[736] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[736] | 20 | ! Current revisions: |
---|
[1092] | 21 | ! ------------------ |
---|
[1247] | 22 | ! |
---|
[1054] | 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: prognostic_equations.f90 1247 2013-11-01 09:00:49Z raasch $ |
---|
| 27 | ! |
---|
[1247] | 28 | ! 1246 2013-11-01 08:59:45Z heinze |
---|
| 29 | ! enable nudging also for accelerator version |
---|
| 30 | ! |
---|
[1242] | 31 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 32 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
| 33 | ! |
---|
[1182] | 34 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 35 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 36 | ! |
---|
[1132] | 37 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 38 | ! those parts requiring global communication moved to time_integration, |
---|
| 39 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 40 | ! j_north |
---|
| 41 | ! |
---|
[1116] | 42 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 43 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 44 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 45 | ! |
---|
[1112] | 46 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 47 | ! update directives for prognostic quantities removed |
---|
| 48 | ! |
---|
[1107] | 49 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 50 | ! small changes in code formatting |
---|
| 51 | ! |
---|
[1093] | 52 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 53 | ! unused variables removed |
---|
| 54 | ! |
---|
[1054] | 55 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 56 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 57 | ! and rain water content (qr) |
---|
[979] | 58 | ! |
---|
[1053] | 59 | ! currently, only available for cache loop optimization |
---|
[1020] | 60 | ! |
---|
[1037] | 61 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 62 | ! code put under GPL (PALM 3.9) |
---|
| 63 | ! |
---|
[1020] | 64 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 65 | ! non-optimized version of prognostic_equations removed |
---|
| 66 | ! |
---|
[1017] | 67 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 68 | ! new branch prognostic_equations_acc |
---|
| 69 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 70 | ! |
---|
[1002] | 71 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 72 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 73 | ! |
---|
[979] | 74 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 75 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 76 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 77 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 78 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 79 | ! |
---|
[941] | 80 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 81 | ! temperature equation can be switched off |
---|
| 82 | ! |
---|
[786] | 83 | ! 785 2011-11-28 09:47:19Z raasch |
---|
| 84 | ! new factor rdf_sc allows separate Rayleigh damping of scalars |
---|
| 85 | ! |
---|
[737] | 86 | ! 736 2011-08-17 14:13:26Z suehring |
---|
| 87 | ! Bugfix: determination of first thread index i for WS-scheme |
---|
| 88 | ! |
---|
[736] | 89 | ! 709 2011-03-30 09:31:40Z raasch |
---|
| 90 | ! formatting adjustments |
---|
| 91 | ! |
---|
| 92 | ! 673 2011-01-18 16:19:48Z suehring |
---|
| 93 | ! Consideration of the pressure gradient (steered by tsc(4)) during the time |
---|
| 94 | ! integration removed. |
---|
| 95 | ! |
---|
| 96 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 97 | ! Calls of the advection routines with WS5 added. |
---|
| 98 | ! Calls of ws_statistics added to set the statistical arrays to zero after each |
---|
| 99 | ! time step. |
---|
| 100 | ! |
---|
| 101 | ! 531 2010-04-21 06:47:21Z heinze |
---|
| 102 | ! add call of subsidence in the equation for humidity / passive scalar |
---|
| 103 | ! |
---|
| 104 | ! 411 2009-12-11 14:15:58Z heinze |
---|
| 105 | ! add call of subsidence in the equation for potential temperature |
---|
| 106 | ! |
---|
| 107 | ! 388 2009-09-23 09:40:33Z raasch |
---|
| 108 | ! prho is used instead of rho in diffusion_e, |
---|
| 109 | ! external pressure gradient |
---|
| 110 | ! |
---|
| 111 | ! 153 2008-03-19 09:41:30Z steinfeld |
---|
| 112 | ! add call of plant_canopy_model in the prognostic equation for |
---|
| 113 | ! the potential temperature and for the passive scalar |
---|
| 114 | ! |
---|
| 115 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 116 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
| 117 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
| 118 | ! |
---|
| 119 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 120 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
| 121 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
| 122 | ! for non-cyclic boundary conditions) |
---|
| 123 | ! |
---|
| 124 | ! 97 2007-06-21 08:23:15Z raasch |
---|
| 125 | ! prognostic equation for salinity, density is calculated from equation of |
---|
| 126 | ! state for seawater and is used for calculation of buoyancy, |
---|
| 127 | ! +eqn_state_seawater_mod |
---|
| 128 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
| 129 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
| 130 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
| 131 | ! calc_mean_profile |
---|
| 132 | ! |
---|
| 133 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 134 | ! checking for negative q and limiting for positive values, |
---|
| 135 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
| 136 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
| 137 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
| 138 | ! _vector-version |
---|
| 139 | ! |
---|
| 140 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 141 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
| 142 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
| 143 | ! |
---|
| 144 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 145 | ! |
---|
| 146 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
| 147 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
| 148 | ! regardless of the timestep scheme used for the other quantities, |
---|
| 149 | ! new argument diss in call of diffusion_e |
---|
| 150 | ! |
---|
| 151 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 152 | ! Initial revision |
---|
| 153 | ! |
---|
| 154 | ! |
---|
| 155 | ! Description: |
---|
| 156 | ! ------------ |
---|
| 157 | ! Solving the prognostic equations. |
---|
| 158 | !------------------------------------------------------------------------------! |
---|
| 159 | |
---|
| 160 | USE arrays_3d |
---|
| 161 | USE control_parameters |
---|
| 162 | USE cpulog |
---|
| 163 | USE eqn_state_seawater_mod |
---|
| 164 | USE grid_variables |
---|
| 165 | USE indices |
---|
| 166 | USE interfaces |
---|
| 167 | USE pegrid |
---|
| 168 | USE pointer_interfaces |
---|
| 169 | USE statistics |
---|
| 170 | USE advec_ws |
---|
| 171 | USE advec_s_pw_mod |
---|
| 172 | USE advec_s_up_mod |
---|
| 173 | USE advec_u_pw_mod |
---|
| 174 | USE advec_u_up_mod |
---|
| 175 | USE advec_v_pw_mod |
---|
| 176 | USE advec_v_up_mod |
---|
| 177 | USE advec_w_pw_mod |
---|
| 178 | USE advec_w_up_mod |
---|
| 179 | USE buoyancy_mod |
---|
| 180 | USE calc_precipitation_mod |
---|
| 181 | USE calc_radiation_mod |
---|
| 182 | USE coriolis_mod |
---|
| 183 | USE diffusion_e_mod |
---|
| 184 | USE diffusion_s_mod |
---|
| 185 | USE diffusion_u_mod |
---|
| 186 | USE diffusion_v_mod |
---|
| 187 | USE diffusion_w_mod |
---|
| 188 | USE impact_of_latent_heat_mod |
---|
[1053] | 189 | USE microphysics_mod |
---|
[1241] | 190 | USE nudge_mod |
---|
[736] | 191 | USE plant_canopy_model_mod |
---|
| 192 | USE production_e_mod |
---|
| 193 | USE subsidence_mod |
---|
| 194 | USE user_actions_mod |
---|
| 195 | |
---|
| 196 | |
---|
| 197 | PRIVATE |
---|
[1019] | 198 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 199 | prognostic_equations_acc |
---|
[736] | 200 | |
---|
| 201 | INTERFACE prognostic_equations_cache |
---|
| 202 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 203 | END INTERFACE prognostic_equations_cache |
---|
| 204 | |
---|
| 205 | INTERFACE prognostic_equations_vector |
---|
| 206 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 207 | END INTERFACE prognostic_equations_vector |
---|
| 208 | |
---|
[1015] | 209 | INTERFACE prognostic_equations_acc |
---|
| 210 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 211 | END INTERFACE prognostic_equations_acc |
---|
[736] | 212 | |
---|
[1015] | 213 | |
---|
[736] | 214 | CONTAINS |
---|
| 215 | |
---|
| 216 | |
---|
| 217 | SUBROUTINE prognostic_equations_cache |
---|
| 218 | |
---|
| 219 | !------------------------------------------------------------------------------! |
---|
| 220 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 221 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 222 | ! |
---|
| 223 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 224 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 225 | ! these loops. |
---|
| 226 | ! |
---|
| 227 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 228 | !------------------------------------------------------------------------------! |
---|
| 229 | |
---|
| 230 | IMPLICIT NONE |
---|
| 231 | |
---|
| 232 | INTEGER :: i, i_omp_start, j, k, omp_get_thread_num, tn = 0 |
---|
| 233 | LOGICAL :: loop_start |
---|
| 234 | |
---|
| 235 | |
---|
| 236 | ! |
---|
| 237 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 238 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 239 | |
---|
| 240 | ! |
---|
| 241 | !-- Loop over all prognostic equations |
