[736] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[736] | 20 | ! Current revisions: |
---|
[1092] | 21 | ! ------------------ |
---|
[1054] | 22 | ! |
---|
[1182] | 23 | ! |
---|
[1054] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: prognostic_equations.f90 1182 2013-06-14 09:07:24Z raasch $ |
---|
| 27 | ! |
---|
[1182] | 28 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
| 29 | ! two arguments removed from routine buoyancy, ref_state updated on device |
---|
| 30 | ! |
---|
[1132] | 31 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
| 32 | ! those parts requiring global communication moved to time_integration, |
---|
| 33 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
| 34 | ! j_north |
---|
| 35 | ! |
---|
[1116] | 36 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 37 | ! optimized cloud physics: calculation of microphysical tendencies transfered |
---|
| 38 | ! to microphysics.f90; qr and nr are only calculated if precipitation is required |
---|
| 39 | ! |
---|
[1112] | 40 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 41 | ! update directives for prognostic quantities removed |
---|
| 42 | ! |
---|
[1107] | 43 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 44 | ! small changes in code formatting |
---|
| 45 | ! |
---|
[1093] | 46 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 47 | ! unused variables removed |
---|
| 48 | ! |
---|
[1054] | 49 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 50 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 51 | ! and rain water content (qr) |
---|
[979] | 52 | ! |
---|
[1053] | 53 | ! currently, only available for cache loop optimization |
---|
[1020] | 54 | ! |
---|
[1037] | 55 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 56 | ! code put under GPL (PALM 3.9) |
---|
| 57 | ! |
---|
[1020] | 58 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 59 | ! non-optimized version of prognostic_equations removed |
---|
| 60 | ! |
---|
[1017] | 61 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 62 | ! new branch prognostic_equations_acc |
---|
| 63 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 64 | ! |
---|
[1002] | 65 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 66 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 67 | ! |
---|
[979] | 68 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 69 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 70 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 71 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 72 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 73 | ! |
---|
[941] | 74 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 75 | ! temperature equation can be switched off |
---|
| 76 | ! |
---|
[786] | 77 | ! 785 2011-11-28 09:47:19Z raasch |
---|
| 78 | ! new factor rdf_sc allows separate Rayleigh damping of scalars |
---|
| 79 | ! |
---|
[737] | 80 | ! 736 2011-08-17 14:13:26Z suehring |
---|
| 81 | ! Bugfix: determination of first thread index i for WS-scheme |
---|
| 82 | ! |
---|
[736] | 83 | ! 709 2011-03-30 09:31:40Z raasch |
---|
| 84 | ! formatting adjustments |
---|
| 85 | ! |
---|
| 86 | ! 673 2011-01-18 16:19:48Z suehring |
---|
| 87 | ! Consideration of the pressure gradient (steered by tsc(4)) during the time |
---|
| 88 | ! integration removed. |
---|
| 89 | ! |
---|
| 90 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 91 | ! Calls of the advection routines with WS5 added. |
---|
| 92 | ! Calls of ws_statistics added to set the statistical arrays to zero after each |
---|
| 93 | ! time step. |
---|
| 94 | ! |
---|
| 95 | ! 531 2010-04-21 06:47:21Z heinze |
---|
| 96 | ! add call of subsidence in the equation for humidity / passive scalar |
---|
| 97 | ! |
---|
| 98 | ! 411 2009-12-11 14:15:58Z heinze |
---|
| 99 | ! add call of subsidence in the equation for potential temperature |
---|
| 100 | ! |
---|
| 101 | ! 388 2009-09-23 09:40:33Z raasch |
---|
| 102 | ! prho is used instead of rho in diffusion_e, |
---|
| 103 | ! external pressure gradient |
---|
| 104 | ! |
---|
| 105 | ! 153 2008-03-19 09:41:30Z steinfeld |
---|
| 106 | ! add call of plant_canopy_model in the prognostic equation for |
---|
| 107 | ! the potential temperature and for the passive scalar |
---|
| 108 | ! |
---|
| 109 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 110 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
| 111 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
| 112 | ! |
---|
| 113 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 114 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
| 115 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
| 116 | ! for non-cyclic boundary conditions) |
---|
| 117 | ! |
---|
| 118 | ! 97 2007-06-21 08:23:15Z raasch |
---|
| 119 | ! prognostic equation for salinity, density is calculated from equation of |
---|
| 120 | ! state for seawater and is used for calculation of buoyancy, |
---|
| 121 | ! +eqn_state_seawater_mod |
---|
| 122 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
| 123 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
| 124 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
| 125 | ! calc_mean_profile |
---|
| 126 | ! |
---|
| 127 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 128 | ! checking for negative q and limiting for positive values, |
---|
| 129 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
| 130 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
| 131 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
| 132 | ! _vector-version |
---|
| 133 | ! |
---|
| 134 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 135 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
| 136 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
| 137 | ! |
---|
| 138 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 139 | ! |
---|
| 140 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
| 141 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
| 142 | ! regardless of the timestep scheme used for the other quantities, |
---|
| 143 | ! new argument diss in call of diffusion_e |
---|
| 144 | ! |
---|
| 145 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 146 | ! Initial revision |
---|
| 147 | ! |
---|
| 148 | ! |
---|
| 149 | ! Description: |
---|
| 150 | ! ------------ |
---|
| 151 | ! Solving the prognostic equations. |
---|
| 152 | !------------------------------------------------------------------------------! |
---|
| 153 | |
---|
| 154 | USE arrays_3d |
---|
| 155 | USE control_parameters |
---|
| 156 | USE cpulog |
---|
| 157 | USE eqn_state_seawater_mod |
---|
| 158 | USE grid_variables |
---|
| 159 | USE indices |
---|
| 160 | USE interfaces |
---|
| 161 | USE pegrid |
---|
| 162 | USE pointer_interfaces |
---|
| 163 | USE statistics |
---|
| 164 | USE advec_ws |
---|
| 165 | USE advec_s_pw_mod |
---|
| 166 | USE advec_s_up_mod |
---|
| 167 | USE advec_u_pw_mod |
---|
| 168 | USE advec_u_up_mod |
---|
| 169 | USE advec_v_pw_mod |
---|
| 170 | USE advec_v_up_mod |
---|
| 171 | USE advec_w_pw_mod |
---|
| 172 | USE advec_w_up_mod |
---|
| 173 | USE buoyancy_mod |
---|
| 174 | USE calc_precipitation_mod |
---|
| 175 | USE calc_radiation_mod |
---|
| 176 | USE coriolis_mod |
---|
| 177 | USE diffusion_e_mod |
---|
| 178 | USE diffusion_s_mod |
---|
| 179 | USE diffusion_u_mod |
---|
| 180 | USE diffusion_v_mod |
---|
| 181 | USE diffusion_w_mod |
---|
| 182 | USE impact_of_latent_heat_mod |
---|
[1053] | 183 | USE microphysics_mod |
---|
[736] | 184 | USE plant_canopy_model_mod |
---|
| 185 | USE production_e_mod |
---|
| 186 | USE subsidence_mod |
---|
| 187 | USE user_actions_mod |
---|
| 188 | |
---|
| 189 | |
---|
| 190 | PRIVATE |
---|
[1019] | 191 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 192 | prognostic_equations_acc |
---|
[736] | 193 | |
---|
| 194 | INTERFACE prognostic_equations_cache |
---|
| 195 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 196 | END INTERFACE prognostic_equations_cache |
---|
| 197 | |
---|
| 198 | INTERFACE prognostic_equations_vector |
---|
| 199 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 200 | END INTERFACE prognostic_equations_vector |
---|
| 201 | |
---|
[1015] | 202 | INTERFACE prognostic_equations_acc |
---|
| 203 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 204 | END INTERFACE prognostic_equations_acc |
---|
[736] | 205 | |
---|
[1015] | 206 | |
---|
[736] | 207 | CONTAINS |
---|
| 208 | |
---|
| 209 | |
---|
| 210 | SUBROUTINE prognostic_equations_cache |
---|
| 211 | |
---|
| 212 | !------------------------------------------------------------------------------! |
---|
| 213 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 214 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 215 | ! |
---|
| 216 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 217 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 218 | ! these loops. |
---|
| 219 | ! |
---|
| 220 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 221 | !------------------------------------------------------------------------------! |
---|
| 222 | |
---|
| 223 | IMPLICIT NONE |
---|
| 224 | |
---|
| 225 | INTEGER :: i, i_omp_start, j, k, omp_get_thread_num, tn = 0 |
---|
| 226 | LOGICAL :: loop_start |
---|
| 227 | |
---|
| 228 | |
---|
| 229 | ! |
---|
| 230 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 231 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 232 | |
---|
| 233 | ! |
---|
