[736] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[736] | 20 | ! Current revisions: |
---|
[1092] | 21 | ! ------------------ |
---|
[1330] | 22 | ! In case of SGS-particle velocity advection of TKE is also allowed with |
---|
| 23 | ! dissipative 5th-order scheme. |
---|
[1321] | 24 | ! |
---|
| 25 | ! Former revisions: |
---|
| 26 | ! ----------------- |
---|
| 27 | ! $Id: prognostic_equations.f90 1330 2014-03-24 17:29:32Z suehring $ |
---|
| 28 | ! |
---|
| 29 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 30 | ! ONLY-attribute added to USE-statements, |
---|
| 31 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 32 | ! kinds are defined in new module kinds, |
---|
| 33 | ! old module precision_kind is removed, |
---|
| 34 | ! revision history before 2012 removed, |
---|
| 35 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 36 | ! all variable declaration statements |
---|
[1054] | 37 | ! |
---|
[1319] | 38 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 39 | ! module interfaces removed |
---|
| 40 | ! |
---|
[1258] | 41 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 42 | ! openacc loop vector clauses removed, independent clauses added |
---|
| 43 | ! |
---|
[1247] | 44 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
| 45 | ! enable nudging also for accelerator version |
---|
| 46 | ! |
---|
[1242] | 47 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 48 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
| 49 | ! |
---|
[1182] | 50 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 51 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 52 | ! |
---|
[1132] | 53 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 54 | ! those parts requiring global communication moved to time_integration, |
---|
| 55 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 56 | ! j_north |
---|
| 57 | ! |
---|
[1116] | 58 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 59 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 60 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 61 | ! |
---|
[1112] | 62 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 63 | ! update directives for prognostic quantities removed |
---|
| 64 | ! |
---|
[1107] | 65 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 66 | ! small changes in code formatting |
---|
| 67 | ! |
---|
[1093] | 68 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 69 | ! unused variables removed |
---|
| 70 | ! |
---|
[1054] | 71 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 72 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 73 | ! and rain water content (qr) |
---|
[979] | 74 | ! |
---|
[1053] | 75 | ! currently, only available for cache loop optimization |
---|
[1020] | 76 | ! |
---|
[1037] | 77 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 78 | ! code put under GPL (PALM 3.9) |
---|
| 79 | ! |
---|
[1020] | 80 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 81 | ! non-optimized version of prognostic_equations removed |
---|
| 82 | ! |
---|
[1017] | 83 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 84 | ! new branch prognostic_equations_acc |
---|
| 85 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 86 | ! |
---|
[1002] | 87 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 88 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 89 | ! |
---|
[979] | 90 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 91 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 92 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 93 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 94 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 95 | ! |
---|
[941] | 96 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 97 | ! temperature equation can be switched off |
---|
| 98 | ! |
---|
[736] | 99 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 100 | ! Initial revision |
---|
| 101 | ! |
---|
| 102 | ! |
---|
| 103 | ! Description: |
---|
| 104 | ! ------------ |
---|
| 105 | ! Solving the prognostic equations. |
---|
| 106 | !------------------------------------------------------------------------------! |
---|
| 107 | |
---|
[1320] | 108 | USE arrays_3d, & |
---|
| 109 | ONLY: diss_l_e, diss_l_nr, diss_l_pt, diss_l_q, diss_l_qr, & |
---|
| 110 | diss_l_sa, diss_s_e, diss_s_nr, diss_s_pt, diss_s_q, & |
---|
| 111 | diss_s_qr, diss_s_sa, e, e_p, flux_s_e, flux_s_nr, flux_s_pt, & |
---|
| 112 | flux_s_q, flux_s_qr, flux_s_sa, flux_l_e, flux_l_nr, & |
---|
| 113 | flux_l_pt, flux_l_q, flux_l_qr, flux_l_sa, nr, nr_p, nrsws, & |
---|
| 114 | nrswst, pt, ptdf_x, ptdf_y, pt_init, pt_p, prho, q, q_init, & |
---|
| 115 | q_p, qsws, qswst, qr, qr_p, qrsws, qrswst, rdf, rdf_sc, rho, & |
---|
| 116 | sa, sa_init, sa_p, saswsb, saswst, shf, tend, tend_nr, & |
---|
| 117 | tend_pt, tend_q, tend_qr, te_m, tnr_m, tpt_m, tq_m, tqr_m, & |
---|
| 118 | tsa_m, tswst, tu_m, tv_m, tw_m, u, ug, u_p, v, vg, vpt, v_p, & |
---|
| 119 | w, w_p |
---|
| 120 | |
---|
| 121 | USE control_parameters, & |
---|
| 122 | ONLY: cloud_physics, constant_diffusion, cthf, dp_external, & |
---|
| 123 | dp_level_ind_b, dp_smooth_factor, dpdxy, dt_3d, humidity, & |
---|
| 124 | icloud_scheme, inflow_l, intermediate_timestep_count, & |
---|
| 125 | intermediate_timestep_count_max, large_scale_subsidence, & |
---|
| 126 | neutral, nudging, ocean, outflow_l, outflow_s, passive_scalar, & |
---|
| 127 | plant_canopy, precipitation, prho_reference, prho_reference, & |
---|
| 128 | prho_reference, pt_reference, pt_reference, pt_reference, & |
---|
| 129 | radiation, scalar_advec, scalar_advec, simulated_time, & |
---|
| 130 | sloping_surface, timestep_scheme, tsc, use_upstream_for_tke, & |
---|
| 131 | use_upstream_for_tke, use_upstream_for_tke, wall_heatflux, & |
---|
| 132 | wall_nrflux, wall_qflux, wall_qflux, wall_qflux, wall_qrflux, & |
---|
| 133 | wall_salinityflux, ws_scheme_mom, ws_scheme_sca |
---|
[736] | 134 | |
---|
[1320] | 135 | USE cpulog, & |
---|
| 136 | ONLY: cpu_log, log_point |
---|
[736] | 137 | |
---|
[1320] | 138 | USE eqn_state_seawater_mod, & |
---|
| 139 | ONLY: eqn_state_seawater |
---|
| 140 | |
---|
| 141 | USE indices, & |
---|
| 142 | ONLY: i_left, i_right, j_north, j_south, nxl, nxlu, nxr, nyn, nys, & |
---|
| 143 | nysv, nzb_s_inner, nzb_u_inner, nzb_v_inner, nzb_w_inner, nzt |
---|
| 144 | |
---|
| 145 | USE advec_ws, & |
---|
| 146 | ONLY: advec_s_ws, advec_s_ws_acc, advec_u_ws, advec_u_ws_acc, & |
---|
| 147 | advec_v_ws, advec_v_ws_acc, advec_w_ws, advec_w_ws_acc |
---|
| 148 | |
---|
| 149 | USE advec_s_pw_mod, & |
---|
| 150 | ONLY: advec_s_pw |
---|
| 151 | |
---|
| 152 | USE advec_s_up_mod, & |
---|
| 153 | ONLY: advec_s_up |
---|
| 154 | |
---|
| 155 | USE advec_u_pw_mod, & |
---|
| 156 | ONLY: advec_u_pw |
---|
| 157 | |
---|
| 158 | USE advec_u_up_mod, & |
---|
| 159 | ONLY: advec_u_up |
---|
| 160 | |
---|
| 161 | USE advec_v_pw_mod, & |
---|
| 162 | ONLY: advec_v_pw |
---|
| 163 | |
---|
| 164 | USE advec_v_up_mod, & |
---|
| 165 | ONLY: advec_v_up |
---|
| 166 | |
---|
| 167 | USE advec_w_pw_mod, & |
---|
| 168 | ONLY: advec_w_pw |
---|
| 169 | |
---|
| 170 | USE advec_w_up_mod, & |
---|
| 171 | ONLY: advec_w_up |
---|
| 172 | |
---|
| 173 | USE buoyancy_mod, & |
---|
| 174 | ONLY: buoyancy, buoyancy_acc |
---|
| 175 | |
---|
| 176 | USE calc_precipitation_mod, & |
---|
| 177 | ONLY: calc_precipitation |
---|
| 178 | |
---|
| 179 | USE calc_radiation_mod, & |
---|
| 180 | ONLY: calc_radiation |
---|
| 181 | |
---|
| 182 | USE coriolis_mod, & |
---|
| 183 | ONLY: coriolis, coriolis_acc |
---|
| 184 | |
---|
| 185 | USE diffusion_e_mod, & |
---|
| 186 | ONLY: diffusion_e, diffusion_e_acc |
---|
| 187 | |
---|
| 188 | USE diffusion_s_mod, & |
---|
| 189 | ONLY: diffusion_s, diffusion_s_acc |
---|
| 190 | |
---|
| 191 | USE diffusion_u_mod, & |
---|
| 192 | ONLY: diffusion_u, diffusion_u_acc |
---|
| 193 | |
---|
| 194 | USE diffusion_v_mod, & |
---|
| 195 | ONLY: diffusion_v, diffusion_v_acc |
---|
| 196 | |
---|
| 197 | USE diffusion_w_mod, & |
---|
| 198 | ONLY: diffusion_w, diffusion_w_acc |
---|
| 199 | |
---|
| 200 | USE impact_of_latent_heat_mod, & |
---|
| 201 | ONLY: impact_of_latent_heat |
---|
| 202 | |
---|
| 203 | USE kinds |
---|
| 204 | |
---|
| 205 | USE microphysics_mod, & |
---|
| 206 | ONLY: microphysics_control |
---|
| 207 | |
---|
| 208 | USE nudge_mod, & |
---|
| 209 | ONLY: nudge |
---|
| 210 | |
---|
| 211 | USE plant_canopy_model_mod, & |
---|
| 212 | ONLY: plant_canopy_model |
---|
| 213 | |
---|
| 214 | USE production_e_mod, & |
---|
| 215 | ONLY: production_e, production_e_acc |
---|
| 216 | |
---|
| 217 | USE subsidence_mod, & |
---|
| 218 | ONLY: subsidence |
---|
| 219 | |
---|
| 220 | USE user_actions_mod, & |
---|
| 221 | ONLY: user_actions |
---|
| 222 | |
---|
| 223 | |
---|
[736] | 224 | PRIVATE |
---|
[1019] | 225 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 226 | prognostic_equations_acc |
---|
[736] | 227 | |
---|
| 228 | INTERFACE prognostic_equations_cache |
---|
| 229 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 230 | END INTERFACE prognostic_equations_cache |
---|
| 231 | |
---|
| 232 | INTERFACE prognostic_equations_vector |
---|
| 233 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 234 | END INTERFACE prognostic_equations_vector |
---|
| 235 | |
---|
[1015] | 236 | INTERFACE prognostic_equations_acc |
---|
| 237 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 238 | END INTERFACE prognostic_equations_acc |
---|
[736] | 239 | |
---|
[1015] | 240 | |
---|
[736] | 241 | CONTAINS |
---|
| 242 | |
---|
| 243 | |
---|
| 244 | SUBROUTINE prognostic_equations_cache |
---|
| 245 | |
---|
| 246 | !------------------------------------------------------------------------------! |
---|
| 247 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 248 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 249 | ! |