---|
| 242 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 243 | |
---|
| 244 | !$ tn = omp_get_thread_num() |
---|
| 245 | loop_start = .TRUE. |
---|
| 246 | !$OMP DO |
---|
| 247 | DO i = nxl, nxr |
---|
| 248 | |
---|
| 249 | ! |
---|
| 250 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 251 | !-- later in advec_ws |
---|
| 252 | IF ( loop_start ) THEN |
---|
| 253 | loop_start = .FALSE. |
---|
| 254 | i_omp_start = i |
---|
| 255 | ENDIF |
---|
| 256 | |
---|
| 257 | DO j = nys, nyn |
---|
| 258 | ! |
---|
| 259 | !-- Tendency terms for u-velocity component |
---|
| 260 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 261 | |
---|
| 262 | tend(:,j,i) = 0.0 |
---|
[1001] | 263 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 264 | IF ( ws_scheme_mom ) THEN |
---|
[978] | 265 | IF ( ( inflow_l .OR. outflow_l ) .AND. i_omp_start == nxl ) THEN |
---|
[736] | 266 | CALL advec_u_ws( i, j, i_omp_start + 1, tn ) |
---|
| 267 | ELSE |
---|
| 268 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
| 269 | ENDIF |
---|
| 270 | ELSE |
---|
| 271 | CALL advec_u_pw( i, j ) |
---|
| 272 | ENDIF |
---|
| 273 | ELSE |
---|
| 274 | CALL advec_u_up( i, j ) |
---|
| 275 | ENDIF |
---|
[1001] | 276 | CALL diffusion_u( i, j ) |
---|
[736] | 277 | CALL coriolis( i, j, 1 ) |
---|
[940] | 278 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 279 | CALL buoyancy( i, j, pt, 1 ) |
---|
[940] | 280 | ENDIF |
---|
[736] | 281 | |
---|
| 282 | ! |
---|
| 283 | !-- Drag by plant canopy |
---|
| 284 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 285 | |
---|
| 286 | ! |
---|
| 287 | !-- External pressure gradient |
---|
| 288 | IF ( dp_external ) THEN |
---|
| 289 | DO k = dp_level_ind_b+1, nzt |
---|
| 290 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 291 | ENDDO |
---|
| 292 | ENDIF |
---|
| 293 | |
---|
[1241] | 294 | ! |
---|
| 295 | !-- Nudging |
---|
| 296 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
| 297 | |
---|
[736] | 298 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 299 | ! |
---|
| 300 | !-- Prognostic equation for u-velocity component |
---|
| 301 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 302 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 303 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 304 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 305 | ENDDO |
---|
| 306 | |
---|
| 307 | ! |
---|
| 308 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 309 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 310 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 311 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 312 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 313 | ENDDO |
---|
| 314 | ELSEIF ( intermediate_timestep_count < & |
---|
| 315 | intermediate_timestep_count_max ) THEN |
---|
| 316 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 317 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 318 | ENDDO |
---|
| 319 | ENDIF |
---|
| 320 | ENDIF |
---|
| 321 | |
---|
| 322 | ENDIF |
---|
| 323 | |
---|
| 324 | ! |
---|
| 325 | !-- Tendency terms for v-velocity component |
---|
| 326 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 327 | |
---|
| 328 | tend(:,j,i) = 0.0 |
---|
[1001] | 329 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 330 | IF ( ws_scheme_mom ) THEN |
---|
| 331 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 332 | ELSE |
---|
| 333 | CALL advec_v_pw( i, j ) |
---|
| 334 | ENDIF |
---|
| 335 | ELSE |
---|
| 336 | CALL advec_v_up( i, j ) |
---|
| 337 | ENDIF |
---|
[1001] | 338 | CALL diffusion_v( i, j ) |
---|
[736] | 339 | CALL coriolis( i, j, 2 ) |
---|
| 340 | |
---|
| 341 | ! |
---|
| 342 | !-- Drag by plant canopy |
---|
| 343 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 344 | |
---|
| 345 | ! |
---|
| 346 | !-- External pressure gradient |
---|
| 347 | IF ( dp_external ) THEN |
---|
| 348 | DO k = dp_level_ind_b+1, nzt |
---|
| 349 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 350 | ENDDO |
---|
| 351 | ENDIF |
---|
| 352 | |
---|
[1241] | 353 | ! |
---|
| 354 | !-- Nudging |
---|
| 355 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
| 356 | |
---|
[736] | 357 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 358 | ! |
---|
| 359 | !-- Prognostic equation for v-velocity component |
---|
| 360 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 361 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 362 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 363 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 364 | ENDDO |
---|
| 365 | |
---|
| 366 | ! |
---|
| 367 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 368 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 369 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 370 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 371 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 372 | ENDDO |
---|
| 373 | ELSEIF ( intermediate_timestep_count < & |
---|
| 374 | intermediate_timestep_count_max ) THEN |
---|
| 375 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 376 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 377 | ENDDO |
---|
| 378 | ENDIF |
---|
| 379 | ENDIF |
---|
| 380 | |
---|
| 381 | ENDIF |
---|
| 382 | |
---|
| 383 | ! |
---|
| 384 | !-- Tendency terms for w-velocity component |
---|
| 385 | tend(:,j,i) = 0.0 |
---|
[1001] | 386 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 387 | IF ( ws_scheme_mom ) THEN |
---|
| 388 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 389 | ELSE |
---|
| 390 | CALL advec_w_pw( i, j ) |
---|
| 391 | END IF |
---|
| 392 | ELSE |
---|
| 393 | CALL advec_w_up( i, j ) |
---|
| 394 | ENDIF |
---|
[1001] | 395 | CALL diffusion_w( i, j ) |
---|
[736] | 396 | CALL coriolis( i, j, 3 ) |
---|
[940] | 397 | |
---|
| 398 | IF ( .NOT. neutral ) THEN |
---|
| 399 | IF ( ocean ) THEN |
---|
[1179] | 400 | CALL buoyancy( i, j, rho, 3 ) |
---|
[736] | 401 | ELSE |
---|
[940] | 402 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 403 | CALL buoyancy( i, j, pt, 3 ) |
---|
[940] | 404 | ELSE |
---|
[1179] | 405 | CALL buoyancy( i, j, vpt, 3 ) |
---|
[940] | 406 | ENDIF |
---|
[736] | 407 | ENDIF |
---|
| 408 | ENDIF |
---|
| 409 | |
---|
| 410 | ! |
---|
| 411 | !-- Drag by plant canopy |
---|
| 412 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 413 | |
---|
| 414 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 415 | |
---|
| 416 | ! |
---|
| 417 | !-- Prognostic equation for w-velocity component |
---|
| 418 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 419 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 420 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 421 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 422 | ENDDO |
---|
| 423 | |
---|
| 424 | ! |
---|
| 425 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 426 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 427 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 428 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 429 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 430 | ENDDO |
---|
| 431 | ELSEIF ( intermediate_timestep_count < & |
---|
| 432 | intermediate_timestep_count_max ) THEN |
---|
| 433 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 434 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 435 | ENDDO |
---|
| 436 | ENDIF |
---|
| 437 | ENDIF |
---|
| 438 | ! |
---|
[1115] | 439 | !-- If required, calculate tendencies for total water content, liquid water |
---|
| 440 | !-- potential temperature, rain water content and rain drop concentration |
---|
| 441 | IF ( cloud_physics .AND. icloud_scheme == 0 ) CALL microphysics_control( i, j ) |
---|
[1053] | 442 | ! |
---|
[940] | 443 | !-- If required, compute prognostic equation for potential temperature |
---|
| 444 | IF ( .NOT. neutral ) THEN |
---|
| 445 | ! |
---|
| 446 | !-- Tendency terms for potential temperature |
---|
| 447 | tend(:,j,i) = 0.0 |
---|
[1001] | 448 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 449 | IF ( ws_scheme_sca ) THEN |
---|
| 450 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 451 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 452 | ELSE |
---|
| 453 | CALL advec_s_pw( i, j, pt ) |
---|
| 454 | ENDIF |
---|
| 455 | ELSE |
---|
| 456 | CALL advec_s_up( i, j, pt ) |
---|
| 457 | ENDIF |
---|
[1001] | 458 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 459 | |
---|
| 460 | ! |
---|
[940] | 461 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 462 | !-- processes |
---|
| 463 | IF ( radiation ) THEN |
---|
| 464 | CALL calc_radiation( i, j ) |
---|
| 465 | ENDIF |
---|
[736] | 466 | |
---|
[1106] | 467 | ! |
---|
[1053] | 468 | !-- Using microphysical tendencies (latent heat) |
---|
| 469 | IF ( cloud_physics ) THEN |
---|
| 470 | IF ( icloud_scheme == 0 ) THEN |
---|
| 471 | tend(:,j,i) = tend(:,j,i) + tend_pt(:,j,i) |
---|
[1106] | 472 | ELSEIF ( icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1053] | 473 | CALL impact_of_latent_heat( i, j ) |
---|
| 474 | ENDIF |
---|
[940] | 475 | ENDIF |
---|
[736] | 476 | |
---|
| 477 | ! |
---|
[940] | 478 | !-- Consideration of heat sources within the plant canopy |
---|
[1106] | 479 | IF ( plant_canopy .AND. cthf /= 0.0 ) THEN |
---|
[940] | 480 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 481 | ENDIF |
---|
[736] | 482 | |
---|
[940] | 483 | ! |
---|
[1106] | 484 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
[940] | 485 | IF ( large_scale_subsidence ) THEN |
---|
| 486 | CALL subsidence( i, j, tend, pt, pt_init ) |
---|
| 487 | ENDIF |
---|
[736] | 488 | |
---|
[1241] | 489 | ! |
---|