| 234 | !-- Loop over all prognostic equations |
---|
| 235 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 236 | |
---|
| 237 | !$ tn = omp_get_thread_num() |
---|
| 238 | loop_start = .TRUE. |
---|
| 239 | !$OMP DO |
---|
| 240 | DO i = nxl, nxr |
---|
| 241 | |
---|
| 242 | ! |
---|
| 243 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 244 | !-- later in advec_ws |
---|
| 245 | IF ( loop_start ) THEN |
---|
| 246 | loop_start = .FALSE. |
---|
| 247 | i_omp_start = i |
---|
| 248 | ENDIF |
---|
| 249 | |
---|
| 250 | DO j = nys, nyn |
---|
| 251 | ! |
---|
| 252 | !-- Tendency terms for u-velocity component |
---|
| 253 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 254 | |
---|
| 255 | tend(:,j,i) = 0.0 |
---|
[1001] | 256 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 257 | IF ( ws_scheme_mom ) THEN |
---|
[978] | 258 | IF ( ( inflow_l .OR. outflow_l ) .AND. i_omp_start == nxl ) THEN |
---|
[736] | 259 | CALL advec_u_ws( i, j, i_omp_start + 1, tn ) |
---|
| 260 | ELSE |
---|
| 261 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
| 262 | ENDIF |
---|
| 263 | ELSE |
---|
| 264 | CALL advec_u_pw( i, j ) |
---|
| 265 | ENDIF |
---|
| 266 | ELSE |
---|
| 267 | CALL advec_u_up( i, j ) |
---|
| 268 | ENDIF |
---|
[1001] | 269 | CALL diffusion_u( i, j ) |
---|
[736] | 270 | CALL coriolis( i, j, 1 ) |
---|
[940] | 271 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 272 | CALL buoyancy( i, j, pt, 1 ) |
---|
[940] | 273 | ENDIF |
---|
[736] | 274 | |
---|
| 275 | ! |
---|
| 276 | !-- Drag by plant canopy |
---|
| 277 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 278 | |
---|
| 279 | ! |
---|
| 280 | !-- External pressure gradient |
---|
| 281 | IF ( dp_external ) THEN |
---|
| 282 | DO k = dp_level_ind_b+1, nzt |
---|
| 283 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 284 | ENDDO |
---|
| 285 | ENDIF |
---|
| 286 | |
---|
| 287 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 288 | ! |
---|
| 289 | !-- Prognostic equation for u-velocity component |
---|
| 290 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 291 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 292 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 293 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 294 | ENDDO |
---|
| 295 | |
---|
| 296 | ! |
---|
| 297 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 298 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 299 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 300 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 301 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 302 | ENDDO |
---|
| 303 | ELSEIF ( intermediate_timestep_count < & |
---|
| 304 | intermediate_timestep_count_max ) THEN |
---|
| 305 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 306 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 307 | ENDDO |
---|
| 308 | ENDIF |
---|
| 309 | ENDIF |
---|
| 310 | |
---|
| 311 | ENDIF |
---|
| 312 | |
---|
| 313 | ! |
---|
| 314 | !-- Tendency terms for v-velocity component |
---|
| 315 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 316 | |
---|
| 317 | tend(:,j,i) = 0.0 |
---|
[1001] | 318 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 319 | IF ( ws_scheme_mom ) THEN |
---|
| 320 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 321 | ELSE |
---|
| 322 | CALL advec_v_pw( i, j ) |
---|
| 323 | ENDIF |
---|
| 324 | ELSE |
---|
| 325 | CALL advec_v_up( i, j ) |
---|
| 326 | ENDIF |
---|
[1001] | 327 | CALL diffusion_v( i, j ) |
---|
[736] | 328 | CALL coriolis( i, j, 2 ) |
---|
| 329 | |
---|
| 330 | ! |
---|
| 331 | !-- Drag by plant canopy |
---|
| 332 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 333 | |
---|
| 334 | ! |
---|
| 335 | !-- External pressure gradient |
---|
| 336 | IF ( dp_external ) THEN |
---|
| 337 | DO k = dp_level_ind_b+1, nzt |
---|
| 338 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 339 | ENDDO |
---|
| 340 | ENDIF |
---|
| 341 | |
---|
| 342 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 343 | ! |
---|
| 344 | !-- Prognostic equation for v-velocity component |
---|
| 345 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 346 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 347 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 348 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 349 | ENDDO |
---|
| 350 | |
---|
| 351 | ! |
---|
| 352 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 353 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 354 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 355 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 356 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 357 | ENDDO |
---|
| 358 | ELSEIF ( intermediate_timestep_count < & |
---|
| 359 | intermediate_timestep_count_max ) THEN |
---|
| 360 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 361 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 362 | ENDDO |
---|
| 363 | ENDIF |
---|
| 364 | ENDIF |
---|
| 365 | |
---|
| 366 | ENDIF |
---|
| 367 | |
---|
| 368 | ! |
---|
| 369 | !-- Tendency terms for w-velocity component |
---|
| 370 | tend(:,j,i) = 0.0 |
---|
[1001] | 371 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 372 | IF ( ws_scheme_mom ) THEN |
---|
| 373 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 374 | ELSE |
---|
| 375 | CALL advec_w_pw( i, j ) |
---|
| 376 | END IF |
---|
| 377 | ELSE |
---|
| 378 | CALL advec_w_up( i, j ) |
---|
| 379 | ENDIF |
---|
[1001] | 380 | CALL diffusion_w( i, j ) |
---|
[736] | 381 | CALL coriolis( i, j, 3 ) |
---|
[940] | 382 | |
---|
| 383 | IF ( .NOT. neutral ) THEN |
---|
| 384 | IF ( ocean ) THEN |
---|
[1179] | 385 | CALL buoyancy( i, j, rho, 3 ) |
---|
[736] | 386 | ELSE |
---|
[940] | 387 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 388 | CALL buoyancy( i, j, pt, 3 ) |
---|
[940] | 389 | ELSE |
---|
[1179] | 390 | CALL buoyancy( i, j, vpt, 3 ) |
---|
[940] | 391 | ENDIF |
---|
[736] | 392 | ENDIF |
---|
| 393 | ENDIF |
---|
| 394 | |
---|
| 395 | ! |
---|
| 396 | !-- Drag by plant canopy |
---|
| 397 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 398 | |
---|
| 399 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 400 | |
---|
| 401 | ! |
---|
| 402 | !-- Prognostic equation for w-velocity component |
---|
| 403 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 404 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 405 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 406 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 407 | ENDDO |
---|
| 408 | |
---|
| 409 | ! |
---|
| 410 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 411 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 412 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 413 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 414 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 415 | ENDDO |
---|
| 416 | ELSEIF ( intermediate_timestep_count < & |
---|
| 417 | intermediate_timestep_count_max ) THEN |
---|
| 418 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 419 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 420 | ENDDO |
---|
| 421 | ENDIF |
---|
| 422 | ENDIF |
---|
| 423 | ! |
---|
[1115] | 424 | !-- If required, calculate tendencies for total water content, liquid water |
---|
| 425 | !-- potential temperature, rain water content and rain drop concentration |
---|
| 426 | IF ( cloud_physics .AND. icloud_scheme == 0 ) CALL microphysics_control( i, j ) |
---|
[1053] | 427 | ! |
---|
[940] | 428 | !-- If required, compute prognostic equation for potential temperature |
---|
| 429 | IF ( .NOT. neutral ) THEN |
---|
| 430 | ! |
---|
| 431 | !-- Tendency terms for potential temperature |
---|
| 432 | tend(:,j,i) = 0.0 |
---|
[1001] | 433 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 434 | IF ( ws_scheme_sca ) THEN |
---|
| 435 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 436 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 437 | ELSE |
---|
| 438 | CALL advec_s_pw( i, j, pt ) |
---|
| 439 | ENDIF |
---|
| 440 | ELSE |
---|
| 441 | CALL advec_s_up( i, j, pt ) |
---|
| 442 | ENDIF |
---|
[1001] | 443 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 444 | |
---|
| 445 | ! |
---|
[940] | 446 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 447 | !-- processes |
---|
| 448 | IF ( radiation ) THEN |
---|
| 449 | CALL calc_radiation( i, j ) |
---|
| 450 | ENDIF |
---|
[736] | 451 | |
---|
[1106] | 452 | ! |
---|
[1053] | 453 | !-- Using microphysical tendencies (latent heat) |
---|
| 454 | IF ( cloud_physics ) THEN |
---|
| 455 | IF ( icloud_scheme == 0 ) THEN |
---|
| 456 | tend(:,j,i) = tend(:,j,i) + tend_pt(:,j,i) |
---|
[1106] | 457 | ELSEIF ( icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1053] | 458 | CALL impact_of_latent_heat( i, j ) |
---|
| 459 | ENDIF |
---|
[940] | 460 | ENDIF |
---|
[736] | 461 | |
---|
| 462 | ! |
---|
[940] | 463 | !-- Consideration of heat sources within the plant canopy |
---|
[1106] | 464 | IF ( plant_canopy .AND. cthf /= 0.0 ) THEN |
---|
[940] | 465 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 466 | ENDIF |
---|
[736] | 467 | |
---|
[940] | 468 | ! |
---|
[1106] | 469 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
[940] | 470 | IF ( large_scale_subsidence ) THEN |
---|
| 471 | CALL subsidence( i, j, tend, pt, pt_init ) |
---|
| 472 | ENDIF |
---|
[736] | 473 | |
---|