---|
| 250 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 251 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 252 | ! these loops. |
---|
| 253 | ! |
---|
| 254 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 255 | !------------------------------------------------------------------------------! |
---|
| 256 | |
---|
| 257 | IMPLICIT NONE |
---|
| 258 | |
---|
[1320] | 259 | INTEGER(iwp) :: i !: |
---|
| 260 | INTEGER(iwp) :: i_omp_start !: |
---|
| 261 | INTEGER(iwp) :: j !: |
---|
| 262 | INTEGER(iwp) :: k !: |
---|
| 263 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
| 264 | INTEGER(iwp) :: tn = 0 !: |
---|
| 265 | |
---|
| 266 | LOGICAL :: loop_start !: |
---|
[736] | 267 | |
---|
| 268 | |
---|
| 269 | ! |
---|
| 270 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 271 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 272 | |
---|
| 273 | ! |
---|
| 274 | !-- Loop over all prognostic equations |
---|
| 275 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 276 | |
---|
| 277 | !$ tn = omp_get_thread_num() |
---|
| 278 | loop_start = .TRUE. |
---|
| 279 | !$OMP DO |
---|
| 280 | DO i = nxl, nxr |
---|
| 281 | |
---|
| 282 | ! |
---|
| 283 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 284 | !-- later in advec_ws |
---|
| 285 | IF ( loop_start ) THEN |
---|
| 286 | loop_start = .FALSE. |
---|
| 287 | i_omp_start = i |
---|
| 288 | ENDIF |
---|
| 289 | |
---|
| 290 | DO j = nys, nyn |
---|
| 291 | ! |
---|
| 292 | !-- Tendency terms for u-velocity component |
---|
| 293 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 294 | |
---|
| 295 | tend(:,j,i) = 0.0 |
---|
[1001] | 296 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 297 | IF ( ws_scheme_mom ) THEN |
---|
[978] | 298 | IF ( ( inflow_l .OR. outflow_l ) .AND. i_omp_start == nxl ) THEN |
---|
[736] | 299 | CALL advec_u_ws( i, j, i_omp_start + 1, tn ) |
---|
| 300 | ELSE |
---|
| 301 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
| 302 | ENDIF |
---|
| 303 | ELSE |
---|
| 304 | CALL advec_u_pw( i, j ) |
---|
| 305 | ENDIF |
---|
| 306 | ELSE |
---|
| 307 | CALL advec_u_up( i, j ) |
---|
| 308 | ENDIF |
---|
[1001] | 309 | CALL diffusion_u( i, j ) |
---|
[736] | 310 | CALL coriolis( i, j, 1 ) |
---|
[940] | 311 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 312 | CALL buoyancy( i, j, pt, 1 ) |
---|
[940] | 313 | ENDIF |
---|
[736] | 314 | |
---|
| 315 | ! |
---|
| 316 | !-- Drag by plant canopy |
---|
| 317 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 318 | |
---|
| 319 | ! |
---|
| 320 | !-- External pressure gradient |
---|
| 321 | IF ( dp_external ) THEN |
---|
| 322 | DO k = dp_level_ind_b+1, nzt |
---|
| 323 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 324 | ENDDO |
---|
| 325 | ENDIF |
---|
| 326 | |
---|
[1241] | 327 | ! |
---|
| 328 | !-- Nudging |
---|
| 329 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
| 330 | |
---|
[736] | 331 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 332 | ! |
---|
| 333 | !-- Prognostic equation for u-velocity component |
---|
| 334 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 335 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 336 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 337 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 338 | ENDDO |
---|
| 339 | |
---|
| 340 | ! |
---|
| 341 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 342 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 343 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 344 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 345 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 346 | ENDDO |
---|
| 347 | ELSEIF ( intermediate_timestep_count < & |
---|
| 348 | intermediate_timestep_count_max ) THEN |
---|
| 349 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 350 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 351 | ENDDO |
---|
| 352 | ENDIF |
---|
| 353 | ENDIF |
---|
| 354 | |
---|
| 355 | ENDIF |
---|
| 356 | |
---|
| 357 | ! |
---|
| 358 | !-- Tendency terms for v-velocity component |
---|
| 359 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 360 | |
---|
| 361 | tend(:,j,i) = 0.0 |
---|
[1001] | 362 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 363 | IF ( ws_scheme_mom ) THEN |
---|
| 364 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 365 | ELSE |
---|
| 366 | CALL advec_v_pw( i, j ) |
---|
| 367 | ENDIF |
---|
| 368 | ELSE |
---|
| 369 | CALL advec_v_up( i, j ) |
---|
| 370 | ENDIF |
---|
[1001] | 371 | CALL diffusion_v( i, j ) |
---|
[736] | 372 | CALL coriolis( i, j, 2 ) |
---|
| 373 | |
---|
| 374 | ! |
---|
| 375 | !-- Drag by plant canopy |
---|
| 376 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 377 | |
---|
| 378 | ! |
---|
| 379 | !-- External pressure gradient |
---|
| 380 | IF ( dp_external ) THEN |
---|
| 381 | DO k = dp_level_ind_b+1, nzt |
---|
| 382 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 383 | ENDDO |
---|
| 384 | ENDIF |
---|
| 385 | |
---|
[1241] | 386 | ! |
---|
| 387 | !-- Nudging |
---|
| 388 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
| 389 | |
---|
[736] | 390 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 391 | ! |
---|
| 392 | !-- Prognostic equation for v-velocity component |
---|
| 393 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 394 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 395 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 396 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 397 | ENDDO |
---|
| 398 | |
---|
| 399 | ! |
---|
| 400 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 401 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 402 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 403 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 404 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 405 | ENDDO |
---|
| 406 | ELSEIF ( intermediate_timestep_count < & |
---|
| 407 | intermediate_timestep_count_max ) THEN |
---|
| 408 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 409 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 410 | ENDDO |
---|
| 411 | ENDIF |
---|
| 412 | ENDIF |
---|
| 413 | |
---|
| 414 | ENDIF |
---|
| 415 | |
---|
| 416 | ! |
---|
| 417 | !-- Tendency terms for w-velocity component |
---|
| 418 | tend(:,j,i) = 0.0 |
---|
[1001] | 419 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 420 | IF ( ws_scheme_mom ) THEN |
---|
| 421 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 422 | ELSE |
---|
| 423 | CALL advec_w_pw( i, j ) |
---|
| 424 | END IF |
---|
| 425 | ELSE |
---|
| 426 | CALL advec_w_up( i, j ) |
---|
| 427 | ENDIF |
---|
[1001] | 428 | CALL diffusion_w( i, j ) |
---|
[736] | 429 | CALL coriolis( i, j, 3 ) |
---|
[940] | 430 | |
---|
| 431 | IF ( .NOT. neutral ) THEN |
---|
| 432 | IF ( ocean ) THEN |
---|
[1179] | 433 | CALL buoyancy( i, j, rho, 3 ) |
---|
[736] | 434 | ELSE |
---|
[940] | 435 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 436 | CALL buoyancy( i, j, pt, 3 ) |
---|
[940] | 437 | ELSE |
---|
[1179] | 438 | CALL buoyancy( i, j, vpt, 3 ) |
---|
[940] | 439 | ENDIF |
---|
[736] | 440 | ENDIF |
---|
| 441 | ENDIF |
---|
| 442 | |
---|
| 443 | ! |
---|
| 444 | !-- Drag by plant canopy |
---|
| 445 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 446 | |
---|
| 447 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 448 | |
---|
| 449 | ! |
---|
| 450 | !-- Prognostic equation for w-velocity component |
---|
| 451 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 452 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 453 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 454 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 455 | ENDDO |
---|
| 456 | |
---|
| 457 | ! |
---|
| 458 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 459 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 460 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 461 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 462 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 463 | ENDDO |
---|
| 464 | ELSEIF ( intermediate_timestep_count < & |
---|
| 465 | intermediate_timestep_count_max ) THEN |
---|
| 466 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 467 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 468 | ENDDO |
---|
| 469 | ENDIF |
---|
| 470 | ENDIF |
---|
| 471 | ! |
---|
[1115] | 472 | !-- If required, calculate tendencies for total water content, liquid water |
---|
| 473 | !-- potential temperature, rain water content and rain drop concentration |
---|
| 474 | IF ( cloud_physics .AND. icloud_scheme == 0 ) CALL microphysics_control( i, j ) |
---|
[1053] | 475 | ! |
---|
[940] | 476 | !-- If required, compute prognostic equation for potential temperature |
---|
| 477 | IF ( .NOT. neutral ) THEN |
---|
| 478 | ! |
---|
| 479 | !-- Tendency terms for potential temperature |
---|
| 480 | tend(:,j,i) = 0.0 |
---|
[1001] | 481 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 482 | IF ( ws_scheme_sca ) THEN |
---|
| 483 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 484 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 485 | ELSE |
---|
| 486 | CALL advec_s_pw( i, j, pt ) |
---|
| 487 | ENDIF |
---|
| 488 | ELSE |
---|
| 489 | CALL advec_s_up( i, j, pt ) |
---|
| 490 | ENDIF |
---|
[1001] | 491 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 492 | |
---|
| 493 | ! |
---|
[940] | 494 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 495 | !-- processes |
---|
| 496 | IF ( radiation ) THEN |
---|
| 497 | CALL calc_radiation( i, j ) |
---|
| 498 | ENDIF |
---|
[736] | 499 | |
---|
[1106] | 500 | ! |
---|
[1053] | 501 | !-- Using microphysical tendencies (latent heat) |
---|
| 502 | IF ( cloud_physics ) THEN |
---|
| 503 | IF ( icloud_scheme == 0 ) THEN |
---|
| 504 | tend(:,j,i) = tend(:,j,i) + tend_pt(:,j,i) |
---|