| 490 | !-- Nudging |
---|
| 491 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
| 492 | |
---|
[940] | 493 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 494 | |
---|
| 495 | ! |
---|
[940] | 496 | !-- Prognostic equation for potential temperature |
---|
| 497 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 498 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 499 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 500 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 501 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 502 | ENDDO |
---|
[736] | 503 | |
---|
| 504 | ! |
---|
[940] | 505 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 506 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 507 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 508 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 509 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 510 | ENDDO |
---|
| 511 | ELSEIF ( intermediate_timestep_count < & |
---|
| 512 | intermediate_timestep_count_max ) THEN |
---|
| 513 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 514 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 515 | 5.3125 * tpt_m(k,j,i) |
---|
| 516 | ENDDO |
---|
| 517 | ENDIF |
---|
[736] | 518 | ENDIF |
---|
[940] | 519 | |
---|
[736] | 520 | ENDIF |
---|
| 521 | |
---|
| 522 | ! |
---|
| 523 | !-- If required, compute prognostic equation for salinity |
---|
| 524 | IF ( ocean ) THEN |
---|
| 525 | |
---|
| 526 | ! |
---|
| 527 | !-- Tendency-terms for salinity |
---|
| 528 | tend(:,j,i) = 0.0 |
---|
[1001] | 529 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 530 | THEN |
---|
| 531 | IF ( ws_scheme_sca ) THEN |
---|
| 532 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 533 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 534 | ELSE |
---|
| 535 | CALL advec_s_pw( i, j, sa ) |
---|
| 536 | ENDIF |
---|
| 537 | ELSE |
---|
| 538 | CALL advec_s_up( i, j, sa ) |
---|
| 539 | ENDIF |
---|
[1001] | 540 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 541 | |
---|
| 542 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 543 | |
---|
| 544 | ! |
---|
| 545 | !-- Prognostic equation for salinity |
---|
| 546 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 547 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 548 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 549 | - tsc(5) * rdf_sc(k) * & |
---|
| 550 | ( sa(k,j,i) - sa_init(k) ) |
---|
[736] | 551 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 552 | ENDDO |
---|
| 553 | |
---|
| 554 | ! |
---|
| 555 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 556 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 557 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 558 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 559 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 560 | ENDDO |
---|
| 561 | ELSEIF ( intermediate_timestep_count < & |
---|
| 562 | intermediate_timestep_count_max ) THEN |
---|
| 563 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 564 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 565 | 5.3125 * tsa_m(k,j,i) |
---|
| 566 | ENDDO |
---|
| 567 | ENDIF |
---|
| 568 | ENDIF |
---|
| 569 | |
---|
| 570 | ! |
---|
| 571 | !-- Calculate density by the equation of state for seawater |
---|
| 572 | CALL eqn_state_seawater( i, j ) |
---|
| 573 | |
---|
| 574 | ENDIF |
---|
| 575 | |
---|
| 576 | ! |
---|
| 577 | !-- If required, compute prognostic equation for total water content / |
---|
| 578 | !-- scalar |
---|
| 579 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 580 | |
---|
| 581 | ! |
---|
| 582 | !-- Tendency-terms for total water content / scalar |
---|
| 583 | tend(:,j,i) = 0.0 |
---|
[1001] | 584 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 585 | THEN |
---|
| 586 | IF ( ws_scheme_sca ) THEN |
---|
| 587 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 588 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 589 | ELSE |
---|
| 590 | CALL advec_s_pw( i, j, q ) |
---|
| 591 | ENDIF |
---|
| 592 | ELSE |
---|
| 593 | CALL advec_s_up( i, j, q ) |
---|
| 594 | ENDIF |
---|
[1001] | 595 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[1053] | 596 | |
---|
[736] | 597 | ! |
---|
[1053] | 598 | !-- Using microphysical tendencies |
---|
| 599 | IF ( cloud_physics ) THEN |
---|
| 600 | IF ( icloud_scheme == 0 ) THEN |
---|
| 601 | tend(:,j,i) = tend(:,j,i) + tend_q(:,j,i) |
---|
[1106] | 602 | ELSEIF ( icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1053] | 603 | CALL calc_precipitation( i, j ) |
---|
| 604 | ENDIF |
---|
[736] | 605 | ENDIF |
---|
| 606 | ! |
---|
| 607 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1106] | 608 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
[736] | 609 | |
---|
[1053] | 610 | ! |
---|
[736] | 611 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[940] | 612 | IF ( large_scale_subsidence ) THEN |
---|
| 613 | CALL subsidence( i, j, tend, q, q_init ) |
---|
[736] | 614 | ENDIF |
---|
| 615 | |
---|
[1241] | 616 | ! |
---|
| 617 | !-- Nudging |
---|
| 618 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
| 619 | |
---|
[736] | 620 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 621 | |
---|
| 622 | ! |
---|
| 623 | !-- Prognostic equation for total water content / scalar |
---|
| 624 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 625 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 626 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 627 | - tsc(5) * rdf_sc(k) * & |
---|
| 628 | ( q(k,j,i) - q_init(k) ) |
---|
[736] | 629 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 630 | ENDDO |
---|
| 631 | |
---|
| 632 | ! |
---|
| 633 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 634 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 635 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 636 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 637 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 638 | ENDDO |
---|
| 639 | ELSEIF ( intermediate_timestep_count < & |
---|
| 640 | intermediate_timestep_count_max ) THEN |
---|
| 641 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 642 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 643 | 5.3125 * tq_m(k,j,i) |
---|
| 644 | ENDDO |
---|
| 645 | ENDIF |
---|
| 646 | ENDIF |
---|
| 647 | |
---|
[1053] | 648 | ! |
---|
| 649 | !-- If required, calculate prognostic equations for rain water content |
---|
| 650 | !-- and rain drop concentration |
---|
[1115] | 651 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 652 | precipitation ) THEN |
---|
[1053] | 653 | ! |
---|
| 654 | !-- Calculate prognostic equation for rain water content |
---|
| 655 | tend(:,j,i) = 0.0 |
---|
| 656 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 657 | THEN |
---|
| 658 | IF ( ws_scheme_sca ) THEN |
---|
| 659 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 660 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 661 | i_omp_start, tn ) |
---|
| 662 | ELSE |
---|
| 663 | CALL advec_s_pw( i, j, qr ) |
---|
| 664 | ENDIF |
---|
| 665 | ELSE |
---|
| 666 | CALL advec_s_up( i, j, qr ) |
---|
| 667 | ENDIF |
---|
| 668 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 669 | ! |
---|
| 670 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
| 671 | !-- evaporation; if required: sedimentation) |
---|
| 672 | tend(:,j,i) = tend(:,j,i) + tend_qr(:,j,i) |
---|
| 673 | |
---|
[1115] | 674 | CALL user_actions( i, j, 'qr-tendency' ) |
---|
[1053] | 675 | ! |
---|
| 676 | !-- Prognostic equation for rain water content |
---|
| 677 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 678 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 679 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 680 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 681 | IF ( qr_p(k,j,i) < 0.0 ) qr_p(k,j,i) = 0.0 |
---|
[1053] | 682 | ENDDO |
---|
| 683 | ! |
---|
| 684 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 685 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 686 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 687 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 688 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 689 | ENDDO |
---|
| 690 | ELSEIF ( intermediate_timestep_count < & |
---|
| 691 | intermediate_timestep_count_max ) THEN |
---|
| 692 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 693 | tqr_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 694 | 5.3125 * tqr_m(k,j,i) |
---|
| 695 | ENDDO |
---|
| 696 | ENDIF |
---|
| 697 | ENDIF |
---|
| 698 | |
---|
| 699 | ! |
---|
| 700 | !-- Calculate prognostic equation for rain drop concentration. |
---|
| 701 | tend(:,j,i) = 0.0 |
---|
| 702 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 703 | IF ( ws_scheme_sca ) THEN |
---|
[1115] | 704 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 705 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 706 | i_omp_start, tn ) |
---|
[1053] | 707 | ELSE |
---|
| 708 | CALL advec_s_pw( i, j, nr ) |
---|
| 709 | ENDIF |
---|
| 710 | ELSE |
---|
| 711 | CALL advec_s_up( i, j, nr ) |
---|
| 712 | ENDIF |
---|
| 713 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
[1115] | 714 | ! |
---|
[1053] | 715 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
| 716 | !-- selfcollection, breakup, evaporation; |
---|
| 717 | !-- if required: sedimentation) |
---|
| 718 | tend(:,j,i) = tend(:,j,i) + tend_nr(:,j,i) |
---|
| 719 | |
---|
[1115] | 720 | CALL user_actions( i, j, 'nr-tendency' ) |
---|
[1053] | 721 | ! |
---|
| 722 | !-- Prognostic equation for rain drop concentration |
---|