[940] | 474 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 475 | |
---|
| 476 | ! |
---|
[940] | 477 | !-- Prognostic equation for potential temperature |
---|
| 478 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 479 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 480 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 481 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 482 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 483 | ENDDO |
---|
[736] | 484 | |
---|
| 485 | ! |
---|
[940] | 486 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 487 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 488 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 489 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 490 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 491 | ENDDO |
---|
| 492 | ELSEIF ( intermediate_timestep_count < & |
---|
| 493 | intermediate_timestep_count_max ) THEN |
---|
| 494 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 495 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 496 | 5.3125 * tpt_m(k,j,i) |
---|
| 497 | ENDDO |
---|
| 498 | ENDIF |
---|
[736] | 499 | ENDIF |
---|
[940] | 500 | |
---|
[736] | 501 | ENDIF |
---|
| 502 | |
---|
| 503 | ! |
---|
| 504 | !-- If required, compute prognostic equation for salinity |
---|
| 505 | IF ( ocean ) THEN |
---|
| 506 | |
---|
| 507 | ! |
---|
| 508 | !-- Tendency-terms for salinity |
---|
| 509 | tend(:,j,i) = 0.0 |
---|
[1001] | 510 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 511 | THEN |
---|
| 512 | IF ( ws_scheme_sca ) THEN |
---|
| 513 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 514 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 515 | ELSE |
---|
| 516 | CALL advec_s_pw( i, j, sa ) |
---|
| 517 | ENDIF |
---|
| 518 | ELSE |
---|
| 519 | CALL advec_s_up( i, j, sa ) |
---|
| 520 | ENDIF |
---|
[1001] | 521 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 522 | |
---|
| 523 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 524 | |
---|
| 525 | ! |
---|
| 526 | !-- Prognostic equation for salinity |
---|
| 527 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 528 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 529 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 530 | - tsc(5) * rdf_sc(k) * & |
---|
| 531 | ( sa(k,j,i) - sa_init(k) ) |
---|
[736] | 532 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 533 | ENDDO |
---|
| 534 | |
---|
| 535 | ! |
---|
| 536 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 537 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 538 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 539 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 540 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 541 | ENDDO |
---|
| 542 | ELSEIF ( intermediate_timestep_count < & |
---|
| 543 | intermediate_timestep_count_max ) THEN |
---|
| 544 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 545 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 546 | 5.3125 * tsa_m(k,j,i) |
---|
| 547 | ENDDO |
---|
| 548 | ENDIF |
---|
| 549 | ENDIF |
---|
| 550 | |
---|
| 551 | ! |
---|
| 552 | !-- Calculate density by the equation of state for seawater |
---|
| 553 | CALL eqn_state_seawater( i, j ) |
---|
| 554 | |
---|
| 555 | ENDIF |
---|
| 556 | |
---|
| 557 | ! |
---|
| 558 | !-- If required, compute prognostic equation for total water content / |
---|
| 559 | !-- scalar |
---|
| 560 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 561 | |
---|
| 562 | ! |
---|
| 563 | !-- Tendency-terms for total water content / scalar |
---|
| 564 | tend(:,j,i) = 0.0 |
---|
[1001] | 565 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 566 | THEN |
---|
| 567 | IF ( ws_scheme_sca ) THEN |
---|
| 568 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 569 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 570 | ELSE |
---|
| 571 | CALL advec_s_pw( i, j, q ) |
---|
| 572 | ENDIF |
---|
| 573 | ELSE |
---|
| 574 | CALL advec_s_up( i, j, q ) |
---|
| 575 | ENDIF |
---|
[1001] | 576 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[1053] | 577 | |
---|
[736] | 578 | ! |
---|
[1053] | 579 | !-- Using microphysical tendencies |
---|
| 580 | IF ( cloud_physics ) THEN |
---|
| 581 | IF ( icloud_scheme == 0 ) THEN |
---|
| 582 | tend(:,j,i) = tend(:,j,i) + tend_q(:,j,i) |
---|
[1106] | 583 | ELSEIF ( icloud_scheme == 1 .AND. precipitation ) THEN |
---|
[1053] | 584 | CALL calc_precipitation( i, j ) |
---|
| 585 | ENDIF |
---|
[736] | 586 | ENDIF |
---|
| 587 | ! |
---|
| 588 | !-- Sink or source of scalar concentration due to canopy elements |
---|
[1106] | 589 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
[736] | 590 | |
---|
[1053] | 591 | ! |
---|
[736] | 592 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[940] | 593 | IF ( large_scale_subsidence ) THEN |
---|
| 594 | CALL subsidence( i, j, tend, q, q_init ) |
---|
[736] | 595 | ENDIF |
---|
| 596 | |
---|
| 597 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 598 | |
---|
| 599 | ! |
---|
| 600 | !-- Prognostic equation for total water content / scalar |
---|
| 601 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 602 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 603 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 604 | - tsc(5) * rdf_sc(k) * & |
---|
| 605 | ( q(k,j,i) - q_init(k) ) |
---|
[736] | 606 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 607 | ENDDO |
---|
| 608 | |
---|
| 609 | ! |
---|
| 610 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 611 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 612 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 613 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 614 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 615 | ENDDO |
---|
| 616 | ELSEIF ( intermediate_timestep_count < & |
---|
| 617 | intermediate_timestep_count_max ) THEN |
---|
| 618 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 619 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 620 | 5.3125 * tq_m(k,j,i) |
---|
| 621 | ENDDO |
---|
| 622 | ENDIF |
---|
| 623 | ENDIF |
---|
| 624 | |
---|
[1053] | 625 | ! |
---|
| 626 | !-- If required, calculate prognostic equations for rain water content |
---|
| 627 | !-- and rain drop concentration |
---|
[1115] | 628 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 629 | precipitation ) THEN |
---|
[1053] | 630 | ! |
---|
| 631 | !-- Calculate prognostic equation for rain water content |
---|
| 632 | tend(:,j,i) = 0.0 |
---|
| 633 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 634 | THEN |
---|
| 635 | IF ( ws_scheme_sca ) THEN |
---|
| 636 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 637 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 638 | i_omp_start, tn ) |
---|
| 639 | ELSE |
---|
| 640 | CALL advec_s_pw( i, j, qr ) |
---|
| 641 | ENDIF |
---|
| 642 | ELSE |
---|
| 643 | CALL advec_s_up( i, j, qr ) |
---|
| 644 | ENDIF |
---|
| 645 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 646 | ! |
---|
| 647 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
| 648 | !-- evaporation; if required: sedimentation) |
---|
| 649 | tend(:,j,i) = tend(:,j,i) + tend_qr(:,j,i) |
---|
| 650 | |
---|
[1115] | 651 | CALL user_actions( i, j, 'qr-tendency' ) |
---|
[1053] | 652 | ! |
---|
| 653 | !-- Prognostic equation for rain water content |
---|
| 654 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 655 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 656 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 657 | - tsc(5) * rdf_sc(k) * qr(k,j,i) |
---|
| 658 | IF ( qr_p(k,j,i) < 0.0 ) qr_p(k,j,i) = 0.0 |
---|
[1053] | 659 | ENDDO |
---|
| 660 | ! |
---|
| 661 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 662 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 663 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 664 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 665 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 666 | ENDDO |
---|
| 667 | ELSEIF ( intermediate_timestep_count < & |
---|
| 668 | intermediate_timestep_count_max ) THEN |
---|
| 669 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 670 | tqr_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 671 | 5.3125 * tqr_m(k,j,i) |
---|
| 672 | ENDDO |
---|
| 673 | ENDIF |
---|
| 674 | ENDIF |
---|
| 675 | |
---|
| 676 | ! |
---|
| 677 | !-- Calculate prognostic equation for rain drop concentration. |
---|
| 678 | tend(:,j,i) = 0.0 |
---|
| 679 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 680 | IF ( ws_scheme_sca ) THEN |
---|
[1115] | 681 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 682 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 683 | i_omp_start, tn ) |
---|
[1053] | 684 | ELSE |
---|
| 685 | CALL advec_s_pw( i, j, nr ) |
---|
| 686 | ENDIF |
---|
| 687 | ELSE |
---|
| 688 | CALL advec_s_up( i, j, nr ) |
---|
| 689 | ENDIF |
---|
| 690 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
[1115] | 691 | ! |
---|
[1053] | 692 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
| 693 | !-- selfcollection, breakup, evaporation; |
---|
| 694 | !-- if required: sedimentation) |
---|
| 695 | tend(:,j,i) = tend(:,j,i) + tend_nr(:,j,i) |
---|
| 696 | |
---|
[1115] | 697 | CALL user_actions( i, j, 'nr-tendency' ) |
---|
[1053] | 698 | ! |
---|
| 699 | !-- Prognostic equation for rain drop concentration |
---|