[1106] | 505 | ELSEIF ( icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1053] | 506 | CALL impact_of_latent_heat( i, j ) |
---|
| 507 | ENDIF |
---|
[940] | 508 | ENDIF |
---|
[736] | 509 | |
---|
| 510 | ! |
---|
[940] | 511 | !-- Consideration of heat sources within the plant canopy |
---|
[1106] | 512 | IF ( plant_canopy .AND. cthf /= 0.0 ) THEN |
---|
[940] | 513 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 514 | ENDIF |
---|
[736] | 515 | |
---|
[940] | 516 | ! |
---|
[1106] | 517 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
[940] | 518 | IF ( large_scale_subsidence ) THEN |
---|
| 519 | CALL subsidence( i, j, tend, pt, pt_init ) |
---|
| 520 | ENDIF |
---|
[736] | 521 | |
---|
[1241] | 522 | ! |
---|
| 523 | !-- Nudging |
---|
| 524 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
| 525 | |
---|
[940] | 526 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 527 | |
---|
| 528 | ! |
---|
[940] | 529 | !-- Prognostic equation for potential temperature |
---|
| 530 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 531 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 532 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 533 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 534 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 535 | ENDDO |
---|
[736] | 536 | |
---|
| 537 | ! |
---|
[940] | 538 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 539 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 540 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 541 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 542 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 543 | ENDDO |
---|
| 544 | ELSEIF ( intermediate_timestep_count < & |
---|
| 545 | intermediate_timestep_count_max ) THEN |
---|
| 546 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 547 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 548 | 5.3125 * tpt_m(k,j,i) |
---|
| 549 | ENDDO |
---|
| 550 | ENDIF |
---|
[736] | 551 | ENDIF |
---|
[940] | 552 | |
---|
[736] | 553 | ENDIF |
---|
| 554 | |
---|
| 555 | ! |
---|
| 556 | !-- If required, compute prognostic equation for salinity |
---|
| 557 | IF ( ocean ) THEN |
---|
| 558 | |
---|
| 559 | ! |
---|
| 560 | !-- Tendency-terms for salinity |
---|
| 561 | tend(:,j,i) = 0.0 |
---|
[1001] | 562 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 563 | THEN |
---|
| 564 | IF ( ws_scheme_sca ) THEN |
---|
| 565 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 566 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 567 | ELSE |
---|
| 568 | CALL advec_s_pw( i, j, sa ) |
---|
| 569 | ENDIF |
---|
| 570 | ELSE |
---|
| 571 | CALL advec_s_up( i, j, sa ) |
---|
| 572 | ENDIF |
---|
[1001] | 573 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 574 | |
---|
| 575 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 576 | |
---|
| 577 | ! |
---|
| 578 | !-- Prognostic equation for salinity |
---|
| 579 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 580 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 581 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 582 | - tsc(5) * rdf_sc(k) * & |
---|
| 583 | ( sa(k,j,i) - sa_init(k) ) |
---|
[736] | 584 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 585 | ENDDO |
---|
| 586 | |
---|
| 587 | ! |
---|
| 588 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 589 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 590 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 591 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 592 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 593 | ENDDO |
---|
| 594 | ELSEIF ( intermediate_timestep_count < & |
---|
| 595 | intermediate_timestep_count_max ) THEN |
---|
| 596 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 597 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 598 | 5.3125 * tsa_m(k,j,i) |
---|
| 599 | ENDDO |
---|
| 600 | ENDIF |
---|
| 601 | ENDIF |
---|
| 602 | |
---|
| 603 | ! |
---|
| 604 | !-- Calculate density by the equation of state for seawater |
---|
| 605 | CALL eqn_state_seawater( i, j ) |
---|
| 606 | |
---|
| 607 | ENDIF |
---|
| 608 | |
---|
| 609 | ! |
---|
| 610 | !-- If required, compute prognostic equation for total water content / |
---|
| 611 | !-- scalar |
---|
| 612 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 613 | |
---|
| 614 | ! |
---|
| 615 | !-- Tendency-terms for total water content / scalar |
---|
| 616 | tend(:,j,i) = 0.0 |
---|
[1001] | 617 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 618 | THEN |
---|
| 619 | IF ( ws_scheme_sca ) THEN |
---|
| 620 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 621 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 622 | ELSE |
---|
| 623 | CALL advec_s_pw( i, j, q ) |
---|
| 624 | ENDIF |
---|
| 625 | ELSE |
---|
| 626 | CALL advec_s_up( i, j, q ) |
---|
| 627 | ENDIF |
---|
[1001] | 628 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[1053] | 629 | |
---|
[736] | 630 | ! |
---|
[1053] | 631 | !-- Using microphysical tendencies |
---|
| 632 | IF ( cloud_physics ) THEN |
---|
| 633 | IF ( icloud_scheme == 0 ) THEN |
---|
| 634 | tend(:,j,i) = tend(:,j,i) + tend_q(:,j,i) |
---|
[1106] | 635 | ELSEIF ( icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1053] | 636 | CALL calc_precipitation( i, j ) |
---|
| 637 | ENDIF |
---|
[736] | 638 | ENDIF |
---|
| 639 | ! |
---|
| 640 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1106] | 641 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
[736] | 642 | |
---|
[1053] | 643 | ! |
---|
[736] | 644 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[940] | 645 | IF ( large_scale_subsidence ) THEN |
---|
| 646 | CALL subsidence( i, j, tend, q, q_init ) |
---|
[736] | 647 | ENDIF |
---|
| 648 | |
---|
[1241] | 649 | ! |
---|
| 650 | !-- Nudging |
---|
| 651 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
| 652 | |
---|
[736] | 653 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 654 | |
---|
| 655 | ! |
---|
| 656 | !-- Prognostic equation for total water content / scalar |
---|
| 657 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 658 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 659 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 660 | - tsc(5) * rdf_sc(k) * & |
---|
| 661 | ( q(k,j,i) - q_init(k) ) |
---|
[736] | 662 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 663 | ENDDO |
---|
| 664 | |
---|
| 665 | ! |
---|
| 666 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 667 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 668 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 669 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 670 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 671 | ENDDO |
---|
| 672 | ELSEIF ( intermediate_timestep_count < & |
---|
| 673 | intermediate_timestep_count_max ) THEN |
---|
| 674 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 675 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 676 | 5.3125 * tq_m(k,j,i) |
---|
| 677 | ENDDO |
---|
| 678 | ENDIF |
---|
| 679 | ENDIF |
---|
| 680 | |
---|
[1053] | 681 | ! |
---|
| 682 | !-- If required, calculate prognostic equations for rain water content |
---|
| 683 | !-- and rain drop concentration |
---|
[1115] | 684 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 685 | precipitation ) THEN |
---|
[1053] | 686 | ! |
---|
| 687 | !-- Calculate prognostic equation for rain water content |
---|
| 688 | tend(:,j,i) = 0.0 |
---|
| 689 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 690 | THEN |
---|
| 691 | IF ( ws_scheme_sca ) THEN |
---|
| 692 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 693 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 694 | i_omp_start, tn ) |
---|
| 695 | ELSE |
---|
| 696 | CALL advec_s_pw( i, j, qr ) |
---|
| 697 | ENDIF |
---|
| 698 | ELSE |
---|
| 699 | CALL advec_s_up( i, j, qr ) |
---|
| 700 | ENDIF |
---|
| 701 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 702 | ! |
---|
| 703 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
| 704 | !-- evaporation; if required: sedimentation) |
---|
| 705 | tend(:,j,i) = tend(:,j,i) + tend_qr(:,j,i) |
---|
| 706 | |
---|
[1115] | 707 | CALL user_actions( i, j, 'qr-tendency' ) |
---|
[1053] | 708 | ! |
---|
| 709 | !-- Prognostic equation for rain water content |
---|
| 710 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 711 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 712 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 713 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 714 | IF ( qr_p(k,j,i) < 0.0 ) qr_p(k,j,i) = 0.0 |
---|
[1053] | 715 | ENDDO |
---|
| 716 | ! |
---|
| 717 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 718 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 719 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 720 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 721 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 722 | ENDDO |
---|
| 723 | ELSEIF ( intermediate_timestep_count < & |
---|
| 724 | intermediate_timestep_count_max ) THEN |
---|
| 725 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 726 | tqr_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 727 | 5.3125 * tqr_m(k,j,i) |
---|
| 728 | ENDDO |
---|
| 729 | ENDIF |
---|
| 730 | ENDIF |
---|
| 731 | |
---|
| 732 | ! |
---|
| 733 | !-- Calculate prognostic equation for rain drop concentration. |
---|
| 734 | tend(:,j,i) = 0.0 |
---|
| 735 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 736 | IF ( ws_scheme_sca ) THEN |
---|
[1115] | 737 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 738 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 739 | i_omp_start, tn ) |
---|
[1053] | 740 | ELSE |
---|
| 741 | CALL advec_s_pw( i, j, nr ) |
---|
| 742 | ENDIF |
---|
| 743 | ELSE |
---|
| 744 | CALL advec_s_up( i, j, nr ) |
---|
| 745 | ENDIF |
---|
| 746 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
