[736] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[736] | 20 | ! Current revisions: |
---|
| 21 | ! ----------------- |
---|
[1054] | 22 | ! |
---|
| 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: prognostic_equations.f90 1054 2012-11-13 17:30:09Z maronga $ |
---|
| 26 | ! |
---|
| 27 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
[1053] | 28 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
| 29 | ! and rain water content (qr) |
---|
[979] | 30 | ! |
---|
[1053] | 31 | ! currently, only available for cache loop optimization |
---|
[1020] | 32 | ! |
---|
[1037] | 33 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 34 | ! code put under GPL (PALM 3.9) |
---|
| 35 | ! |
---|
[1020] | 36 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 37 | ! non-optimized version of prognostic_equations removed |
---|
| 38 | ! |
---|
[1017] | 39 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 40 | ! new branch prognostic_equations_acc |
---|
| 41 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 42 | ! |
---|
[1002] | 43 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 44 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 45 | ! |
---|
[979] | 46 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 47 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 48 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 49 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 50 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 51 | ! |
---|
[941] | 52 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 53 | ! temperature equation can be switched off |
---|
| 54 | ! |
---|
[786] | 55 | ! 785 2011-11-28 09:47:19Z raasch |
---|
| 56 | ! new factor rdf_sc allows separate Rayleigh damping of scalars |
---|
| 57 | ! |
---|
[737] | 58 | ! 736 2011-08-17 14:13:26Z suehring |
---|
| 59 | ! Bugfix: determination of first thread index i for WS-scheme |
---|
| 60 | ! |
---|
[736] | 61 | ! 709 2011-03-30 09:31:40Z raasch |
---|
| 62 | ! formatting adjustments |
---|
| 63 | ! |
---|
| 64 | ! 673 2011-01-18 16:19:48Z suehring |
---|
| 65 | ! Consideration of the pressure gradient (steered by tsc(4)) during the time |
---|
| 66 | ! integration removed. |
---|
| 67 | ! |
---|
| 68 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 69 | ! Calls of the advection routines with WS5 added. |
---|
| 70 | ! Calls of ws_statistics added to set the statistical arrays to zero after each |
---|
| 71 | ! time step. |
---|
| 72 | ! |
---|
| 73 | ! 531 2010-04-21 06:47:21Z heinze |
---|
| 74 | ! add call of subsidence in the equation for humidity / passive scalar |
---|
| 75 | ! |
---|
| 76 | ! 411 2009-12-11 14:15:58Z heinze |
---|
| 77 | ! add call of subsidence in the equation for potential temperature |
---|
| 78 | ! |
---|
| 79 | ! 388 2009-09-23 09:40:33Z raasch |
---|
| 80 | ! prho is used instead of rho in diffusion_e, |
---|
| 81 | ! external pressure gradient |
---|
| 82 | ! |
---|
| 83 | ! 153 2008-03-19 09:41:30Z steinfeld |
---|
| 84 | ! add call of plant_canopy_model in the prognostic equation for |
---|
| 85 | ! the potential temperature and for the passive scalar |
---|
| 86 | ! |
---|
| 87 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 88 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
| 89 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
| 90 | ! |
---|
| 91 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 92 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
| 93 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
| 94 | ! for non-cyclic boundary conditions) |
---|
| 95 | ! |
---|
| 96 | ! 97 2007-06-21 08:23:15Z raasch |
---|
| 97 | ! prognostic equation for salinity, density is calculated from equation of |
---|
| 98 | ! state for seawater and is used for calculation of buoyancy, |
---|
| 99 | ! +eqn_state_seawater_mod |
---|
| 100 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
| 101 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
| 102 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
| 103 | ! calc_mean_profile |
---|
| 104 | ! |
---|
| 105 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 106 | ! checking for negative q and limiting for positive values, |
---|
| 107 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
| 108 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
| 109 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
| 110 | ! _vector-version |
---|
| 111 | ! |
---|
| 112 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 113 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
| 114 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
| 115 | ! |
---|
| 116 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 117 | ! |
---|
| 118 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
| 119 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
| 120 | ! regardless of the timestep scheme used for the other quantities, |
---|
| 121 | ! new argument diss in call of diffusion_e |
---|
| 122 | ! |
---|
| 123 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 124 | ! Initial revision |
---|
| 125 | ! |
---|
| 126 | ! |
---|
| 127 | ! Description: |
---|
| 128 | ! ------------ |
---|
| 129 | ! Solving the prognostic equations. |
---|
| 130 | !------------------------------------------------------------------------------! |
---|
| 131 | |
---|
| 132 | USE arrays_3d |
---|
| 133 | USE control_parameters |
---|
| 134 | USE cpulog |
---|
| 135 | USE eqn_state_seawater_mod |
---|
| 136 | USE grid_variables |
---|
| 137 | USE indices |
---|
| 138 | USE interfaces |
---|
| 139 | USE pegrid |
---|
| 140 | USE pointer_interfaces |
---|
| 141 | USE statistics |
---|
| 142 | USE advec_ws |
---|
| 143 | USE advec_s_pw_mod |
---|
| 144 | USE advec_s_up_mod |
---|
| 145 | USE advec_u_pw_mod |
---|
| 146 | USE advec_u_up_mod |
---|
| 147 | USE advec_v_pw_mod |
---|
| 148 | USE advec_v_up_mod |
---|
| 149 | USE advec_w_pw_mod |
---|
| 150 | USE advec_w_up_mod |
---|
| 151 | USE buoyancy_mod |
---|
| 152 | USE calc_precipitation_mod |
---|
| 153 | USE calc_radiation_mod |
---|
| 154 | USE coriolis_mod |
---|
| 155 | USE diffusion_e_mod |
---|
| 156 | USE diffusion_s_mod |
---|
| 157 | USE diffusion_u_mod |
---|
| 158 | USE diffusion_v_mod |
---|
| 159 | USE diffusion_w_mod |
---|
| 160 | USE impact_of_latent_heat_mod |
---|
[1053] | 161 | USE microphysics_mod |
---|
[736] | 162 | USE plant_canopy_model_mod |
---|
| 163 | USE production_e_mod |
---|
| 164 | USE subsidence_mod |
---|
| 165 | USE user_actions_mod |
---|
| 166 | |
---|
| 167 | |
---|
| 168 | PRIVATE |
---|
[1019] | 169 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 170 | prognostic_equations_acc |
---|
[736] | 171 | |
---|
| 172 | INTERFACE prognostic_equations_cache |
---|
| 173 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 174 | END INTERFACE prognostic_equations_cache |
---|
| 175 | |
---|
| 176 | INTERFACE prognostic_equations_vector |
---|
| 177 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 178 | END INTERFACE prognostic_equations_vector |
---|
| 179 | |
---|
[1015] | 180 | INTERFACE prognostic_equations_acc |
---|
| 181 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 182 | END INTERFACE prognostic_equations_acc |
---|
[736] | 183 | |
---|
[1015] | 184 | |
---|
[736] | 185 | CONTAINS |
---|
| 186 | |
---|
| 187 | |
---|
| 188 | SUBROUTINE prognostic_equations_cache |
---|
| 189 | |
---|
| 190 | !------------------------------------------------------------------------------! |
---|
| 191 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 192 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 193 | ! |
---|
| 194 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 195 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 196 | ! these loops. |
---|
| 197 | ! |
---|
| 198 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 199 | !------------------------------------------------------------------------------! |
---|
| 200 | |
---|
| 201 | IMPLICIT NONE |
---|
| 202 | |
---|
| 203 | CHARACTER (LEN=9) :: time_to_string |
---|
| 204 | INTEGER :: i, i_omp_start, j, k, omp_get_thread_num, tn = 0 |
---|
| 205 | LOGICAL :: loop_start |
---|
| 206 | |
---|
| 207 | |
---|
| 208 | ! |
---|
| 209 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 210 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 211 | |
---|
| 212 | |
---|
| 213 | ! |
---|
| 214 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 215 | !-- global communication |
---|
[940] | 216 | IF ( .NOT. neutral ) CALL calc_mean_profile( pt, 4 ) |
---|
| 217 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 218 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[736] | 219 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
| 220 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
| 221 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
| 222 | |
---|
| 223 | ! |
---|
| 224 | !-- Loop over all prognostic equations |
---|
| 225 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 226 | |
---|
| 227 | !$ tn = omp_get_thread_num() |
---|
| 228 | loop_start = .TRUE. |
---|
| 229 | !$OMP DO |
