[736] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[736] | 20 | ! Current revisions: |
---|
[1092] | 21 | ! ------------------ |
---|
[1242] | 22 | ! |
---|
[1054] | 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: prognostic_equations.f90 1242 2013-10-30 11:50:11Z heinze $ |
---|
| 27 | ! |
---|
[1242] | 28 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 29 | ! usage of nudging enabled (so far not implemented for accelerator version) |
---|
| 30 | ! |
---|
[1182] | 31 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 32 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 33 | ! |
---|
[1132] | 34 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 35 | ! those parts requiring global communication moved to time_integration, |
---|
| 36 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 37 | ! j_north |
---|
| 38 | ! |
---|
[1116] | 39 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 40 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 41 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 42 | ! |
---|
[1112] | 43 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 44 | ! update directives for prognostic quantities removed |
---|
| 45 | ! |
---|
[1107] | 46 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 47 | ! small changes in code formatting |
---|
| 48 | ! |
---|
[1093] | 49 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 50 | ! unused variables removed |
---|
| 51 | ! |
---|
[1054] | 52 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 53 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 54 | ! and rain water content (qr) |
---|
[979] | 55 | ! |
---|
[1053] | 56 | ! currently, only available for cache loop optimization |
---|
[1020] | 57 | ! |
---|
[1037] | 58 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 59 | ! code put under GPL (PALM 3.9) |
---|
| 60 | ! |
---|
[1020] | 61 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 62 | ! non-optimized version of prognostic_equations removed |
---|
| 63 | ! |
---|
[1017] | 64 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 65 | ! new branch prognostic_equations_acc |
---|
| 66 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 67 | ! |
---|
[1002] | 68 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 69 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 70 | ! |
---|
[979] | 71 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 72 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 73 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 74 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 75 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 76 | ! |
---|
[941] | 77 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 78 | ! temperature equation can be switched off |
---|
| 79 | ! |
---|
[786] | 80 | ! 785 2011-11-28 09:47:19Z raasch |
---|
| 81 | ! new factor rdf_sc allows separate Rayleigh damping of scalars |
---|
| 82 | ! |
---|
[737] | 83 | ! 736 2011-08-17 14:13:26Z suehring |
---|
| 84 | ! Bugfix: determination of first thread index i for WS-scheme |
---|
| 85 | ! |
---|
[736] | 86 | ! 709 2011-03-30 09:31:40Z raasch |
---|
| 87 | ! formatting adjustments |
---|
| 88 | ! |
---|
| 89 | ! 673 2011-01-18 16:19:48Z suehring |
---|
| 90 | ! Consideration of the pressure gradient (steered by tsc(4)) during the time |
---|
| 91 | ! integration removed. |
---|
| 92 | ! |
---|
| 93 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 94 | ! Calls of the advection routines with WS5 added. |
---|
| 95 | ! Calls of ws_statistics added to set the statistical arrays to zero after each |
---|
| 96 | ! time step. |
---|
| 97 | ! |
---|
| 98 | ! 531 2010-04-21 06:47:21Z heinze |
---|
| 99 | ! add call of subsidence in the equation for humidity / passive scalar |
---|
| 100 | ! |
---|
| 101 | ! 411 2009-12-11 14:15:58Z heinze |
---|
| 102 | ! add call of subsidence in the equation for potential temperature |
---|
| 103 | ! |
---|
| 104 | ! 388 2009-09-23 09:40:33Z raasch |
---|
| 105 | ! prho is used instead of rho in diffusion_e, |
---|
| 106 | ! external pressure gradient |
---|
| 107 | ! |
---|
| 108 | ! 153 2008-03-19 09:41:30Z steinfeld |
---|
| 109 | ! add call of plant_canopy_model in the prognostic equation for |
---|
| 110 | ! the potential temperature and for the passive scalar |
---|
| 111 | ! |
---|
| 112 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 113 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
| 114 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
| 115 | ! |
---|
| 116 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 117 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
| 118 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
| 119 | ! for non-cyclic boundary conditions) |
---|
| 120 | ! |
---|
| 121 | ! 97 2007-06-21 08:23:15Z raasch |
---|
| 122 | ! prognostic equation for salinity, density is calculated from equation of |
---|
| 123 | ! state for seawater and is used for calculation of buoyancy, |
---|
| 124 | ! +eqn_state_seawater_mod |
---|
| 125 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
| 126 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
| 127 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
| 128 | ! calc_mean_profile |
---|
| 129 | ! |
---|
| 130 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 131 | ! checking for negative q and limiting for positive values, |
---|
| 132 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
| 133 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
| 134 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
| 135 | ! _vector-version |
---|
| 136 | ! |
---|
| 137 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 138 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
| 139 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
| 140 | ! |
---|
| 141 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 142 | ! |
---|
| 143 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
| 144 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
| 145 | ! regardless of the timestep scheme used for the other quantities, |
---|
| 146 | ! new argument diss in call of diffusion_e |
---|
| 147 | ! |
---|
| 148 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 149 | ! Initial revision |
---|
| 150 | ! |
---|
| 151 | ! |
---|
| 152 | ! Description: |
---|
| 153 | ! ------------ |
---|
| 154 | ! Solving the prognostic equations. |
---|
| 155 | !------------------------------------------------------------------------------! |
---|
| 156 | |
---|
| 157 | USE arrays_3d |
---|
| 158 | USE control_parameters |
---|
| 159 | USE cpulog |
---|
| 160 | USE eqn_state_seawater_mod |
---|
| 161 | USE grid_variables |
---|
| 162 | USE indices |
---|
| 163 | USE interfaces |
---|
| 164 | USE pegrid |
---|
| 165 | USE pointer_interfaces |
---|
| 166 | USE statistics |
---|
| 167 | USE advec_ws |
---|
| 168 | USE advec_s_pw_mod |
---|
| 169 | USE advec_s_up_mod |
---|
| 170 | USE advec_u_pw_mod |
---|
| 171 | USE advec_u_up_mod |
---|
| 172 | USE advec_v_pw_mod |
---|
| 173 | USE advec_v_up_mod |
---|
| 174 | USE advec_w_pw_mod |
---|
| 175 | USE advec_w_up_mod |
---|
| 176 | USE buoyancy_mod |
---|
| 177 | USE calc_precipitation_mod |
---|
| 178 | USE calc_radiation_mod |
---|
| 179 | USE coriolis_mod |
---|
| 180 | USE diffusion_e_mod |
---|
| 181 | USE diffusion_s_mod |
---|
| 182 | USE diffusion_u_mod |
---|
| 183 | USE diffusion_v_mod |
---|
| 184 | USE diffusion_w_mod |
---|
| 185 | USE impact_of_latent_heat_mod |
---|
[1053] | 186 | USE microphysics_mod |
---|
[1241] | 187 | USE nudge_mod |
---|
[736] | 188 | USE plant_canopy_model_mod |
---|
| 189 | USE production_e_mod |
---|
| 190 | USE subsidence_mod |
---|
| 191 | USE user_actions_mod |
---|
| 192 | |
---|
| 193 | |
---|
| 194 | PRIVATE |
---|
[1019] | 195 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 196 | prognostic_equations_acc |
---|
[736] | 197 | |
---|
| 198 | INTERFACE prognostic_equations_cache |
---|
| 199 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 200 | END INTERFACE prognostic_equations_cache |
---|
| 201 | |
---|
| 202 | INTERFACE prognostic_equations_vector |
---|
| 203 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 204 | END INTERFACE prognostic_equations_vector |
---|
| 205 | |
---|
[1015] | 206 | INTERFACE prognostic_equations_acc |
---|
| 207 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 208 | END INTERFACE prognostic_equations_acc |
---|
[736] | 209 | |
---|
[1015] | 210 | |
---|
[736] | 211 | CONTAINS |
---|
| 212 | |
---|
| 213 | |
---|
| 214 | SUBROUTINE prognostic_equations_cache |
---|
| 215 | |
---|
| 216 | !------------------------------------------------------------------------------! |
---|
| 217 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 218 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 219 | ! |
---|
| 220 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 221 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 222 | ! these loops. |
---|
| 223 | ! |
---|
| 224 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 225 | !------------------------------------------------------------------------------! |
---|
| 226 | |
---|
| 227 | IMPLICIT NONE |
---|
| 228 | |
---|
| 229 | INTEGER :: i, i_omp_start, j, k, omp_get_thread_num, tn = 0 |
---|
| 230 | LOGICAL :: loop_start |
---|
| 231 | |
---|
| 232 | |
---|
| 233 | ! |
---|
| 234 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 235 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 236 | |
---|
| 237 | ! |
---|
| 238 | !-- Loop over all prognostic equations |
---|