[1115] | 747 | ! |
---|
[1053] | 748 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
| 749 | !-- selfcollection, breakup, evaporation; |
---|
| 750 | !-- if required: sedimentation) |
---|
| 751 | tend(:,j,i) = tend(:,j,i) + tend_nr(:,j,i) |
---|
| 752 | |
---|
[1115] | 753 | CALL user_actions( i, j, 'nr-tendency' ) |
---|
[1053] | 754 | ! |
---|
| 755 | !-- Prognostic equation for rain drop concentration |
---|
| 756 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 757 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 758 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 759 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 760 | IF ( nr_p(k,j,i) < 0.0 ) nr_p(k,j,i) = 0.0 |
---|
[1053] | 761 | ENDDO |
---|
| 762 | ! |
---|
| 763 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 764 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 765 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 766 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 767 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 768 | ENDDO |
---|
| 769 | ELSEIF ( intermediate_timestep_count < & |
---|
| 770 | intermediate_timestep_count_max ) THEN |
---|
| 771 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 772 | tnr_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 773 | 5.3125 * tnr_m(k,j,i) |
---|
| 774 | ENDDO |
---|
| 775 | ENDIF |
---|
| 776 | ENDIF |
---|
| 777 | |
---|
| 778 | ENDIF |
---|
| 779 | |
---|
[1128] | 780 | ENDIF |
---|
| 781 | |
---|
[736] | 782 | ! |
---|
| 783 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 784 | !-- energy (TKE) |
---|
| 785 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 786 | |
---|
| 787 | ! |
---|
| 788 | !-- Tendency-terms for TKE |
---|
| 789 | tend(:,j,i) = 0.0 |
---|
[1330] | 790 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 791 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 792 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 793 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 794 | ELSE |
---|
| 795 | CALL advec_s_pw( i, j, e ) |
---|
| 796 | ENDIF |
---|
| 797 | ELSE |
---|
| 798 | CALL advec_s_up( i, j, e ) |
---|
| 799 | ENDIF |
---|
[1001] | 800 | IF ( .NOT. humidity ) THEN |
---|
| 801 | IF ( ocean ) THEN |
---|
| 802 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 803 | ELSE |
---|
[1001] | 804 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 805 | ENDIF |
---|
| 806 | ELSE |
---|
[1001] | 807 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 808 | ENDIF |
---|
| 809 | CALL production_e( i, j ) |
---|
| 810 | |
---|
| 811 | ! |
---|
| 812 | !-- Additional sink term for flows through plant canopies |
---|
| 813 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 814 | |
---|
| 815 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 816 | |
---|
| 817 | ! |
---|
| 818 | !-- Prognostic equation for TKE. |
---|
| 819 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 820 | !-- reasons in the course of the integration. In such cases the old |
---|
| 821 | !-- TKE value is reduced by 90%. |
---|
| 822 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 823 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 824 | tsc(3) * te_m(k,j,i) ) |
---|
[736] | 825 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 826 | ENDDO |
---|
| 827 | |
---|
| 828 | ! |
---|
| 829 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 830 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 831 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 832 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 833 | te_m(k,j,i) = tend(k,j,i) |
---|
| 834 | ENDDO |
---|
| 835 | ELSEIF ( intermediate_timestep_count < & |
---|
| 836 | intermediate_timestep_count_max ) THEN |
---|
| 837 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 838 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 839 | 5.3125 * te_m(k,j,i) |
---|
| 840 | ENDDO |
---|
| 841 | ENDIF |
---|
| 842 | ENDIF |
---|
| 843 | |
---|
| 844 | ENDIF ! TKE equation |
---|
| 845 | |
---|
| 846 | ENDDO |
---|
| 847 | ENDDO |
---|
| 848 | !$OMP END PARALLEL |
---|
| 849 | |
---|
| 850 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 851 | |
---|
| 852 | |
---|
| 853 | END SUBROUTINE prognostic_equations_cache |
---|
| 854 | |
---|
| 855 | |
---|
| 856 | SUBROUTINE prognostic_equations_vector |
---|
| 857 | |
---|
| 858 | !------------------------------------------------------------------------------! |
---|
| 859 | ! Version for vector machines |
---|
| 860 | !------------------------------------------------------------------------------! |
---|
| 861 | |
---|
| 862 | IMPLICIT NONE |
---|
| 863 | |
---|
[1320] | 864 | INTEGER(iwp) :: i !: |
---|
| 865 | INTEGER(iwp) :: j !: |
---|
| 866 | INTEGER(iwp) :: k !: |
---|
[736] | 867 | |
---|
[1320] | 868 | REAL(wp) :: sbt !: |
---|
[736] | 869 | |
---|
[1320] | 870 | |
---|
[736] | 871 | ! |
---|
| 872 | !-- u-velocity component |
---|
| 873 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 874 | |
---|
[1001] | 875 | tend = 0.0 |
---|
| 876 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 877 | IF ( ws_scheme_mom ) THEN |
---|
| 878 | CALL advec_u_ws |
---|
| 879 | ELSE |
---|
| 880 | CALL advec_u_pw |
---|
| 881 | ENDIF |
---|
| 882 | ELSE |
---|
[1001] | 883 | CALL advec_u_up |
---|
[736] | 884 | ENDIF |
---|
[1001] | 885 | CALL diffusion_u |
---|
[736] | 886 | CALL coriolis( 1 ) |
---|
[940] | 887 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 888 | CALL buoyancy( pt, 1 ) |
---|
[940] | 889 | ENDIF |
---|
[736] | 890 | |
---|
| 891 | ! |
---|
| 892 | !-- Drag by plant canopy |
---|
| 893 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 894 | |
---|
| 895 | ! |
---|
| 896 | !-- External pressure gradient |
---|
| 897 | IF ( dp_external ) THEN |
---|
| 898 | DO i = nxlu, nxr |
---|
| 899 | DO j = nys, nyn |
---|
| 900 | DO k = dp_level_ind_b+1, nzt |
---|
| 901 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 902 | ENDDO |
---|
| 903 | ENDDO |
---|
| 904 | ENDDO |
---|
| 905 | ENDIF |
---|
| 906 | |
---|
[1241] | 907 | ! |
---|
| 908 | !-- Nudging |
---|
| 909 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 910 | |
---|
[736] | 911 | CALL user_actions( 'u-tendency' ) |
---|
| 912 | |
---|
| 913 | ! |
---|
| 914 | !-- Prognostic equation for u-velocity component |
---|
| 915 | DO i = nxlu, nxr |
---|
| 916 | DO j = nys, nyn |
---|
| 917 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 918 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 919 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 920 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 921 | ENDDO |
---|
| 922 | ENDDO |
---|
| 923 | ENDDO |
---|
| 924 | |
---|
| 925 | ! |
---|
| 926 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 927 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 928 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 929 | DO i = nxlu, nxr |
---|
| 930 | DO j = nys, nyn |
---|
| 931 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 932 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 933 | ENDDO |
---|
| 934 | ENDDO |
---|
| 935 | ENDDO |
---|
| 936 | ELSEIF ( intermediate_timestep_count < & |
---|
| 937 | intermediate_timestep_count_max ) THEN |
---|
| 938 | DO i = nxlu, nxr |
---|
| 939 | DO j = nys, nyn |
---|
| 940 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 941 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 942 | ENDDO |
---|
| 943 | ENDDO |
---|
| 944 | ENDDO |
---|
| 945 | ENDIF |
---|
| 946 | ENDIF |
---|
| 947 | |
---|
| 948 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 949 | |
---|
| 950 | ! |
---|
| 951 | !-- v-velocity component |
---|
| 952 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 953 | |
---|
[1001] | 954 | tend = 0.0 |
---|
| 955 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 956 | IF ( ws_scheme_mom ) THEN |
---|
| 957 | CALL advec_v_ws |
---|
| 958 | ELSE |
---|
| 959 | CALL advec_v_pw |
---|
| 960 | END IF |
---|
| 961 | ELSE |
---|
[1001] | 962 | CALL advec_v_up |
---|
[736] | 963 | ENDIF |
---|
[1001] | 964 | CALL diffusion_v |
---|
[736] | 965 | CALL coriolis( 2 ) |
---|
| 966 | |
---|
| 967 | ! |
---|
| 968 | !-- Drag by plant canopy |
---|
| 969 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 970 | |
---|
| 971 | ! |
---|
| 972 | !-- External pressure gradient |
---|
| 973 | IF ( dp_external ) THEN |
---|
| 974 | DO i = nxl, nxr |
---|
| 975 | DO j = nysv, nyn |
---|
| 976 | DO k = dp_level_ind_b+1, nzt |
---|
| 977 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 978 | ENDDO |
---|
| 979 | ENDDO |
---|
| 980 | ENDDO |
---|
| 981 | ENDIF |
---|
| 982 | |
---|
[1241] | 983 | ! |
---|
| 984 | !-- Nudging |
---|
| 985 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 986 | |
---|
[736] | 987 | CALL user_actions( 'v-tendency' ) |
---|
| 988 | |
---|
| 989 | ! |
---|
| 990 | !-- Prognostic equation for v-velocity component |
---|
| 991 | DO i = nxl, nxr |
---|
| 992 | DO j = nysv, nyn |
---|
| 993 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 994 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 995 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 996 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 997 | ENDDO |
---|
| 998 | ENDDO |
---|
| 999 | ENDDO |
---|
| 1000 | |
---|
| 1001 | ! |
---|
| 1002 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1003 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1004 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1005 | DO i = nxl, nxr |
---|
| 1006 | DO j = nysv, nyn |
---|
| 1007 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1008 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1009 | ENDDO |
---|
| 1010 | ENDDO |
---|
| 1011 | ENDDO |
---|
| 1012 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1013 | intermediate_timestep_count_max ) THEN |
---|
| 1014 | DO i = nxl, nxr |