---|
| 230 | DO i = nxl, nxr |
---|
| 231 | |
---|
| 232 | ! |
---|
| 233 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 234 | !-- later in advec_ws |
---|
| 235 | IF ( loop_start ) THEN |
---|
| 236 | loop_start = .FALSE. |
---|
| 237 | i_omp_start = i |
---|
| 238 | ENDIF |
---|
| 239 | |
---|
| 240 | DO j = nys, nyn |
---|
| 241 | ! |
---|
| 242 | !-- Tendency terms for u-velocity component |
---|
| 243 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 244 | |
---|
| 245 | tend(:,j,i) = 0.0 |
---|
[1001] | 246 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 247 | IF ( ws_scheme_mom ) THEN |
---|
[978] | 248 | IF ( ( inflow_l .OR. outflow_l ) .AND. i_omp_start == nxl ) THEN |
---|
[736] | 249 | CALL advec_u_ws( i, j, i_omp_start + 1, tn ) |
---|
| 250 | ELSE |
---|
| 251 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
| 252 | ENDIF |
---|
| 253 | ELSE |
---|
| 254 | CALL advec_u_pw( i, j ) |
---|
| 255 | ENDIF |
---|
| 256 | ELSE |
---|
| 257 | CALL advec_u_up( i, j ) |
---|
| 258 | ENDIF |
---|
[1001] | 259 | CALL diffusion_u( i, j ) |
---|
[736] | 260 | CALL coriolis( i, j, 1 ) |
---|
[940] | 261 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
| 262 | CALL buoyancy( i, j, pt, pt_reference, 1, 4 ) |
---|
| 263 | ENDIF |
---|
[736] | 264 | |
---|
| 265 | ! |
---|
| 266 | !-- Drag by plant canopy |
---|
| 267 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 268 | |
---|
| 269 | ! |
---|
| 270 | !-- External pressure gradient |
---|
| 271 | IF ( dp_external ) THEN |
---|
| 272 | DO k = dp_level_ind_b+1, nzt |
---|
| 273 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 274 | ENDDO |
---|
| 275 | ENDIF |
---|
| 276 | |
---|
| 277 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 278 | |
---|
| 279 | ! |
---|
| 280 | !-- Prognostic equation for u-velocity component |
---|
| 281 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 282 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 283 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 284 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 285 | ENDDO |
---|
| 286 | |
---|
| 287 | ! |
---|
| 288 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 289 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 290 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 291 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 292 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 293 | ENDDO |
---|
| 294 | ELSEIF ( intermediate_timestep_count < & |
---|
| 295 | intermediate_timestep_count_max ) THEN |
---|
| 296 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 297 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 298 | ENDDO |
---|
| 299 | ENDIF |
---|
| 300 | ENDIF |
---|
| 301 | |
---|
| 302 | ENDIF |
---|
| 303 | |
---|
| 304 | ! |
---|
| 305 | !-- Tendency terms for v-velocity component |
---|
| 306 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 307 | |
---|
| 308 | tend(:,j,i) = 0.0 |
---|
[1001] | 309 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 310 | IF ( ws_scheme_mom ) THEN |
---|
| 311 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 312 | ELSE |
---|
| 313 | CALL advec_v_pw( i, j ) |
---|
| 314 | ENDIF |
---|
| 315 | ELSE |
---|
| 316 | CALL advec_v_up( i, j ) |
---|
| 317 | ENDIF |
---|
[1001] | 318 | CALL diffusion_v( i, j ) |
---|
[736] | 319 | CALL coriolis( i, j, 2 ) |
---|
| 320 | |
---|
| 321 | ! |
---|
| 322 | !-- Drag by plant canopy |
---|
| 323 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 324 | |
---|
| 325 | ! |
---|
| 326 | !-- External pressure gradient |
---|
| 327 | IF ( dp_external ) THEN |
---|
| 328 | DO k = dp_level_ind_b+1, nzt |
---|
| 329 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 330 | ENDDO |
---|
| 331 | ENDIF |
---|
| 332 | |
---|
| 333 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 334 | |
---|
| 335 | ! |
---|
| 336 | !-- Prognostic equation for v-velocity component |
---|
| 337 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 338 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 339 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 340 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 341 | ENDDO |
---|
| 342 | |
---|
| 343 | ! |
---|
| 344 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 345 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 346 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 347 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 348 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 349 | ENDDO |
---|
| 350 | ELSEIF ( intermediate_timestep_count < & |
---|
| 351 | intermediate_timestep_count_max ) THEN |
---|
| 352 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 353 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 354 | ENDDO |
---|
| 355 | ENDIF |
---|
| 356 | ENDIF |
---|
| 357 | |
---|
| 358 | ENDIF |
---|
| 359 | |
---|
| 360 | ! |
---|
| 361 | !-- Tendency terms for w-velocity component |
---|
| 362 | tend(:,j,i) = 0.0 |
---|
[1001] | 363 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 364 | IF ( ws_scheme_mom ) THEN |
---|
| 365 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 366 | ELSE |
---|
| 367 | CALL advec_w_pw( i, j ) |
---|
| 368 | END IF |
---|
| 369 | ELSE |
---|
| 370 | CALL advec_w_up( i, j ) |
---|
| 371 | ENDIF |
---|
[1001] | 372 | CALL diffusion_w( i, j ) |
---|
[736] | 373 | CALL coriolis( i, j, 3 ) |
---|
[940] | 374 | |
---|
| 375 | IF ( .NOT. neutral ) THEN |
---|
| 376 | IF ( ocean ) THEN |
---|
| 377 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
[736] | 378 | ELSE |
---|
[940] | 379 | IF ( .NOT. humidity ) THEN |
---|
| 380 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
| 381 | ELSE |
---|
| 382 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
| 383 | ENDIF |
---|
[736] | 384 | ENDIF |
---|
| 385 | ENDIF |
---|
| 386 | |
---|
| 387 | ! |
---|
| 388 | !-- Drag by plant canopy |
---|
| 389 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 390 | |
---|
| 391 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 392 | |
---|
| 393 | ! |
---|
| 394 | !-- Prognostic equation for w-velocity component |
---|
| 395 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 396 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 397 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 398 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 399 | ENDDO |
---|
| 400 | |
---|
| 401 | ! |
---|
| 402 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 403 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 404 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 405 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 406 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 407 | ENDDO |
---|
| 408 | ELSEIF ( intermediate_timestep_count < & |
---|
| 409 | intermediate_timestep_count_max ) THEN |
---|
| 410 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 411 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 412 | ENDDO |
---|
| 413 | ENDIF |
---|
| 414 | ENDIF |
---|
| 415 | |
---|
| 416 | ! |
---|
[1053] | 417 | !-- If required, calculate tendencies for total water content, rain water |
---|
| 418 | !-- content, rain drop concentration and liquid temperature |
---|
| 419 | |
---|
| 420 | IF ( cloud_physics .AND. icloud_scheme == 0 ) THEN |
---|
| 421 | |
---|
| 422 | tend_q(:,j,i) = 0.0 |
---|
| 423 | tend_qr(:,j,i) = 0.0 |
---|
| 424 | tend_nr(:,j,i) = 0.0 |
---|
| 425 | tend_pt(:,j,i) = 0.0 |
---|
| 426 | ! |
---|
| 427 | !-- Droplet size distribution (dsd) properties are needed for the |
---|
| 428 | !-- computation of selfcollection, breakup, evaporation and |
---|
| 429 | !-- sedimentation of rain. |
---|
| 430 | IF ( precipitation ) THEN |
---|
| 431 | CALL dsd_properties( i,j ) |
---|
| 432 | CALL autoconversion( i,j ) |
---|
| 433 | CALL accretion( i,j ) |
---|
| 434 | CALL selfcollection_breakup( i,j ) |
---|
| 435 | CALL evaporation_rain( i,j ) |
---|
| 436 | CALL sedimentation_rain( i,j ) |
---|
| 437 | ENDIF |
---|
| 438 | |
---|
| 439 | IF ( drizzle ) CALL sedimentation_cloud( i,j ) |
---|
| 440 | |
---|
| 441 | ENDIF |
---|
| 442 | |
---|
| 443 | ! |
---|
[940] | 444 | !-- If required, compute prognostic equation for potential temperature |
---|
| 445 | IF ( .NOT. neutral ) THEN |
---|
| 446 | ! |
---|
| 447 | !-- Tendency terms for potential temperature |
---|
| 448 | tend(:,j,i) = 0.0 |
---|
[1001] | 449 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 450 | IF ( ws_scheme_sca ) THEN |
---|
| 451 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 452 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 453 | ELSE |
---|
| 454 | CALL advec_s_pw( i, j, pt ) |
---|
| 455 | ENDIF |
---|
| 456 | ELSE |
---|
| 457 | CALL advec_s_up( i, j, pt ) |
---|
| 458 | ENDIF |
---|
[1001] | 459 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 460 | |
---|
| 461 | ! |
---|
[940] | 462 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 463 | !-- processes |
---|
| 464 | IF ( radiation ) THEN |
---|
| 465 | CALL calc_radiation( i, j ) |
---|
| 466 | ENDIF |
---|
[736] | 467 | |
---|