| 700 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 701 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 702 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 703 | - tsc(5) * rdf_sc(k) * nr(k,j,i) |
---|
| 704 | IF ( nr_p(k,j,i) < 0.0 ) nr_p(k,j,i) = 0.0 |
---|
[1053] | 705 | ENDDO |
---|
| 706 | ! |
---|
| 707 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 708 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 709 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 710 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 711 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 712 | ENDDO |
---|
| 713 | ELSEIF ( intermediate_timestep_count < & |
---|
| 714 | intermediate_timestep_count_max ) THEN |
---|
| 715 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 716 | tnr_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 717 | 5.3125 * tnr_m(k,j,i) |
---|
| 718 | ENDDO |
---|
| 719 | ENDIF |
---|
| 720 | ENDIF |
---|
| 721 | |
---|
| 722 | ENDIF |
---|
| 723 | |
---|
[1128] | 724 | ENDIF |
---|
| 725 | |
---|
[736] | 726 | ! |
---|
| 727 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 728 | !-- energy (TKE) |
---|
| 729 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 730 | |
---|
| 731 | ! |
---|
| 732 | !-- Tendency-terms for TKE |
---|
| 733 | tend(:,j,i) = 0.0 |
---|
[1001] | 734 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
[736] | 735 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
| 736 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 737 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 738 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 739 | ELSE |
---|
| 740 | CALL advec_s_pw( i, j, e ) |
---|
| 741 | ENDIF |
---|
| 742 | ELSE |
---|
| 743 | CALL advec_s_up( i, j, e ) |
---|
| 744 | ENDIF |
---|
[1001] | 745 | IF ( .NOT. humidity ) THEN |
---|
| 746 | IF ( ocean ) THEN |
---|
| 747 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 748 | ELSE |
---|
[1001] | 749 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 750 | ENDIF |
---|
| 751 | ELSE |
---|
[1001] | 752 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 753 | ENDIF |
---|
| 754 | CALL production_e( i, j ) |
---|
| 755 | |
---|
| 756 | ! |
---|
| 757 | !-- Additional sink term for flows through plant canopies |
---|
| 758 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 759 | |
---|
| 760 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 761 | |
---|
| 762 | ! |
---|
| 763 | !-- Prognostic equation for TKE. |
---|
| 764 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 765 | !-- reasons in the course of the integration. In such cases the old |
---|
| 766 | !-- TKE value is reduced by 90%. |
---|
| 767 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 768 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 769 | tsc(3) * te_m(k,j,i) ) |
---|
[736] | 770 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 771 | ENDDO |
---|
| 772 | |
---|
| 773 | ! |
---|
| 774 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 775 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 776 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 777 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 778 | te_m(k,j,i) = tend(k,j,i) |
---|
| 779 | ENDDO |
---|
| 780 | ELSEIF ( intermediate_timestep_count < & |
---|
| 781 | intermediate_timestep_count_max ) THEN |
---|
| 782 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 783 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 784 | 5.3125 * te_m(k,j,i) |
---|
| 785 | ENDDO |
---|
| 786 | ENDIF |
---|
| 787 | ENDIF |
---|
| 788 | |
---|
| 789 | ENDIF ! TKE equation |
---|
| 790 | |
---|
| 791 | ENDDO |
---|
| 792 | ENDDO |
---|
| 793 | !$OMP END PARALLEL |
---|
| 794 | |
---|
| 795 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 796 | |
---|
| 797 | |
---|
| 798 | END SUBROUTINE prognostic_equations_cache |
---|
| 799 | |
---|
| 800 | |
---|
| 801 | SUBROUTINE prognostic_equations_vector |
---|
| 802 | |
---|
| 803 | !------------------------------------------------------------------------------! |
---|
| 804 | ! Version for vector machines |
---|
| 805 | !------------------------------------------------------------------------------! |
---|
| 806 | |
---|
| 807 | IMPLICIT NONE |
---|
| 808 | |
---|
| 809 | INTEGER :: i, j, k |
---|
[1001] | 810 | REAL :: sbt |
---|
[736] | 811 | |
---|
| 812 | |
---|
| 813 | ! |
---|
| 814 | !-- u-velocity component |
---|
| 815 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 816 | |
---|
[1001] | 817 | tend = 0.0 |
---|
| 818 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 819 | IF ( ws_scheme_mom ) THEN |
---|
| 820 | CALL advec_u_ws |
---|
| 821 | ELSE |
---|
| 822 | CALL advec_u_pw |
---|
| 823 | ENDIF |
---|
| 824 | ELSE |
---|
[1001] | 825 | CALL advec_u_up |
---|
[736] | 826 | ENDIF |
---|
[1001] | 827 | CALL diffusion_u |
---|
[736] | 828 | CALL coriolis( 1 ) |
---|
[940] | 829 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 830 | CALL buoyancy( pt, 1 ) |
---|
[940] | 831 | ENDIF |
---|
[736] | 832 | |
---|
| 833 | ! |
---|
| 834 | !-- Drag by plant canopy |
---|
| 835 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 836 | |
---|
| 837 | ! |
---|
| 838 | !-- External pressure gradient |
---|
| 839 | IF ( dp_external ) THEN |
---|
| 840 | DO i = nxlu, nxr |
---|
| 841 | DO j = nys, nyn |
---|
| 842 | DO k = dp_level_ind_b+1, nzt |
---|
| 843 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 844 | ENDDO |
---|
| 845 | ENDDO |
---|
| 846 | ENDDO |
---|
| 847 | ENDIF |
---|
| 848 | |
---|
| 849 | CALL user_actions( 'u-tendency' ) |
---|
| 850 | |
---|
| 851 | ! |
---|
| 852 | !-- Prognostic equation for u-velocity component |
---|
| 853 | DO i = nxlu, nxr |
---|
| 854 | DO j = nys, nyn |
---|
| 855 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 856 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 857 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 858 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 859 | ENDDO |
---|
| 860 | ENDDO |
---|
| 861 | ENDDO |
---|
| 862 | |
---|
| 863 | ! |
---|
| 864 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 865 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 866 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 867 | DO i = nxlu, nxr |
---|
| 868 | DO j = nys, nyn |
---|
| 869 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 870 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 871 | ENDDO |
---|
| 872 | ENDDO |
---|
| 873 | ENDDO |
---|
| 874 | ELSEIF ( intermediate_timestep_count < & |
---|
| 875 | intermediate_timestep_count_max ) THEN |
---|
| 876 | DO i = nxlu, nxr |
---|
| 877 | DO j = nys, nyn |
---|
| 878 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 879 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 880 | ENDDO |
---|
| 881 | ENDDO |
---|
| 882 | ENDDO |
---|
| 883 | ENDIF |
---|
| 884 | ENDIF |
---|
| 885 | |
---|
| 886 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 887 | |
---|
| 888 | ! |
---|
| 889 | !-- v-velocity component |
---|
| 890 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 891 | |
---|
[1001] | 892 | tend = 0.0 |
---|
| 893 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 894 | IF ( ws_scheme_mom ) THEN |
---|
| 895 | CALL advec_v_ws |
---|
| 896 | ELSE |
---|
| 897 | CALL advec_v_pw |
---|
| 898 | END IF |
---|
| 899 | ELSE |
---|
[1001] | 900 | CALL advec_v_up |
---|
[736] | 901 | ENDIF |
---|
[1001] | 902 | CALL diffusion_v |
---|
[736] | 903 | CALL coriolis( 2 ) |
---|
| 904 | |
---|
| 905 | ! |
---|
| 906 | !-- Drag by plant canopy |
---|
| 907 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 908 | |
---|
| 909 | ! |
---|
| 910 | !-- External pressure gradient |
---|
| 911 | IF ( dp_external ) THEN |
---|
| 912 | DO i = nxl, nxr |
---|
| 913 | DO j = nysv, nyn |
---|
| 914 | DO k = dp_level_ind_b+1, nzt |
---|
| 915 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 916 | ENDDO |
---|
| 917 | ENDDO |
---|
| 918 | ENDDO |
---|
| 919 | ENDIF |
---|
| 920 | |
---|
| 921 | CALL user_actions( 'v-tendency' ) |
---|
| 922 | |
---|
| 923 | ! |
---|
| 924 | !-- Prognostic equation for v-velocity component |
---|
| 925 | DO i = nxl, nxr |
---|
| 926 | DO j = nysv, nyn |
---|
| 927 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 928 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 929 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 930 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 931 | ENDDO |
---|
| 932 | ENDDO |
---|
| 933 | ENDDO |
---|
| 934 | |
---|
| 935 | ! |
---|
| 936 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 937 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 938 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 939 | DO i = nxl, nxr |
---|
| 940 | DO j = nysv, nyn |
---|
| 941 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 942 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 943 | ENDDO |
---|
| 944 | ENDDO |
---|
| 945 | ENDDO |
---|
| 946 | ELSEIF ( intermediate_timestep_count < & |
---|
| 947 | intermediate_timestep_count_max ) THEN |
---|
| 948 | DO i = nxl, nxr |
---|
| 949 | DO j = nysv, nyn |
---|
| 950 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 951 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 952 | ENDDO |
---|
| 953 | ENDDO |
---|
| 954 | ENDDO |
---|
| 955 | ENDIF |
---|
| 956 | ENDIF |
---|
| 957 | |
---|
| 958 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 959 | |
---|
| 960 | ! |
---|
| 961 | !-- w-velocity component |
---|