| 239 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 240 | |
---|
| 241 | !$ tn = omp_get_thread_num() |
---|
| 242 | loop_start = .TRUE. |
---|
| 243 | !$OMP DO |
---|
| 244 | DO i = nxl, nxr |
---|
| 245 | |
---|
| 246 | ! |
---|
| 247 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 248 | !-- later in advec_ws |
---|
| 249 | IF ( loop_start ) THEN |
---|
| 250 | loop_start = .FALSE. |
---|
| 251 | i_omp_start = i |
---|
| 252 | ENDIF |
---|
| 253 | |
---|
| 254 | DO j = nys, nyn |
---|
| 255 | ! |
---|
| 256 | !-- Tendency terms for u-velocity component |
---|
| 257 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 258 | |
---|
| 259 | tend(:,j,i) = 0.0 |
---|
[1001] | 260 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 261 | IF ( ws_scheme_mom ) THEN |
---|
[978] | 262 | IF ( ( inflow_l .OR. outflow_l ) .AND. i_omp_start == nxl ) THEN |
---|
[736] | 263 | CALL advec_u_ws( i, j, i_omp_start + 1, tn ) |
---|
| 264 | ELSE |
---|
| 265 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
| 266 | ENDIF |
---|
| 267 | ELSE |
---|
| 268 | CALL advec_u_pw( i, j ) |
---|
| 269 | ENDIF |
---|
| 270 | ELSE |
---|
| 271 | CALL advec_u_up( i, j ) |
---|
| 272 | ENDIF |
---|
[1001] | 273 | CALL diffusion_u( i, j ) |
---|
[736] | 274 | CALL coriolis( i, j, 1 ) |
---|
[940] | 275 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 276 | CALL buoyancy( i, j, pt, 1 ) |
---|
[940] | 277 | ENDIF |
---|
[736] | 278 | |
---|
| 279 | ! |
---|
| 280 | !-- Drag by plant canopy |
---|
| 281 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 282 | |
---|
| 283 | ! |
---|
| 284 | !-- External pressure gradient |
---|
| 285 | IF ( dp_external ) THEN |
---|
| 286 | DO k = dp_level_ind_b+1, nzt |
---|
| 287 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 288 | ENDDO |
---|
| 289 | ENDIF |
---|
| 290 | |
---|
[1241] | 291 | ! |
---|
| 292 | !-- Nudging |
---|
| 293 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'u' ) |
---|
| 294 | |
---|
[736] | 295 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 296 | ! |
---|
| 297 | !-- Prognostic equation for u-velocity component |
---|
| 298 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 299 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 300 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 301 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 302 | ENDDO |
---|
| 303 | |
---|
| 304 | ! |
---|
| 305 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 306 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 307 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 308 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 309 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 310 | ENDDO |
---|
| 311 | ELSEIF ( intermediate_timestep_count < & |
---|
| 312 | intermediate_timestep_count_max ) THEN |
---|
| 313 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 314 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 315 | ENDDO |
---|
| 316 | ENDIF |
---|
| 317 | ENDIF |
---|
| 318 | |
---|
| 319 | ENDIF |
---|
| 320 | |
---|
| 321 | ! |
---|
| 322 | !-- Tendency terms for v-velocity component |
---|
| 323 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 324 | |
---|
| 325 | tend(:,j,i) = 0.0 |
---|
[1001] | 326 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 327 | IF ( ws_scheme_mom ) THEN |
---|
| 328 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 329 | ELSE |
---|
| 330 | CALL advec_v_pw( i, j ) |
---|
| 331 | ENDIF |
---|
| 332 | ELSE |
---|
| 333 | CALL advec_v_up( i, j ) |
---|
| 334 | ENDIF |
---|
[1001] | 335 | CALL diffusion_v( i, j ) |
---|
[736] | 336 | CALL coriolis( i, j, 2 ) |
---|
| 337 | |
---|
| 338 | ! |
---|
| 339 | !-- Drag by plant canopy |
---|
| 340 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 341 | |
---|
| 342 | ! |
---|
| 343 | !-- External pressure gradient |
---|
| 344 | IF ( dp_external ) THEN |
---|
| 345 | DO k = dp_level_ind_b+1, nzt |
---|
| 346 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 347 | ENDDO |
---|
| 348 | ENDIF |
---|
| 349 | |
---|
[1241] | 350 | ! |
---|
| 351 | !-- Nudging |
---|
| 352 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'v' ) |
---|
| 353 | |
---|
[736] | 354 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 355 | ! |
---|
| 356 | !-- Prognostic equation for v-velocity component |
---|
| 357 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 358 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 359 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 360 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 361 | ENDDO |
---|
| 362 | |
---|
| 363 | ! |
---|
| 364 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 365 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 366 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 367 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 368 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 369 | ENDDO |
---|
| 370 | ELSEIF ( intermediate_timestep_count < & |
---|
| 371 | intermediate_timestep_count_max ) THEN |
---|
| 372 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 373 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 374 | ENDDO |
---|
| 375 | ENDIF |
---|
| 376 | ENDIF |
---|
| 377 | |
---|
| 378 | ENDIF |
---|
| 379 | |
---|
| 380 | ! |
---|
| 381 | !-- Tendency terms for w-velocity component |
---|
| 382 | tend(:,j,i) = 0.0 |
---|
[1001] | 383 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 384 | IF ( ws_scheme_mom ) THEN |
---|
| 385 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 386 | ELSE |
---|
| 387 | CALL advec_w_pw( i, j ) |
---|
| 388 | END IF |
---|
| 389 | ELSE |
---|
| 390 | CALL advec_w_up( i, j ) |
---|
| 391 | ENDIF |
---|
[1001] | 392 | CALL diffusion_w( i, j ) |
---|
[736] | 393 | CALL coriolis( i, j, 3 ) |
---|
[940] | 394 | |
---|
| 395 | IF ( .NOT. neutral ) THEN |
---|
| 396 | IF ( ocean ) THEN |
---|
[1179] | 397 | CALL buoyancy( i, j, rho, 3 ) |
---|
[736] | 398 | ELSE |
---|
[940] | 399 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 400 | CALL buoyancy( i, j, pt, 3 ) |
---|
[940] | 401 | ELSE |
---|
[1179] | 402 | CALL buoyancy( i, j, vpt, 3 ) |
---|
[940] | 403 | ENDIF |
---|
[736] | 404 | ENDIF |
---|
| 405 | ENDIF |
---|
| 406 | |
---|
| 407 | ! |
---|
| 408 | !-- Drag by plant canopy |
---|
| 409 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 410 | |
---|
| 411 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 412 | |
---|
| 413 | ! |
---|
| 414 | !-- Prognostic equation for w-velocity component |
---|
| 415 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 416 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 417 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 418 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 419 | ENDDO |
---|
| 420 | |
---|
| 421 | ! |
---|
| 422 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 423 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 424 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 425 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 426 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 427 | ENDDO |
---|
| 428 | ELSEIF ( intermediate_timestep_count < & |
---|
| 429 | intermediate_timestep_count_max ) THEN |
---|
| 430 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 431 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 432 | ENDDO |
---|
| 433 | ENDIF |
---|
| 434 | ENDIF |
---|
| 435 | ! |
---|
[1115] | 436 | !-- If required, calculate tendencies for total water content, liquid water |
---|
| 437 | !-- potential temperature, rain water content and rain drop concentration |
---|
| 438 | IF ( cloud_physics .AND. icloud_scheme == 0 ) CALL microphysics_control( i, j ) |
---|
[1053] | 439 | ! |
---|
[940] | 440 | !-- If required, compute prognostic equation for potential temperature |
---|
| 441 | IF ( .NOT. neutral ) THEN |
---|
| 442 | ! |
---|
| 443 | !-- Tendency terms for potential temperature |
---|
| 444 | tend(:,j,i) = 0.0 |
---|
[1001] | 445 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 446 | IF ( ws_scheme_sca ) THEN |
---|
| 447 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 448 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 449 | ELSE |
---|
| 450 | CALL advec_s_pw( i, j, pt ) |
---|
| 451 | ENDIF |
---|
| 452 | ELSE |
---|
| 453 | CALL advec_s_up( i, j, pt ) |
---|
| 454 | ENDIF |
---|
[1001] | 455 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 456 | |
---|
| 457 | ! |
---|
[940] | 458 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 459 | !-- processes |
---|
| 460 | IF ( radiation ) THEN |
---|
| 461 | CALL calc_radiation( i, j ) |
---|
| 462 | ENDIF |
---|
[736] | 463 | |
---|
[1106] | 464 | ! |
---|
[1053] | 465 | !-- Using microphysical tendencies (latent heat) |
---|
| 466 | IF ( cloud_physics ) THEN |
---|
| 467 | IF ( icloud_scheme == 0 ) THEN |
---|
| 468 | tend(:,j,i) = tend(:,j,i) + tend_pt(:,j,i) |
---|
[1106] | 469 | ELSEIF ( icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1053] | 470 | CALL impact_of_latent_heat( i, j ) |
---|
| 471 | ENDIF |
---|
[940] | 472 | ENDIF |
---|
[736] | 473 | |
---|
| 474 | ! |
---|
[940] | 475 | !-- Consideration of heat sources within the plant canopy |
---|
[1106] | 476 | IF ( plant_canopy .AND. cthf /= 0.0 ) THEN |
---|
[940] | 477 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 478 | ENDIF |
---|
[736] | 479 | |
---|
[940] | 480 | ! |
---|
[1106] | 481 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
[940] | 482 | IF ( large_scale_subsidence ) THEN |
---|
| 483 | CALL subsidence( i, j, tend, pt, pt_init ) |
---|
| 484 | ENDIF |