[1053] | 468 | !-- Using microphysical tendencies (latent heat) |
---|
| 469 | IF ( cloud_physics ) THEN |
---|
| 470 | IF ( icloud_scheme == 0 ) THEN |
---|
| 471 | tend(:,j,i) = tend(:,j,i) + tend_pt(:,j,i) |
---|
| 472 | ELSEIF ( icloud_scheme == 1 .AND. precipitation) THEN |
---|
| 473 | CALL impact_of_latent_heat( i, j ) |
---|
| 474 | ENDIF |
---|
[940] | 475 | ENDIF |
---|
[736] | 476 | |
---|
| 477 | ! |
---|
[940] | 478 | !-- Consideration of heat sources within the plant canopy |
---|
| 479 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 480 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 481 | ENDIF |
---|
[736] | 482 | |
---|
[940] | 483 | ! |
---|
| 484 | !-- If required, compute influence of large-scale subsidence/ascent |
---|
| 485 | IF ( large_scale_subsidence ) THEN |
---|
| 486 | CALL subsidence( i, j, tend, pt, pt_init ) |
---|
| 487 | ENDIF |
---|
[736] | 488 | |
---|
| 489 | |
---|
[940] | 490 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 491 | |
---|
| 492 | ! |
---|
[940] | 493 | !-- Prognostic equation for potential temperature |
---|
| 494 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 495 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 496 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 497 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 498 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 499 | ENDDO |
---|
[736] | 500 | |
---|
| 501 | ! |
---|
[940] | 502 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 503 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 504 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 505 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 506 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 507 | ENDDO |
---|
| 508 | ELSEIF ( intermediate_timestep_count < & |
---|
| 509 | intermediate_timestep_count_max ) THEN |
---|
| 510 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 511 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 512 | 5.3125 * tpt_m(k,j,i) |
---|
| 513 | ENDDO |
---|
| 514 | ENDIF |
---|
[736] | 515 | ENDIF |
---|
[940] | 516 | |
---|
[736] | 517 | ENDIF |
---|
| 518 | |
---|
| 519 | ! |
---|
| 520 | !-- If required, compute prognostic equation for salinity |
---|
| 521 | IF ( ocean ) THEN |
---|
| 522 | |
---|
| 523 | ! |
---|
| 524 | !-- Tendency-terms for salinity |
---|
| 525 | tend(:,j,i) = 0.0 |
---|
[1001] | 526 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 527 | THEN |
---|
| 528 | IF ( ws_scheme_sca ) THEN |
---|
| 529 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 530 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 531 | ELSE |
---|
| 532 | CALL advec_s_pw( i, j, sa ) |
---|
| 533 | ENDIF |
---|
| 534 | ELSE |
---|
| 535 | CALL advec_s_up( i, j, sa ) |
---|
| 536 | ENDIF |
---|
[1001] | 537 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 538 | |
---|
| 539 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 540 | |
---|
| 541 | ! |
---|
| 542 | !-- Prognostic equation for salinity |
---|
| 543 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 544 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 545 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 546 | - tsc(5) * rdf_sc(k) * & |
---|
| 547 | ( sa(k,j,i) - sa_init(k) ) |
---|
[736] | 548 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 549 | ENDDO |
---|
| 550 | |
---|
| 551 | ! |
---|
| 552 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 553 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 554 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 555 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 556 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 557 | ENDDO |
---|
| 558 | ELSEIF ( intermediate_timestep_count < & |
---|
| 559 | intermediate_timestep_count_max ) THEN |
---|
| 560 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 561 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 562 | 5.3125 * tsa_m(k,j,i) |
---|
| 563 | ENDDO |
---|
| 564 | ENDIF |
---|
| 565 | ENDIF |
---|
| 566 | |
---|
| 567 | ! |
---|
| 568 | !-- Calculate density by the equation of state for seawater |
---|
| 569 | CALL eqn_state_seawater( i, j ) |
---|
| 570 | |
---|
| 571 | ENDIF |
---|
| 572 | |
---|
| 573 | ! |
---|
| 574 | !-- If required, compute prognostic equation for total water content / |
---|
| 575 | !-- scalar |
---|
| 576 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 577 | |
---|
| 578 | ! |
---|
| 579 | !-- Tendency-terms for total water content / scalar |
---|
| 580 | tend(:,j,i) = 0.0 |
---|
[1001] | 581 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 582 | THEN |
---|
| 583 | IF ( ws_scheme_sca ) THEN |
---|
| 584 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 585 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 586 | ELSE |
---|
| 587 | CALL advec_s_pw( i, j, q ) |
---|
| 588 | ENDIF |
---|
| 589 | ELSE |
---|
| 590 | CALL advec_s_up( i, j, q ) |
---|
| 591 | ENDIF |
---|
[1001] | 592 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[1053] | 593 | |
---|
[736] | 594 | ! |
---|
[1053] | 595 | !-- Using microphysical tendencies |
---|
| 596 | IF ( cloud_physics ) THEN |
---|
| 597 | IF ( icloud_scheme == 0 ) THEN |
---|
| 598 | tend(:,j,i) = tend(:,j,i) + tend_q(:,j,i) |
---|
| 599 | ELSEIF ( icloud_scheme == 1 .AND. precipitation ) THEN |
---|
| 600 | CALL calc_precipitation( i, j ) |
---|
| 601 | ENDIF |
---|
[736] | 602 | ENDIF |
---|
| 603 | ! |
---|
| 604 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 605 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
| 606 | |
---|
[1053] | 607 | ! |
---|
[736] | 608 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[940] | 609 | IF ( large_scale_subsidence ) THEN |
---|
| 610 | CALL subsidence( i, j, tend, q, q_init ) |
---|
[736] | 611 | ENDIF |
---|
| 612 | |
---|
| 613 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 614 | |
---|
| 615 | ! |
---|
| 616 | !-- Prognostic equation for total water content / scalar |
---|
| 617 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 618 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 619 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 620 | - tsc(5) * rdf_sc(k) * & |
---|
| 621 | ( q(k,j,i) - q_init(k) ) |
---|
[736] | 622 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 623 | ENDDO |
---|
| 624 | |
---|
| 625 | ! |
---|
| 626 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 627 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 628 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 629 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 630 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 631 | ENDDO |
---|
| 632 | ELSEIF ( intermediate_timestep_count < & |
---|
| 633 | intermediate_timestep_count_max ) THEN |
---|
| 634 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 635 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 636 | 5.3125 * tq_m(k,j,i) |
---|
| 637 | ENDDO |
---|
| 638 | ENDIF |
---|
| 639 | ENDIF |
---|
| 640 | |
---|
[1053] | 641 | ! |
---|
| 642 | !-- If required, calculate prognostic equations for rain water content |
---|
| 643 | !-- and rain drop concentration |
---|
| 644 | IF ( cloud_physics .AND. icloud_scheme == 0 ) THEN |
---|
| 645 | ! |
---|
| 646 | !-- Calculate prognostic equation for rain water content |
---|
| 647 | tend(:,j,i) = 0.0 |
---|
| 648 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
| 649 | THEN |
---|
| 650 | IF ( ws_scheme_sca ) THEN |
---|
| 651 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
| 652 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
| 653 | i_omp_start, tn ) |
---|
| 654 | ELSE |
---|
| 655 | CALL advec_s_pw( i, j, qr ) |
---|
| 656 | ENDIF |
---|
| 657 | ELSE |
---|
| 658 | CALL advec_s_up( i, j, qr ) |
---|
| 659 | ENDIF |
---|
| 660 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
| 661 | |
---|
| 662 | ! |
---|
| 663 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
| 664 | !-- evaporation; if required: sedimentation) |
---|
| 665 | tend(:,j,i) = tend(:,j,i) + tend_qr(:,j,i) |
---|
| 666 | |
---|
| 667 | ! |
---|
| 668 | !-- If required, compute influence of large-scale subsidence/ascent |
---|
| 669 | IF ( large_scale_subsidence ) THEN |
---|
| 670 | CALL subsidence( i, j, tend, qr, qr_init ) |
---|
| 671 | ENDIF |
---|
| 672 | |
---|
| 673 | ! CALL user_actions( i, j, 'qr-tendency' ) |
---|
| 674 | |
---|
| 675 | ! |
---|
| 676 | !-- Prognostic equation for rain water content |
---|
| 677 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 678 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 679 | tsc(3) * tqr_m(k,j,i) ) & |
---|
| 680 | - tsc(5) * rdf_sc(k) * & |
---|
| 681 | ( qr(k,j,i) - qr_init(k) ) |
---|
| 682 | IF ( qr_p(k,j,i) < 0.0 ) qr_p(k,j,i) = 0.1 * qr(k,j,i) |
---|
| 683 | ENDDO |
---|
| 684 | ! |
---|
| 685 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 686 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 687 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 688 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 689 | tqr_m(k,j,i) = tend(k,j,i) |
---|
| 690 | ENDDO |