| 723 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 724 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 725 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 726 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 727 | IF ( nr_p(k,j,i) < 0.0 ) nr_p(k,j,i) = 0.0 |
---|
[1053] | 728 | ENDDO |
---|
| 729 | ! |
---|
| 730 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 731 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 732 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 733 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 734 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 735 | ENDDO |
---|
| 736 | ELSEIF ( intermediate_timestep_count < & |
---|
| 737 | intermediate_timestep_count_max ) THEN |
---|
| 738 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 739 | tnr_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 740 | 5.3125 * tnr_m(k,j,i) |
---|
| 741 | ENDDO |
---|
| 742 | ENDIF |
---|
| 743 | ENDIF |
---|
| 744 | |
---|
| 745 | ENDIF |
---|
| 746 | |
---|
[1128] | 747 | ENDIF |
---|
| 748 | |
---|
[736] | 749 | ! |
---|
| 750 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 751 | !-- energy (TKE) |
---|
| 752 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 753 | |
---|
| 754 | ! |
---|
| 755 | !-- Tendency-terms for TKE |
---|
| 756 | tend(:,j,i) = 0.0 |
---|
[1001] | 757 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
[736] | 758 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
| 759 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 760 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 761 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 762 | ELSE |
---|
| 763 | CALL advec_s_pw( i, j, e ) |
---|
| 764 | ENDIF |
---|
| 765 | ELSE |
---|
| 766 | CALL advec_s_up( i, j, e ) |
---|
| 767 | ENDIF |
---|
[1001] | 768 | IF ( .NOT. humidity ) THEN |
---|
| 769 | IF ( ocean ) THEN |
---|
| 770 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 771 | ELSE |
---|
[1001] | 772 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 773 | ENDIF |
---|
| 774 | ELSE |
---|
[1001] | 775 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 776 | ENDIF |
---|
| 777 | CALL production_e( i, j ) |
---|
| 778 | |
---|
| 779 | ! |
---|
| 780 | !-- Additional sink term for flows through plant canopies |
---|
| 781 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 782 | |
---|
| 783 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 784 | |
---|
| 785 | ! |
---|
| 786 | !-- Prognostic equation for TKE. |
---|
| 787 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 788 | !-- reasons in the course of the integration. In such cases the old |
---|
| 789 | !-- TKE value is reduced by 90%. |
---|
| 790 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 791 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 792 | tsc(3) * te_m(k,j,i) ) |
---|
[736] | 793 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 794 | ENDDO |
---|
| 795 | |
---|
| 796 | ! |
---|
| 797 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 798 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 799 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 800 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 801 | te_m(k,j,i) = tend(k,j,i) |
---|
| 802 | ENDDO |
---|
| 803 | ELSEIF ( intermediate_timestep_count < & |
---|
| 804 | intermediate_timestep_count_max ) THEN |
---|
| 805 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 806 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 807 | 5.3125 * te_m(k,j,i) |
---|
| 808 | ENDDO |
---|
| 809 | ENDIF |
---|
| 810 | ENDIF |
---|
| 811 | |
---|
| 812 | ENDIF ! TKE equation |
---|
| 813 | |
---|
| 814 | ENDDO |
---|
| 815 | ENDDO |
---|
| 816 | !$OMP END PARALLEL |
---|
| 817 | |
---|
| 818 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 819 | |
---|
| 820 | |
---|
| 821 | END SUBROUTINE prognostic_equations_cache |
---|
| 822 | |
---|
| 823 | |
---|
| 824 | SUBROUTINE prognostic_equations_vector |
---|
| 825 | |
---|
| 826 | !------------------------------------------------------------------------------! |
---|
| 827 | ! Version for vector machines |
---|
| 828 | !------------------------------------------------------------------------------! |
---|
| 829 | |
---|
| 830 | IMPLICIT NONE |
---|
| 831 | |
---|
| 832 | INTEGER :: i, j, k |
---|
[1001] | 833 | REAL :: sbt |
---|
[736] | 834 | |
---|
| 835 | |
---|
| 836 | ! |
---|
| 837 | !-- u-velocity component |
---|
| 838 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 839 | |
---|
[1001] | 840 | tend = 0.0 |
---|
| 841 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 842 | IF ( ws_scheme_mom ) THEN |
---|
| 843 | CALL advec_u_ws |
---|
| 844 | ELSE |
---|
| 845 | CALL advec_u_pw |
---|
| 846 | ENDIF |
---|
| 847 | ELSE |
---|
[1001] | 848 | CALL advec_u_up |
---|
[736] | 849 | ENDIF |
---|
[1001] | 850 | CALL diffusion_u |
---|
[736] | 851 | CALL coriolis( 1 ) |
---|
[940] | 852 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 853 | CALL buoyancy( pt, 1 ) |
---|
[940] | 854 | ENDIF |
---|
[736] | 855 | |
---|
| 856 | ! |
---|
| 857 | !-- Drag by plant canopy |
---|
| 858 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 859 | |
---|
| 860 | ! |
---|
| 861 | !-- External pressure gradient |
---|
| 862 | IF ( dp_external ) THEN |
---|
| 863 | DO i = nxlu, nxr |
---|
| 864 | DO j = nys, nyn |
---|
| 865 | DO k = dp_level_ind_b+1, nzt |
---|
| 866 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 867 | ENDDO |
---|
| 868 | ENDDO |
---|
| 869 | ENDDO |
---|
| 870 | ENDIF |
---|
| 871 | |
---|
[1241] | 872 | ! |
---|
| 873 | !-- Nudging |
---|
| 874 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 875 | |
---|
[736] | 876 | CALL user_actions( 'u-tendency' ) |
---|
| 877 | |
---|
| 878 | ! |
---|
| 879 | !-- Prognostic equation for u-velocity component |
---|
| 880 | DO i = nxlu, nxr |
---|
| 881 | DO j = nys, nyn |
---|
| 882 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 883 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 884 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 885 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 886 | ENDDO |
---|
| 887 | ENDDO |
---|
| 888 | ENDDO |
---|
| 889 | |
---|
| 890 | ! |
---|
| 891 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 892 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 893 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 894 | DO i = nxlu, nxr |
---|
| 895 | DO j = nys, nyn |
---|
| 896 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 897 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 898 | ENDDO |
---|
| 899 | ENDDO |
---|
| 900 | ENDDO |
---|
| 901 | ELSEIF ( intermediate_timestep_count < & |
---|
| 902 | intermediate_timestep_count_max ) THEN |
---|
| 903 | DO i = nxlu, nxr |
---|
| 904 | DO j = nys, nyn |
---|
| 905 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 906 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 907 | ENDDO |
---|
| 908 | ENDDO |
---|
| 909 | ENDDO |
---|
| 910 | ENDIF |
---|
| 911 | ENDIF |
---|
| 912 | |
---|
| 913 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 914 | |
---|
| 915 | ! |
---|
| 916 | !-- v-velocity component |
---|
| 917 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 918 | |
---|
[1001] | 919 | tend = 0.0 |
---|
| 920 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 921 | IF ( ws_scheme_mom ) THEN |
---|
| 922 | CALL advec_v_ws |
---|
| 923 | ELSE |
---|
| 924 | CALL advec_v_pw |
---|
| 925 | END IF |
---|
| 926 | ELSE |
---|
[1001] | 927 | CALL advec_v_up |
---|
[736] | 928 | ENDIF |
---|
[1001] | 929 | CALL diffusion_v |
---|
[736] | 930 | CALL coriolis( 2 ) |
---|
| 931 | |
---|
| 932 | ! |
---|
| 933 | !-- Drag by plant canopy |
---|
| 934 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 935 | |
---|
| 936 | ! |
---|
| 937 | !-- External pressure gradient |
---|
| 938 | IF ( dp_external ) THEN |
---|
| 939 | DO i = nxl, nxr |
---|
| 940 | DO j = nysv, nyn |
---|
| 941 | DO k = dp_level_ind_b+1, nzt |
---|
| 942 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 943 | ENDDO |
---|
| 944 | ENDDO |
---|
| 945 | ENDDO |
---|
| 946 | ENDIF |
---|
| 947 | |
---|
[1241] | 948 | ! |
---|
| 949 | !-- Nudging |
---|
| 950 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 951 | |
---|
[736] | 952 | CALL user_actions( 'v-tendency' ) |
---|
| 953 | |
---|
| 954 | ! |
---|
| 955 | !-- Prognostic equation for v-velocity component |
---|
| 956 | DO i = nxl, nxr |
---|
| 957 | DO j = nysv, nyn |
---|
| 958 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 959 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 960 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 961 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 962 | ENDDO |
---|
| 963 | ENDDO |
---|
| 964 | ENDDO |
---|
| 965 | |
---|
| 966 | ! |
---|
| 967 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 968 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 969 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 970 | DO i = nxl, nxr |
---|
| 971 | DO j = nysv, nyn |
---|
| 972 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 973 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 974 | ENDDO |
---|
| 975 | ENDDO |
---|
| 976 | ENDDO |
---|
| 977 | ELSEIF ( intermediate_timestep_count < & |
---|
| 978 | intermediate_timestep_count_max ) THEN |
---|
| 979 | DO i = nxl, nxr |
---|
| 980 | DO j = nysv, nyn |
---|
| 981 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 982 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 983 | ENDDO |
---|
| 984 | ENDDO |
---|
| 985 | ENDDO |
---|
| 986 | ENDIF |
---|
| 987 | ENDIF |
---|
| 988 | |
---|
| 989 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 990 | |