---|
| 1015 | DO j = nysv, nyn |
---|
| 1016 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1017 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1018 | ENDDO |
---|
| 1019 | ENDDO |
---|
| 1020 | ENDDO |
---|
| 1021 | ENDIF |
---|
| 1022 | ENDIF |
---|
| 1023 | |
---|
| 1024 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1025 | |
---|
| 1026 | ! |
---|
| 1027 | !-- w-velocity component |
---|
| 1028 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1029 | |
---|
[1001] | 1030 | tend = 0.0 |
---|
| 1031 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1032 | IF ( ws_scheme_mom ) THEN |
---|
| 1033 | CALL advec_w_ws |
---|
| 1034 | ELSE |
---|
| 1035 | CALL advec_w_pw |
---|
| 1036 | ENDIF |
---|
| 1037 | ELSE |
---|
[1001] | 1038 | CALL advec_w_up |
---|
[736] | 1039 | ENDIF |
---|
[1001] | 1040 | CALL diffusion_w |
---|
[736] | 1041 | CALL coriolis( 3 ) |
---|
[940] | 1042 | |
---|
| 1043 | IF ( .NOT. neutral ) THEN |
---|
| 1044 | IF ( ocean ) THEN |
---|
[1179] | 1045 | CALL buoyancy( rho, 3 ) |
---|
[736] | 1046 | ELSE |
---|
[940] | 1047 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1048 | CALL buoyancy( pt, 3 ) |
---|
[940] | 1049 | ELSE |
---|
[1179] | 1050 | CALL buoyancy( vpt, 3 ) |
---|
[940] | 1051 | ENDIF |
---|
[736] | 1052 | ENDIF |
---|
| 1053 | ENDIF |
---|
| 1054 | |
---|
| 1055 | ! |
---|
| 1056 | !-- Drag by plant canopy |
---|
| 1057 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1058 | |
---|
| 1059 | CALL user_actions( 'w-tendency' ) |
---|
| 1060 | |
---|
| 1061 | ! |
---|
| 1062 | !-- Prognostic equation for w-velocity component |
---|
| 1063 | DO i = nxl, nxr |
---|
| 1064 | DO j = nys, nyn |
---|
| 1065 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 1066 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1067 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1068 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 1069 | ENDDO |
---|
| 1070 | ENDDO |
---|
| 1071 | ENDDO |
---|
| 1072 | |
---|
| 1073 | ! |
---|
| 1074 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1075 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1076 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1077 | DO i = nxl, nxr |
---|
| 1078 | DO j = nys, nyn |
---|
| 1079 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1080 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1081 | ENDDO |
---|
| 1082 | ENDDO |
---|
| 1083 | ENDDO |
---|
| 1084 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1085 | intermediate_timestep_count_max ) THEN |
---|
| 1086 | DO i = nxl, nxr |
---|
| 1087 | DO j = nys, nyn |
---|
| 1088 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1089 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1090 | ENDDO |
---|
| 1091 | ENDDO |
---|
| 1092 | ENDDO |
---|
| 1093 | ENDIF |
---|
| 1094 | ENDIF |
---|
| 1095 | |
---|
| 1096 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1097 | |
---|
[940] | 1098 | |
---|
[736] | 1099 | ! |
---|
[940] | 1100 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1101 | IF ( .NOT. neutral ) THEN |
---|
[736] | 1102 | |
---|
[940] | 1103 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1104 | |
---|
[736] | 1105 | ! |
---|
[940] | 1106 | !-- pt-tendency terms with communication |
---|
| 1107 | sbt = tsc(2) |
---|
| 1108 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 1109 | |
---|
[940] | 1110 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 1111 | ! |
---|
[1001] | 1112 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[940] | 1113 | sbt = 1.0 |
---|
| 1114 | ENDIF |
---|
[736] | 1115 | tend = 0.0 |
---|
[940] | 1116 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 1117 | |
---|
[736] | 1118 | ENDIF |
---|
[940] | 1119 | |
---|
| 1120 | ! |
---|
| 1121 | !-- pt-tendency terms with no communication |
---|
[1001] | 1122 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1123 | tend = 0.0 |
---|
| 1124 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 1125 | IF ( ws_scheme_sca ) THEN |
---|
| 1126 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1127 | ELSE |
---|
| 1128 | CALL advec_s_pw( pt ) |
---|
| 1129 | ENDIF |
---|
| 1130 | ELSE |
---|
[1001] | 1131 | CALL advec_s_up( pt ) |
---|
[940] | 1132 | ENDIF |
---|
[736] | 1133 | ENDIF |
---|
| 1134 | |
---|
[1001] | 1135 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1136 | |
---|
[736] | 1137 | ! |
---|
[940] | 1138 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1139 | IF ( radiation ) THEN |
---|
| 1140 | CALL calc_radiation |
---|
| 1141 | ENDIF |
---|
[736] | 1142 | |
---|
| 1143 | ! |
---|
[940] | 1144 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1145 | IF ( precipitation ) THEN |
---|
| 1146 | CALL impact_of_latent_heat |
---|
| 1147 | ENDIF |
---|
[736] | 1148 | |
---|
| 1149 | ! |
---|
[940] | 1150 | !-- Consideration of heat sources within the plant canopy |
---|
| 1151 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1152 | CALL plant_canopy_model( 4 ) |
---|
| 1153 | ENDIF |
---|
[736] | 1154 | |
---|
[940] | 1155 | ! |
---|
| 1156 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1157 | IF ( large_scale_subsidence ) THEN |
---|
| 1158 | CALL subsidence( tend, pt, pt_init ) |
---|
| 1159 | ENDIF |
---|
[736] | 1160 | |
---|
[1241] | 1161 | ! |
---|
| 1162 | !-- Nudging |
---|
| 1163 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1164 | |
---|
[940] | 1165 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 1166 | |
---|
| 1167 | ! |
---|
[940] | 1168 | !-- Prognostic equation for potential temperature |
---|
| 1169 | DO i = nxl, nxr |
---|
| 1170 | DO j = nys, nyn |
---|
| 1171 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1172 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1173 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1174 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1175 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 1176 | ENDDO |
---|
[736] | 1177 | ENDDO |
---|
| 1178 | ENDDO |
---|
| 1179 | |
---|
| 1180 | ! |
---|
[940] | 1181 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1182 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1183 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1184 | DO i = nxl, nxr |
---|
| 1185 | DO j = nys, nyn |
---|
| 1186 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1187 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1188 | ENDDO |
---|
[736] | 1189 | ENDDO |
---|
| 1190 | ENDDO |
---|
[940] | 1191 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1192 | intermediate_timestep_count_max ) THEN |
---|
| 1193 | DO i = nxl, nxr |
---|
| 1194 | DO j = nys, nyn |
---|
| 1195 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1196 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1197 | 5.3125 * tpt_m(k,j,i) |
---|
| 1198 | ENDDO |
---|
[736] | 1199 | ENDDO |
---|
| 1200 | ENDDO |
---|
[940] | 1201 | ENDIF |
---|
[736] | 1202 | ENDIF |
---|
[940] | 1203 | |
---|
| 1204 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1205 | |
---|
[736] | 1206 | ENDIF |
---|
| 1207 | |
---|
| 1208 | ! |
---|
| 1209 | !-- If required, compute prognostic equation for salinity |
---|
| 1210 | IF ( ocean ) THEN |
---|
| 1211 | |
---|
| 1212 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1213 | |
---|
| 1214 | ! |
---|
| 1215 | !-- sa-tendency terms with communication |
---|
| 1216 | sbt = tsc(2) |
---|
| 1217 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1218 | |
---|
| 1219 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1220 | ! |
---|
[1001] | 1221 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[736] | 1222 | sbt = 1.0 |
---|
| 1223 | ENDIF |
---|
| 1224 | tend = 0.0 |
---|
| 1225 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1226 | |
---|
[736] | 1227 | ENDIF |
---|
| 1228 | |
---|
| 1229 | ! |
---|
| 1230 | !-- sa-tendency terms with no communication |
---|
[1001] | 1231 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1232 | tend = 0.0 |
---|
| 1233 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1234 | IF ( ws_scheme_sca ) THEN |
---|
| 1235 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1236 | ELSE |
---|
| 1237 | CALL advec_s_pw( sa ) |
---|
| 1238 | ENDIF |
---|
| 1239 | ELSE |
---|
[1001] | 1240 | CALL advec_s_up( sa ) |
---|
[736] | 1241 | ENDIF |
---|
| 1242 | ENDIF |
---|
[1001] | 1243 | |
---|
| 1244 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1245 | |
---|
| 1246 | CALL user_actions( 'sa-tendency' ) |
---|
| 1247 | |
---|
| 1248 | ! |
---|
| 1249 | !-- Prognostic equation for salinity |
---|
| 1250 | DO i = nxl, nxr |
---|
| 1251 | DO j = nys, nyn |
---|
| 1252 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1253 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1254 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1255 | - tsc(5) * rdf_sc(k) * & |
---|
| 1256 | ( sa(k,j,i) - sa_init(k) ) |
---|
[736] | 1257 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1258 | ENDDO |
---|
| 1259 | ENDDO |
---|
| 1260 | ENDDO |
---|
| 1261 | |
---|
| 1262 | ! |
---|
| 1263 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1264 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1265 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1266 | DO i = nxl, nxr |
---|
| 1267 | DO j = nys, nyn |
---|
| 1268 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1269 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1270 | ENDDO |
---|
| 1271 | ENDDO |
---|
| 1272 | ENDDO |
---|
| 1273 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1274 | intermediate_timestep_count_max ) THEN |
---|
| 1275 | DO i = nxl, nxr |
---|
| 1276 | DO j = nys, nyn |
---|
| 1277 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1278 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1279 | 5.3125 * tsa_m(k,j,i) |
---|
| 1280 | ENDDO |
---|
| 1281 | ENDDO |
---|
| 1282 | ENDDO |
---|
| 1283 | ENDIF |
---|
| 1284 | ENDIF |