---|
| 691 | ELSEIF ( intermediate_timestep_count < & |
---|
| 692 | intermediate_timestep_count_max ) THEN |
---|
| 693 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 694 | tqr_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 695 | 5.3125 * tqr_m(k,j,i) |
---|
| 696 | ENDDO |
---|
| 697 | ENDIF |
---|
| 698 | ENDIF |
---|
| 699 | |
---|
| 700 | ! |
---|
| 701 | !-- Calculate prognostic equation for rain drop concentration. |
---|
| 702 | tend(:,j,i) = 0.0 |
---|
| 703 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 704 | IF ( ws_scheme_sca ) THEN |
---|
| 705 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
| 706 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
| 707 | i_omp_start, tn ) |
---|
| 708 | ELSE |
---|
| 709 | CALL advec_s_pw( i, j, nr ) |
---|
| 710 | ENDIF |
---|
| 711 | ELSE |
---|
| 712 | CALL advec_s_up( i, j, nr ) |
---|
| 713 | ENDIF |
---|
| 714 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
| 715 | |
---|
| 716 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
| 717 | !-- selfcollection, breakup, evaporation; |
---|
| 718 | !-- if required: sedimentation) |
---|
| 719 | tend(:,j,i) = tend(:,j,i) + tend_nr(:,j,i) |
---|
| 720 | |
---|
| 721 | ! |
---|
| 722 | !-- If required, compute influence of large-scale subsidence/ascent |
---|
| 723 | IF ( large_scale_subsidence ) THEN |
---|
| 724 | CALL subsidence( i, j, tend, nr, nr_init ) |
---|
| 725 | ENDIF |
---|
| 726 | |
---|
| 727 | ! CALL user_actions( i, j, 'nr-tendency' ) |
---|
| 728 | |
---|
| 729 | ! |
---|
| 730 | !-- Prognostic equation for rain drop concentration |
---|
| 731 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 732 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 733 | tsc(3) * tnr_m(k,j,i) ) & |
---|
| 734 | - tsc(5) * rdf_sc(k) * & |
---|
| 735 | ( nr(k,j,i) - nr_init(k) ) |
---|
| 736 | IF ( nr_p(k,j,i) < 0.0 ) nr_p(k,j,i) = 0.1 * nr(k,j,i) |
---|
| 737 | ENDDO |
---|
| 738 | ! |
---|
| 739 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 740 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 741 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 742 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 743 | tnr_m(k,j,i) = tend(k,j,i) |
---|
| 744 | ENDDO |
---|
| 745 | ELSEIF ( intermediate_timestep_count < & |
---|
| 746 | intermediate_timestep_count_max ) THEN |
---|
| 747 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 748 | tnr_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 749 | 5.3125 * tnr_m(k,j,i) |
---|
| 750 | ENDDO |
---|
| 751 | ENDIF |
---|
| 752 | ENDIF |
---|
| 753 | |
---|
| 754 | ENDIF |
---|
| 755 | |
---|
[736] | 756 | ENDIF |
---|
| 757 | |
---|
| 758 | ! |
---|
| 759 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 760 | !-- energy (TKE) |
---|
| 761 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 762 | |
---|
| 763 | ! |
---|
| 764 | !-- Tendency-terms for TKE |
---|
| 765 | tend(:,j,i) = 0.0 |
---|
[1001] | 766 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
[736] | 767 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
| 768 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 769 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 770 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 771 | ELSE |
---|
| 772 | CALL advec_s_pw( i, j, e ) |
---|
| 773 | ENDIF |
---|
| 774 | ELSE |
---|
| 775 | CALL advec_s_up( i, j, e ) |
---|
| 776 | ENDIF |
---|
[1001] | 777 | IF ( .NOT. humidity ) THEN |
---|
| 778 | IF ( ocean ) THEN |
---|
| 779 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 780 | ELSE |
---|
[1001] | 781 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 782 | ENDIF |
---|
| 783 | ELSE |
---|
[1001] | 784 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 785 | ENDIF |
---|
| 786 | CALL production_e( i, j ) |
---|
| 787 | |
---|
| 788 | ! |
---|
| 789 | !-- Additional sink term for flows through plant canopies |
---|
| 790 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 791 | |
---|
| 792 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 793 | |
---|
| 794 | ! |
---|
| 795 | !-- Prognostic equation for TKE. |
---|
| 796 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 797 | !-- reasons in the course of the integration. In such cases the old |
---|
| 798 | !-- TKE value is reduced by 90%. |
---|
| 799 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 800 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 801 | tsc(3) * te_m(k,j,i) ) |
---|
[736] | 802 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 803 | ENDDO |
---|
| 804 | |
---|
| 805 | ! |
---|
| 806 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 807 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 808 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 809 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 810 | te_m(k,j,i) = tend(k,j,i) |
---|
| 811 | ENDDO |
---|
| 812 | ELSEIF ( intermediate_timestep_count < & |
---|
| 813 | intermediate_timestep_count_max ) THEN |
---|
| 814 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 815 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 816 | 5.3125 * te_m(k,j,i) |
---|
| 817 | ENDDO |
---|
| 818 | ENDIF |
---|
| 819 | ENDIF |
---|
| 820 | |
---|
| 821 | ENDIF ! TKE equation |
---|
| 822 | |
---|
| 823 | ENDDO |
---|
| 824 | ENDDO |
---|
| 825 | !$OMP END PARALLEL |
---|
| 826 | |
---|
| 827 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 828 | |
---|
| 829 | |
---|
| 830 | END SUBROUTINE prognostic_equations_cache |
---|
| 831 | |
---|
| 832 | |
---|
| 833 | SUBROUTINE prognostic_equations_vector |
---|
| 834 | |
---|
| 835 | !------------------------------------------------------------------------------! |
---|
| 836 | ! Version for vector machines |
---|
| 837 | !------------------------------------------------------------------------------! |
---|
| 838 | |
---|
| 839 | IMPLICIT NONE |
---|
| 840 | |
---|
| 841 | CHARACTER (LEN=9) :: time_to_string |
---|
| 842 | INTEGER :: i, j, k |
---|
[1001] | 843 | REAL :: sbt |
---|
[736] | 844 | |
---|
| 845 | ! |
---|
| 846 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 847 | !-- global communication |
---|
[940] | 848 | IF ( .NOT. neutral ) CALL calc_mean_profile( pt, 4 ) |
---|
| 849 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 850 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[736] | 851 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
| 852 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
| 853 | |
---|
| 854 | ! |
---|
| 855 | !-- u-velocity component |
---|
| 856 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 857 | |
---|
[1001] | 858 | tend = 0.0 |
---|
| 859 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 860 | IF ( ws_scheme_mom ) THEN |
---|
| 861 | CALL advec_u_ws |
---|
| 862 | ELSE |
---|
| 863 | CALL advec_u_pw |
---|
| 864 | ENDIF |
---|
| 865 | ELSE |
---|
[1001] | 866 | CALL advec_u_up |
---|
[736] | 867 | ENDIF |
---|
[1001] | 868 | CALL diffusion_u |
---|
[736] | 869 | CALL coriolis( 1 ) |
---|
[940] | 870 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
| 871 | CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
| 872 | ENDIF |
---|
[736] | 873 | |
---|
| 874 | ! |
---|
| 875 | !-- Drag by plant canopy |
---|
| 876 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 877 | |
---|
| 878 | ! |
---|
| 879 | !-- External pressure gradient |
---|
| 880 | IF ( dp_external ) THEN |
---|
| 881 | DO i = nxlu, nxr |
---|
| 882 | DO j = nys, nyn |
---|
| 883 | DO k = dp_level_ind_b+1, nzt |
---|
| 884 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 885 | ENDDO |
---|
| 886 | ENDDO |
---|
| 887 | ENDDO |
---|
| 888 | ENDIF |
---|
| 889 | |
---|
| 890 | CALL user_actions( 'u-tendency' ) |
---|
| 891 | |
---|
| 892 | ! |
---|
| 893 | !-- Prognostic equation for u-velocity component |
---|
| 894 | DO i = nxlu, nxr |
---|
| 895 | DO j = nys, nyn |
---|
| 896 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 897 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 898 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 899 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 900 | ENDDO |
---|
| 901 | ENDDO |
---|
| 902 | ENDDO |
---|
| 903 | |
---|
| 904 | ! |
---|
| 905 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 906 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 907 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 908 | DO i = nxlu, nxr |
---|
| 909 | DO j = nys, nyn |
---|
| 910 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 911 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 912 | ENDDO |
---|
| 913 | ENDDO |
---|
| 914 | ENDDO |
---|
| 915 | ELSEIF ( intermediate_timestep_count < & |
---|
| 916 | intermediate_timestep_count_max ) THEN |
---|
| 917 | DO i = nxlu, nxr |
---|
| 918 | DO j = nys, nyn |
---|
| 919 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 920 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 921 | ENDDO |
---|
| 922 | ENDDO |
---|
| 923 | ENDDO |
---|
| 924 | ENDIF |
---|
| 925 | ENDIF |
---|
| 926 | |
---|
| 927 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 928 | |