---|
| 991 | ! |
---|
| 992 | !-- w-velocity component |
---|
| 993 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 994 | |
---|
[1001] | 995 | tend = 0.0 |
---|
| 996 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 997 | IF ( ws_scheme_mom ) THEN |
---|
| 998 | CALL advec_w_ws |
---|
| 999 | ELSE |
---|
| 1000 | CALL advec_w_pw |
---|
| 1001 | ENDIF |
---|
| 1002 | ELSE |
---|
[1001] | 1003 | CALL advec_w_up |
---|
[736] | 1004 | ENDIF |
---|
[1001] | 1005 | CALL diffusion_w |
---|
[736] | 1006 | CALL coriolis( 3 ) |
---|
[940] | 1007 | |
---|
| 1008 | IF ( .NOT. neutral ) THEN |
---|
| 1009 | IF ( ocean ) THEN |
---|
[1179] | 1010 | CALL buoyancy( rho, 3 ) |
---|
[736] | 1011 | ELSE |
---|
[940] | 1012 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1013 | CALL buoyancy( pt, 3 ) |
---|
[940] | 1014 | ELSE |
---|
[1179] | 1015 | CALL buoyancy( vpt, 3 ) |
---|
[940] | 1016 | ENDIF |
---|
[736] | 1017 | ENDIF |
---|
| 1018 | ENDIF |
---|
| 1019 | |
---|
| 1020 | ! |
---|
| 1021 | !-- Drag by plant canopy |
---|
| 1022 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1023 | |
---|
| 1024 | CALL user_actions( 'w-tendency' ) |
---|
| 1025 | |
---|
| 1026 | ! |
---|
| 1027 | !-- Prognostic equation for w-velocity component |
---|
| 1028 | DO i = nxl, nxr |
---|
| 1029 | DO j = nys, nyn |
---|
| 1030 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 1031 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1032 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1033 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 1034 | ENDDO |
---|
| 1035 | ENDDO |
---|
| 1036 | ENDDO |
---|
| 1037 | |
---|
| 1038 | ! |
---|
| 1039 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1040 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1041 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1042 | DO i = nxl, nxr |
---|
| 1043 | DO j = nys, nyn |
---|
| 1044 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1045 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1046 | ENDDO |
---|
| 1047 | ENDDO |
---|
| 1048 | ENDDO |
---|
| 1049 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1050 | intermediate_timestep_count_max ) THEN |
---|
| 1051 | DO i = nxl, nxr |
---|
| 1052 | DO j = nys, nyn |
---|
| 1053 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1054 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1055 | ENDDO |
---|
| 1056 | ENDDO |
---|
| 1057 | ENDDO |
---|
| 1058 | ENDIF |
---|
| 1059 | ENDIF |
---|
| 1060 | |
---|
| 1061 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1062 | |
---|
[940] | 1063 | |
---|
[736] | 1064 | ! |
---|
[940] | 1065 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1066 | IF ( .NOT. neutral ) THEN |
---|
[736] | 1067 | |
---|
[940] | 1068 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1069 | |
---|
[736] | 1070 | ! |
---|
[940] | 1071 | !-- pt-tendency terms with communication |
---|
| 1072 | sbt = tsc(2) |
---|
| 1073 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 1074 | |
---|
[940] | 1075 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 1076 | ! |
---|
[1001] | 1077 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[940] | 1078 | sbt = 1.0 |
---|
| 1079 | ENDIF |
---|
[736] | 1080 | tend = 0.0 |
---|
[940] | 1081 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 1082 | |
---|
[736] | 1083 | ENDIF |
---|
[940] | 1084 | |
---|
| 1085 | ! |
---|
| 1086 | !-- pt-tendency terms with no communication |
---|
[1001] | 1087 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1088 | tend = 0.0 |
---|
| 1089 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 1090 | IF ( ws_scheme_sca ) THEN |
---|
| 1091 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1092 | ELSE |
---|
| 1093 | CALL advec_s_pw( pt ) |
---|
| 1094 | ENDIF |
---|
| 1095 | ELSE |
---|
[1001] | 1096 | CALL advec_s_up( pt ) |
---|
[940] | 1097 | ENDIF |
---|
[736] | 1098 | ENDIF |
---|
| 1099 | |
---|
[1001] | 1100 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1101 | |
---|
[736] | 1102 | ! |
---|
[940] | 1103 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1104 | IF ( radiation ) THEN |
---|
| 1105 | CALL calc_radiation |
---|
| 1106 | ENDIF |
---|
[736] | 1107 | |
---|
| 1108 | ! |
---|
[940] | 1109 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1110 | IF ( precipitation ) THEN |
---|
| 1111 | CALL impact_of_latent_heat |
---|
| 1112 | ENDIF |
---|
[736] | 1113 | |
---|
| 1114 | ! |
---|
[940] | 1115 | !-- Consideration of heat sources within the plant canopy |
---|
| 1116 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1117 | CALL plant_canopy_model( 4 ) |
---|
| 1118 | ENDIF |
---|
[736] | 1119 | |
---|
[940] | 1120 | ! |
---|
| 1121 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1122 | IF ( large_scale_subsidence ) THEN |
---|
| 1123 | CALL subsidence( tend, pt, pt_init ) |
---|
| 1124 | ENDIF |
---|
[736] | 1125 | |
---|
[1241] | 1126 | ! |
---|
| 1127 | !-- Nudging |
---|
| 1128 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1129 | |
---|
[940] | 1130 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 1131 | |
---|
| 1132 | ! |
---|
[940] | 1133 | !-- Prognostic equation for potential temperature |
---|
| 1134 | DO i = nxl, nxr |
---|
| 1135 | DO j = nys, nyn |
---|
| 1136 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1137 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1138 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1139 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1140 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 1141 | ENDDO |
---|
[736] | 1142 | ENDDO |
---|
| 1143 | ENDDO |
---|
| 1144 | |
---|
| 1145 | ! |
---|
[940] | 1146 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1147 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1148 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1149 | DO i = nxl, nxr |
---|
| 1150 | DO j = nys, nyn |
---|
| 1151 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1152 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1153 | ENDDO |
---|
[736] | 1154 | ENDDO |
---|
| 1155 | ENDDO |
---|
[940] | 1156 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1157 | intermediate_timestep_count_max ) THEN |
---|
| 1158 | DO i = nxl, nxr |
---|
| 1159 | DO j = nys, nyn |
---|
| 1160 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1161 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1162 | 5.3125 * tpt_m(k,j,i) |
---|
| 1163 | ENDDO |
---|
[736] | 1164 | ENDDO |
---|
| 1165 | ENDDO |
---|
[940] | 1166 | ENDIF |
---|
[736] | 1167 | ENDIF |
---|
[940] | 1168 | |
---|
| 1169 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1170 | |
---|
[736] | 1171 | ENDIF |
---|
| 1172 | |
---|
| 1173 | ! |
---|
| 1174 | !-- If required, compute prognostic equation for salinity |
---|
| 1175 | IF ( ocean ) THEN |
---|
| 1176 | |
---|
| 1177 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1178 | |
---|
| 1179 | ! |
---|
| 1180 | !-- sa-tendency terms with communication |
---|
| 1181 | sbt = tsc(2) |
---|
| 1182 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1183 | |
---|
| 1184 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1185 | ! |
---|
[1001] | 1186 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[736] | 1187 | sbt = 1.0 |
---|
| 1188 | ENDIF |
---|
| 1189 | tend = 0.0 |
---|
| 1190 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1191 | |
---|
[736] | 1192 | ENDIF |
---|
| 1193 | |
---|
| 1194 | ! |
---|
| 1195 | !-- sa-tendency terms with no communication |
---|
[1001] | 1196 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1197 | tend = 0.0 |
---|
| 1198 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1199 | IF ( ws_scheme_sca ) THEN |
---|
| 1200 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1201 | ELSE |
---|
| 1202 | CALL advec_s_pw( sa ) |
---|
| 1203 | ENDIF |
---|
| 1204 | ELSE |
---|
[1001] | 1205 | CALL advec_s_up( sa ) |
---|
[736] | 1206 | ENDIF |
---|
| 1207 | ENDIF |
---|
[1001] | 1208 | |
---|
| 1209 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1210 | |
---|
| 1211 | CALL user_actions( 'sa-tendency' ) |
---|
| 1212 | |
---|
| 1213 | ! |
---|
| 1214 | !-- Prognostic equation for salinity |
---|
| 1215 | DO i = nxl, nxr |
---|
| 1216 | DO j = nys, nyn |
---|
| 1217 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1218 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1219 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1220 | - tsc(5) * rdf_sc(k) * & |
---|
| 1221 | ( sa(k,j,i) - sa_init(k) ) |
---|
[736] | 1222 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1223 | ENDDO |
---|
| 1224 | ENDDO |
---|
| 1225 | ENDDO |
---|
| 1226 | |
---|
| 1227 | ! |
---|
| 1228 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1229 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1230 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1231 | DO i = nxl, nxr |
---|
| 1232 | DO j = nys, nyn |
---|
| 1233 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1234 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1235 | ENDDO |
---|
| 1236 | ENDDO |
---|
| 1237 | ENDDO |
---|
| 1238 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1239 | intermediate_timestep_count_max ) THEN |
---|
| 1240 | DO i = nxl, nxr |
---|
| 1241 | DO j = nys, nyn |
---|
| 1242 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1243 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1244 | 5.3125 * tsa_m(k,j,i) |
---|
| 1245 | ENDDO |
---|
| 1246 | ENDDO |
---|
| 1247 | ENDDO |
---|
| 1248 | ENDIF |
---|
| 1249 | ENDIF |
---|
| 1250 | |
---|
| 1251 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1252 | |
---|
| 1253 | ! |
---|