---|
| 1285 | |
---|
| 1286 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1287 | |
---|
| 1288 | ! |
---|
| 1289 | !-- Calculate density by the equation of state for seawater |
---|
| 1290 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1291 | CALL eqn_state_seawater |
---|
| 1292 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1293 | |
---|
| 1294 | ENDIF |
---|
| 1295 | |
---|
| 1296 | ! |
---|
| 1297 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1298 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1299 | |
---|
| 1300 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1301 | |
---|
| 1302 | ! |
---|
| 1303 | !-- Scalar/q-tendency terms with communication |
---|
| 1304 | sbt = tsc(2) |
---|
| 1305 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1306 | |
---|
| 1307 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1308 | ! |
---|
[1001] | 1309 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[736] | 1310 | sbt = 1.0 |
---|
| 1311 | ENDIF |
---|
| 1312 | tend = 0.0 |
---|
| 1313 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1314 | |
---|
[736] | 1315 | ENDIF |
---|
| 1316 | |
---|
| 1317 | ! |
---|
| 1318 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1319 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1320 | tend = 0.0 |
---|
| 1321 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1322 | IF ( ws_scheme_sca ) THEN |
---|
| 1323 | CALL advec_s_ws( q, 'q' ) |
---|
| 1324 | ELSE |
---|
| 1325 | CALL advec_s_pw( q ) |
---|
| 1326 | ENDIF |
---|
| 1327 | ELSE |
---|
[1001] | 1328 | CALL advec_s_up( q ) |
---|
[736] | 1329 | ENDIF |
---|
| 1330 | ENDIF |
---|
[1001] | 1331 | |
---|
| 1332 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1333 | |
---|
| 1334 | ! |
---|
| 1335 | !-- If required compute decrease of total water content due to |
---|
| 1336 | !-- precipitation |
---|
| 1337 | IF ( precipitation ) THEN |
---|
| 1338 | CALL calc_precipitation |
---|
| 1339 | ENDIF |
---|
| 1340 | |
---|
| 1341 | ! |
---|
| 1342 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1343 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1344 | |
---|
| 1345 | ! |
---|
| 1346 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[940] | 1347 | IF ( large_scale_subsidence ) THEN |
---|
| 1348 | CALL subsidence( tend, q, q_init ) |
---|
[736] | 1349 | ENDIF |
---|
| 1350 | |
---|
[1241] | 1351 | ! |
---|
| 1352 | !-- Nudging |
---|
| 1353 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1354 | |
---|
[736] | 1355 | CALL user_actions( 'q-tendency' ) |
---|
| 1356 | |
---|
| 1357 | ! |
---|
| 1358 | !-- Prognostic equation for total water content / scalar |
---|
| 1359 | DO i = nxl, nxr |
---|
| 1360 | DO j = nys, nyn |
---|
| 1361 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1362 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1363 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1364 | - tsc(5) * rdf_sc(k) * & |
---|
| 1365 | ( q(k,j,i) - q_init(k) ) |
---|
[736] | 1366 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 1367 | ENDDO |
---|
| 1368 | ENDDO |
---|
| 1369 | ENDDO |
---|
| 1370 | |
---|
| 1371 | ! |
---|
| 1372 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1373 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1374 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1375 | DO i = nxl, nxr |
---|
| 1376 | DO j = nys, nyn |
---|
| 1377 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1378 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1379 | ENDDO |
---|
| 1380 | ENDDO |
---|
| 1381 | ENDDO |
---|
| 1382 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1383 | intermediate_timestep_count_max ) THEN |
---|
| 1384 | DO i = nxl, nxr |
---|
| 1385 | DO j = nys, nyn |
---|
| 1386 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1387 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1388 | ENDDO |
---|
| 1389 | ENDDO |
---|
| 1390 | ENDDO |
---|
| 1391 | ENDIF |
---|
| 1392 | ENDIF |
---|
| 1393 | |
---|
| 1394 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1395 | |
---|
| 1396 | ENDIF |
---|
| 1397 | |
---|
| 1398 | ! |
---|
| 1399 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1400 | !-- energy (TKE) |
---|
| 1401 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1402 | |
---|
| 1403 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1404 | |
---|
| 1405 | sbt = tsc(2) |
---|
| 1406 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1407 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1408 | |
---|
| 1409 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1410 | ! |
---|
[1001] | 1411 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[736] | 1412 | sbt = 1.0 |
---|
| 1413 | ENDIF |
---|
| 1414 | tend = 0.0 |
---|
| 1415 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1416 | |
---|
[736] | 1417 | ENDIF |
---|
| 1418 | ENDIF |
---|
| 1419 | |
---|
| 1420 | ! |
---|
| 1421 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1422 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1423 | IF ( use_upstream_for_tke ) THEN |
---|
| 1424 | tend = 0.0 |
---|
| 1425 | CALL advec_s_up( e ) |
---|
| 1426 | ELSE |
---|
[1001] | 1427 | tend = 0.0 |
---|
| 1428 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1429 | IF ( ws_scheme_sca ) THEN |
---|
| 1430 | CALL advec_s_ws( e, 'e' ) |
---|
| 1431 | ELSE |
---|
| 1432 | CALL advec_s_pw( e ) |
---|
| 1433 | ENDIF |
---|
| 1434 | ELSE |
---|
[1001] | 1435 | CALL advec_s_up( e ) |
---|
[736] | 1436 | ENDIF |
---|
| 1437 | ENDIF |
---|
[1001] | 1438 | ENDIF |
---|
| 1439 | |
---|
| 1440 | IF ( .NOT. humidity ) THEN |
---|
| 1441 | IF ( ocean ) THEN |
---|
| 1442 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1443 | ELSE |
---|
[1001] | 1444 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1445 | ENDIF |
---|
[1001] | 1446 | ELSE |
---|
| 1447 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1448 | ENDIF |
---|
[1001] | 1449 | |
---|
[736] | 1450 | CALL production_e |
---|
| 1451 | |
---|
| 1452 | ! |
---|
| 1453 | !-- Additional sink term for flows through plant canopies |
---|
| 1454 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1455 | CALL user_actions( 'e-tendency' ) |
---|
| 1456 | |
---|
| 1457 | ! |
---|
| 1458 | !-- Prognostic equation for TKE. |
---|
| 1459 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1460 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1461 | !-- value is reduced by 90%. |
---|
| 1462 | DO i = nxl, nxr |
---|
| 1463 | DO j = nys, nyn |
---|
| 1464 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1465 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1466 | tsc(3) * te_m(k,j,i) ) |
---|
[736] | 1467 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1468 | ENDDO |
---|
| 1469 | ENDDO |
---|
| 1470 | ENDDO |
---|
| 1471 | |
---|
| 1472 | ! |
---|
| 1473 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1474 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1475 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1476 | DO i = nxl, nxr |
---|
| 1477 | DO j = nys, nyn |
---|
| 1478 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1479 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1480 | ENDDO |
---|
| 1481 | ENDDO |
---|
| 1482 | ENDDO |
---|
| 1483 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1484 | intermediate_timestep_count_max ) THEN |
---|
| 1485 | DO i = nxl, nxr |
---|
| 1486 | DO j = nys, nyn |
---|
| 1487 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1488 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 1489 | ENDDO |
---|
| 1490 | ENDDO |
---|
| 1491 | ENDDO |
---|
| 1492 | ENDIF |
---|
| 1493 | ENDIF |
---|
| 1494 | |
---|
| 1495 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1496 | |
---|
| 1497 | ENDIF |
---|
| 1498 | |
---|
| 1499 | |
---|
| 1500 | END SUBROUTINE prognostic_equations_vector |
---|
| 1501 | |
---|
| 1502 | |
---|
[1015] | 1503 | SUBROUTINE prognostic_equations_acc |
---|
| 1504 | |
---|
| 1505 | !------------------------------------------------------------------------------! |
---|
| 1506 | ! Version for accelerator boards |
---|
| 1507 | !------------------------------------------------------------------------------! |
---|
| 1508 | |
---|
| 1509 | IMPLICIT NONE |
---|
| 1510 | |
---|
[1320] | 1511 | INTEGER(iwp) :: i !: |
---|
| 1512 | INTEGER(iwp) :: j !: |
---|
| 1513 | INTEGER(iwp) :: k !: |
---|
| 1514 | INTEGER(iwp) :: runge_step !: |
---|
[1015] | 1515 | |
---|
[1320] | 1516 | REAL(wp) :: sbt !: |
---|
| 1517 | |
---|
[1015] | 1518 | ! |
---|
| 1519 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1520 | runge_step = 0 |
---|
| 1521 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1522 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1523 | runge_step = 1 |
---|
| 1524 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1525 | intermediate_timestep_count_max ) THEN |
---|
| 1526 | runge_step = 2 |
---|
| 1527 | ENDIF |
---|
| 1528 | ENDIF |
---|
| 1529 | |
---|
| 1530 | ! |
---|
| 1531 | !-- u-velocity component |
---|
| 1532 | !++ Statistics still not ported to accelerators |
---|
[1179] | 1533 | !$acc update device( hom, ref_state ) |
---|
[1015] | 1534 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1535 | |
---|
| 1536 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1537 | IF ( ws_scheme_mom ) THEN |
---|
| 1538 | CALL advec_u_ws_acc |
---|
| 1539 | ELSE |
---|
| 1540 | tend = 0.0 ! to be removed later?? |
---|
| 1541 | CALL advec_u_pw |
---|
| 1542 | ENDIF |
---|
| 1543 | ELSE |
---|
| 1544 | CALL advec_u_up |
---|
| 1545 | ENDIF |
---|
| 1546 | CALL diffusion_u_acc |
---|
| 1547 | CALL coriolis_acc( 1 ) |
---|
| 1548 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 1549 | CALL buoyancy( pt, 1 ) |
---|
[1015] | 1550 | ENDIF |
---|
| 1551 | |
---|
| 1552 | ! |
---|
| 1553 | !-- Drag by plant canopy |
---|
| 1554 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1555 | |