---|
| 929 | ! |
---|
| 930 | !-- v-velocity component |
---|
| 931 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 932 | |
---|
[1001] | 933 | tend = 0.0 |
---|
| 934 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 935 | IF ( ws_scheme_mom ) THEN |
---|
| 936 | CALL advec_v_ws |
---|
| 937 | ELSE |
---|
| 938 | CALL advec_v_pw |
---|
| 939 | END IF |
---|
| 940 | ELSE |
---|
[1001] | 941 | CALL advec_v_up |
---|
[736] | 942 | ENDIF |
---|
[1001] | 943 | CALL diffusion_v |
---|
[736] | 944 | CALL coriolis( 2 ) |
---|
| 945 | |
---|
| 946 | ! |
---|
| 947 | !-- Drag by plant canopy |
---|
| 948 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 949 | |
---|
| 950 | ! |
---|
| 951 | !-- External pressure gradient |
---|
| 952 | IF ( dp_external ) THEN |
---|
| 953 | DO i = nxl, nxr |
---|
| 954 | DO j = nysv, nyn |
---|
| 955 | DO k = dp_level_ind_b+1, nzt |
---|
| 956 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 957 | ENDDO |
---|
| 958 | ENDDO |
---|
| 959 | ENDDO |
---|
| 960 | ENDIF |
---|
| 961 | |
---|
| 962 | CALL user_actions( 'v-tendency' ) |
---|
| 963 | |
---|
| 964 | ! |
---|
| 965 | !-- Prognostic equation for v-velocity component |
---|
| 966 | DO i = nxl, nxr |
---|
| 967 | DO j = nysv, nyn |
---|
| 968 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 969 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 970 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 971 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 972 | ENDDO |
---|
| 973 | ENDDO |
---|
| 974 | ENDDO |
---|
| 975 | |
---|
| 976 | ! |
---|
| 977 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 978 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 979 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 980 | DO i = nxl, nxr |
---|
| 981 | DO j = nysv, nyn |
---|
| 982 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 983 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 984 | ENDDO |
---|
| 985 | ENDDO |
---|
| 986 | ENDDO |
---|
| 987 | ELSEIF ( intermediate_timestep_count < & |
---|
| 988 | intermediate_timestep_count_max ) THEN |
---|
| 989 | DO i = nxl, nxr |
---|
| 990 | DO j = nysv, nyn |
---|
| 991 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 992 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 993 | ENDDO |
---|
| 994 | ENDDO |
---|
| 995 | ENDDO |
---|
| 996 | ENDIF |
---|
| 997 | ENDIF |
---|
| 998 | |
---|
| 999 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1000 | |
---|
| 1001 | ! |
---|
| 1002 | !-- w-velocity component |
---|
| 1003 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1004 | |
---|
[1001] | 1005 | tend = 0.0 |
---|
| 1006 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1007 | IF ( ws_scheme_mom ) THEN |
---|
| 1008 | CALL advec_w_ws |
---|
| 1009 | ELSE |
---|
| 1010 | CALL advec_w_pw |
---|
| 1011 | ENDIF |
---|
| 1012 | ELSE |
---|
[1001] | 1013 | CALL advec_w_up |
---|
[736] | 1014 | ENDIF |
---|
[1001] | 1015 | CALL diffusion_w |
---|
[736] | 1016 | CALL coriolis( 3 ) |
---|
[940] | 1017 | |
---|
| 1018 | IF ( .NOT. neutral ) THEN |
---|
| 1019 | IF ( ocean ) THEN |
---|
| 1020 | CALL buoyancy( rho, rho_reference, 3, 64 ) |
---|
[736] | 1021 | ELSE |
---|
[940] | 1022 | IF ( .NOT. humidity ) THEN |
---|
| 1023 | CALL buoyancy( pt, pt_reference, 3, 4 ) |
---|
| 1024 | ELSE |
---|
| 1025 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
| 1026 | ENDIF |
---|
[736] | 1027 | ENDIF |
---|
| 1028 | ENDIF |
---|
| 1029 | |
---|
| 1030 | ! |
---|
| 1031 | !-- Drag by plant canopy |
---|
| 1032 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1033 | |
---|
| 1034 | CALL user_actions( 'w-tendency' ) |
---|
| 1035 | |
---|
| 1036 | ! |
---|
| 1037 | !-- Prognostic equation for w-velocity component |
---|
| 1038 | DO i = nxl, nxr |
---|
| 1039 | DO j = nys, nyn |
---|
| 1040 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 1041 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1042 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1043 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 1044 | ENDDO |
---|
| 1045 | ENDDO |
---|
| 1046 | ENDDO |
---|
| 1047 | |
---|
| 1048 | ! |
---|
| 1049 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1050 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1051 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1052 | DO i = nxl, nxr |
---|
| 1053 | DO j = nys, nyn |
---|
| 1054 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1055 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1056 | ENDDO |
---|
| 1057 | ENDDO |
---|
| 1058 | ENDDO |
---|
| 1059 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1060 | intermediate_timestep_count_max ) THEN |
---|
| 1061 | DO i = nxl, nxr |
---|
| 1062 | DO j = nys, nyn |
---|
| 1063 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1064 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1065 | ENDDO |
---|
| 1066 | ENDDO |
---|
| 1067 | ENDDO |
---|
| 1068 | ENDIF |
---|
| 1069 | ENDIF |
---|
| 1070 | |
---|
| 1071 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1072 | |
---|
[940] | 1073 | |
---|
[736] | 1074 | ! |
---|
[940] | 1075 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1076 | IF ( .NOT. neutral ) THEN |
---|
[736] | 1077 | |
---|
[940] | 1078 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1079 | |
---|
[736] | 1080 | ! |
---|
[940] | 1081 | !-- pt-tendency terms with communication |
---|
| 1082 | sbt = tsc(2) |
---|
| 1083 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 1084 | |
---|
[940] | 1085 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 1086 | ! |
---|
[1001] | 1087 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[940] | 1088 | sbt = 1.0 |
---|
| 1089 | ENDIF |
---|
[736] | 1090 | tend = 0.0 |
---|
[940] | 1091 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 1092 | |
---|
[736] | 1093 | ENDIF |
---|
[940] | 1094 | |
---|
| 1095 | ! |
---|
| 1096 | !-- pt-tendency terms with no communication |
---|
[1001] | 1097 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1098 | tend = 0.0 |
---|
| 1099 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 1100 | IF ( ws_scheme_sca ) THEN |
---|
| 1101 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 1102 | ELSE |
---|
| 1103 | CALL advec_s_pw( pt ) |
---|
| 1104 | ENDIF |
---|
| 1105 | ELSE |
---|
[1001] | 1106 | CALL advec_s_up( pt ) |
---|
[940] | 1107 | ENDIF |
---|
[736] | 1108 | ENDIF |
---|
| 1109 | |
---|
[1001] | 1110 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 1111 | |
---|
[736] | 1112 | ! |
---|
[940] | 1113 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1114 | IF ( radiation ) THEN |
---|
| 1115 | CALL calc_radiation |
---|
| 1116 | ENDIF |
---|
[736] | 1117 | |
---|
| 1118 | ! |
---|
[940] | 1119 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1120 | IF ( precipitation ) THEN |
---|
| 1121 | CALL impact_of_latent_heat |
---|
| 1122 | ENDIF |
---|
[736] | 1123 | |
---|
| 1124 | ! |
---|
[940] | 1125 | !-- Consideration of heat sources within the plant canopy |
---|
| 1126 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1127 | CALL plant_canopy_model( 4 ) |
---|
| 1128 | ENDIF |
---|
[736] | 1129 | |
---|
[940] | 1130 | ! |
---|
| 1131 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1132 | IF ( large_scale_subsidence ) THEN |
---|
| 1133 | CALL subsidence( tend, pt, pt_init ) |
---|
| 1134 | ENDIF |
---|
[736] | 1135 | |
---|
[940] | 1136 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 1137 | |
---|
| 1138 | ! |
---|
[940] | 1139 | !-- Prognostic equation for potential temperature |
---|
| 1140 | DO i = nxl, nxr |
---|
| 1141 | DO j = nys, nyn |
---|
| 1142 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1143 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1144 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1145 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1146 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 1147 | ENDDO |
---|
[736] | 1148 | ENDDO |
---|
| 1149 | ENDDO |
---|
| 1150 | |
---|
| 1151 | ! |
---|
[940] | 1152 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1153 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1154 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1155 | DO i = nxl, nxr |
---|
| 1156 | DO j = nys, nyn |
---|
| 1157 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1158 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1159 | ENDDO |
---|
[736] | 1160 | ENDDO |
---|
| 1161 | ENDDO |
---|
[940] | 1162 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1163 | intermediate_timestep_count_max ) THEN |
---|
| 1164 | DO i = nxl, nxr |
---|
| 1165 | DO j = nys, nyn |
---|
| 1166 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1167 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1168 | 5.3125 * tpt_m(k,j,i) |
---|
| 1169 | ENDDO |
---|
[736] | 1170 | ENDDO |
---|
| 1171 | ENDDO |
---|
[940] | 1172 | ENDIF |
---|
[736] | 1173 | ENDIF |
---|
[940] | 1174 | |
---|
| 1175 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1176 | |
---|
[736] | 1177 | ENDIF |
---|
| 1178 | |
---|
| 1179 | ! |
---|