| 962 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 963 | |
---|
[1001] | 964 | tend = 0.0 |
---|
| 965 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 966 | IF ( ws_scheme_mom ) THEN |
---|
| 967 | CALL advec_w_ws |
---|
| 968 | ELSE |
---|
| 969 | CALL advec_w_pw |
---|
| 970 | ENDIF |
---|
| 971 | ELSE |
---|
[1001] | 972 | CALL advec_w_up |
---|
[736] | 973 | ENDIF |
---|
[1001] | 974 | CALL diffusion_w |
---|
[736] | 975 | CALL coriolis( 3 ) |
---|
[940] | 976 | |
---|
| 977 | IF ( .NOT. neutral ) THEN |
---|
| 978 | IF ( ocean ) THEN |
---|
[1179] | 979 | CALL buoyancy( rho, 3 ) |
---|
[736] | 980 | ELSE |
---|
[940] | 981 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 982 | CALL buoyancy( pt, 3 ) |
---|
[940] | 983 | ELSE |
---|
[1179] | 984 | CALL buoyancy( vpt, 3 ) |
---|
[940] | 985 | ENDIF |
---|
[736] | 986 | ENDIF |
---|
| 987 | ENDIF |
---|
| 988 | |
---|
| 989 | ! |
---|
| 990 | !-- Drag by plant canopy |
---|
| 991 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 992 | |
---|
| 993 | CALL user_actions( 'w-tendency' ) |
---|
| 994 | |
---|
| 995 | ! |
---|
| 996 | !-- Prognostic equation for w-velocity component |
---|
| 997 | DO i = nxl, nxr |
---|
| 998 | DO j = nys, nyn |
---|
| 999 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 1000 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1001 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1002 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 1003 | ENDDO |
---|
| 1004 | ENDDO |
---|
| 1005 | ENDDO |
---|
| 1006 | |
---|
| 1007 | ! |
---|
| 1008 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1009 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1010 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1011 | DO i = nxl, nxr |
---|
| 1012 | DO j = nys, nyn |
---|
| 1013 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1014 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1015 | ENDDO |
---|
| 1016 | ENDDO |
---|
| 1017 | ENDDO |
---|
| 1018 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1019 | intermediate_timestep_count_max ) THEN |
---|
| 1020 | DO i = nxl, nxr |
---|
| 1021 | DO j = nys, nyn |
---|
| 1022 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1023 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1024 | ENDDO |
---|
| 1025 | ENDDO |
---|
| 1026 | ENDDO |
---|
| 1027 | ENDIF |
---|
| 1028 | ENDIF |
---|
| 1029 | |
---|
| 1030 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1031 | |
---|
[940] | 1032 | |
---|
[736] | 1033 | ! |
---|
[940] | 1034 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1035 | IF ( .NOT. neutral ) THEN |
---|
[736] | 1036 | |
---|
[940] | 1037 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1038 | |
---|
[736] | 1039 | ! |
---|
[940] | 1040 | !-- pt-tendency terms with communication |
---|
| 1041 | sbt = tsc(2) |
---|
| 1042 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 1043 | |
---|
[940] | 1044 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 1045 | ! |
---|
[1001] | 1046 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[940] | 1047 | sbt = 1.0 |
---|
| 1048 | ENDIF |
---|
[736] | 1049 | tend = 0.0 |
---|
[940] | 1050 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 1051 | |
---|
[736] | 1052 | ENDIF |
---|
[940] | 1053 | |
---|
| 1054 | ! |
---|
| 1055 | !-- pt-tendency terms with no communication |
---|
[1001] | 1056 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1057 | tend = 0.0 |
---|
| 1058 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 1059 | IF ( ws_scheme_sca ) THEN |
---|
| 1060 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1061 | ELSE |
---|
| 1062 | CALL advec_s_pw( pt ) |
---|
| 1063 | ENDIF |
---|
| 1064 | ELSE |
---|
[1001] | 1065 | CALL advec_s_up( pt ) |
---|
[940] | 1066 | ENDIF |
---|
[736] | 1067 | ENDIF |
---|
| 1068 | |
---|
[1001] | 1069 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1070 | |
---|
[736] | 1071 | ! |
---|
[940] | 1072 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1073 | IF ( radiation ) THEN |
---|
| 1074 | CALL calc_radiation |
---|
| 1075 | ENDIF |
---|
[736] | 1076 | |
---|
| 1077 | ! |
---|
[940] | 1078 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1079 | IF ( precipitation ) THEN |
---|
| 1080 | CALL impact_of_latent_heat |
---|
| 1081 | ENDIF |
---|
[736] | 1082 | |
---|
| 1083 | ! |
---|
[940] | 1084 | !-- Consideration of heat sources within the plant canopy |
---|
| 1085 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1086 | CALL plant_canopy_model( 4 ) |
---|
| 1087 | ENDIF |
---|
[736] | 1088 | |
---|
[940] | 1089 | ! |
---|
| 1090 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1091 | IF ( large_scale_subsidence ) THEN |
---|
| 1092 | CALL subsidence( tend, pt, pt_init ) |
---|
| 1093 | ENDIF |
---|
[736] | 1094 | |
---|
[940] | 1095 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 1096 | |
---|
| 1097 | ! |
---|
[940] | 1098 | !-- Prognostic equation for potential temperature |
---|
| 1099 | DO i = nxl, nxr |
---|
| 1100 | DO j = nys, nyn |
---|
| 1101 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1102 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1103 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1104 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1105 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 1106 | ENDDO |
---|
[736] | 1107 | ENDDO |
---|
| 1108 | ENDDO |
---|
| 1109 | |
---|
| 1110 | ! |
---|
[940] | 1111 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1112 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1113 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1114 | DO i = nxl, nxr |
---|
| 1115 | DO j = nys, nyn |
---|
| 1116 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1117 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1118 | ENDDO |
---|
[736] | 1119 | ENDDO |
---|
| 1120 | ENDDO |
---|
[940] | 1121 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1122 | intermediate_timestep_count_max ) THEN |
---|
| 1123 | DO i = nxl, nxr |
---|
| 1124 | DO j = nys, nyn |
---|
| 1125 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1126 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1127 | 5.3125 * tpt_m(k,j,i) |
---|
| 1128 | ENDDO |
---|
[736] | 1129 | ENDDO |
---|
| 1130 | ENDDO |
---|
[940] | 1131 | ENDIF |
---|
[736] | 1132 | ENDIF |
---|
[940] | 1133 | |
---|
| 1134 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1135 | |
---|
[736] | 1136 | ENDIF |
---|
| 1137 | |
---|
| 1138 | ! |
---|
| 1139 | !-- If required, compute prognostic equation for salinity |
---|
| 1140 | IF ( ocean ) THEN |
---|
| 1141 | |
---|
| 1142 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1143 | |
---|
| 1144 | ! |
---|
| 1145 | !-- sa-tendency terms with communication |
---|
| 1146 | sbt = tsc(2) |
---|
| 1147 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1148 | |
---|
| 1149 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1150 | ! |
---|
[1001] | 1151 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[736] | 1152 | sbt = 1.0 |
---|
| 1153 | ENDIF |
---|
| 1154 | tend = 0.0 |
---|
| 1155 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1156 | |
---|
[736] | 1157 | ENDIF |
---|
| 1158 | |
---|
| 1159 | ! |
---|
| 1160 | !-- sa-tendency terms with no communication |
---|
[1001] | 1161 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1162 | tend = 0.0 |
---|
| 1163 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1164 | IF ( ws_scheme_sca ) THEN |
---|
| 1165 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1166 | ELSE |
---|
| 1167 | CALL advec_s_pw( sa ) |
---|
| 1168 | ENDIF |
---|
| 1169 | ELSE |
---|
[1001] | 1170 | CALL advec_s_up( sa ) |
---|
[736] | 1171 | ENDIF |
---|
| 1172 | ENDIF |
---|
[1001] | 1173 | |
---|
| 1174 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1175 | |
---|
| 1176 | CALL user_actions( 'sa-tendency' ) |
---|
| 1177 | |
---|
| 1178 | ! |
---|
| 1179 | !-- Prognostic equation for salinity |
---|
| 1180 | DO i = nxl, nxr |
---|
| 1181 | DO j = nys, nyn |
---|
| 1182 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1183 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1184 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1185 | - tsc(5) * rdf_sc(k) * & |
---|
| 1186 | ( sa(k,j,i) - sa_init(k) ) |
---|
[736] | 1187 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1188 | ENDDO |
---|
| 1189 | ENDDO |
---|
| 1190 | ENDDO |
---|
| 1191 | |
---|
| 1192 | ! |
---|
| 1193 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1194 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1195 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1196 | DO i = nxl, nxr |
---|
| 1197 | DO j = nys, nyn |
---|
| 1198 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1199 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1200 | ENDDO |
---|
| 1201 | ENDDO |
---|
| 1202 | ENDDO |
---|
| 1203 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1204 | intermediate_timestep_count_max ) THEN |
---|
| 1205 | DO i = nxl, nxr |
---|
| 1206 | DO j = nys, nyn |
---|
| 1207 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1208 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1209 | 5.3125 * tsa_m(k,j,i) |
---|
| 1210 | ENDDO |
---|
| 1211 | ENDDO |
---|
| 1212 | ENDDO |
---|
| 1213 | ENDIF |
---|
| 1214 | ENDIF |
---|
| 1215 | |
---|
| 1216 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1217 | |
---|
| 1218 | ! |
---|