---|
| 1556 | ! |
---|
| 1557 | !-- External pressure gradient |
---|
| 1558 | IF ( dp_external ) THEN |
---|
[1128] | 1559 | DO i = i_left, i_right |
---|
| 1560 | DO j = j_south, j_north |
---|
[1015] | 1561 | DO k = dp_level_ind_b+1, nzt |
---|
| 1562 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1563 | ENDDO |
---|
| 1564 | ENDDO |
---|
| 1565 | ENDDO |
---|
| 1566 | ENDIF |
---|
| 1567 | |
---|
[1246] | 1568 | ! |
---|
| 1569 | !-- Nudging |
---|
| 1570 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 1571 | |
---|
[1015] | 1572 | CALL user_actions( 'u-tendency' ) |
---|
| 1573 | |
---|
| 1574 | ! |
---|
| 1575 | !-- Prognostic equation for u-velocity component |
---|
| 1576 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, ug, u_p ) |
---|
[1257] | 1577 | !$acc loop independent |
---|
[1128] | 1578 | DO i = i_left, i_right |
---|
[1257] | 1579 | !$acc loop independent |
---|
[1128] | 1580 | DO j = j_south, j_north |
---|
[1257] | 1581 | !$acc loop independent |
---|
[1015] | 1582 | DO k = 1, nzt |
---|
| 1583 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1584 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1585 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 1586 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1587 | ! |
---|
| 1588 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1589 | IF ( runge_step == 1 ) THEN |
---|
| 1590 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1591 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1592 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 1593 | ENDIF |
---|
| 1594 | ENDIF |
---|
| 1595 | ENDDO |
---|
| 1596 | ENDDO |
---|
| 1597 | ENDDO |
---|
| 1598 | !$acc end kernels |
---|
| 1599 | |
---|
| 1600 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1601 | |
---|
| 1602 | ! |
---|
| 1603 | !-- v-velocity component |
---|
| 1604 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1605 | |
---|
| 1606 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1607 | IF ( ws_scheme_mom ) THEN |
---|
| 1608 | CALL advec_v_ws_acc |
---|
| 1609 | ELSE |
---|
| 1610 | tend = 0.0 ! to be removed later?? |
---|
| 1611 | CALL advec_v_pw |
---|
| 1612 | END IF |
---|
| 1613 | ELSE |
---|
| 1614 | CALL advec_v_up |
---|
| 1615 | ENDIF |
---|
| 1616 | CALL diffusion_v_acc |
---|
| 1617 | CALL coriolis_acc( 2 ) |
---|
| 1618 | |
---|
| 1619 | ! |
---|
| 1620 | !-- Drag by plant canopy |
---|
| 1621 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1622 | |
---|
| 1623 | ! |
---|
| 1624 | !-- External pressure gradient |
---|
| 1625 | IF ( dp_external ) THEN |
---|
[1128] | 1626 | DO i = i_left, i_right |
---|
| 1627 | DO j = j_south, j_north |
---|
[1015] | 1628 | DO k = dp_level_ind_b+1, nzt |
---|
| 1629 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1630 | ENDDO |
---|
| 1631 | ENDDO |
---|
| 1632 | ENDDO |
---|
| 1633 | ENDIF |
---|
| 1634 | |
---|
[1246] | 1635 | ! |
---|
| 1636 | !-- Nudging |
---|
| 1637 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1638 | |
---|
[1015] | 1639 | CALL user_actions( 'v-tendency' ) |
---|
| 1640 | |
---|
| 1641 | ! |
---|
| 1642 | !-- Prognostic equation for v-velocity component |
---|
| 1643 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, vg, v_p ) |
---|
[1257] | 1644 | !$acc loop independent |
---|
[1128] | 1645 | DO i = i_left, i_right |
---|
[1257] | 1646 | !$acc loop independent |
---|
[1128] | 1647 | DO j = j_south, j_north |
---|
[1257] | 1648 | !$acc loop independent |
---|
[1015] | 1649 | DO k = 1, nzt |
---|
| 1650 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1651 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1652 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 1653 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1654 | ! |
---|
| 1655 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1656 | IF ( runge_step == 1 ) THEN |
---|
| 1657 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1658 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1659 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1660 | ENDIF |
---|
| 1661 | ENDIF |
---|
| 1662 | ENDDO |
---|
| 1663 | ENDDO |
---|
| 1664 | ENDDO |
---|
| 1665 | !$acc end kernels |
---|
| 1666 | |
---|
| 1667 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1668 | |
---|
| 1669 | ! |
---|
| 1670 | !-- w-velocity component |
---|
| 1671 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1672 | |
---|
| 1673 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1674 | IF ( ws_scheme_mom ) THEN |
---|
| 1675 | CALL advec_w_ws_acc |
---|
| 1676 | ELSE |
---|
| 1677 | tend = 0.0 ! to be removed later?? |
---|
| 1678 | CALL advec_w_pw |
---|
| 1679 | ENDIF |
---|
| 1680 | ELSE |
---|
| 1681 | CALL advec_w_up |
---|
| 1682 | ENDIF |
---|
| 1683 | CALL diffusion_w_acc |
---|
| 1684 | CALL coriolis_acc( 3 ) |
---|
| 1685 | |
---|
| 1686 | IF ( .NOT. neutral ) THEN |
---|
| 1687 | IF ( ocean ) THEN |
---|
[1179] | 1688 | CALL buoyancy( rho, 3 ) |
---|
[1015] | 1689 | ELSE |
---|
| 1690 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1691 | CALL buoyancy_acc( pt, 3 ) |
---|
[1015] | 1692 | ELSE |
---|
[1179] | 1693 | CALL buoyancy( vpt, 3 ) |
---|
[1015] | 1694 | ENDIF |
---|
| 1695 | ENDIF |
---|
| 1696 | ENDIF |
---|
| 1697 | |
---|
| 1698 | ! |
---|
| 1699 | !-- Drag by plant canopy |
---|
| 1700 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1701 | |
---|
| 1702 | CALL user_actions( 'w-tendency' ) |
---|
| 1703 | |
---|
| 1704 | ! |
---|
| 1705 | !-- Prognostic equation for w-velocity component |
---|
| 1706 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
[1257] | 1707 | !$acc loop independent |
---|
[1128] | 1708 | DO i = i_left, i_right |
---|
[1257] | 1709 | !$acc loop independent |
---|
[1128] | 1710 | DO j = j_south, j_north |
---|
[1257] | 1711 | !$acc loop independent |
---|
[1015] | 1712 | DO k = 1, nzt-1 |
---|
| 1713 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 1714 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1715 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1716 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1717 | ! |
---|
| 1718 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1719 | IF ( runge_step == 1 ) THEN |
---|
| 1720 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1721 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1722 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1723 | ENDIF |
---|
| 1724 | ENDIF |
---|
| 1725 | ENDDO |
---|
| 1726 | ENDDO |
---|
| 1727 | ENDDO |
---|
| 1728 | !$acc end kernels |
---|
| 1729 | |
---|
| 1730 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1731 | |
---|
| 1732 | |
---|
| 1733 | ! |
---|
| 1734 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1735 | IF ( .NOT. neutral ) THEN |
---|
| 1736 | |
---|
| 1737 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1738 | |
---|
| 1739 | ! |
---|
| 1740 | !-- pt-tendency terms with communication |
---|
| 1741 | sbt = tsc(2) |
---|
| 1742 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1743 | |
---|
| 1744 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1745 | ! |
---|
| 1746 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1747 | sbt = 1.0 |
---|
| 1748 | ENDIF |
---|
| 1749 | tend = 0.0 |
---|
| 1750 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1751 | |
---|
| 1752 | ENDIF |
---|
| 1753 | |
---|
| 1754 | ! |
---|
| 1755 | !-- pt-tendency terms with no communication |
---|
| 1756 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1757 | tend = 0.0 |
---|
| 1758 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1759 | IF ( ws_scheme_sca ) THEN |
---|
| 1760 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 1761 | ELSE |
---|
| 1762 | tend = 0.0 ! to be removed later?? |
---|
| 1763 | CALL advec_s_pw( pt ) |
---|
| 1764 | ENDIF |
---|
| 1765 | ELSE |
---|
| 1766 | CALL advec_s_up( pt ) |
---|
| 1767 | ENDIF |
---|
| 1768 | ENDIF |
---|
| 1769 | |
---|
| 1770 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 1771 | |
---|
| 1772 | ! |
---|
| 1773 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1774 | IF ( radiation ) THEN |
---|
| 1775 | CALL calc_radiation |
---|
| 1776 | ENDIF |
---|
| 1777 | |
---|
| 1778 | ! |
---|
| 1779 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1780 | IF ( precipitation ) THEN |
---|
| 1781 | CALL impact_of_latent_heat |
---|
| 1782 | ENDIF |
---|
| 1783 | |
---|
| 1784 | ! |
---|
| 1785 | !-- Consideration of heat sources within the plant canopy |
---|
| 1786 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1787 | CALL plant_canopy_model( 4 ) |
---|
| 1788 | ENDIF |
---|
| 1789 | |
---|
| 1790 | ! |
---|
| 1791 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1792 | IF ( large_scale_subsidence ) THEN |
---|
| 1793 | CALL subsidence( tend, pt, pt_init ) |
---|
| 1794 | ENDIF |
---|
| 1795 | |
---|
[1246] | 1796 | ! |
---|
| 1797 | !-- Nudging |
---|
| 1798 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1799 | |
---|
[1015] | 1800 | CALL user_actions( 'pt-tendency' ) |
---|
| 1801 | |
---|
| 1802 | ! |
---|
| 1803 | !-- Prognostic equation for potential temperature |
---|
| 1804 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 1805 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
[1257] | 1806 | !$acc loop independent |
---|
[1128] | 1807 | DO i = i_left, i_right |
---|
[1257] | 1808 | !$acc loop independent |
---|
[1128] | 1809 | DO j = j_south, j_north |
---|
[1257] | 1810 | !$acc loop independent |
---|
[1015] | 1811 | DO k = 1, nzt |
---|
| 1812 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 1813 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1814 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1815 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1816 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 1817 | ! |
---|
| 1818 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1819 | IF ( runge_step == 1 ) THEN |
