2024 | !-- TKE-tendency terms with no communication |
---|
| 2025 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 2026 | IF ( use_upstream_for_tke ) THEN |
---|
[1337] | 2027 | tend = 0.0_wp |
---|
[1015] | 2028 | CALL advec_s_up( e ) |
---|
| 2029 | ELSE |
---|
| 2030 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2031 | IF ( ws_scheme_sca ) THEN |
---|
| 2032 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 2033 | ELSE |
---|
[1337] | 2034 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2035 | CALL advec_s_pw( e ) |
---|
| 2036 | ENDIF |
---|
| 2037 | ELSE |
---|
[1337] | 2038 | tend = 0.0_wp ! to be removed later?? |
---|
[1015] | 2039 | CALL advec_s_up( e ) |
---|
| 2040 | ENDIF |
---|
| 2041 | ENDIF |
---|
| 2042 | ENDIF |
---|
| 2043 | |
---|
| 2044 | IF ( .NOT. humidity ) THEN |
---|
| 2045 | IF ( ocean ) THEN |
---|
| 2046 | CALL diffusion_e( prho, prho_reference ) |
---|
| 2047 | ELSE |
---|
| 2048 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 2049 | ENDIF |
---|
| 2050 | ELSE |
---|
| 2051 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 2052 | ENDIF |
---|
| 2053 | |
---|
| 2054 | CALL production_e_acc |
---|
| 2055 | |
---|
| 2056 | ! |
---|
| 2057 | !-- Additional sink term for flows through plant canopies |
---|
| 2058 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 2059 | CALL user_actions( 'e-tendency' ) |
---|
| 2060 | |
---|
| 2061 | ! |
---|
| 2062 | !-- Prognostic equation for TKE. |
---|
| 2063 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2064 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2065 | !-- value is reduced by 90%. |
---|
| 2066 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
[1257] | 2067 | !$acc loop independent |
---|
[1128] | 2068 | DO i = i_left, i_right |
---|
[1257] | 2069 | !$acc loop independent |
---|
[1128] | 2070 | DO j = j_south, j_north |
---|
[1257] | 2071 | !$acc loop independent |
---|
[1015] | 2072 | DO k = 1, nzt |
---|
| 2073 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2074 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2075 | tsc(3) * te_m(k,j,i) ) |
---|
[1337] | 2076 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
[1015] | 2077 | ! |
---|
| 2078 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2079 | IF ( runge_step == 1 ) THEN |
---|
| 2080 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2081 | ELSEIF ( runge_step == 2 ) THEN |
---|
[1337] | 2082 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * te_m(k,j,i) |
---|
[1015] | 2083 | ENDIF |
---|
| 2084 | ENDIF |
---|
| 2085 | ENDDO |
---|
| 2086 | ENDDO |
---|
| 2087 | ENDDO |
---|
| 2088 | !$acc end kernels |
---|
| 2089 | |
---|
| 2090 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2091 | |
---|
| 2092 | ENDIF |
---|
| 2093 | |
---|
| 2094 | |
---|
| 2095 | END SUBROUTINE prognostic_equations_acc |
---|
| 2096 | |
---|
| 2097 | |
---|
[736] | 2098 | END MODULE prognostic_equations_mod |
---|