---|
[736] | 485 | |
---|
[1241] | 486 | ! |
---|
| 487 | !-- Nudging |
---|
| 488 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'pt' ) |
---|
| 489 | |
---|
[940] | 490 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 491 | |
---|
| 492 | ! |
---|
[940] | 493 | !-- Prognostic equation for potential temperature |
---|
| 494 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 495 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 496 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 497 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 498 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 499 | ENDDO |
---|
[736] | 500 | |
---|
| 501 | ! |
---|
[940] | 502 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 503 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 504 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 505 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 506 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 507 | ENDDO |
---|
| 508 | ELSEIF ( intermediate_timestep_count < & |
---|
| 509 | intermediate_timestep_count_max ) THEN |
---|
| 510 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 511 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 512 | 5.3125 * tpt_m(k,j,i) |
---|
| 513 | ENDDO |
---|
| 514 | ENDIF |
---|
[736] | 515 | ENDIF |
---|
[940] | 516 | |
---|
[736] | 517 | ENDIF |
---|
| 518 | |
---|
| 519 | ! |
---|
| 520 | !-- If required, compute prognostic equation for salinity |
---|
| 521 | IF ( ocean ) THEN |
---|
| 522 | |
---|
| 523 | ! |
---|
| 524 | !-- Tendency-terms for salinity |
---|
| 525 | tend(:,j,i) = 0.0 |
---|
[1001] | 526 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 527 | THEN |
---|
| 528 | IF ( ws_scheme_sca ) THEN |
---|
| 529 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 530 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 531 | ELSE |
---|
| 532 | CALL advec_s_pw( i, j, sa ) |
---|
| 533 | ENDIF |
---|
| 534 | ELSE |
---|
| 535 | CALL advec_s_up( i, j, sa ) |
---|
| 536 | ENDIF |
---|
[1001] | 537 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 538 | |
---|
| 539 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 540 | |
---|
| 541 | ! |
---|
| 542 | !-- Prognostic equation for salinity |
---|
| 543 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 544 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 545 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 546 | - tsc(5) * rdf_sc(k) * & |
---|
| 547 | ( sa(k,j,i) - sa_init(k) ) |
---|
[736] | 548 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 549 | ENDDO |
---|
| 550 | |
---|
| 551 | ! |
---|
| 552 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 553 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 554 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 555 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 556 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 557 | ENDDO |
---|
| 558 | ELSEIF ( intermediate_timestep_count < & |
---|
| 559 | intermediate_timestep_count_max ) THEN |
---|
| 560 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 561 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 562 | 5.3125 * tsa_m(k,j,i) |
---|
| 563 | ENDDO |
---|
| 564 | ENDIF |
---|
| 565 | ENDIF |
---|
| 566 | |
---|
| 567 | ! |
---|
| 568 | !-- Calculate density by the equation of state for seawater |
---|
| 569 | CALL eqn_state_seawater( i, j ) |
---|
| 570 | |
---|
| 571 | ENDIF |
---|
| 572 | |
---|
| 573 | ! |
---|
| 574 | !-- If required, compute prognostic equation for total water content / |
---|
| 575 | !-- scalar |
---|
| 576 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 577 | |
---|
| 578 | ! |
---|
| 579 | !-- Tendency-terms for total water content / scalar |
---|
| 580 | tend(:,j,i) = 0.0 |
---|
[1001] | 581 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 582 | THEN |
---|
| 583 | IF ( ws_scheme_sca ) THEN |
---|
| 584 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 585 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 586 | ELSE |
---|
| 587 | CALL advec_s_pw( i, j, q ) |
---|
| 588 | ENDIF |
---|
| 589 | ELSE |
---|
| 590 | CALL advec_s_up( i, j, q ) |
---|
| 591 | ENDIF |
---|
[1001] | 592 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[1053] | 593 | |
---|
[736] | 594 | ! |
---|
[1053] | 595 | !-- Using microphysical tendencies |
---|
| 596 | IF ( cloud_physics ) THEN |
---|
| 597 | IF ( icloud_scheme == 0 ) THEN |
---|
| 598 | tend(:,j,i) = tend(:,j,i) + tend_q(:,j,i) |
---|
[1106] | 599 | ELSEIF ( icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1053] | 600 | CALL calc_precipitation( i, j ) |
---|
| 601 | ENDIF |
---|
[736] | 602 | ENDIF |
---|
| 603 | ! |
---|
| 604 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1106] | 605 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
[736] | 606 | |
---|
[1053] | 607 | ! |
---|
[736] | 608 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[940] | 609 | IF ( large_scale_subsidence ) THEN |
---|
| 610 | CALL subsidence( i, j, tend, q, q_init ) |
---|
[736] | 611 | ENDIF |
---|
| 612 | |
---|
[1241] | 613 | ! |
---|
| 614 | !-- Nudging |
---|
| 615 | IF ( nudging ) CALL nudge( i, j, simulated_time, 'q' ) |
---|
| 616 | |
---|
[736] | 617 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 618 | |
---|
| 619 | ! |
---|
| 620 | !-- Prognostic equation for total water content / scalar |
---|
| 621 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 622 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 623 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 624 | - tsc(5) * rdf_sc(k) * & |
---|
| 625 | ( q(k,j,i) - q_init(k) ) |
---|
[736] | 626 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 627 | ENDDO |
---|
| 628 | |
---|
| 629 | ! |
---|
| 630 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 631 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 632 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 633 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 634 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 635 | ENDDO |
---|
| 636 | ELSEIF ( intermediate_timestep_count < & |
---|
| 637 | intermediate_timestep_count_max ) THEN |
---|
| 638 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 639 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 640 | 5.3125 * tq_m(k,j,i) |
---|
| 641 | ENDDO |
---|
| 642 | ENDIF |
---|
| 643 | ENDIF |
---|
| 644 | |
---|
[1053] | 645 | ! |
---|
| 646 | !-- If required, calculate prognostic equations for rain water content |
---|
| 647 | !-- and rain drop concentration |
---|
[1115] | 648 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 649 | precipitation ) THEN |
---|
[1053] | 650 | ! |
---|
| 651 | !-- Calculate prognostic equation for rain water content |
---|
| 652 | tend(:,j,i) = 0.0 |
---|
| 653 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 654 | THEN |
---|
| 655 | IF ( ws_scheme_sca ) THEN |
---|
| 656 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 657 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 658 | i_omp_start, tn ) |
---|
| 659 | ELSE |
---|
| 660 | CALL advec_s_pw( i, j, qr ) |
---|
| 661 | ENDIF |
---|
| 662 | ELSE |
---|
| 663 | CALL advec_s_up( i, j, qr ) |
---|
| 664 | ENDIF |
---|
| 665 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 666 | ! |
---|
| 667 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
| 668 | !-- evaporation; if required: sedimentation) |
---|
| 669 | tend(:,j,i) = tend(:,j,i) + tend_qr(:,j,i) |
---|
| 670 | |
---|
[1115] | 671 | CALL user_actions( i, j, 'qr-tendency' ) |
---|
[1053] | 672 | ! |
---|
| 673 | !-- Prognostic equation for rain water content |
---|
| 674 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 675 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 676 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 677 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 678 | IF ( qr_p(k,j,i) < 0.0 ) qr_p(k,j,i) = 0.0 |
---|
[1053] | 679 | ENDDO |
---|
| 680 | ! |
---|
| 681 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 682 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 683 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 684 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 685 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 686 | ENDDO |
---|
| 687 | ELSEIF ( intermediate_timestep_count < & |
---|
| 688 | intermediate_timestep_count_max ) THEN |
---|
| 689 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 690 | tqr_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 691 | 5.3125 * tqr_m(k,j,i) |
---|
| 692 | ENDDO |
---|
| 693 | ENDIF |
---|
| 694 | ENDIF |
---|
| 695 | |
---|
| 696 | ! |
---|
| 697 | !-- Calculate prognostic equation for rain drop concentration. |
---|
| 698 | tend(:,j,i) = 0.0 |
---|
| 699 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 700 | IF ( ws_scheme_sca ) THEN |
---|
[1115] | 701 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 702 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 703 | i_omp_start, tn ) |
---|
[1053] | 704 | ELSE |
---|
| 705 | CALL advec_s_pw( i, j, nr ) |
---|
| 706 | ENDIF |
---|
| 707 | ELSE |
---|
| 708 | CALL advec_s_up( i, j, nr ) |
---|
| 709 | ENDIF |
---|
| 710 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
[1115] | 711 | ! |
---|
[1053] | 712 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
| 713 | !-- selfcollection, breakup, evaporation; |
---|
| 714 | !-- if required: sedimentation) |
---|
| 715 | tend(:,j,i) = tend(:,j,i) + tend_nr(:,j,i) |
---|
| 716 | |
---|
[1115] | 717 | CALL user_actions( i, j, 'nr-tendency' ) |