| 1254 | !-- Calculate density by the equation of state for seawater |
---|
| 1255 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1256 | CALL eqn_state_seawater |
---|
| 1257 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1258 | |
---|
| 1259 | ENDIF |
---|
| 1260 | |
---|
| 1261 | ! |
---|
| 1262 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1263 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1264 | |
---|
| 1265 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1266 | |
---|
| 1267 | ! |
---|
| 1268 | !-- Scalar/q-tendency terms with communication |
---|
| 1269 | sbt = tsc(2) |
---|
| 1270 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1271 | |
---|
| 1272 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1273 | ! |
---|
[1001] | 1274 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[736] | 1275 | sbt = 1.0 |
---|
| 1276 | ENDIF |
---|
| 1277 | tend = 0.0 |
---|
| 1278 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1279 | |
---|
[736] | 1280 | ENDIF |
---|
| 1281 | |
---|
| 1282 | ! |
---|
| 1283 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1284 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1285 | tend = 0.0 |
---|
| 1286 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1287 | IF ( ws_scheme_sca ) THEN |
---|
| 1288 | CALL advec_s_ws( q, 'q' ) |
---|
| 1289 | ELSE |
---|
| 1290 | CALL advec_s_pw( q ) |
---|
| 1291 | ENDIF |
---|
| 1292 | ELSE |
---|
[1001] | 1293 | CALL advec_s_up( q ) |
---|
[736] | 1294 | ENDIF |
---|
| 1295 | ENDIF |
---|
[1001] | 1296 | |
---|
| 1297 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1298 | |
---|
| 1299 | ! |
---|
| 1300 | !-- If required compute decrease of total water content due to |
---|
| 1301 | !-- precipitation |
---|
| 1302 | IF ( precipitation ) THEN |
---|
| 1303 | CALL calc_precipitation |
---|
| 1304 | ENDIF |
---|
| 1305 | |
---|
| 1306 | ! |
---|
| 1307 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1308 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1309 | |
---|
| 1310 | ! |
---|
| 1311 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[940] | 1312 | IF ( large_scale_subsidence ) THEN |
---|
| 1313 | CALL subsidence( tend, q, q_init ) |
---|
[736] | 1314 | ENDIF |
---|
| 1315 | |
---|
[1241] | 1316 | ! |
---|
| 1317 | !-- Nudging |
---|
| 1318 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1319 | |
---|
[736] | 1320 | CALL user_actions( 'q-tendency' ) |
---|
| 1321 | |
---|
| 1322 | ! |
---|
| 1323 | !-- Prognostic equation for total water content / scalar |
---|
| 1324 | DO i = nxl, nxr |
---|
| 1325 | DO j = nys, nyn |
---|
| 1326 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1327 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1328 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1329 | - tsc(5) * rdf_sc(k) * & |
---|
| 1330 | ( q(k,j,i) - q_init(k) ) |
---|
[736] | 1331 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 1332 | ENDDO |
---|
| 1333 | ENDDO |
---|
| 1334 | ENDDO |
---|
| 1335 | |
---|
| 1336 | ! |
---|
| 1337 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1338 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1339 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1340 | DO i = nxl, nxr |
---|
| 1341 | DO j = nys, nyn |
---|
| 1342 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1343 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1344 | ENDDO |
---|
| 1345 | ENDDO |
---|
| 1346 | ENDDO |
---|
| 1347 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1348 | intermediate_timestep_count_max ) THEN |
---|
| 1349 | DO i = nxl, nxr |
---|
| 1350 | DO j = nys, nyn |
---|
| 1351 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1352 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1353 | ENDDO |
---|
| 1354 | ENDDO |
---|
| 1355 | ENDDO |
---|
| 1356 | ENDIF |
---|
| 1357 | ENDIF |
---|
| 1358 | |
---|
| 1359 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1360 | |
---|
| 1361 | ENDIF |
---|
| 1362 | |
---|
| 1363 | ! |
---|
| 1364 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1365 | !-- energy (TKE) |
---|
| 1366 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1367 | |
---|
| 1368 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1369 | |
---|
| 1370 | sbt = tsc(2) |
---|
| 1371 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1372 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1373 | |
---|
| 1374 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1375 | ! |
---|
[1001] | 1376 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[736] | 1377 | sbt = 1.0 |
---|
| 1378 | ENDIF |
---|
| 1379 | tend = 0.0 |
---|
| 1380 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1381 | |
---|
[736] | 1382 | ENDIF |
---|
| 1383 | ENDIF |
---|
| 1384 | |
---|
| 1385 | ! |
---|
| 1386 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1387 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1388 | IF ( use_upstream_for_tke ) THEN |
---|
| 1389 | tend = 0.0 |
---|
| 1390 | CALL advec_s_up( e ) |
---|
| 1391 | ELSE |
---|
[1001] | 1392 | tend = 0.0 |
---|
| 1393 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1394 | IF ( ws_scheme_sca ) THEN |
---|
| 1395 | CALL advec_s_ws( e, 'e' ) |
---|
| 1396 | ELSE |
---|
| 1397 | CALL advec_s_pw( e ) |
---|
| 1398 | ENDIF |
---|
| 1399 | ELSE |
---|
[1001] | 1400 | CALL advec_s_up( e ) |
---|
[736] | 1401 | ENDIF |
---|
| 1402 | ENDIF |
---|
[1001] | 1403 | ENDIF |
---|
| 1404 | |
---|
| 1405 | IF ( .NOT. humidity ) THEN |
---|
| 1406 | IF ( ocean ) THEN |
---|
| 1407 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1408 | ELSE |
---|
[1001] | 1409 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1410 | ENDIF |
---|
[1001] | 1411 | ELSE |
---|
| 1412 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1413 | ENDIF |
---|
[1001] | 1414 | |
---|
[736] | 1415 | CALL production_e |
---|
| 1416 | |
---|
| 1417 | ! |
---|
| 1418 | !-- Additional sink term for flows through plant canopies |
---|
| 1419 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1420 | CALL user_actions( 'e-tendency' ) |
---|
| 1421 | |
---|
| 1422 | ! |
---|
| 1423 | !-- Prognostic equation for TKE. |
---|
| 1424 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1425 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1426 | !-- value is reduced by 90%. |
---|
| 1427 | DO i = nxl, nxr |
---|
| 1428 | DO j = nys, nyn |
---|
| 1429 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1430 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1431 | tsc(3) * te_m(k,j,i) ) |
---|
[736] | 1432 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1433 | ENDDO |
---|
| 1434 | ENDDO |
---|
| 1435 | ENDDO |
---|
| 1436 | |
---|
| 1437 | ! |
---|
| 1438 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1439 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1440 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1441 | DO i = nxl, nxr |
---|
| 1442 | DO j = nys, nyn |
---|
| 1443 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1444 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1445 | ENDDO |
---|
| 1446 | ENDDO |
---|
| 1447 | ENDDO |
---|
| 1448 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1449 | intermediate_timestep_count_max ) THEN |
---|
| 1450 | DO i = nxl, nxr |
---|
| 1451 | DO j = nys, nyn |
---|
| 1452 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1453 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 1454 | ENDDO |
---|
| 1455 | ENDDO |
---|
| 1456 | ENDDO |
---|
| 1457 | ENDIF |
---|
| 1458 | ENDIF |
---|
| 1459 | |
---|
| 1460 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1461 | |
---|
| 1462 | ENDIF |
---|
| 1463 | |
---|
| 1464 | |
---|
| 1465 | END SUBROUTINE prognostic_equations_vector |
---|
| 1466 | |
---|
| 1467 | |
---|
[1015] | 1468 | SUBROUTINE prognostic_equations_acc |
---|
| 1469 | |
---|
| 1470 | !------------------------------------------------------------------------------! |
---|
| 1471 | ! Version for accelerator boards |
---|
| 1472 | !------------------------------------------------------------------------------! |
---|
| 1473 | |
---|
| 1474 | IMPLICIT NONE |
---|
| 1475 | |
---|
| 1476 | INTEGER :: i, j, k, runge_step |
---|
| 1477 | REAL :: sbt |
---|
| 1478 | |
---|
| 1479 | ! |
---|
| 1480 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1481 | runge_step = 0 |
---|
| 1482 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1483 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1484 | runge_step = 1 |
---|
| 1485 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1486 | intermediate_timestep_count_max ) THEN |
---|
| 1487 | runge_step = 2 |
---|
| 1488 | ENDIF |
---|
| 1489 | ENDIF |
---|
| 1490 | |
---|
| 1491 | ! |
---|
| 1492 | !-- u-velocity component |
---|
| 1493 | !++ Statistics still not ported to accelerators |
---|
[1179] | 1494 | !$acc update device( hom, ref_state ) |
---|
[1015] | 1495 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1496 | |
---|
| 1497 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1498 | IF ( ws_scheme_mom ) THEN |
---|
| 1499 | CALL advec_u_ws_acc |
---|
| 1500 | ELSE |
---|
| 1501 | tend = 0.0 ! to be removed later?? |
---|
| 1502 | CALL advec_u_pw |
---|
| 1503 | ENDIF |
---|
| 1504 | ELSE |
---|
| 1505 | CALL advec_u_up |
---|
| 1506 | ENDIF |
---|
| 1507 | CALL diffusion_u_acc |
---|
| 1508 | CALL coriolis_acc( 1 ) |
---|
| 1509 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 1510 | CALL buoyancy( pt, 1 ) |
---|
[1015] | 1511 | ENDIF |
---|
| 1512 | |
---|
| 1513 | ! |
---|
| 1514 | !-- Drag by plant canopy |
---|
| 1515 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1516 | |
---|
| 1517 | ! |
---|