| 1180 | !-- If required, compute prognostic equation for salinity |
---|
| 1181 | IF ( ocean ) THEN |
---|
| 1182 | |
---|
| 1183 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1184 | |
---|
| 1185 | ! |
---|
| 1186 | !-- sa-tendency terms with communication |
---|
| 1187 | sbt = tsc(2) |
---|
| 1188 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1189 | |
---|
| 1190 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1191 | ! |
---|
[1001] | 1192 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[736] | 1193 | sbt = 1.0 |
---|
| 1194 | ENDIF |
---|
| 1195 | tend = 0.0 |
---|
| 1196 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1197 | |
---|
[736] | 1198 | ENDIF |
---|
| 1199 | |
---|
| 1200 | ! |
---|
| 1201 | !-- sa-tendency terms with no communication |
---|
[1001] | 1202 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1203 | tend = 0.0 |
---|
| 1204 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1205 | IF ( ws_scheme_sca ) THEN |
---|
| 1206 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1207 | ELSE |
---|
| 1208 | CALL advec_s_pw( sa ) |
---|
| 1209 | ENDIF |
---|
| 1210 | ELSE |
---|
[1001] | 1211 | CALL advec_s_up( sa ) |
---|
[736] | 1212 | ENDIF |
---|
| 1213 | ENDIF |
---|
[1001] | 1214 | |
---|
| 1215 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1216 | |
---|
| 1217 | CALL user_actions( 'sa-tendency' ) |
---|
| 1218 | |
---|
| 1219 | ! |
---|
| 1220 | !-- Prognostic equation for salinity |
---|
| 1221 | DO i = nxl, nxr |
---|
| 1222 | DO j = nys, nyn |
---|
| 1223 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1224 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1225 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1226 | - tsc(5) * rdf_sc(k) * & |
---|
| 1227 | ( sa(k,j,i) - sa_init(k) ) |
---|
[736] | 1228 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1229 | ENDDO |
---|
| 1230 | ENDDO |
---|
| 1231 | ENDDO |
---|
| 1232 | |
---|
| 1233 | ! |
---|
| 1234 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1235 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1236 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1237 | DO i = nxl, nxr |
---|
| 1238 | DO j = nys, nyn |
---|
| 1239 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1240 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1241 | ENDDO |
---|
| 1242 | ENDDO |
---|
| 1243 | ENDDO |
---|
| 1244 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1245 | intermediate_timestep_count_max ) THEN |
---|
| 1246 | DO i = nxl, nxr |
---|
| 1247 | DO j = nys, nyn |
---|
| 1248 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1249 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1250 | 5.3125 * tsa_m(k,j,i) |
---|
| 1251 | ENDDO |
---|
| 1252 | ENDDO |
---|
| 1253 | ENDDO |
---|
| 1254 | ENDIF |
---|
| 1255 | ENDIF |
---|
| 1256 | |
---|
| 1257 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1258 | |
---|
| 1259 | ! |
---|
| 1260 | !-- Calculate density by the equation of state for seawater |
---|
| 1261 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1262 | CALL eqn_state_seawater |
---|
| 1263 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1264 | |
---|
| 1265 | ENDIF |
---|
| 1266 | |
---|
| 1267 | ! |
---|
| 1268 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1269 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1270 | |
---|
| 1271 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1272 | |
---|
| 1273 | ! |
---|
| 1274 | !-- Scalar/q-tendency terms with communication |
---|
| 1275 | sbt = tsc(2) |
---|
| 1276 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1277 | |
---|
| 1278 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1279 | ! |
---|
[1001] | 1280 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[736] | 1281 | sbt = 1.0 |
---|
| 1282 | ENDIF |
---|
| 1283 | tend = 0.0 |
---|
| 1284 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1285 | |
---|
[736] | 1286 | ENDIF |
---|
| 1287 | |
---|
| 1288 | ! |
---|
| 1289 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1290 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1291 | tend = 0.0 |
---|
| 1292 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1293 | IF ( ws_scheme_sca ) THEN |
---|
| 1294 | CALL advec_s_ws( q, 'q' ) |
---|
| 1295 | ELSE |
---|
| 1296 | CALL advec_s_pw( q ) |
---|
| 1297 | ENDIF |
---|
| 1298 | ELSE |
---|
[1001] | 1299 | CALL advec_s_up( q ) |
---|
[736] | 1300 | ENDIF |
---|
| 1301 | ENDIF |
---|
[1001] | 1302 | |
---|
| 1303 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1304 | |
---|
| 1305 | ! |
---|
| 1306 | !-- If required compute decrease of total water content due to |
---|
| 1307 | !-- precipitation |
---|
| 1308 | IF ( precipitation ) THEN |
---|
| 1309 | CALL calc_precipitation |
---|
| 1310 | ENDIF |
---|
| 1311 | |
---|
| 1312 | ! |
---|
| 1313 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1314 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1315 | |
---|
| 1316 | ! |
---|
| 1317 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[940] | 1318 | IF ( large_scale_subsidence ) THEN |
---|
| 1319 | CALL subsidence( tend, q, q_init ) |
---|
[736] | 1320 | ENDIF |
---|
| 1321 | |
---|
| 1322 | CALL user_actions( 'q-tendency' ) |
---|
| 1323 | |
---|
| 1324 | ! |
---|
| 1325 | !-- Prognostic equation for total water content / scalar |
---|
| 1326 | DO i = nxl, nxr |
---|
| 1327 | DO j = nys, nyn |
---|
| 1328 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1329 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1330 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1331 | - tsc(5) * rdf_sc(k) * & |
---|
| 1332 | ( q(k,j,i) - q_init(k) ) |
---|
[736] | 1333 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 1334 | ENDDO |
---|
| 1335 | ENDDO |
---|
| 1336 | ENDDO |
---|
| 1337 | |
---|
| 1338 | ! |
---|
| 1339 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1340 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1341 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1342 | DO i = nxl, nxr |
---|
| 1343 | DO j = nys, nyn |
---|
| 1344 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1345 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1346 | ENDDO |
---|
| 1347 | ENDDO |
---|
| 1348 | ENDDO |
---|
| 1349 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1350 | intermediate_timestep_count_max ) THEN |
---|
| 1351 | DO i = nxl, nxr |
---|
| 1352 | DO j = nys, nyn |
---|
| 1353 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1354 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1355 | ENDDO |
---|
| 1356 | ENDDO |
---|
| 1357 | ENDDO |
---|
| 1358 | ENDIF |
---|
| 1359 | ENDIF |
---|
| 1360 | |
---|
| 1361 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1362 | |
---|
| 1363 | ENDIF |
---|
| 1364 | |
---|
| 1365 | ! |
---|
| 1366 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1367 | !-- energy (TKE) |
---|
| 1368 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1369 | |
---|
| 1370 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1371 | |
---|
| 1372 | ! |
---|
| 1373 | !-- TKE-tendency terms with communication |
---|
| 1374 | CALL production_e_init |
---|
| 1375 | |
---|
| 1376 | sbt = tsc(2) |
---|
| 1377 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1378 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1379 | |
---|
| 1380 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1381 | ! |
---|
[1001] | 1382 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[736] | 1383 | sbt = 1.0 |
---|
| 1384 | ENDIF |
---|
| 1385 | tend = 0.0 |
---|
| 1386 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1387 | |
---|
[736] | 1388 | ENDIF |
---|
| 1389 | ENDIF |
---|
| 1390 | |
---|
| 1391 | ! |
---|
| 1392 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1393 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1394 | IF ( use_upstream_for_tke ) THEN |
---|
| 1395 | tend = 0.0 |
---|
| 1396 | CALL advec_s_up( e ) |
---|
| 1397 | ELSE |
---|
[1001] | 1398 | tend = 0.0 |
---|
| 1399 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1400 | IF ( ws_scheme_sca ) THEN |
---|
| 1401 | CALL advec_s_ws( e, 'e' ) |
---|
| 1402 | ELSE |
---|
| 1403 | CALL advec_s_pw( e ) |
---|
| 1404 | ENDIF |
---|
| 1405 | ELSE |
---|
[1001] | 1406 | CALL advec_s_up( e ) |
---|
[736] | 1407 | ENDIF |
---|
| 1408 | ENDIF |
---|
[1001] | 1409 | ENDIF |
---|
| 1410 | |
---|
| 1411 | IF ( .NOT. humidity ) THEN |
---|
| 1412 | IF ( ocean ) THEN |
---|
| 1413 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1414 | ELSE |
---|
[1001] | 1415 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1416 | ENDIF |
---|
[1001] | 1417 | ELSE |
---|
| 1418 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1419 | ENDIF |
---|
[1001] | 1420 | |
---|
[736] | 1421 | CALL production_e |
---|
| 1422 | |
---|
| 1423 | ! |
---|
| 1424 | !-- Additional sink term for flows through plant canopies |
---|
| 1425 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1426 | CALL user_actions( 'e-tendency' ) |
---|
| 1427 | |
---|
| 1428 | ! |
---|
| 1429 | !-- Prognostic equation for TKE. |
---|