---|
[1053] | 718 | ! |
---|
| 719 | !-- Prognostic equation for rain drop concentration |
---|
| 720 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 721 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 722 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 723 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 724 | IF ( nr_p(k,j,i) < 0.0 ) nr_p(k,j,i) = 0.0 |
---|
[1053] | 725 | ENDDO |
---|
| 726 | ! |
---|
| 727 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 728 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 729 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 730 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 731 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 732 | ENDDO |
---|
| 733 | ELSEIF ( intermediate_timestep_count < & |
---|
| 734 | intermediate_timestep_count_max ) THEN |
---|
| 735 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 736 | tnr_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 737 | 5.3125 * tnr_m(k,j,i) |
---|
| 738 | ENDDO |
---|
| 739 | ENDIF |
---|
| 740 | ENDIF |
---|
| 741 | |
---|
| 742 | ENDIF |
---|
| 743 | |
---|
[1128] | 744 | ENDIF |
---|
| 745 | |
---|
[736] | 746 | ! |
---|
| 747 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 748 | !-- energy (TKE) |
---|
| 749 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 750 | |
---|
| 751 | ! |
---|
| 752 | !-- Tendency-terms for TKE |
---|
| 753 | tend(:,j,i) = 0.0 |
---|
[1001] | 754 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
[736] | 755 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
| 756 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 757 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 758 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 759 | ELSE |
---|
| 760 | CALL advec_s_pw( i, j, e ) |
---|
| 761 | ENDIF |
---|
| 762 | ELSE |
---|
| 763 | CALL advec_s_up( i, j, e ) |
---|
| 764 | ENDIF |
---|
[1001] | 765 | IF ( .NOT. humidity ) THEN |
---|
| 766 | IF ( ocean ) THEN |
---|
| 767 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 768 | ELSE |
---|
[1001] | 769 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 770 | ENDIF |
---|
| 771 | ELSE |
---|
[1001] | 772 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 773 | ENDIF |
---|
| 774 | CALL production_e( i, j ) |
---|
| 775 | |
---|
| 776 | ! |
---|
| 777 | !-- Additional sink term for flows through plant canopies |
---|
| 778 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 779 | |
---|
| 780 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 781 | |
---|
| 782 | ! |
---|
| 783 | !-- Prognostic equation for TKE. |
---|
| 784 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 785 | !-- reasons in the course of the integration. In such cases the old |
---|
| 786 | !-- TKE value is reduced by 90%. |
---|
| 787 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 788 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 789 | tsc(3) * te_m(k,j,i) ) |
---|
[736] | 790 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 791 | ENDDO |
---|
| 792 | |
---|
| 793 | ! |
---|
| 794 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 795 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 796 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 797 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 798 | te_m(k,j,i) = tend(k,j,i) |
---|
| 799 | ENDDO |
---|
| 800 | ELSEIF ( intermediate_timestep_count < & |
---|
| 801 | intermediate_timestep_count_max ) THEN |
---|
| 802 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 803 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 804 | 5.3125 * te_m(k,j,i) |
---|
| 805 | ENDDO |
---|
| 806 | ENDIF |
---|
| 807 | ENDIF |
---|
| 808 | |
---|
| 809 | ENDIF ! TKE equation |
---|
| 810 | |
---|
| 811 | ENDDO |
---|
| 812 | ENDDO |
---|
| 813 | !$OMP END PARALLEL |
---|
| 814 | |
---|
| 815 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 816 | |
---|
| 817 | |
---|
| 818 | END SUBROUTINE prognostic_equations_cache |
---|
| 819 | |
---|
| 820 | |
---|
| 821 | SUBROUTINE prognostic_equations_vector |
---|
| 822 | |
---|
| 823 | !------------------------------------------------------------------------------! |
---|
| 824 | ! Version for vector machines |
---|
| 825 | !------------------------------------------------------------------------------! |
---|
| 826 | |
---|
| 827 | IMPLICIT NONE |
---|
| 828 | |
---|
| 829 | INTEGER :: i, j, k |
---|
[1001] | 830 | REAL :: sbt |
---|
[736] | 831 | |
---|
| 832 | |
---|
| 833 | ! |
---|
| 834 | !-- u-velocity component |
---|
| 835 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 836 | |
---|
[1001] | 837 | tend = 0.0 |
---|
| 838 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 839 | IF ( ws_scheme_mom ) THEN |
---|
| 840 | CALL advec_u_ws |
---|
| 841 | ELSE |
---|
| 842 | CALL advec_u_pw |
---|
| 843 | ENDIF |
---|
| 844 | ELSE |
---|
[1001] | 845 | CALL advec_u_up |
---|
[736] | 846 | ENDIF |
---|
[1001] | 847 | CALL diffusion_u |
---|
[736] | 848 | CALL coriolis( 1 ) |
---|
[940] | 849 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 850 | CALL buoyancy( pt, 1 ) |
---|
[940] | 851 | ENDIF |
---|
[736] | 852 | |
---|
| 853 | ! |
---|
| 854 | !-- Drag by plant canopy |
---|
| 855 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 856 | |
---|
| 857 | ! |
---|
| 858 | !-- External pressure gradient |
---|
| 859 | IF ( dp_external ) THEN |
---|
| 860 | DO i = nxlu, nxr |
---|
| 861 | DO j = nys, nyn |
---|
| 862 | DO k = dp_level_ind_b+1, nzt |
---|
| 863 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 864 | ENDDO |
---|
| 865 | ENDDO |
---|
| 866 | ENDDO |
---|
| 867 | ENDIF |
---|
| 868 | |
---|
[1241] | 869 | ! |
---|
| 870 | !-- Nudging |
---|
| 871 | IF ( nudging ) CALL nudge( simulated_time, 'u' ) |
---|
| 872 | |
---|
[736] | 873 | CALL user_actions( 'u-tendency' ) |
---|
| 874 | |
---|
| 875 | ! |
---|
| 876 | !-- Prognostic equation for u-velocity component |
---|
| 877 | DO i = nxlu, nxr |
---|
| 878 | DO j = nys, nyn |
---|
| 879 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 880 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 881 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 882 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 883 | ENDDO |
---|
| 884 | ENDDO |
---|
| 885 | ENDDO |
---|
| 886 | |
---|
| 887 | ! |
---|
| 888 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 889 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 890 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 891 | DO i = nxlu, nxr |
---|
| 892 | DO j = nys, nyn |
---|
| 893 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 894 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 895 | ENDDO |
---|
| 896 | ENDDO |
---|
| 897 | ENDDO |
---|
| 898 | ELSEIF ( intermediate_timestep_count < & |
---|
| 899 | intermediate_timestep_count_max ) THEN |
---|
| 900 | DO i = nxlu, nxr |
---|
| 901 | DO j = nys, nyn |
---|
| 902 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 903 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 904 | ENDDO |
---|
| 905 | ENDDO |
---|
| 906 | ENDDO |
---|
| 907 | ENDIF |
---|
| 908 | ENDIF |
---|
| 909 | |
---|
| 910 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 911 | |
---|
| 912 | ! |
---|
| 913 | !-- v-velocity component |
---|
| 914 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 915 | |
---|
[1001] | 916 | tend = 0.0 |
---|
| 917 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 918 | IF ( ws_scheme_mom ) THEN |
---|
| 919 | CALL advec_v_ws |
---|
| 920 | ELSE |
---|
| 921 | CALL advec_v_pw |
---|
| 922 | END IF |
---|
| 923 | ELSE |
---|
[1001] | 924 | CALL advec_v_up |
---|
[736] | 925 | ENDIF |
---|
[1001] | 926 | CALL diffusion_v |
---|
[736] | 927 | CALL coriolis( 2 ) |
---|
| 928 | |
---|
| 929 | ! |
---|
| 930 | !-- Drag by plant canopy |
---|
| 931 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 932 | |
---|
| 933 | ! |
---|
| 934 | !-- External pressure gradient |
---|
| 935 | IF ( dp_external ) THEN |
---|
| 936 | DO i = nxl, nxr |
---|
| 937 | DO j = nysv, nyn |
---|
| 938 | DO k = dp_level_ind_b+1, nzt |
---|
| 939 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 940 | ENDDO |
---|
| 941 | ENDDO |
---|
| 942 | ENDDO |
---|
| 943 | ENDIF |
---|
| 944 | |
---|
[1241] | 945 | ! |
---|
| 946 | !-- Nudging |
---|
| 947 | IF ( nudging ) CALL nudge( simulated_time, 'v' ) |
---|
| 948 | |
---|
[736] | 949 | CALL user_actions( 'v-tendency' ) |
---|
| 950 | |
---|
| 951 | ! |
---|
| 952 | !-- Prognostic equation for v-velocity component |
---|
| 953 | DO i = nxl, nxr |
---|
| 954 | DO j = nysv, nyn |
---|
| 955 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 956 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 957 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 958 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 959 | ENDDO |
---|
| 960 | ENDDO |
---|
| 961 | ENDDO |
---|
| 962 | |
---|
| 963 | ! |
---|
| 964 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 965 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 966 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 967 | DO i = nxl, nxr |
---|
| 968 | DO j = nysv, nyn |
---|
| 969 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 970 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 971 | ENDDO |
---|
| 972 | ENDDO |
---|
| 973 | ENDDO |
---|
| 974 | ELSEIF ( intermediate_timestep_count < & |
---|
| 975 | intermediate_timestep_count_max ) THEN |
---|
| 976 | DO i = nxl, nxr |
---|
| 977 | DO j = nysv, nyn |
---|