| 1518 | !-- External pressure gradient |
---|
| 1519 | IF ( dp_external ) THEN |
---|
[1128] | 1520 | DO i = i_left, i_right |
---|
| 1521 | DO j = j_south, j_north |
---|
[1015] | 1522 | DO k = dp_level_ind_b+1, nzt |
---|
| 1523 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1524 | ENDDO |
---|
| 1525 | ENDDO |
---|
| 1526 | ENDDO |
---|
| 1527 | ENDIF |
---|
| 1528 | |
---|
[1246] | 1529 | ! |
---|
| 1530 | !-- Nudging |
---|
| 1531 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 1532 | |
---|
[1015] | 1533 | CALL user_actions( 'u-tendency' ) |
---|
| 1534 | |
---|
| 1535 | ! |
---|
| 1536 | !-- Prognostic equation for u-velocity component |
---|
| 1537 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, ug, u_p ) |
---|
| 1538 | !$acc loop |
---|
[1128] | 1539 | DO i = i_left, i_right |
---|
| 1540 | DO j = j_south, j_north |
---|
[1015] | 1541 | !$acc loop vector( 32 ) |
---|
| 1542 | DO k = 1, nzt |
---|
| 1543 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1544 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1545 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 1546 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1547 | ! |
---|
| 1548 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1549 | IF ( runge_step == 1 ) THEN |
---|
| 1550 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1551 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1552 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 1553 | ENDIF |
---|
| 1554 | ENDIF |
---|
| 1555 | ENDDO |
---|
| 1556 | ENDDO |
---|
| 1557 | ENDDO |
---|
| 1558 | !$acc end kernels |
---|
| 1559 | |
---|
| 1560 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1561 | |
---|
| 1562 | ! |
---|
| 1563 | !-- v-velocity component |
---|
| 1564 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1565 | |
---|
| 1566 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1567 | IF ( ws_scheme_mom ) THEN |
---|
| 1568 | CALL advec_v_ws_acc |
---|
| 1569 | ELSE |
---|
| 1570 | tend = 0.0 ! to be removed later?? |
---|
| 1571 | CALL advec_v_pw |
---|
| 1572 | END IF |
---|
| 1573 | ELSE |
---|
| 1574 | CALL advec_v_up |
---|
| 1575 | ENDIF |
---|
| 1576 | CALL diffusion_v_acc |
---|
| 1577 | CALL coriolis_acc( 2 ) |
---|
| 1578 | |
---|
| 1579 | ! |
---|
| 1580 | !-- Drag by plant canopy |
---|
| 1581 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1582 | |
---|
| 1583 | ! |
---|
| 1584 | !-- External pressure gradient |
---|
| 1585 | IF ( dp_external ) THEN |
---|
[1128] | 1586 | DO i = i_left, i_right |
---|
| 1587 | DO j = j_south, j_north |
---|
[1015] | 1588 | DO k = dp_level_ind_b+1, nzt |
---|
| 1589 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1590 | ENDDO |
---|
| 1591 | ENDDO |
---|
| 1592 | ENDDO |
---|
| 1593 | ENDIF |
---|
| 1594 | |
---|
[1246] | 1595 | ! |
---|
| 1596 | !-- Nudging |
---|
| 1597 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 1598 | |
---|
[1015] | 1599 | CALL user_actions( 'v-tendency' ) |
---|
| 1600 | |
---|
| 1601 | ! |
---|
| 1602 | !-- Prognostic equation for v-velocity component |
---|
| 1603 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, vg, v_p ) |
---|
| 1604 | !$acc loop |
---|
[1128] | 1605 | DO i = i_left, i_right |
---|
| 1606 | DO j = j_south, j_north |
---|
[1015] | 1607 | !$acc loop vector( 32 ) |
---|
| 1608 | DO k = 1, nzt |
---|
| 1609 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1610 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1611 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 1612 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1613 | ! |
---|
| 1614 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1615 | IF ( runge_step == 1 ) THEN |
---|
| 1616 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1617 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1618 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1619 | ENDIF |
---|
| 1620 | ENDIF |
---|
| 1621 | ENDDO |
---|
| 1622 | ENDDO |
---|
| 1623 | ENDDO |
---|
| 1624 | !$acc end kernels |
---|
| 1625 | |
---|
| 1626 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1627 | |
---|
| 1628 | ! |
---|
| 1629 | !-- w-velocity component |
---|
| 1630 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1631 | |
---|
| 1632 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1633 | IF ( ws_scheme_mom ) THEN |
---|
| 1634 | CALL advec_w_ws_acc |
---|
| 1635 | ELSE |
---|
| 1636 | tend = 0.0 ! to be removed later?? |
---|
| 1637 | CALL advec_w_pw |
---|
| 1638 | ENDIF |
---|
| 1639 | ELSE |
---|
| 1640 | CALL advec_w_up |
---|
| 1641 | ENDIF |
---|
| 1642 | CALL diffusion_w_acc |
---|
| 1643 | CALL coriolis_acc( 3 ) |
---|
| 1644 | |
---|
| 1645 | IF ( .NOT. neutral ) THEN |
---|
| 1646 | IF ( ocean ) THEN |
---|
[1179] | 1647 | CALL buoyancy( rho, 3 ) |
---|
[1015] | 1648 | ELSE |
---|
| 1649 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1650 | CALL buoyancy_acc( pt, 3 ) |
---|
[1015] | 1651 | ELSE |
---|
[1179] | 1652 | CALL buoyancy( vpt, 3 ) |
---|
[1015] | 1653 | ENDIF |
---|
| 1654 | ENDIF |
---|
| 1655 | ENDIF |
---|
| 1656 | |
---|
| 1657 | ! |
---|
| 1658 | !-- Drag by plant canopy |
---|
| 1659 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1660 | |
---|
| 1661 | CALL user_actions( 'w-tendency' ) |
---|
| 1662 | |
---|
| 1663 | ! |
---|
| 1664 | !-- Prognostic equation for w-velocity component |
---|
| 1665 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
| 1666 | !$acc loop |
---|
[1128] | 1667 | DO i = i_left, i_right |
---|
| 1668 | DO j = j_south, j_north |
---|
[1015] | 1669 | !$acc loop vector( 32 ) |
---|
| 1670 | DO k = 1, nzt-1 |
---|
| 1671 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 1672 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1673 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1674 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1675 | ! |
---|
| 1676 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1677 | IF ( runge_step == 1 ) THEN |
---|
| 1678 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1679 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1680 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1681 | ENDIF |
---|
| 1682 | ENDIF |
---|
| 1683 | ENDDO |
---|
| 1684 | ENDDO |
---|
| 1685 | ENDDO |
---|
| 1686 | !$acc end kernels |
---|
| 1687 | |
---|
| 1688 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1689 | |
---|
| 1690 | |
---|
| 1691 | ! |
---|
| 1692 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1693 | IF ( .NOT. neutral ) THEN |
---|
| 1694 | |
---|
| 1695 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1696 | |
---|
| 1697 | ! |
---|
| 1698 | !-- pt-tendency terms with communication |
---|
| 1699 | sbt = tsc(2) |
---|
| 1700 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1701 | |
---|
| 1702 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1703 | ! |
---|
| 1704 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1705 | sbt = 1.0 |
---|
| 1706 | ENDIF |
---|
| 1707 | tend = 0.0 |
---|
| 1708 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1709 | |
---|
| 1710 | ENDIF |
---|
| 1711 | |
---|
| 1712 | ! |
---|
| 1713 | !-- pt-tendency terms with no communication |
---|
| 1714 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1715 | tend = 0.0 |
---|
| 1716 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1717 | IF ( ws_scheme_sca ) THEN |
---|
| 1718 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 1719 | ELSE |
---|
| 1720 | tend = 0.0 ! to be removed later?? |
---|
| 1721 | CALL advec_s_pw( pt ) |
---|
| 1722 | ENDIF |
---|
| 1723 | ELSE |
---|
| 1724 | CALL advec_s_up( pt ) |
---|
| 1725 | ENDIF |
---|
| 1726 | ENDIF |
---|
| 1727 | |
---|
| 1728 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 1729 | |
---|
| 1730 | ! |
---|
| 1731 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1732 | IF ( radiation ) THEN |
---|
| 1733 | CALL calc_radiation |
---|
| 1734 | ENDIF |
---|
| 1735 | |
---|
| 1736 | ! |
---|
| 1737 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1738 | IF ( precipitation ) THEN |
---|
| 1739 | CALL impact_of_latent_heat |
---|
| 1740 | ENDIF |
---|
| 1741 | |
---|
| 1742 | ! |
---|
| 1743 | !-- Consideration of heat sources within the plant canopy |
---|
| 1744 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1745 | CALL plant_canopy_model( 4 ) |
---|
| 1746 | ENDIF |
---|
| 1747 | |
---|
| 1748 | ! |
---|
| 1749 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1750 | IF ( large_scale_subsidence ) THEN |
---|
| 1751 | CALL subsidence( tend, pt, pt_init ) |
---|
| 1752 | ENDIF |
---|
| 1753 | |
---|
[1246] | 1754 | ! |
---|
| 1755 | !-- Nudging |
---|
| 1756 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1757 | |
---|
[1015] | 1758 | CALL user_actions( 'pt-tendency' ) |
---|
| 1759 | |
---|
| 1760 | ! |
---|
| 1761 | !-- Prognostic equation for potential temperature |
---|
| 1762 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 1763 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
| 1764 | !$acc loop |
---|
[1128] | 1765 | DO i = i_left, i_right |
---|
| 1766 | DO j = j_south, j_north |
---|
[1015] | 1767 | !$acc loop vector( 32 ) |
---|
| 1768 | DO k = 1, nzt |
---|
| 1769 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 1770 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1771 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1772 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1773 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 1774 | ! |
---|
| 1775 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1776 | IF ( runge_step == 1 ) THEN |
---|