| 1219 | !-- Calculate density by the equation of state for seawater |
---|
| 1220 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1221 | CALL eqn_state_seawater |
---|
| 1222 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1223 | |
---|
| 1224 | ENDIF |
---|
| 1225 | |
---|
| 1226 | ! |
---|
| 1227 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1228 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1229 | |
---|
| 1230 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1231 | |
---|
| 1232 | ! |
---|
| 1233 | !-- Scalar/q-tendency terms with communication |
---|
| 1234 | sbt = tsc(2) |
---|
| 1235 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1236 | |
---|
| 1237 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1238 | ! |
---|
[1001] | 1239 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[736] | 1240 | sbt = 1.0 |
---|
| 1241 | ENDIF |
---|
| 1242 | tend = 0.0 |
---|
| 1243 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1244 | |
---|
[736] | 1245 | ENDIF |
---|
| 1246 | |
---|
| 1247 | ! |
---|
| 1248 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1249 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1250 | tend = 0.0 |
---|
| 1251 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1252 | IF ( ws_scheme_sca ) THEN |
---|
| 1253 | CALL advec_s_ws( q, 'q' ) |
---|
| 1254 | ELSE |
---|
| 1255 | CALL advec_s_pw( q ) |
---|
| 1256 | ENDIF |
---|
| 1257 | ELSE |
---|
[1001] | 1258 | CALL advec_s_up( q ) |
---|
[736] | 1259 | ENDIF |
---|
| 1260 | ENDIF |
---|
[1001] | 1261 | |
---|
| 1262 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1263 | |
---|
| 1264 | ! |
---|
| 1265 | !-- If required compute decrease of total water content due to |
---|
| 1266 | !-- precipitation |
---|
| 1267 | IF ( precipitation ) THEN |
---|
| 1268 | CALL calc_precipitation |
---|
| 1269 | ENDIF |
---|
| 1270 | |
---|
| 1271 | ! |
---|
| 1272 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1273 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1274 | |
---|
| 1275 | ! |
---|
| 1276 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[940] | 1277 | IF ( large_scale_subsidence ) THEN |
---|
| 1278 | CALL subsidence( tend, q, q_init ) |
---|
[736] | 1279 | ENDIF |
---|
| 1280 | |
---|
| 1281 | CALL user_actions( 'q-tendency' ) |
---|
| 1282 | |
---|
| 1283 | ! |
---|
| 1284 | !-- Prognostic equation for total water content / scalar |
---|
| 1285 | DO i = nxl, nxr |
---|
| 1286 | DO j = nys, nyn |
---|
| 1287 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1288 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1289 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1290 | - tsc(5) * rdf_sc(k) * & |
---|
| 1291 | ( q(k,j,i) - q_init(k) ) |
---|
[736] | 1292 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 1293 | ENDDO |
---|
| 1294 | ENDDO |
---|
| 1295 | ENDDO |
---|
| 1296 | |
---|
| 1297 | ! |
---|
| 1298 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1299 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1300 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1301 | DO i = nxl, nxr |
---|
| 1302 | DO j = nys, nyn |
---|
| 1303 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1304 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1305 | ENDDO |
---|
| 1306 | ENDDO |
---|
| 1307 | ENDDO |
---|
| 1308 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1309 | intermediate_timestep_count_max ) THEN |
---|
| 1310 | DO i = nxl, nxr |
---|
| 1311 | DO j = nys, nyn |
---|
| 1312 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1313 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1314 | ENDDO |
---|
| 1315 | ENDDO |
---|
| 1316 | ENDDO |
---|
| 1317 | ENDIF |
---|
| 1318 | ENDIF |
---|
| 1319 | |
---|
| 1320 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1321 | |
---|
| 1322 | ENDIF |
---|
| 1323 | |
---|
| 1324 | ! |
---|
| 1325 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1326 | !-- energy (TKE) |
---|
| 1327 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1328 | |
---|
| 1329 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1330 | |
---|
| 1331 | sbt = tsc(2) |
---|
| 1332 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1333 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1334 | |
---|
| 1335 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1336 | ! |
---|
[1001] | 1337 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[736] | 1338 | sbt = 1.0 |
---|
| 1339 | ENDIF |
---|
| 1340 | tend = 0.0 |
---|
| 1341 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1342 | |
---|
[736] | 1343 | ENDIF |
---|
| 1344 | ENDIF |
---|
| 1345 | |
---|
| 1346 | ! |
---|
| 1347 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1348 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1349 | IF ( use_upstream_for_tke ) THEN |
---|
| 1350 | tend = 0.0 |
---|
| 1351 | CALL advec_s_up( e ) |
---|
| 1352 | ELSE |
---|
[1001] | 1353 | tend = 0.0 |
---|
| 1354 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1355 | IF ( ws_scheme_sca ) THEN |
---|
| 1356 | CALL advec_s_ws( e, 'e' ) |
---|
| 1357 | ELSE |
---|
| 1358 | CALL advec_s_pw( e ) |
---|
| 1359 | ENDIF |
---|
| 1360 | ELSE |
---|
[1001] | 1361 | CALL advec_s_up( e ) |
---|
[736] | 1362 | ENDIF |
---|
| 1363 | ENDIF |
---|
[1001] | 1364 | ENDIF |
---|
| 1365 | |
---|
| 1366 | IF ( .NOT. humidity ) THEN |
---|
| 1367 | IF ( ocean ) THEN |
---|
| 1368 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1369 | ELSE |
---|
[1001] | 1370 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1371 | ENDIF |
---|
[1001] | 1372 | ELSE |
---|
| 1373 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1374 | ENDIF |
---|
[1001] | 1375 | |
---|
[736] | 1376 | CALL production_e |
---|
| 1377 | |
---|
| 1378 | ! |
---|
| 1379 | !-- Additional sink term for flows through plant canopies |
---|
| 1380 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1381 | CALL user_actions( 'e-tendency' ) |
---|
| 1382 | |
---|
| 1383 | ! |
---|
| 1384 | !-- Prognostic equation for TKE. |
---|
| 1385 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1386 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1387 | !-- value is reduced by 90%. |
---|
| 1388 | DO i = nxl, nxr |
---|
| 1389 | DO j = nys, nyn |
---|
| 1390 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1391 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1392 | tsc(3) * te_m(k,j,i) ) |
---|
[736] | 1393 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1394 | ENDDO |
---|
| 1395 | ENDDO |
---|
| 1396 | ENDDO |
---|
| 1397 | |
---|
| 1398 | ! |
---|
| 1399 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1400 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1401 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1402 | DO i = nxl, nxr |
---|
| 1403 | DO j = nys, nyn |
---|
| 1404 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1405 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1406 | ENDDO |
---|
| 1407 | ENDDO |
---|
| 1408 | ENDDO |
---|
| 1409 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1410 | intermediate_timestep_count_max ) THEN |
---|
| 1411 | DO i = nxl, nxr |
---|
| 1412 | DO j = nys, nyn |
---|
| 1413 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1414 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 1415 | ENDDO |
---|
| 1416 | ENDDO |
---|
| 1417 | ENDDO |
---|
| 1418 | ENDIF |
---|
| 1419 | ENDIF |
---|
| 1420 | |
---|
| 1421 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1422 | |
---|
| 1423 | ENDIF |
---|
| 1424 | |
---|
| 1425 | |
---|
| 1426 | END SUBROUTINE prognostic_equations_vector |
---|
| 1427 | |
---|
| 1428 | |
---|
[1015] | 1429 | SUBROUTINE prognostic_equations_acc |
---|
| 1430 | |
---|
| 1431 | !------------------------------------------------------------------------------! |
---|
| 1432 | ! Version for accelerator boards |
---|
| 1433 | !------------------------------------------------------------------------------! |
---|
| 1434 | |
---|
| 1435 | IMPLICIT NONE |
---|
| 1436 | |
---|
| 1437 | INTEGER :: i, j, k, runge_step |
---|
| 1438 | REAL :: sbt |
---|
| 1439 | |
---|
| 1440 | ! |
---|
| 1441 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1442 | runge_step = 0 |
---|
| 1443 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1444 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1445 | runge_step = 1 |
---|
| 1446 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1447 | intermediate_timestep_count_max ) THEN |
---|
| 1448 | runge_step = 2 |
---|
| 1449 | ENDIF |
---|
| 1450 | ENDIF |
---|
| 1451 | |
---|
| 1452 | ! |
---|
| 1453 | !-- u-velocity component |
---|
| 1454 | !++ Statistics still not ported to accelerators |
---|
[1179] | 1455 | !$acc update device( hom, ref_state ) |
---|
[1015] | 1456 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1457 | |
---|
| 1458 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1459 | IF ( ws_scheme_mom ) THEN |
---|
| 1460 | CALL advec_u_ws_acc |
---|
| 1461 | ELSE |
---|
| 1462 | tend = 0.0 ! to be removed later?? |
---|
| 1463 | CALL advec_u_pw |
---|
| 1464 | ENDIF |
---|
| 1465 | ELSE |
---|
| 1466 | CALL advec_u_up |
---|
| 1467 | ENDIF |
---|
| 1468 | CALL diffusion_u_acc |
---|
| 1469 | CALL coriolis_acc( 1 ) |
---|
| 1470 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
[1179] | 1471 | CALL buoyancy( pt, 1 ) |
---|
[1015] | 1472 | ENDIF |
---|
| 1473 | |
---|
| 1474 | ! |
---|
| 1475 | !-- Drag by plant canopy |
---|