| 978 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 979 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 980 | ENDDO |
---|
| 981 | ENDDO |
---|
| 982 | ENDDO |
---|
| 983 | ENDIF |
---|
| 984 | ENDIF |
---|
| 985 | |
---|
| 986 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 987 | |
---|
| 988 | ! |
---|
| 989 | !-- w-velocity component |
---|
| 990 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 991 | |
---|
[1001] | 992 | tend = 0.0 |
---|
| 993 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 994 | IF ( ws_scheme_mom ) THEN |
---|
| 995 | CALL advec_w_ws |
---|
| 996 | ELSE |
---|
| 997 | CALL advec_w_pw |
---|
| 998 | ENDIF |
---|
| 999 | ELSE |
---|
[1001] | 1000 | CALL advec_w_up |
---|
[736] | 1001 | ENDIF |
---|
[1001] | 1002 | CALL diffusion_w |
---|
[736] | 1003 | CALL coriolis( 3 ) |
---|
[940] | 1004 | |
---|
| 1005 | IF ( .NOT. neutral ) THEN |
---|
| 1006 | IF ( ocean ) THEN |
---|
[1179] | 1007 | CALL buoyancy( rho, 3 ) |
---|
[736] | 1008 | ELSE |
---|
[940] | 1009 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1010 | CALL buoyancy( pt, 3 ) |
---|
[940] | 1011 | ELSE |
---|
[1179] | 1012 | CALL buoyancy( vpt, 3 ) |
---|
[940] | 1013 | ENDIF |
---|
[736] | 1014 | ENDIF |
---|
| 1015 | ENDIF |
---|
| 1016 | |
---|
| 1017 | ! |
---|
| 1018 | !-- Drag by plant canopy |
---|
| 1019 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1020 | |
---|
| 1021 | CALL user_actions( 'w-tendency' ) |
---|
| 1022 | |
---|
| 1023 | ! |
---|
| 1024 | !-- Prognostic equation for w-velocity component |
---|
| 1025 | DO i = nxl, nxr |
---|
| 1026 | DO j = nys, nyn |
---|
| 1027 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 1028 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1029 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1030 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 1031 | ENDDO |
---|
| 1032 | ENDDO |
---|
| 1033 | ENDDO |
---|
| 1034 | |
---|
| 1035 | ! |
---|
| 1036 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1037 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1038 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1039 | DO i = nxl, nxr |
---|
| 1040 | DO j = nys, nyn |
---|
| 1041 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1042 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1043 | ENDDO |
---|
| 1044 | ENDDO |
---|
| 1045 | ENDDO |
---|
| 1046 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1047 | intermediate_timestep_count_max ) THEN |
---|
| 1048 | DO i = nxl, nxr |
---|
| 1049 | DO j = nys, nyn |
---|
| 1050 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1051 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1052 | ENDDO |
---|
| 1053 | ENDDO |
---|
| 1054 | ENDDO |
---|
| 1055 | ENDIF |
---|
| 1056 | ENDIF |
---|
| 1057 | |
---|
| 1058 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1059 | |
---|
[940] | 1060 | |
---|
[736] | 1061 | ! |
---|
[940] | 1062 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1063 | IF ( .NOT. neutral ) THEN |
---|
[736] | 1064 | |
---|
[940] | 1065 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1066 | |
---|
[736] | 1067 | ! |
---|
[940] | 1068 | !-- pt-tendency terms with communication |
---|
| 1069 | sbt = tsc(2) |
---|
| 1070 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 1071 | |
---|
[940] | 1072 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 1073 | ! |
---|
[1001] | 1074 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[940] | 1075 | sbt = 1.0 |
---|
| 1076 | ENDIF |
---|
[736] | 1077 | tend = 0.0 |
---|
[940] | 1078 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 1079 | |
---|
[736] | 1080 | ENDIF |
---|
[940] | 1081 | |
---|
| 1082 | ! |
---|
| 1083 | !-- pt-tendency terms with no communication |
---|
[1001] | 1084 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1085 | tend = 0.0 |
---|
| 1086 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 1087 | IF ( ws_scheme_sca ) THEN |
---|
| 1088 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1089 | ELSE |
---|
| 1090 | CALL advec_s_pw( pt ) |
---|
| 1091 | ENDIF |
---|
| 1092 | ELSE |
---|
[1001] | 1093 | CALL advec_s_up( pt ) |
---|
[940] | 1094 | ENDIF |
---|
[736] | 1095 | ENDIF |
---|
| 1096 | |
---|
[1001] | 1097 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1098 | |
---|
[736] | 1099 | ! |
---|
[940] | 1100 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1101 | IF ( radiation ) THEN |
---|
| 1102 | CALL calc_radiation |
---|
| 1103 | ENDIF |
---|
[736] | 1104 | |
---|
| 1105 | ! |
---|
[940] | 1106 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1107 | IF ( precipitation ) THEN |
---|
| 1108 | CALL impact_of_latent_heat |
---|
| 1109 | ENDIF |
---|
[736] | 1110 | |
---|
| 1111 | ! |
---|
[940] | 1112 | !-- Consideration of heat sources within the plant canopy |
---|
| 1113 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1114 | CALL plant_canopy_model( 4 ) |
---|
| 1115 | ENDIF |
---|
[736] | 1116 | |
---|
[940] | 1117 | ! |
---|
| 1118 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1119 | IF ( large_scale_subsidence ) THEN |
---|
| 1120 | CALL subsidence( tend, pt, pt_init ) |
---|
| 1121 | ENDIF |
---|
[736] | 1122 | |
---|
[1241] | 1123 | ! |
---|
| 1124 | !-- Nudging |
---|
| 1125 | IF ( nudging ) CALL nudge( simulated_time, 'pt' ) |
---|
| 1126 | |
---|
[940] | 1127 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 1128 | |
---|
| 1129 | ! |
---|
[940] | 1130 | !-- Prognostic equation for potential temperature |
---|
| 1131 | DO i = nxl, nxr |
---|
| 1132 | DO j = nys, nyn |
---|
| 1133 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1134 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1135 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1136 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1137 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 1138 | ENDDO |
---|
[736] | 1139 | ENDDO |
---|
| 1140 | ENDDO |
---|
| 1141 | |
---|
| 1142 | ! |
---|
[940] | 1143 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1144 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1145 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1146 | DO i = nxl, nxr |
---|
| 1147 | DO j = nys, nyn |
---|
| 1148 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1149 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1150 | ENDDO |
---|
[736] | 1151 | ENDDO |
---|
| 1152 | ENDDO |
---|
[940] | 1153 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1154 | intermediate_timestep_count_max ) THEN |
---|
| 1155 | DO i = nxl, nxr |
---|
| 1156 | DO j = nys, nyn |
---|
| 1157 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1158 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1159 | 5.3125 * tpt_m(k,j,i) |
---|
| 1160 | ENDDO |
---|
[736] | 1161 | ENDDO |
---|
| 1162 | ENDDO |
---|
[940] | 1163 | ENDIF |
---|
[736] | 1164 | ENDIF |
---|
[940] | 1165 | |
---|
| 1166 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1167 | |
---|
[736] | 1168 | ENDIF |
---|
| 1169 | |
---|
| 1170 | ! |
---|
| 1171 | !-- If required, compute prognostic equation for salinity |
---|
| 1172 | IF ( ocean ) THEN |
---|
| 1173 | |
---|
| 1174 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1175 | |
---|
| 1176 | ! |
---|
| 1177 | !-- sa-tendency terms with communication |
---|
| 1178 | sbt = tsc(2) |
---|
| 1179 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1180 | |
---|
| 1181 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1182 | ! |
---|
[1001] | 1183 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[736] | 1184 | sbt = 1.0 |
---|
| 1185 | ENDIF |
---|
| 1186 | tend = 0.0 |
---|
| 1187 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1188 | |
---|
[736] | 1189 | ENDIF |
---|
| 1190 | |
---|
| 1191 | ! |
---|
| 1192 | !-- sa-tendency terms with no communication |
---|
[1001] | 1193 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1194 | tend = 0.0 |
---|
| 1195 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1196 | IF ( ws_scheme_sca ) THEN |
---|
| 1197 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1198 | ELSE |
---|
| 1199 | CALL advec_s_pw( sa ) |
---|
| 1200 | ENDIF |
---|
| 1201 | ELSE |
---|
[1001] | 1202 | CALL advec_s_up( sa ) |
---|
[736] | 1203 | ENDIF |
---|
| 1204 | ENDIF |
---|
[1001] | 1205 | |
---|
| 1206 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1207 | |
---|
| 1208 | CALL user_actions( 'sa-tendency' ) |
---|
| 1209 | |
---|
| 1210 | ! |
---|
| 1211 | !-- Prognostic equation for salinity |
---|
| 1212 | DO i = nxl, nxr |
---|
| 1213 | DO j = nys, nyn |
---|
| 1214 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1215 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1216 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1217 | - tsc(5) * rdf_sc(k) * & |
---|
| 1218 | ( sa(k,j,i) - sa_init(k) ) |
---|
[736] | 1219 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1220 | ENDDO |
---|
| 1221 | ENDDO |
---|
| 1222 | ENDDO |
---|
| 1223 | |
---|
| 1224 | ! |
---|
| 1225 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1226 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1227 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1228 | DO i = nxl, nxr |
---|
| 1229 | DO j = nys, nyn |
---|
| 1230 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1231 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1232 | ENDDO |
---|
| 1233 | ENDDO |
---|
| 1234 | ENDDO |
---|
| 1235 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1236 | intermediate_timestep_count_max ) THEN |
---|
| 1237 | DO i = nxl, nxr |
---|
| 1238 | DO j = nys, nyn |
---|