| 1430 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1431 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1432 | !-- value is reduced by 90%. |
---|
| 1433 | DO i = nxl, nxr |
---|
| 1434 | DO j = nys, nyn |
---|
| 1435 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1436 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1437 | tsc(3) * te_m(k,j,i) ) |
---|
[736] | 1438 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1439 | ENDDO |
---|
| 1440 | ENDDO |
---|
| 1441 | ENDDO |
---|
| 1442 | |
---|
| 1443 | ! |
---|
| 1444 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1445 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1446 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1447 | DO i = nxl, nxr |
---|
| 1448 | DO j = nys, nyn |
---|
| 1449 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1450 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1451 | ENDDO |
---|
| 1452 | ENDDO |
---|
| 1453 | ENDDO |
---|
| 1454 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1455 | intermediate_timestep_count_max ) THEN |
---|
| 1456 | DO i = nxl, nxr |
---|
| 1457 | DO j = nys, nyn |
---|
| 1458 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1459 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 1460 | ENDDO |
---|
| 1461 | ENDDO |
---|
| 1462 | ENDDO |
---|
| 1463 | ENDIF |
---|
| 1464 | ENDIF |
---|
| 1465 | |
---|
| 1466 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1467 | |
---|
| 1468 | ENDIF |
---|
| 1469 | |
---|
| 1470 | |
---|
| 1471 | END SUBROUTINE prognostic_equations_vector |
---|
| 1472 | |
---|
| 1473 | |
---|
[1015] | 1474 | SUBROUTINE prognostic_equations_acc |
---|
| 1475 | |
---|
| 1476 | !------------------------------------------------------------------------------! |
---|
| 1477 | ! Version for accelerator boards |
---|
| 1478 | !------------------------------------------------------------------------------! |
---|
| 1479 | |
---|
| 1480 | IMPLICIT NONE |
---|
| 1481 | |
---|
| 1482 | CHARACTER (LEN=9) :: time_to_string |
---|
| 1483 | INTEGER :: i, j, k, runge_step |
---|
| 1484 | REAL :: sbt |
---|
| 1485 | |
---|
| 1486 | ! |
---|
| 1487 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1488 | runge_step = 0 |
---|
| 1489 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1490 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1491 | runge_step = 1 |
---|
| 1492 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1493 | intermediate_timestep_count_max ) THEN |
---|
| 1494 | runge_step = 2 |
---|
| 1495 | ENDIF |
---|
| 1496 | ENDIF |
---|
| 1497 | |
---|
| 1498 | ! |
---|
| 1499 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 1500 | !-- global communication |
---|
| 1501 | IF ( .NOT. neutral ) CALL calc_mean_profile( pt, 4 ) |
---|
| 1502 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 1503 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
| 1504 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
| 1505 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
| 1506 | |
---|
| 1507 | ! |
---|
| 1508 | !-- u-velocity component |
---|
| 1509 | !++ Statistics still not ported to accelerators |
---|
| 1510 | !$acc update device( hom ) |
---|
| 1511 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1512 | |
---|
| 1513 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1514 | IF ( ws_scheme_mom ) THEN |
---|
| 1515 | CALL advec_u_ws_acc |
---|
| 1516 | ELSE |
---|
| 1517 | tend = 0.0 ! to be removed later?? |
---|
| 1518 | CALL advec_u_pw |
---|
| 1519 | ENDIF |
---|
| 1520 | ELSE |
---|
| 1521 | CALL advec_u_up |
---|
| 1522 | ENDIF |
---|
| 1523 | CALL diffusion_u_acc |
---|
| 1524 | CALL coriolis_acc( 1 ) |
---|
| 1525 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
| 1526 | CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
| 1527 | ENDIF |
---|
| 1528 | |
---|
| 1529 | ! |
---|
| 1530 | !-- Drag by plant canopy |
---|
| 1531 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1532 | |
---|
| 1533 | ! |
---|
| 1534 | !-- External pressure gradient |
---|
| 1535 | IF ( dp_external ) THEN |
---|
| 1536 | DO i = nxlu, nxr |
---|
| 1537 | DO j = nys, nyn |
---|
| 1538 | DO k = dp_level_ind_b+1, nzt |
---|
| 1539 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1540 | ENDDO |
---|
| 1541 | ENDDO |
---|
| 1542 | ENDDO |
---|
| 1543 | ENDIF |
---|
| 1544 | |
---|
| 1545 | CALL user_actions( 'u-tendency' ) |
---|
| 1546 | |
---|
| 1547 | ! |
---|
| 1548 | !-- Prognostic equation for u-velocity component |
---|
| 1549 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, ug, u_p ) |
---|
| 1550 | !$acc loop |
---|
| 1551 | DO i = nxlu, nxr |
---|
| 1552 | DO j = nys, nyn |
---|
| 1553 | !$acc loop vector( 32 ) |
---|
| 1554 | DO k = 1, nzt |
---|
| 1555 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1556 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1557 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 1558 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1559 | ! |
---|
| 1560 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1561 | IF ( runge_step == 1 ) THEN |
---|
| 1562 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1563 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1564 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 1565 | ENDIF |
---|
| 1566 | ENDIF |
---|
| 1567 | ENDDO |
---|
| 1568 | ENDDO |
---|
| 1569 | ENDDO |
---|
| 1570 | !$acc end kernels |
---|
| 1571 | |
---|
| 1572 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1573 | !$acc update host( u_p ) |
---|
| 1574 | |
---|
| 1575 | ! |
---|
| 1576 | !-- v-velocity component |
---|
| 1577 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1578 | |
---|
| 1579 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1580 | IF ( ws_scheme_mom ) THEN |
---|
| 1581 | CALL advec_v_ws_acc |
---|
| 1582 | ELSE |
---|
| 1583 | tend = 0.0 ! to be removed later?? |
---|
| 1584 | CALL advec_v_pw |
---|
| 1585 | END IF |
---|
| 1586 | ELSE |
---|
| 1587 | CALL advec_v_up |
---|
| 1588 | ENDIF |
---|
| 1589 | CALL diffusion_v_acc |
---|
| 1590 | CALL coriolis_acc( 2 ) |
---|
| 1591 | |
---|
| 1592 | ! |
---|
| 1593 | !-- Drag by plant canopy |
---|
| 1594 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1595 | |
---|
| 1596 | ! |
---|
| 1597 | !-- External pressure gradient |
---|
| 1598 | IF ( dp_external ) THEN |
---|
| 1599 | DO i = nxl, nxr |
---|
| 1600 | DO j = nysv, nyn |
---|
| 1601 | DO k = dp_level_ind_b+1, nzt |
---|
| 1602 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1603 | ENDDO |
---|
| 1604 | ENDDO |
---|
| 1605 | ENDDO |
---|
| 1606 | ENDIF |
---|
| 1607 | |
---|
| 1608 | CALL user_actions( 'v-tendency' ) |
---|
| 1609 | |
---|
| 1610 | ! |
---|
| 1611 | !-- Prognostic equation for v-velocity component |
---|
| 1612 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, vg, v_p ) |
---|
| 1613 | !$acc loop |
---|
| 1614 | DO i = nxl, nxr |
---|
| 1615 | DO j = nysv, nyn |
---|
| 1616 | !$acc loop vector( 32 ) |
---|
| 1617 | DO k = 1, nzt |
---|
| 1618 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1619 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1620 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 1621 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1622 | ! |
---|
| 1623 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1624 | IF ( runge_step == 1 ) THEN |
---|
| 1625 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1626 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1627 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1628 | ENDIF |
---|
| 1629 | ENDIF |
---|
| 1630 | ENDDO |
---|
| 1631 | ENDDO |
---|
| 1632 | ENDDO |
---|
| 1633 | !$acc end kernels |
---|
| 1634 | |
---|
| 1635 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1636 | !$acc update host( v_p ) |
---|
| 1637 | |
---|
| 1638 | ! |
---|
| 1639 | !-- w-velocity component |
---|
| 1640 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1641 | |
---|
| 1642 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1643 | IF ( ws_scheme_mom ) THEN |
---|
| 1644 | CALL advec_w_ws_acc |
---|
| 1645 | ELSE |
---|
| 1646 | tend = 0.0 ! to be removed later?? |
---|
| 1647 | CALL advec_w_pw |
---|
| 1648 | ENDIF |
---|
| 1649 | ELSE |
---|
| 1650 | CALL advec_w_up |
---|
| 1651 | ENDIF |
---|
| 1652 | CALL diffusion_w_acc |
---|
| 1653 | CALL coriolis_acc( 3 ) |
---|
| 1654 | |
---|
| 1655 | IF ( .NOT. neutral ) THEN |
---|
| 1656 | IF ( ocean ) THEN |
---|
| 1657 | CALL buoyancy( rho, rho_reference, 3, 64 ) |
---|
| 1658 | ELSE |
---|
| 1659 | IF ( .NOT. humidity ) THEN |
---|
| 1660 | CALL buoyancy_acc( pt, pt_reference, 3, 4 ) |
---|
| 1661 | ELSE |
---|
| 1662 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
| 1663 | ENDIF |
---|
| 1664 | ENDIF |
---|
| 1665 | ENDIF |
---|
| 1666 | |
---|
| 1667 | ! |
---|
| 1668 | !-- Drag by plant canopy |
---|
| 1669 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1670 | |
---|
| 1671 | CALL user_actions( 'w-tendency' ) |
---|
| 1672 | |
---|
| 1673 | ! |
---|
| 1674 | !-- Prognostic equation for w-velocity component |
---|
| 1675 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