| 1476 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1477 | |
---|
| 1478 | ! |
---|
| 1479 | !-- External pressure gradient |
---|
| 1480 | IF ( dp_external ) THEN |
---|
[1128] | 1481 | DO i = i_left, i_right |
---|
| 1482 | DO j = j_south, j_north |
---|
[1015] | 1483 | DO k = dp_level_ind_b+1, nzt |
---|
| 1484 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1485 | ENDDO |
---|
| 1486 | ENDDO |
---|
| 1487 | ENDDO |
---|
| 1488 | ENDIF |
---|
| 1489 | |
---|
| 1490 | CALL user_actions( 'u-tendency' ) |
---|
| 1491 | |
---|
| 1492 | ! |
---|
| 1493 | !-- Prognostic equation for u-velocity component |
---|
| 1494 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, ug, u_p ) |
---|
| 1495 | !$acc loop |
---|
[1128] | 1496 | DO i = i_left, i_right |
---|
| 1497 | DO j = j_south, j_north |
---|
[1015] | 1498 | !$acc loop vector( 32 ) |
---|
| 1499 | DO k = 1, nzt |
---|
| 1500 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1501 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1502 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 1503 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1504 | ! |
---|
| 1505 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1506 | IF ( runge_step == 1 ) THEN |
---|
| 1507 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1508 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1509 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 1510 | ENDIF |
---|
| 1511 | ENDIF |
---|
| 1512 | ENDDO |
---|
| 1513 | ENDDO |
---|
| 1514 | ENDDO |
---|
| 1515 | !$acc end kernels |
---|
| 1516 | |
---|
| 1517 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1518 | |
---|
| 1519 | ! |
---|
| 1520 | !-- v-velocity component |
---|
| 1521 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1522 | |
---|
| 1523 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1524 | IF ( ws_scheme_mom ) THEN |
---|
| 1525 | CALL advec_v_ws_acc |
---|
| 1526 | ELSE |
---|
| 1527 | tend = 0.0 ! to be removed later?? |
---|
| 1528 | CALL advec_v_pw |
---|
| 1529 | END IF |
---|
| 1530 | ELSE |
---|
| 1531 | CALL advec_v_up |
---|
| 1532 | ENDIF |
---|
| 1533 | CALL diffusion_v_acc |
---|
| 1534 | CALL coriolis_acc( 2 ) |
---|
| 1535 | |
---|
| 1536 | ! |
---|
| 1537 | !-- Drag by plant canopy |
---|
| 1538 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1539 | |
---|
| 1540 | ! |
---|
| 1541 | !-- External pressure gradient |
---|
| 1542 | IF ( dp_external ) THEN |
---|
[1128] | 1543 | DO i = i_left, i_right |
---|
| 1544 | DO j = j_south, j_north |
---|
[1015] | 1545 | DO k = dp_level_ind_b+1, nzt |
---|
| 1546 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1547 | ENDDO |
---|
| 1548 | ENDDO |
---|
| 1549 | ENDDO |
---|
| 1550 | ENDIF |
---|
| 1551 | |
---|
| 1552 | CALL user_actions( 'v-tendency' ) |
---|
| 1553 | |
---|
| 1554 | ! |
---|
| 1555 | !-- Prognostic equation for v-velocity component |
---|
| 1556 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, vg, v_p ) |
---|
| 1557 | !$acc loop |
---|
[1128] | 1558 | DO i = i_left, i_right |
---|
| 1559 | DO j = j_south, j_north |
---|
[1015] | 1560 | !$acc loop vector( 32 ) |
---|
| 1561 | DO k = 1, nzt |
---|
| 1562 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1563 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1564 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 1565 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1566 | ! |
---|
| 1567 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1568 | IF ( runge_step == 1 ) THEN |
---|
| 1569 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1570 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1571 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1572 | ENDIF |
---|
| 1573 | ENDIF |
---|
| 1574 | ENDDO |
---|
| 1575 | ENDDO |
---|
| 1576 | ENDDO |
---|
| 1577 | !$acc end kernels |
---|
| 1578 | |
---|
| 1579 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1580 | |
---|
| 1581 | ! |
---|
| 1582 | !-- w-velocity component |
---|
| 1583 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1584 | |
---|
| 1585 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1586 | IF ( ws_scheme_mom ) THEN |
---|
| 1587 | CALL advec_w_ws_acc |
---|
| 1588 | ELSE |
---|
| 1589 | tend = 0.0 ! to be removed later?? |
---|
| 1590 | CALL advec_w_pw |
---|
| 1591 | ENDIF |
---|
| 1592 | ELSE |
---|
| 1593 | CALL advec_w_up |
---|
| 1594 | ENDIF |
---|
| 1595 | CALL diffusion_w_acc |
---|
| 1596 | CALL coriolis_acc( 3 ) |
---|
| 1597 | |
---|
| 1598 | IF ( .NOT. neutral ) THEN |
---|
| 1599 | IF ( ocean ) THEN |
---|
[1179] | 1600 | CALL buoyancy( rho, 3 ) |
---|
[1015] | 1601 | ELSE |
---|
| 1602 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1603 | CALL buoyancy_acc( pt, 3 ) |
---|
[1015] | 1604 | ELSE |
---|
[1179] | 1605 | CALL buoyancy( vpt, 3 ) |
---|
[1015] | 1606 | ENDIF |
---|
| 1607 | ENDIF |
---|
| 1608 | ENDIF |
---|
| 1609 | |
---|
| 1610 | ! |
---|
| 1611 | !-- Drag by plant canopy |
---|
| 1612 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1613 | |
---|
| 1614 | CALL user_actions( 'w-tendency' ) |
---|
| 1615 | |
---|
| 1616 | ! |
---|
| 1617 | !-- Prognostic equation for w-velocity component |
---|
| 1618 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
| 1619 | !$acc loop |
---|
[1128] | 1620 | DO i = i_left, i_right |
---|
| 1621 | DO j = j_south, j_north |
---|
[1015] | 1622 | !$acc loop vector( 32 ) |
---|
| 1623 | DO k = 1, nzt-1 |
---|
| 1624 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 1625 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1626 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1627 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1628 | ! |
---|
| 1629 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1630 | IF ( runge_step == 1 ) THEN |
---|
| 1631 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1632 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1633 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1634 | ENDIF |
---|
| 1635 | ENDIF |
---|
| 1636 | ENDDO |
---|
| 1637 | ENDDO |
---|
| 1638 | ENDDO |
---|
| 1639 | !$acc end kernels |
---|
| 1640 | |
---|
| 1641 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1642 | |
---|
| 1643 | |
---|
| 1644 | ! |
---|
| 1645 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1646 | IF ( .NOT. neutral ) THEN |
---|
| 1647 | |
---|
| 1648 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1649 | |
---|
| 1650 | ! |
---|
| 1651 | !-- pt-tendency terms with communication |
---|
| 1652 | sbt = tsc(2) |
---|
| 1653 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1654 | |
---|
| 1655 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1656 | ! |
---|
| 1657 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1658 | sbt = 1.0 |
---|
| 1659 | ENDIF |
---|
| 1660 | tend = 0.0 |
---|
| 1661 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1662 | |
---|
| 1663 | ENDIF |
---|
| 1664 | |
---|
| 1665 | ! |
---|
| 1666 | !-- pt-tendency terms with no communication |
---|
| 1667 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1668 | tend = 0.0 |
---|
| 1669 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1670 | IF ( ws_scheme_sca ) THEN |
---|
| 1671 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 1672 | ELSE |
---|
| 1673 | tend = 0.0 ! to be removed later?? |
---|
| 1674 | CALL advec_s_pw( pt ) |
---|
| 1675 | ENDIF |
---|
| 1676 | ELSE |
---|
| 1677 | CALL advec_s_up( pt ) |
---|
| 1678 | ENDIF |
---|
| 1679 | ENDIF |
---|
| 1680 | |
---|
| 1681 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 1682 | |
---|
| 1683 | ! |
---|
| 1684 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1685 | IF ( radiation ) THEN |
---|
| 1686 | CALL calc_radiation |
---|
| 1687 | ENDIF |
---|
| 1688 | |
---|
| 1689 | ! |
---|
| 1690 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1691 | IF ( precipitation ) THEN |
---|
| 1692 | CALL impact_of_latent_heat |
---|
| 1693 | ENDIF |
---|
| 1694 | |
---|
| 1695 | ! |
---|
| 1696 | !-- Consideration of heat sources within the plant canopy |
---|
| 1697 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1698 | CALL plant_canopy_model( 4 ) |
---|
| 1699 | ENDIF |
---|
| 1700 | |
---|
| 1701 | ! |
---|
| 1702 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1703 | IF ( large_scale_subsidence ) THEN |
---|
| 1704 | CALL subsidence( tend, pt, pt_init ) |
---|
| 1705 | ENDIF |
---|
| 1706 | |
---|
| 1707 | CALL user_actions( 'pt-tendency' ) |
---|
| 1708 | |
---|
| 1709 | ! |
---|
| 1710 | !-- Prognostic equation for potential temperature |
---|
| 1711 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 1712 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
| 1713 | !$acc loop |
---|
[1128] | 1714 | DO i = i_left, i_right |
---|
| 1715 | DO j = j_south, j_north |
---|
[1015] | 1716 | !$acc loop vector( 32 ) |
---|
| 1717 | DO k = 1, nzt |
---|
| 1718 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 1719 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1720 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1721 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1722 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 1723 | ! |
---|
| 1724 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1725 | IF ( runge_step == 1 ) THEN |
---|
| 1726 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1727 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1728 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 1729 | ENDIF |