| 1239 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1240 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1241 | 5.3125 * tsa_m(k,j,i) |
---|
| 1242 | ENDDO |
---|
| 1243 | ENDDO |
---|
| 1244 | ENDDO |
---|
| 1245 | ENDIF |
---|
| 1246 | ENDIF |
---|
| 1247 | |
---|
| 1248 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1249 | |
---|
| 1250 | ! |
---|
| 1251 | !-- Calculate density by the equation of state for seawater |
---|
| 1252 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1253 | CALL eqn_state_seawater |
---|
| 1254 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1255 | |
---|
| 1256 | ENDIF |
---|
| 1257 | |
---|
| 1258 | ! |
---|
| 1259 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1260 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1261 | |
---|
| 1262 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1263 | |
---|
| 1264 | ! |
---|
| 1265 | !-- Scalar/q-tendency terms with communication |
---|
| 1266 | sbt = tsc(2) |
---|
| 1267 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1268 | |
---|
| 1269 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1270 | ! |
---|
[1001] | 1271 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[736] | 1272 | sbt = 1.0 |
---|
| 1273 | ENDIF |
---|
| 1274 | tend = 0.0 |
---|
| 1275 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1276 | |
---|
[736] | 1277 | ENDIF |
---|
| 1278 | |
---|
| 1279 | ! |
---|
| 1280 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1281 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1282 | tend = 0.0 |
---|
| 1283 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1284 | IF ( ws_scheme_sca ) THEN |
---|
| 1285 | CALL advec_s_ws( q, 'q' ) |
---|
| 1286 | ELSE |
---|
| 1287 | CALL advec_s_pw( q ) |
---|
| 1288 | ENDIF |
---|
| 1289 | ELSE |
---|
[1001] | 1290 | CALL advec_s_up( q ) |
---|
[736] | 1291 | ENDIF |
---|
| 1292 | ENDIF |
---|
[1001] | 1293 | |
---|
| 1294 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1295 | |
---|
| 1296 | ! |
---|
| 1297 | !-- If required compute decrease of total water content due to |
---|
| 1298 | !-- precipitation |
---|
| 1299 | IF ( precipitation ) THEN |
---|
| 1300 | CALL calc_precipitation |
---|
| 1301 | ENDIF |
---|
| 1302 | |
---|
| 1303 | ! |
---|
| 1304 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1305 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1306 | |
---|
| 1307 | ! |
---|
| 1308 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[940] | 1309 | IF ( large_scale_subsidence ) THEN |
---|
| 1310 | CALL subsidence( tend, q, q_init ) |
---|
[736] | 1311 | ENDIF |
---|
| 1312 | |
---|
[1241] | 1313 | ! |
---|
| 1314 | !-- Nudging |
---|
| 1315 | IF ( nudging ) CALL nudge( simulated_time, 'q' ) |
---|
| 1316 | |
---|
[736] | 1317 | CALL user_actions( 'q-tendency' ) |
---|
| 1318 | |
---|
| 1319 | ! |
---|
| 1320 | !-- Prognostic equation for total water content / scalar |
---|
| 1321 | DO i = nxl, nxr |
---|
| 1322 | DO j = nys, nyn |
---|
| 1323 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1324 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1325 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1326 | - tsc(5) * rdf_sc(k) * & |
---|
| 1327 | ( q(k,j,i) - q_init(k) ) |
---|
[736] | 1328 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 1329 | ENDDO |
---|
| 1330 | ENDDO |
---|
| 1331 | ENDDO |
---|
| 1332 | |
---|
| 1333 | ! |
---|
| 1334 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1335 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1336 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1337 | DO i = nxl, nxr |
---|
| 1338 | DO j = nys, nyn |
---|
| 1339 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1340 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1341 | ENDDO |
---|
| 1342 | ENDDO |
---|
| 1343 | ENDDO |
---|
| 1344 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1345 | intermediate_timestep_count_max ) THEN |
---|
| 1346 | DO i = nxl, nxr |
---|
| 1347 | DO j = nys, nyn |
---|
| 1348 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1349 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1350 | ENDDO |
---|
| 1351 | ENDDO |
---|
| 1352 | ENDDO |
---|
| 1353 | ENDIF |
---|
| 1354 | ENDIF |
---|
| 1355 | |
---|
| 1356 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1357 | |
---|
| 1358 | ENDIF |
---|
| 1359 | |
---|
| 1360 | ! |
---|
| 1361 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1362 | !-- energy (TKE) |
---|
| 1363 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1364 | |
---|
| 1365 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1366 | |
---|
| 1367 | sbt = tsc(2) |
---|
| 1368 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1369 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1370 | |
---|
| 1371 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1372 | ! |
---|
[1001] | 1373 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[736] | 1374 | sbt = 1.0 |
---|
| 1375 | ENDIF |
---|
| 1376 | tend = 0.0 |
---|
| 1377 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1378 | |
---|
[736] | 1379 | ENDIF |
---|
| 1380 | ENDIF |
---|
| 1381 | |
---|
| 1382 | ! |
---|
| 1383 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1384 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1385 | IF ( use_upstream_for_tke ) THEN |
---|
| 1386 | tend = 0.0 |
---|
| 1387 | CALL advec_s_up( e ) |
---|
| 1388 | ELSE |
---|
[1001] | 1389 | tend = 0.0 |
---|
| 1390 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1391 | IF ( ws_scheme_sca ) THEN |
---|
| 1392 | CALL advec_s_ws( e, 'e' ) |
---|
| 1393 | ELSE |
---|
| 1394 | CALL advec_s_pw( e ) |
---|
| 1395 | ENDIF |
---|
| 1396 | ELSE |
---|
[1001] | 1397 | CALL advec_s_up( e ) |
---|
[736] | 1398 | ENDIF |
---|
| 1399 | ENDIF |
---|
[1001] | 1400 | ENDIF |
---|
| 1401 | |
---|
| 1402 | IF ( .NOT. humidity ) THEN |
---|
| 1403 | IF ( ocean ) THEN |
---|
| 1404 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1405 | ELSE |
---|
[1001] | 1406 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1407 | ENDIF |
---|
[1001] | 1408 | ELSE |
---|
| 1409 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1410 | ENDIF |
---|
[1001] | 1411 | |
---|
[736] | 1412 | CALL production_e |
---|
| 1413 | |
---|
| 1414 | ! |
---|
| 1415 | !-- Additional sink term for flows through plant canopies |
---|
| 1416 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1417 | CALL user_actions( 'e-tendency' ) |
---|
| 1418 | |
---|
| 1419 | ! |
---|
| 1420 | !-- Prognostic equation for TKE. |
---|
| 1421 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1422 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1423 | !-- value is reduced by 90%. |
---|
| 1424 | DO i = nxl, nxr |
---|
| 1425 | DO j = nys, nyn |
---|
| 1426 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1427 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1428 | tsc(3) * te_m(k,j,i) ) |
---|
[736] | 1429 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1430 | ENDDO |
---|
| 1431 | ENDDO |
---|
| 1432 | ENDDO |
---|
| 1433 | |
---|
| 1434 | ! |
---|
| 1435 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1436 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1437 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1438 | DO i = nxl, nxr |
---|
| 1439 | DO j = nys, nyn |
---|
| 1440 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1441 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1442 | ENDDO |
---|
| 1443 | ENDDO |
---|
| 1444 | ENDDO |
---|
| 1445 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1446 | intermediate_timestep_count_max ) THEN |
---|
| 1447 | DO i = nxl, nxr |
---|
| 1448 | DO j = nys, nyn |
---|
| 1449 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1450 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 1451 | ENDDO |
---|
| 1452 | ENDDO |
---|
| 1453 | ENDDO |
---|
| 1454 | ENDIF |
---|
| 1455 | ENDIF |
---|
| 1456 | |
---|
| 1457 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1458 | |
---|
| 1459 | ENDIF |
---|
| 1460 | |
---|
| 1461 | |
---|
| 1462 | END SUBROUTINE prognostic_equations_vector |
---|
| 1463 | |
---|
| 1464 | |
---|
[1015] | 1465 | SUBROUTINE prognostic_equations_acc |
---|
| 1466 | |
---|
| 1467 | !------------------------------------------------------------------------------! |
---|
| 1468 | ! Version for accelerator boards |
---|
| 1469 | !------------------------------------------------------------------------------! |
---|
| 1470 | |
---|
| 1471 | IMPLICIT NONE |
---|
| 1472 | |
---|
| 1473 | INTEGER :: i, j, k, runge_step |
---|
| 1474 | REAL :: sbt |
---|
| 1475 | |
---|
| 1476 | ! |
---|
| 1477 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1478 | runge_step = 0 |
---|
| 1479 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1480 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1481 | runge_step = 1 |
---|
| 1482 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1483 | intermediate_timestep_count_max ) THEN |
---|
| 1484 | runge_step = 2 |
---|
| 1485 | ENDIF |
---|
| 1486 | ENDIF |
---|
| 1487 | |
---|
| 1488 | ! |
---|
| 1489 | !-- u-velocity component |
---|
| 1490 | !++ Statistics still not ported to accelerators |
---|
[1179] | 1491 | !$acc update device( hom, ref_state ) |
---|
[1015] | 1492 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1493 | |
---|
| 1494 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1495 | IF ( ws_scheme_mom ) THEN |
---|
| 1496 | CALL advec_u_ws_acc |
---|
| 1497 | ELSE |
---|
| 1498 | tend = 0.0 ! to be removed later?? |
---|
| 1499 | CALL advec_u_pw |
---|
| 1500 | ENDIF |
---|
| 1501 | ELSE |
---|
| 1502 | CALL advec_u_up |
---|
| 1503 | ENDIF |