| 1777 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1778 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1779 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 1780 | ENDIF |
---|
| 1781 | ENDIF |
---|
| 1782 | ENDDO |
---|
| 1783 | ENDDO |
---|
| 1784 | ENDDO |
---|
| 1785 | !$acc end kernels |
---|
| 1786 | |
---|
| 1787 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1788 | |
---|
| 1789 | ENDIF |
---|
| 1790 | |
---|
| 1791 | ! |
---|
| 1792 | !-- If required, compute prognostic equation for salinity |
---|
| 1793 | IF ( ocean ) THEN |
---|
| 1794 | |
---|
| 1795 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1796 | |
---|
| 1797 | ! |
---|
| 1798 | !-- sa-tendency terms with communication |
---|
| 1799 | sbt = tsc(2) |
---|
| 1800 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1801 | |
---|
| 1802 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1803 | ! |
---|
| 1804 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1805 | sbt = 1.0 |
---|
| 1806 | ENDIF |
---|
| 1807 | tend = 0.0 |
---|
| 1808 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 1809 | |
---|
| 1810 | ENDIF |
---|
| 1811 | |
---|
| 1812 | ! |
---|
| 1813 | !-- sa-tendency terms with no communication |
---|
| 1814 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1815 | tend = 0.0 |
---|
| 1816 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1817 | IF ( ws_scheme_sca ) THEN |
---|
| 1818 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1819 | ELSE |
---|
| 1820 | CALL advec_s_pw( sa ) |
---|
| 1821 | ENDIF |
---|
| 1822 | ELSE |
---|
| 1823 | CALL advec_s_up( sa ) |
---|
| 1824 | ENDIF |
---|
| 1825 | ENDIF |
---|
| 1826 | |
---|
| 1827 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 1828 | |
---|
| 1829 | CALL user_actions( 'sa-tendency' ) |
---|
| 1830 | |
---|
| 1831 | ! |
---|
| 1832 | !-- Prognostic equation for salinity |
---|
[1128] | 1833 | DO i = i_left, i_right |
---|
| 1834 | DO j = j_south, j_north |
---|
[1015] | 1835 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1836 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1837 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1838 | - tsc(5) * rdf_sc(k) * & |
---|
| 1839 | ( sa(k,j,i) - sa_init(k) ) |
---|
| 1840 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1841 | ! |
---|
| 1842 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1843 | IF ( runge_step == 1 ) THEN |
---|
| 1844 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1845 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1846 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tsa_m(k,j,i) |
---|
| 1847 | ENDIF |
---|
| 1848 | ENDDO |
---|
| 1849 | ENDDO |
---|
| 1850 | ENDDO |
---|
| 1851 | |
---|
| 1852 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1853 | |
---|
| 1854 | ! |
---|
| 1855 | !-- Calculate density by the equation of state for seawater |
---|
| 1856 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1857 | CALL eqn_state_seawater |
---|
| 1858 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1859 | |
---|
| 1860 | ENDIF |
---|
| 1861 | |
---|
| 1862 | ! |
---|
| 1863 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1864 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1865 | |
---|
| 1866 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1867 | |
---|
| 1868 | ! |
---|
| 1869 | !-- Scalar/q-tendency terms with communication |
---|
| 1870 | sbt = tsc(2) |
---|
| 1871 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1872 | |
---|
| 1873 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1874 | ! |
---|
| 1875 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1876 | sbt = 1.0 |
---|
| 1877 | ENDIF |
---|
| 1878 | tend = 0.0 |
---|
| 1879 | CALL advec_s_bc( q, 'q' ) |
---|
| 1880 | |
---|
| 1881 | ENDIF |
---|
| 1882 | |
---|
| 1883 | ! |
---|
| 1884 | !-- Scalar/q-tendency terms with no communication |
---|
| 1885 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1886 | tend = 0.0 |
---|
| 1887 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1888 | IF ( ws_scheme_sca ) THEN |
---|
| 1889 | CALL advec_s_ws( q, 'q' ) |
---|
| 1890 | ELSE |
---|
| 1891 | CALL advec_s_pw( q ) |
---|
| 1892 | ENDIF |
---|
| 1893 | ELSE |
---|
| 1894 | CALL advec_s_up( q ) |
---|
| 1895 | ENDIF |
---|
| 1896 | ENDIF |
---|
| 1897 | |
---|
| 1898 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 1899 | |
---|
| 1900 | ! |
---|
| 1901 | !-- If required compute decrease of total water content due to |
---|
| 1902 | !-- precipitation |
---|
| 1903 | IF ( precipitation ) THEN |
---|
| 1904 | CALL calc_precipitation |
---|
| 1905 | ENDIF |
---|
| 1906 | |
---|
| 1907 | ! |
---|
| 1908 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1909 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1910 | |
---|
| 1911 | ! |
---|
| 1912 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1913 | IF ( large_scale_subsidence ) THEN |
---|
| 1914 | CALL subsidence( tend, q, q_init ) |
---|
| 1915 | ENDIF |
---|
| 1916 | |
---|
[1246] | 1917 | ! |
---|
| 1918 | !-- Nudging |
---|
| 1919 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1920 | |
---|
[1015] | 1921 | CALL user_actions( 'q-tendency' ) |
---|
| 1922 | |
---|
| 1923 | ! |
---|
| 1924 | !-- Prognostic equation for total water content / scalar |
---|
[1128] | 1925 | DO i = i_left, i_right |
---|
| 1926 | DO j = j_south, j_north |
---|
[1015] | 1927 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1928 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1929 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1930 | - tsc(5) * rdf_sc(k) * & |
---|
| 1931 | ( q(k,j,i) - q_init(k) ) |
---|
| 1932 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 1933 | ! |
---|
| 1934 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1935 | IF ( runge_step == 1 ) THEN |
---|
| 1936 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1937 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1938 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1939 | ENDIF |
---|
| 1940 | ENDDO |
---|
| 1941 | ENDDO |
---|
| 1942 | ENDDO |
---|
| 1943 | |
---|
| 1944 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1945 | |
---|
| 1946 | ENDIF |
---|
| 1947 | |
---|
| 1948 | ! |
---|
| 1949 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1950 | !-- energy (TKE) |
---|
| 1951 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1952 | |
---|
| 1953 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1954 | |
---|
| 1955 | sbt = tsc(2) |
---|
| 1956 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1957 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1958 | |
---|
| 1959 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1960 | ! |
---|
| 1961 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1962 | sbt = 1.0 |
---|
| 1963 | ENDIF |
---|
| 1964 | tend = 0.0 |
---|
| 1965 | CALL advec_s_bc( e, 'e' ) |
---|
| 1966 | |
---|
| 1967 | ENDIF |
---|
| 1968 | ENDIF |
---|
| 1969 | |
---|
| 1970 | ! |
---|
| 1971 | !-- TKE-tendency terms with no communication |
---|
| 1972 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 1973 | IF ( use_upstream_for_tke ) THEN |
---|
| 1974 | tend = 0.0 |
---|
| 1975 | CALL advec_s_up( e ) |
---|
| 1976 | ELSE |
---|
| 1977 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1978 | IF ( ws_scheme_sca ) THEN |
---|
| 1979 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 1980 | ELSE |
---|
| 1981 | tend = 0.0 ! to be removed later?? |
---|
| 1982 | CALL advec_s_pw( e ) |
---|
| 1983 | ENDIF |
---|
| 1984 | ELSE |
---|
| 1985 | tend = 0.0 ! to be removed later?? |
---|
| 1986 | CALL advec_s_up( e ) |
---|
| 1987 | ENDIF |
---|
| 1988 | ENDIF |
---|
| 1989 | ENDIF |
---|
| 1990 | |
---|
| 1991 | IF ( .NOT. humidity ) THEN |
---|
| 1992 | IF ( ocean ) THEN |
---|
| 1993 | CALL diffusion_e( prho, prho_reference ) |
---|
| 1994 | ELSE |
---|
| 1995 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 1996 | ENDIF |
---|
| 1997 | ELSE |
---|
| 1998 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 1999 | ENDIF |
---|
| 2000 | |
---|
| 2001 | CALL production_e_acc |
---|
| 2002 | |
---|
| 2003 | ! |
---|
| 2004 | !-- Additional sink term for flows through plant canopies |
---|
| 2005 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 2006 | CALL user_actions( 'e-tendency' ) |
---|
| 2007 | |
---|
| 2008 | ! |
---|
| 2009 | !-- Prognostic equation for TKE. |
---|
| 2010 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2011 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2012 | !-- value is reduced by 90%. |
---|
| 2013 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
| 2014 | !$acc loop |
---|
[1128] | 2015 | DO i = i_left, i_right |
---|
| 2016 | DO j = j_south, j_north |
---|
[1015] | 2017 | !$acc loop vector( 32 ) |
---|
| 2018 | DO k = 1, nzt |
---|
| 2019 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2020 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2021 | tsc(3) * te_m(k,j,i) ) |
---|
| 2022 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 2023 | ! |
---|
| 2024 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2025 | IF ( runge_step == 1 ) THEN |
---|
| 2026 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2027 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2028 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 2029 | ENDIF |
---|
| 2030 | ENDIF |
---|
| 2031 | ENDDO |
---|
| 2032 | ENDDO |
---|
| 2033 | ENDDO |
---|
| 2034 | !$acc end kernels |
---|
| 2035 | |
---|
| 2036 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2037 | |
---|
| 2038 | ENDIF |
---|
| 2039 | |
---|
| 2040 | |
---|
| 2041 | END SUBROUTINE prognostic_equations_acc |
---|
| 2042 | |
---|
| 2043 | |
---|
[736] | 2044 | END MODULE prognostic_equations_mod |
---|