---|
| 1730 | ENDIF |
---|
| 1731 | ENDDO |
---|
| 1732 | ENDDO |
---|
| 1733 | ENDDO |
---|
| 1734 | !$acc end kernels |
---|
| 1735 | |
---|
| 1736 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1737 | |
---|
| 1738 | ENDIF |
---|
| 1739 | |
---|
| 1740 | ! |
---|
| 1741 | !-- If required, compute prognostic equation for salinity |
---|
| 1742 | IF ( ocean ) THEN |
---|
| 1743 | |
---|
| 1744 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1745 | |
---|
| 1746 | ! |
---|
| 1747 | !-- sa-tendency terms with communication |
---|
| 1748 | sbt = tsc(2) |
---|
| 1749 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1750 | |
---|
| 1751 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1752 | ! |
---|
| 1753 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1754 | sbt = 1.0 |
---|
| 1755 | ENDIF |
---|
| 1756 | tend = 0.0 |
---|
| 1757 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 1758 | |
---|
| 1759 | ENDIF |
---|
| 1760 | |
---|
| 1761 | ! |
---|
| 1762 | !-- sa-tendency terms with no communication |
---|
| 1763 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1764 | tend = 0.0 |
---|
| 1765 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1766 | IF ( ws_scheme_sca ) THEN |
---|
| 1767 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1768 | ELSE |
---|
| 1769 | CALL advec_s_pw( sa ) |
---|
| 1770 | ENDIF |
---|
| 1771 | ELSE |
---|
| 1772 | CALL advec_s_up( sa ) |
---|
| 1773 | ENDIF |
---|
| 1774 | ENDIF |
---|
| 1775 | |
---|
| 1776 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 1777 | |
---|
| 1778 | CALL user_actions( 'sa-tendency' ) |
---|
| 1779 | |
---|
| 1780 | ! |
---|
| 1781 | !-- Prognostic equation for salinity |
---|
[1128] | 1782 | DO i = i_left, i_right |
---|
| 1783 | DO j = j_south, j_north |
---|
[1015] | 1784 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1785 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1786 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1787 | - tsc(5) * rdf_sc(k) * & |
---|
| 1788 | ( sa(k,j,i) - sa_init(k) ) |
---|
| 1789 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1790 | ! |
---|
| 1791 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1792 | IF ( runge_step == 1 ) THEN |
---|
| 1793 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1794 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1795 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tsa_m(k,j,i) |
---|
| 1796 | ENDIF |
---|
| 1797 | ENDDO |
---|
| 1798 | ENDDO |
---|
| 1799 | ENDDO |
---|
| 1800 | |
---|
| 1801 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1802 | |
---|
| 1803 | ! |
---|
| 1804 | !-- Calculate density by the equation of state for seawater |
---|
| 1805 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1806 | CALL eqn_state_seawater |
---|
| 1807 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1808 | |
---|
| 1809 | ENDIF |
---|
| 1810 | |
---|
| 1811 | ! |
---|
| 1812 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1813 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1814 | |
---|
| 1815 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1816 | |
---|
| 1817 | ! |
---|
| 1818 | !-- Scalar/q-tendency terms with communication |
---|
| 1819 | sbt = tsc(2) |
---|
| 1820 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1821 | |
---|
| 1822 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1823 | ! |
---|
| 1824 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1825 | sbt = 1.0 |
---|
| 1826 | ENDIF |
---|
| 1827 | tend = 0.0 |
---|
| 1828 | CALL advec_s_bc( q, 'q' ) |
---|
| 1829 | |
---|
| 1830 | ENDIF |
---|
| 1831 | |
---|
| 1832 | ! |
---|
| 1833 | !-- Scalar/q-tendency terms with no communication |
---|
| 1834 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1835 | tend = 0.0 |
---|
| 1836 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1837 | IF ( ws_scheme_sca ) THEN |
---|
| 1838 | CALL advec_s_ws( q, 'q' ) |
---|
| 1839 | ELSE |
---|
| 1840 | CALL advec_s_pw( q ) |
---|
| 1841 | ENDIF |
---|
| 1842 | ELSE |
---|
| 1843 | CALL advec_s_up( q ) |
---|
| 1844 | ENDIF |
---|
| 1845 | ENDIF |
---|
| 1846 | |
---|
| 1847 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 1848 | |
---|
| 1849 | ! |
---|
| 1850 | !-- If required compute decrease of total water content due to |
---|
| 1851 | !-- precipitation |
---|
| 1852 | IF ( precipitation ) THEN |
---|
| 1853 | CALL calc_precipitation |
---|
| 1854 | ENDIF |
---|
| 1855 | |
---|
| 1856 | ! |
---|
| 1857 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1858 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1859 | |
---|
| 1860 | ! |
---|
| 1861 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1862 | IF ( large_scale_subsidence ) THEN |
---|
| 1863 | CALL subsidence( tend, q, q_init ) |
---|
| 1864 | ENDIF |
---|
| 1865 | |
---|
| 1866 | CALL user_actions( 'q-tendency' ) |
---|
| 1867 | |
---|
| 1868 | ! |
---|
| 1869 | !-- Prognostic equation for total water content / scalar |
---|
[1128] | 1870 | DO i = i_left, i_right |
---|
| 1871 | DO j = j_south, j_north |
---|
[1015] | 1872 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1873 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1874 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1875 | - tsc(5) * rdf_sc(k) * & |
---|
| 1876 | ( q(k,j,i) - q_init(k) ) |
---|
| 1877 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 1878 | ! |
---|
| 1879 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1880 | IF ( runge_step == 1 ) THEN |
---|
| 1881 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1882 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1883 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1884 | ENDIF |
---|
| 1885 | ENDDO |
---|
| 1886 | ENDDO |
---|
| 1887 | ENDDO |
---|
| 1888 | |
---|
| 1889 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1890 | |
---|
| 1891 | ENDIF |
---|
| 1892 | |
---|
| 1893 | ! |
---|
| 1894 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1895 | !-- energy (TKE) |
---|
| 1896 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1897 | |
---|
| 1898 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1899 | |
---|
| 1900 | sbt = tsc(2) |
---|
| 1901 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1902 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1903 | |
---|
| 1904 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1905 | ! |
---|
| 1906 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1907 | sbt = 1.0 |
---|
| 1908 | ENDIF |
---|
| 1909 | tend = 0.0 |
---|
| 1910 | CALL advec_s_bc( e, 'e' ) |
---|
| 1911 | |
---|
| 1912 | ENDIF |
---|
| 1913 | ENDIF |
---|
| 1914 | |
---|
| 1915 | ! |
---|
| 1916 | !-- TKE-tendency terms with no communication |
---|
| 1917 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 1918 | IF ( use_upstream_for_tke ) THEN |
---|
| 1919 | tend = 0.0 |
---|
| 1920 | CALL advec_s_up( e ) |
---|
| 1921 | ELSE |
---|
| 1922 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1923 | IF ( ws_scheme_sca ) THEN |
---|
| 1924 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 1925 | ELSE |
---|
| 1926 | tend = 0.0 ! to be removed later?? |
---|
| 1927 | CALL advec_s_pw( e ) |
---|
| 1928 | ENDIF |
---|
| 1929 | ELSE |
---|
| 1930 | tend = 0.0 ! to be removed later?? |
---|
| 1931 | CALL advec_s_up( e ) |
---|
| 1932 | ENDIF |
---|
| 1933 | ENDIF |
---|
| 1934 | ENDIF |
---|
| 1935 | |
---|
| 1936 | IF ( .NOT. humidity ) THEN |
---|
| 1937 | IF ( ocean ) THEN |
---|
| 1938 | CALL diffusion_e( prho, prho_reference ) |
---|
| 1939 | ELSE |
---|
| 1940 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 1941 | ENDIF |
---|
| 1942 | ELSE |
---|
| 1943 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 1944 | ENDIF |
---|
| 1945 | |
---|
| 1946 | CALL production_e_acc |
---|
| 1947 | |
---|
| 1948 | ! |
---|
| 1949 | !-- Additional sink term for flows through plant canopies |
---|
| 1950 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1951 | CALL user_actions( 'e-tendency' ) |
---|
| 1952 | |
---|
| 1953 | ! |
---|
| 1954 | !-- Prognostic equation for TKE. |
---|
| 1955 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1956 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1957 | !-- value is reduced by 90%. |
---|
| 1958 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
| 1959 | !$acc loop |
---|
[1128] | 1960 | DO i = i_left, i_right |
---|
| 1961 | DO j = j_south, j_north |
---|
[1015] | 1962 | !$acc loop vector( 32 ) |
---|
| 1963 | DO k = 1, nzt |
---|
| 1964 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 1965 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1966 | tsc(3) * te_m(k,j,i) ) |
---|
| 1967 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1968 | ! |
---|
| 1969 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1970 | IF ( runge_step == 1 ) THEN |
---|
| 1971 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1972 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1973 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 1974 | ENDIF |
---|
| 1975 | ENDIF |
---|
| 1976 | ENDDO |
---|
| 1977 | ENDDO |
---|
| 1978 | ENDDO |
---|
| 1979 | !$acc end kernels |
---|
| 1980 | |
---|
| 1981 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1982 | |
---|
| 1983 | ENDIF |
---|
| 1984 | |
---|
| 1985 | |
---|
| 1986 | END SUBROUTINE prognostic_equations_acc |
---|
| 1987 | |
---|
| 1988 | |
---|
[736] | 1989 | END MODULE prognostic_equations_mod |
---|