---|
| 1504 | CALL diffusion_u_acc |
---|
| 1505 | CALL coriolis_acc( 1 ) |
---|
| 1506 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 1507 | CALL buoyancy( pt, 1 ) |
---|
[1015] | 1508 | ENDIF |
---|
| 1509 | |
---|
| 1510 | ! |
---|
| 1511 | !-- Drag by plant canopy |
---|
| 1512 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1513 | |
---|
| 1514 | ! |
---|
| 1515 | !-- External pressure gradient |
---|
| 1516 | IF ( dp_external ) THEN |
---|
[1128] | 1517 | DO i = i_left, i_right |
---|
| 1518 | DO j = j_south, j_north |
---|
[1015] | 1519 | DO k = dp_level_ind_b+1, nzt |
---|
| 1520 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1521 | ENDDO |
---|
| 1522 | ENDDO |
---|
| 1523 | ENDDO |
---|
| 1524 | ENDIF |
---|
| 1525 | |
---|
| 1526 | CALL user_actions( 'u-tendency' ) |
---|
| 1527 | |
---|
| 1528 | ! |
---|
| 1529 | !-- Prognostic equation for u-velocity component |
---|
| 1530 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, ug, u_p ) |
---|
| 1531 | !$acc loop |
---|
[1128] | 1532 | DO i = i_left, i_right |
---|
| 1533 | DO j = j_south, j_north |
---|
[1015] | 1534 | !$acc loop vector( 32 ) |
---|
| 1535 | DO k = 1, nzt |
---|
| 1536 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1537 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1538 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 1539 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1540 | ! |
---|
| 1541 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1542 | IF ( runge_step == 1 ) THEN |
---|
| 1543 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1544 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1545 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 1546 | ENDIF |
---|
| 1547 | ENDIF |
---|
| 1548 | ENDDO |
---|
| 1549 | ENDDO |
---|
| 1550 | ENDDO |
---|
| 1551 | !$acc end kernels |
---|
| 1552 | |
---|
| 1553 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1554 | |
---|
| 1555 | ! |
---|
| 1556 | !-- v-velocity component |
---|
| 1557 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1558 | |
---|
| 1559 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1560 | IF ( ws_scheme_mom ) THEN |
---|
| 1561 | CALL advec_v_ws_acc |
---|
| 1562 | ELSE |
---|
| 1563 | tend = 0.0 ! to be removed later?? |
---|
| 1564 | CALL advec_v_pw |
---|
| 1565 | END IF |
---|
| 1566 | ELSE |
---|
| 1567 | CALL advec_v_up |
---|
| 1568 | ENDIF |
---|
| 1569 | CALL diffusion_v_acc |
---|
| 1570 | CALL coriolis_acc( 2 ) |
---|
| 1571 | |
---|
| 1572 | ! |
---|
| 1573 | !-- Drag by plant canopy |
---|
| 1574 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1575 | |
---|
| 1576 | ! |
---|
| 1577 | !-- External pressure gradient |
---|
| 1578 | IF ( dp_external ) THEN |
---|
[1128] | 1579 | DO i = i_left, i_right |
---|
| 1580 | DO j = j_south, j_north |
---|
[1015] | 1581 | DO k = dp_level_ind_b+1, nzt |
---|
| 1582 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1583 | ENDDO |
---|
| 1584 | ENDDO |
---|
| 1585 | ENDDO |
---|
| 1586 | ENDIF |
---|
| 1587 | |
---|
| 1588 | CALL user_actions( 'v-tendency' ) |
---|
| 1589 | |
---|
| 1590 | ! |
---|
| 1591 | !-- Prognostic equation for v-velocity component |
---|
| 1592 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, vg, v_p ) |
---|
| 1593 | !$acc loop |
---|
[1128] | 1594 | DO i = i_left, i_right |
---|
| 1595 | DO j = j_south, j_north |
---|
[1015] | 1596 | !$acc loop vector( 32 ) |
---|
| 1597 | DO k = 1, nzt |
---|
| 1598 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1599 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1600 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 1601 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1602 | ! |
---|
| 1603 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1604 | IF ( runge_step == 1 ) THEN |
---|
| 1605 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1606 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1607 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1608 | ENDIF |
---|
| 1609 | ENDIF |
---|
| 1610 | ENDDO |
---|
| 1611 | ENDDO |
---|
| 1612 | ENDDO |
---|
| 1613 | !$acc end kernels |
---|
| 1614 | |
---|
| 1615 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1616 | |
---|
| 1617 | ! |
---|
| 1618 | !-- w-velocity component |
---|
| 1619 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1620 | |
---|
| 1621 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1622 | IF ( ws_scheme_mom ) THEN |
---|
| 1623 | CALL advec_w_ws_acc |
---|
| 1624 | ELSE |
---|
| 1625 | tend = 0.0 ! to be removed later?? |
---|
| 1626 | CALL advec_w_pw |
---|
| 1627 | ENDIF |
---|
| 1628 | ELSE |
---|
| 1629 | CALL advec_w_up |
---|
| 1630 | ENDIF |
---|
| 1631 | CALL diffusion_w_acc |
---|
| 1632 | CALL coriolis_acc( 3 ) |
---|
| 1633 | |
---|
| 1634 | IF ( .NOT. neutral ) THEN |
---|
| 1635 | IF ( ocean ) THEN |
---|
[1179] | 1636 | CALL buoyancy( rho, 3 ) |
---|
[1015] | 1637 | ELSE |
---|
| 1638 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1639 | CALL buoyancy_acc( pt, 3 ) |
---|
[1015] | 1640 | ELSE |
---|
[1179] | 1641 | CALL buoyancy( vpt, 3 ) |
---|
[1015] | 1642 | ENDIF |
---|
| 1643 | ENDIF |
---|
| 1644 | ENDIF |
---|
| 1645 | |
---|
| 1646 | ! |
---|
| 1647 | !-- Drag by plant canopy |
---|
| 1648 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1649 | |
---|
| 1650 | CALL user_actions( 'w-tendency' ) |
---|
| 1651 | |
---|
| 1652 | ! |
---|
| 1653 | !-- Prognostic equation for w-velocity component |
---|
| 1654 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
| 1655 | !$acc loop |
---|
[1128] | 1656 | DO i = i_left, i_right |
---|
| 1657 | DO j = j_south, j_north |
---|
[1015] | 1658 | !$acc loop vector( 32 ) |
---|
| 1659 | DO k = 1, nzt-1 |
---|
| 1660 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 1661 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1662 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1663 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1664 | ! |
---|
| 1665 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1666 | IF ( runge_step == 1 ) THEN |
---|
| 1667 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1668 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1669 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1670 | ENDIF |
---|
| 1671 | ENDIF |
---|
| 1672 | ENDDO |
---|
| 1673 | ENDDO |
---|
| 1674 | ENDDO |
---|
| 1675 | !$acc end kernels |
---|
| 1676 | |
---|
| 1677 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1678 | |
---|
| 1679 | |
---|
| 1680 | ! |
---|
| 1681 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1682 | IF ( .NOT. neutral ) THEN |
---|
| 1683 | |
---|
| 1684 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1685 | |
---|
| 1686 | ! |
---|
| 1687 | !-- pt-tendency terms with communication |
---|
| 1688 | sbt = tsc(2) |
---|
| 1689 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1690 | |
---|
| 1691 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1692 | ! |
---|
| 1693 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1694 | sbt = 1.0 |
---|
| 1695 | ENDIF |
---|
| 1696 | tend = 0.0 |
---|
| 1697 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1698 | |
---|
| 1699 | ENDIF |
---|
| 1700 | |
---|
| 1701 | ! |
---|
| 1702 | !-- pt-tendency terms with no communication |
---|
| 1703 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1704 | tend = 0.0 |
---|
| 1705 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1706 | IF ( ws_scheme_sca ) THEN |
---|
| 1707 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 1708 | ELSE |
---|
| 1709 | tend = 0.0 ! to be removed later?? |
---|
| 1710 | CALL advec_s_pw( pt ) |
---|
| 1711 | ENDIF |
---|
| 1712 | ELSE |
---|
| 1713 | CALL advec_s_up( pt ) |
---|
| 1714 | ENDIF |
---|
| 1715 | ENDIF |
---|
| 1716 | |
---|
| 1717 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 1718 | |
---|
| 1719 | ! |
---|
| 1720 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1721 | IF ( radiation ) THEN |
---|
| 1722 | CALL calc_radiation |
---|
| 1723 | ENDIF |
---|
| 1724 | |
---|
| 1725 | ! |
---|
| 1726 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1727 | IF ( precipitation ) THEN |
---|
| 1728 | CALL impact_of_latent_heat |
---|
| 1729 | ENDIF |
---|
| 1730 | |
---|
| 1731 | ! |
---|
| 1732 | !-- Consideration of heat sources within the plant canopy |
---|
| 1733 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1734 | CALL plant_canopy_model( 4 ) |
---|
| 1735 | ENDIF |
---|
| 1736 | |
---|
| 1737 | ! |
---|
| 1738 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1739 | IF ( large_scale_subsidence ) THEN |
---|
| 1740 | CALL subsidence( tend, pt, pt_init ) |
---|
| 1741 | ENDIF |
---|
| 1742 | |
---|
| 1743 | CALL user_actions( 'pt-tendency' ) |
---|
| 1744 | |
---|
| 1745 | ! |
---|
| 1746 | !-- Prognostic equation for potential temperature |
---|
| 1747 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 1748 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
| 1749 | !$acc loop |
---|
[1128] | 1750 | DO i = i_left, i_right |
---|
| 1751 | DO j = j_south, j_north |
---|
[1015] | 1752 | !$acc loop vector( 32 ) |
---|
| 1753 | DO k = 1, nzt |
---|
| 1754 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 1755 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1756 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1757 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1758 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 1759 | ! |
---|
| 1760 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1761 | IF ( runge_step == 1 ) THEN |
---|