---|
| 1820 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1821 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1822 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 1823 | ENDIF |
---|
| 1824 | ENDIF |
---|
| 1825 | ENDDO |
---|
| 1826 | ENDDO |
---|
| 1827 | ENDDO |
---|
| 1828 | !$acc end kernels |
---|
| 1829 | |
---|
| 1830 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1831 | |
---|
| 1832 | ENDIF |
---|
| 1833 | |
---|
| 1834 | ! |
---|
| 1835 | !-- If required, compute prognostic equation for salinity |
---|
| 1836 | IF ( ocean ) THEN |
---|
| 1837 | |
---|
| 1838 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1839 | |
---|
| 1840 | ! |
---|
| 1841 | !-- sa-tendency terms with communication |
---|
| 1842 | sbt = tsc(2) |
---|
| 1843 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1844 | |
---|
| 1845 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1846 | ! |
---|
| 1847 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1848 | sbt = 1.0 |
---|
| 1849 | ENDIF |
---|
| 1850 | tend = 0.0 |
---|
| 1851 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 1852 | |
---|
| 1853 | ENDIF |
---|
| 1854 | |
---|
| 1855 | ! |
---|
| 1856 | !-- sa-tendency terms with no communication |
---|
| 1857 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1858 | tend = 0.0 |
---|
| 1859 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1860 | IF ( ws_scheme_sca ) THEN |
---|
| 1861 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1862 | ELSE |
---|
| 1863 | CALL advec_s_pw( sa ) |
---|
| 1864 | ENDIF |
---|
| 1865 | ELSE |
---|
| 1866 | CALL advec_s_up( sa ) |
---|
| 1867 | ENDIF |
---|
| 1868 | ENDIF |
---|
| 1869 | |
---|
| 1870 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 1871 | |
---|
| 1872 | CALL user_actions( 'sa-tendency' ) |
---|
| 1873 | |
---|
| 1874 | ! |
---|
| 1875 | !-- Prognostic equation for salinity |
---|
[1128] | 1876 | DO i = i_left, i_right |
---|
| 1877 | DO j = j_south, j_north |
---|
[1015] | 1878 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1879 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1880 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1881 | - tsc(5) * rdf_sc(k) * & |
---|
| 1882 | ( sa(k,j,i) - sa_init(k) ) |
---|
| 1883 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1884 | ! |
---|
| 1885 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1886 | IF ( runge_step == 1 ) THEN |
---|
| 1887 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1888 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1889 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tsa_m(k,j,i) |
---|
| 1890 | ENDIF |
---|
| 1891 | ENDDO |
---|
| 1892 | ENDDO |
---|
| 1893 | ENDDO |
---|
| 1894 | |
---|
| 1895 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1896 | |
---|
| 1897 | ! |
---|
| 1898 | !-- Calculate density by the equation of state for seawater |
---|
| 1899 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1900 | CALL eqn_state_seawater |
---|
| 1901 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1902 | |
---|
| 1903 | ENDIF |
---|
| 1904 | |
---|
| 1905 | ! |
---|
| 1906 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1907 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1908 | |
---|
| 1909 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1910 | |
---|
| 1911 | ! |
---|
| 1912 | !-- Scalar/q-tendency terms with communication |
---|
| 1913 | sbt = tsc(2) |
---|
| 1914 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1915 | |
---|
| 1916 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1917 | ! |
---|
| 1918 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1919 | sbt = 1.0 |
---|
| 1920 | ENDIF |
---|
| 1921 | tend = 0.0 |
---|
| 1922 | CALL advec_s_bc( q, 'q' ) |
---|
| 1923 | |
---|
| 1924 | ENDIF |
---|
| 1925 | |
---|
| 1926 | ! |
---|
| 1927 | !-- Scalar/q-tendency terms with no communication |
---|
| 1928 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1929 | tend = 0.0 |
---|
| 1930 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1931 | IF ( ws_scheme_sca ) THEN |
---|
| 1932 | CALL advec_s_ws( q, 'q' ) |
---|
| 1933 | ELSE |
---|
| 1934 | CALL advec_s_pw( q ) |
---|
| 1935 | ENDIF |
---|
| 1936 | ELSE |
---|
| 1937 | CALL advec_s_up( q ) |
---|
| 1938 | ENDIF |
---|
| 1939 | ENDIF |
---|
| 1940 | |
---|
| 1941 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 1942 | |
---|
| 1943 | ! |
---|
| 1944 | !-- If required compute decrease of total water content due to |
---|
| 1945 | !-- precipitation |
---|
| 1946 | IF ( precipitation ) THEN |
---|
| 1947 | CALL calc_precipitation |
---|
| 1948 | ENDIF |
---|
| 1949 | |
---|
| 1950 | ! |
---|
| 1951 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1952 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1953 | |
---|
| 1954 | ! |
---|
| 1955 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1956 | IF ( large_scale_subsidence ) THEN |
---|
| 1957 | CALL subsidence( tend, q, q_init ) |
---|
| 1958 | ENDIF |
---|
| 1959 | |
---|
[1246] | 1960 | ! |
---|
| 1961 | !-- Nudging |
---|
| 1962 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1963 | |
---|
[1015] | 1964 | CALL user_actions( 'q-tendency' ) |
---|
| 1965 | |
---|
| 1966 | ! |
---|
| 1967 | !-- Prognostic equation for total water content / scalar |
---|
[1128] | 1968 | DO i = i_left, i_right |
---|
| 1969 | DO j = j_south, j_north |
---|
[1015] | 1970 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1971 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1972 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1973 | - tsc(5) * rdf_sc(k) * & |
---|
| 1974 | ( q(k,j,i) - q_init(k) ) |
---|
| 1975 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 1976 | ! |
---|
| 1977 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1978 | IF ( runge_step == 1 ) THEN |
---|
| 1979 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1980 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1981 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1982 | ENDIF |
---|
| 1983 | ENDDO |
---|
| 1984 | ENDDO |
---|
| 1985 | ENDDO |
---|
| 1986 | |
---|
| 1987 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1988 | |
---|
| 1989 | ENDIF |
---|
| 1990 | |
---|
| 1991 | ! |
---|
| 1992 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1993 | !-- energy (TKE) |
---|
| 1994 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1995 | |
---|
| 1996 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1997 | |
---|
| 1998 | sbt = tsc(2) |
---|
| 1999 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 2000 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 2001 | |
---|
| 2002 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 2003 | ! |
---|
| 2004 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 2005 | sbt = 1.0 |
---|
| 2006 | ENDIF |
---|
| 2007 | tend = 0.0 |
---|
| 2008 | CALL advec_s_bc( e, 'e' ) |
---|
| 2009 | |
---|
| 2010 | ENDIF |
---|
| 2011 | ENDIF |
---|
| 2012 | |
---|
| 2013 | ! |
---|
| 2014 | !-- TKE-tendency terms with no communication |
---|
| 2015 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 2016 | IF ( use_upstream_for_tke ) THEN |
---|
| 2017 | tend = 0.0 |
---|
| 2018 | CALL advec_s_up( e ) |
---|
| 2019 | ELSE |
---|
| 2020 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 2021 | IF ( ws_scheme_sca ) THEN |
---|
| 2022 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 2023 | ELSE |
---|
| 2024 | tend = 0.0 ! to be removed later?? |
---|
| 2025 | CALL advec_s_pw( e ) |
---|
| 2026 | ENDIF |
---|
| 2027 | ELSE |
---|
| 2028 | tend = 0.0 ! to be removed later?? |
---|
| 2029 | CALL advec_s_up( e ) |
---|
| 2030 | ENDIF |
---|
| 2031 | ENDIF |
---|
| 2032 | ENDIF |
---|
| 2033 | |
---|
| 2034 | IF ( .NOT. humidity ) THEN |
---|
| 2035 | IF ( ocean ) THEN |
---|
| 2036 | CALL diffusion_e( prho, prho_reference ) |
---|
| 2037 | ELSE |
---|
| 2038 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 2039 | ENDIF |
---|
| 2040 | ELSE |
---|
| 2041 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 2042 | ENDIF |
---|
| 2043 | |
---|
| 2044 | CALL production_e_acc |
---|
| 2045 | |
---|
| 2046 | ! |
---|
| 2047 | !-- Additional sink term for flows through plant canopies |
---|
| 2048 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 2049 | CALL user_actions( 'e-tendency' ) |
---|
| 2050 | |
---|
| 2051 | ! |
---|
| 2052 | !-- Prognostic equation for TKE. |
---|
| 2053 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2054 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2055 | !-- value is reduced by 90%. |
---|
| 2056 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
[1257] | 2057 | !$acc loop independent |
---|
[1128] | 2058 | DO i = i_left, i_right |
---|
[1257] | 2059 | !$acc loop independent |
---|
[1128] | 2060 | DO j = j_south, j_north |
---|
[1257] | 2061 | !$acc loop independent |
---|
[1015] | 2062 | DO k = 1, nzt |
---|
| 2063 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2064 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2065 | tsc(3) * te_m(k,j,i) ) |
---|
| 2066 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 2067 | ! |
---|
| 2068 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2069 | IF ( runge_step == 1 ) THEN |
---|
| 2070 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2071 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2072 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 2073 | ENDIF |
---|
| 2074 | ENDIF |
---|
| 2075 | ENDDO |
---|
| 2076 | ENDDO |
---|
| 2077 | ENDDO |
---|
| 2078 | !$acc end kernels |
---|
| 2079 | |
---|
| 2080 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2081 | |
---|
| 2082 | ENDIF |
---|
| 2083 | |
---|
| 2084 | |
---|
| 2085 | END SUBROUTINE prognostic_equations_acc |
---|
| 2086 | |
---|
| 2087 | |
---|
[736] | 2088 | END MODULE prognostic_equations_mod |
---|