| 1762 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1763 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1764 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 1765 | ENDIF |
---|
| 1766 | ENDIF |
---|
| 1767 | ENDDO |
---|
| 1768 | ENDDO |
---|
| 1769 | ENDDO |
---|
| 1770 | !$acc end kernels |
---|
| 1771 | |
---|
| 1772 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1773 | |
---|
| 1774 | ENDIF |
---|
| 1775 | |
---|
| 1776 | ! |
---|
| 1777 | !-- If required, compute prognostic equation for salinity |
---|
| 1778 | IF ( ocean ) THEN |
---|
| 1779 | |
---|
| 1780 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1781 | |
---|
| 1782 | ! |
---|
| 1783 | !-- sa-tendency terms with communication |
---|
| 1784 | sbt = tsc(2) |
---|
| 1785 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1786 | |
---|
| 1787 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1788 | ! |
---|
| 1789 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1790 | sbt = 1.0 |
---|
| 1791 | ENDIF |
---|
| 1792 | tend = 0.0 |
---|
| 1793 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 1794 | |
---|
| 1795 | ENDIF |
---|
| 1796 | |
---|
| 1797 | ! |
---|
| 1798 | !-- sa-tendency terms with no communication |
---|
| 1799 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1800 | tend = 0.0 |
---|
| 1801 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1802 | IF ( ws_scheme_sca ) THEN |
---|
| 1803 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1804 | ELSE |
---|
| 1805 | CALL advec_s_pw( sa ) |
---|
| 1806 | ENDIF |
---|
| 1807 | ELSE |
---|
| 1808 | CALL advec_s_up( sa ) |
---|
| 1809 | ENDIF |
---|
| 1810 | ENDIF |
---|
| 1811 | |
---|
| 1812 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 1813 | |
---|
| 1814 | CALL user_actions( 'sa-tendency' ) |
---|
| 1815 | |
---|
| 1816 | ! |
---|
| 1817 | !-- Prognostic equation for salinity |
---|
[1128] | 1818 | DO i = i_left, i_right |
---|
| 1819 | DO j = j_south, j_north |
---|
[1015] | 1820 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1821 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1822 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1823 | - tsc(5) * rdf_sc(k) * & |
---|
| 1824 | ( sa(k,j,i) - sa_init(k) ) |
---|
| 1825 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1826 | ! |
---|
| 1827 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1828 | IF ( runge_step == 1 ) THEN |
---|
| 1829 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1830 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1831 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tsa_m(k,j,i) |
---|
| 1832 | ENDIF |
---|
| 1833 | ENDDO |
---|
| 1834 | ENDDO |
---|
| 1835 | ENDDO |
---|
| 1836 | |
---|
| 1837 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1838 | |
---|
| 1839 | ! |
---|
| 1840 | !-- Calculate density by the equation of state for seawater |
---|
| 1841 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1842 | CALL eqn_state_seawater |
---|
| 1843 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1844 | |
---|
| 1845 | ENDIF |
---|
| 1846 | |
---|
| 1847 | ! |
---|
| 1848 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1849 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1850 | |
---|
| 1851 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1852 | |
---|
| 1853 | ! |
---|
| 1854 | !-- Scalar/q-tendency terms with communication |
---|
| 1855 | sbt = tsc(2) |
---|
| 1856 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1857 | |
---|
| 1858 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1859 | ! |
---|
| 1860 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1861 | sbt = 1.0 |
---|
| 1862 | ENDIF |
---|
| 1863 | tend = 0.0 |
---|
| 1864 | CALL advec_s_bc( q, 'q' ) |
---|
| 1865 | |
---|
| 1866 | ENDIF |
---|
| 1867 | |
---|
| 1868 | ! |
---|
| 1869 | !-- Scalar/q-tendency terms with no communication |
---|
| 1870 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1871 | tend = 0.0 |
---|
| 1872 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1873 | IF ( ws_scheme_sca ) THEN |
---|
| 1874 | CALL advec_s_ws( q, 'q' ) |
---|
| 1875 | ELSE |
---|
| 1876 | CALL advec_s_pw( q ) |
---|
| 1877 | ENDIF |
---|
| 1878 | ELSE |
---|
| 1879 | CALL advec_s_up( q ) |
---|
| 1880 | ENDIF |
---|
| 1881 | ENDIF |
---|
| 1882 | |
---|
| 1883 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 1884 | |
---|
| 1885 | ! |
---|
| 1886 | !-- If required compute decrease of total water content due to |
---|
| 1887 | !-- precipitation |
---|
| 1888 | IF ( precipitation ) THEN |
---|
| 1889 | CALL calc_precipitation |
---|
| 1890 | ENDIF |
---|
| 1891 | |
---|
| 1892 | ! |
---|
| 1893 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1894 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1895 | |
---|
| 1896 | ! |
---|
| 1897 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1898 | IF ( large_scale_subsidence ) THEN |
---|
| 1899 | CALL subsidence( tend, q, q_init ) |
---|
| 1900 | ENDIF |
---|
| 1901 | |
---|
| 1902 | CALL user_actions( 'q-tendency' ) |
---|
| 1903 | |
---|
| 1904 | ! |
---|
| 1905 | !-- Prognostic equation for total water content / scalar |
---|
[1128] | 1906 | DO i = i_left, i_right |
---|
| 1907 | DO j = j_south, j_north |
---|
[1015] | 1908 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1909 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1910 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1911 | - tsc(5) * rdf_sc(k) * & |
---|
| 1912 | ( q(k,j,i) - q_init(k) ) |
---|
| 1913 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 1914 | ! |
---|
| 1915 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1916 | IF ( runge_step == 1 ) THEN |
---|
| 1917 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1918 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1919 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1920 | ENDIF |
---|
| 1921 | ENDDO |
---|
| 1922 | ENDDO |
---|
| 1923 | ENDDO |
---|
| 1924 | |
---|
| 1925 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1926 | |
---|
| 1927 | ENDIF |
---|
| 1928 | |
---|
| 1929 | ! |
---|
| 1930 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1931 | !-- energy (TKE) |
---|
| 1932 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1933 | |
---|
| 1934 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1935 | |
---|
| 1936 | sbt = tsc(2) |
---|
| 1937 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1938 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1939 | |
---|
| 1940 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1941 | ! |
---|
| 1942 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1943 | sbt = 1.0 |
---|
| 1944 | ENDIF |
---|
| 1945 | tend = 0.0 |
---|
| 1946 | CALL advec_s_bc( e, 'e' ) |
---|
| 1947 | |
---|
| 1948 | ENDIF |
---|
| 1949 | ENDIF |
---|
| 1950 | |
---|
| 1951 | ! |
---|
| 1952 | !-- TKE-tendency terms with no communication |
---|
| 1953 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 1954 | IF ( use_upstream_for_tke ) THEN |
---|
| 1955 | tend = 0.0 |
---|
| 1956 | CALL advec_s_up( e ) |
---|
| 1957 | ELSE |
---|
| 1958 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1959 | IF ( ws_scheme_sca ) THEN |
---|
| 1960 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 1961 | ELSE |
---|
| 1962 | tend = 0.0 ! to be removed later?? |
---|
| 1963 | CALL advec_s_pw( e ) |
---|
| 1964 | ENDIF |
---|
| 1965 | ELSE |
---|
| 1966 | tend = 0.0 ! to be removed later?? |
---|
| 1967 | CALL advec_s_up( e ) |
---|
| 1968 | ENDIF |
---|
| 1969 | ENDIF |
---|
| 1970 | ENDIF |
---|
| 1971 | |
---|
| 1972 | IF ( .NOT. humidity ) THEN |
---|
| 1973 | IF ( ocean ) THEN |
---|
| 1974 | CALL diffusion_e( prho, prho_reference ) |
---|
| 1975 | ELSE |
---|
| 1976 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 1977 | ENDIF |
---|
| 1978 | ELSE |
---|
| 1979 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 1980 | ENDIF |
---|
| 1981 | |
---|
| 1982 | CALL production_e_acc |
---|
| 1983 | |
---|
| 1984 | ! |
---|
| 1985 | !-- Additional sink term for flows through plant canopies |
---|
| 1986 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1987 | CALL user_actions( 'e-tendency' ) |
---|
| 1988 | |
---|
| 1989 | ! |
---|
| 1990 | !-- Prognostic equation for TKE. |
---|
| 1991 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1992 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1993 | !-- value is reduced by 90%. |
---|
| 1994 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
| 1995 | !$acc loop |
---|
[1128] | 1996 | DO i = i_left, i_right |
---|
| 1997 | DO j = j_south, j_north |
---|
[1015] | 1998 | !$acc loop vector( 32 ) |
---|
| 1999 | DO k = 1, nzt |
---|
| 2000 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2001 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2002 | tsc(3) * te_m(k,j,i) ) |
---|
| 2003 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 2004 | ! |
---|
| 2005 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2006 | IF ( runge_step == 1 ) THEN |
---|
| 2007 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2008 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2009 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 2010 | ENDIF |
---|
| 2011 | ENDIF |
---|
| 2012 | ENDDO |
---|
| 2013 | ENDDO |
---|
| 2014 | ENDDO |
---|
| 2015 | !$acc end kernels |
---|
| 2016 | |
---|
| 2017 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2018 | |
---|
| 2019 | ENDIF |
---|
| 2020 | |
---|
| 2021 | |
---|
| 2022 | END SUBROUTINE prognostic_equations_acc |
---|
| 2023 | |
---|
| 2024 | |
---|
[736] | 2025 | END MODULE prognostic_equations_mod |
---|