| 1676 | !$acc loop |
---|
| 1677 | DO i = nxl, nxr |
---|
| 1678 | DO j = nys, nyn |
---|
| 1679 | !$acc loop vector( 32 ) |
---|
| 1680 | DO k = 1, nzt-1 |
---|
| 1681 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 1682 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1683 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1684 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1685 | ! |
---|
| 1686 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1687 | IF ( runge_step == 1 ) THEN |
---|
| 1688 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1689 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1690 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1691 | ENDIF |
---|
| 1692 | ENDIF |
---|
| 1693 | ENDDO |
---|
| 1694 | ENDDO |
---|
| 1695 | ENDDO |
---|
| 1696 | !$acc end kernels |
---|
| 1697 | |
---|
| 1698 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1699 | !$acc update host( w_p ) |
---|
| 1700 | |
---|
| 1701 | |
---|
| 1702 | ! |
---|
| 1703 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1704 | IF ( .NOT. neutral ) THEN |
---|
| 1705 | |
---|
| 1706 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1707 | |
---|
| 1708 | ! |
---|
| 1709 | !-- pt-tendency terms with communication |
---|
| 1710 | sbt = tsc(2) |
---|
| 1711 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1712 | |
---|
| 1713 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1714 | ! |
---|
| 1715 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1716 | sbt = 1.0 |
---|
| 1717 | ENDIF |
---|
| 1718 | tend = 0.0 |
---|
| 1719 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1720 | |
---|
| 1721 | ENDIF |
---|
| 1722 | |
---|
| 1723 | ! |
---|
| 1724 | !-- pt-tendency terms with no communication |
---|
| 1725 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1726 | tend = 0.0 |
---|
| 1727 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1728 | IF ( ws_scheme_sca ) THEN |
---|
| 1729 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 1730 | ELSE |
---|
| 1731 | tend = 0.0 ! to be removed later?? |
---|
| 1732 | CALL advec_s_pw( pt ) |
---|
| 1733 | ENDIF |
---|
| 1734 | ELSE |
---|
| 1735 | CALL advec_s_up( pt ) |
---|
| 1736 | ENDIF |
---|
| 1737 | ENDIF |
---|
| 1738 | |
---|
| 1739 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 1740 | |
---|
| 1741 | ! |
---|
| 1742 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1743 | IF ( radiation ) THEN |
---|
| 1744 | CALL calc_radiation |
---|
| 1745 | ENDIF |
---|
| 1746 | |
---|
| 1747 | ! |
---|
| 1748 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1749 | IF ( precipitation ) THEN |
---|
| 1750 | CALL impact_of_latent_heat |
---|
| 1751 | ENDIF |
---|
| 1752 | |
---|
| 1753 | ! |
---|
| 1754 | !-- Consideration of heat sources within the plant canopy |
---|
| 1755 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1756 | CALL plant_canopy_model( 4 ) |
---|
| 1757 | ENDIF |
---|
| 1758 | |
---|
| 1759 | ! |
---|
| 1760 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1761 | IF ( large_scale_subsidence ) THEN |
---|
| 1762 | CALL subsidence( tend, pt, pt_init ) |
---|
| 1763 | ENDIF |
---|
| 1764 | |
---|
| 1765 | CALL user_actions( 'pt-tendency' ) |
---|
| 1766 | |
---|
| 1767 | ! |
---|
| 1768 | !-- Prognostic equation for potential temperature |
---|
| 1769 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 1770 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
| 1771 | !$acc loop |
---|
| 1772 | DO i = nxl, nxr |
---|
| 1773 | DO j = nys, nyn |
---|
| 1774 | !$acc loop vector( 32 ) |
---|
| 1775 | DO k = 1, nzt |
---|
| 1776 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 1777 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1778 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1779 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1780 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 1781 | ! |
---|
| 1782 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1783 | IF ( runge_step == 1 ) THEN |
---|
| 1784 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1785 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1786 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 1787 | ENDIF |
---|
| 1788 | ENDIF |
---|
| 1789 | ENDDO |
---|
| 1790 | ENDDO |
---|
| 1791 | ENDDO |
---|
| 1792 | !$acc end kernels |
---|
| 1793 | |
---|
| 1794 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1795 | !$acc update host( pt_p ) |
---|
| 1796 | |
---|
| 1797 | ENDIF |
---|
| 1798 | |
---|
| 1799 | ! |
---|
| 1800 | !-- If required, compute prognostic equation for salinity |
---|
| 1801 | IF ( ocean ) THEN |
---|
| 1802 | |
---|
| 1803 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1804 | |
---|
| 1805 | ! |
---|
| 1806 | !-- sa-tendency terms with communication |
---|
| 1807 | sbt = tsc(2) |
---|
| 1808 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1809 | |
---|
| 1810 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1811 | ! |
---|
| 1812 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1813 | sbt = 1.0 |
---|
| 1814 | ENDIF |
---|
| 1815 | tend = 0.0 |
---|
| 1816 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 1817 | |
---|
| 1818 | ENDIF |
---|
| 1819 | |
---|
| 1820 | ! |
---|
| 1821 | !-- sa-tendency terms with no communication |
---|
| 1822 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1823 | tend = 0.0 |
---|
| 1824 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1825 | IF ( ws_scheme_sca ) THEN |
---|
| 1826 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1827 | ELSE |
---|
| 1828 | CALL advec_s_pw( sa ) |
---|
| 1829 | ENDIF |
---|
| 1830 | ELSE |
---|
| 1831 | CALL advec_s_up( sa ) |
---|
| 1832 | ENDIF |
---|
| 1833 | ENDIF |
---|
| 1834 | |
---|
| 1835 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 1836 | |
---|
| 1837 | CALL user_actions( 'sa-tendency' ) |
---|
| 1838 | |
---|
| 1839 | ! |
---|
| 1840 | !-- Prognostic equation for salinity |
---|
| 1841 | DO i = nxl, nxr |
---|
| 1842 | DO j = nys, nyn |
---|
| 1843 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1844 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1845 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1846 | - tsc(5) * rdf_sc(k) * & |
---|
| 1847 | ( sa(k,j,i) - sa_init(k) ) |
---|
| 1848 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1849 | ! |
---|
| 1850 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1851 | IF ( runge_step == 1 ) THEN |
---|
| 1852 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1853 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1854 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tsa_m(k,j,i) |
---|
| 1855 | ENDIF |
---|
| 1856 | ENDDO |
---|
| 1857 | ENDDO |
---|
| 1858 | ENDDO |
---|
| 1859 | |
---|
| 1860 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1861 | |
---|
| 1862 | ! |
---|
| 1863 | !-- Calculate density by the equation of state for seawater |
---|
| 1864 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1865 | CALL eqn_state_seawater |
---|
| 1866 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1867 | |
---|
| 1868 | ENDIF |
---|
| 1869 | |
---|
| 1870 | ! |
---|
| 1871 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1872 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1873 | |
---|
| 1874 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1875 | |
---|
| 1876 | ! |
---|
| 1877 | !-- Scalar/q-tendency terms with communication |
---|
| 1878 | sbt = tsc(2) |
---|
| 1879 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1880 | |
---|
| 1881 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1882 | ! |
---|
| 1883 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1884 | sbt = 1.0 |
---|
| 1885 | ENDIF |
---|
| 1886 | tend = 0.0 |
---|
| 1887 | CALL advec_s_bc( q, 'q' ) |
---|
| 1888 | |
---|
| 1889 | ENDIF |
---|
| 1890 | |
---|
| 1891 | ! |
---|
| 1892 | !-- Scalar/q-tendency terms with no communication |
---|
| 1893 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1894 | tend = 0.0 |
---|
| 1895 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1896 | IF ( ws_scheme_sca ) THEN |
---|
| 1897 | CALL advec_s_ws( q, 'q' ) |
---|
| 1898 | ELSE |
---|
| 1899 | CALL advec_s_pw( q ) |
---|
| 1900 | ENDIF |
---|
| 1901 | ELSE |
---|
| 1902 | CALL advec_s_up( q ) |
---|
| 1903 | ENDIF |
---|
| 1904 | ENDIF |
---|
| 1905 | |
---|
| 1906 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 1907 | |
---|
| 1908 | ! |
---|
| 1909 | !-- If required compute decrease of total water content due to |
---|
| 1910 | !-- precipitation |
---|
| 1911 | IF ( precipitation ) THEN |
---|
| 1912 | CALL calc_precipitation |
---|
| 1913 | ENDIF |
---|
| 1914 | |
---|
| 1915 | ! |
---|
| 1916 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1917 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1918 | |
---|
| 1919 | ! |
---|
| 1920 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1921 | IF ( large_scale_subsidence ) THEN |
---|
| 1922 | CALL subsidence( tend, q, q_init ) |
---|
| 1923 | ENDIF |
---|
| 1924 | |
---|
| 1925 | CALL user_actions( 'q-tendency' ) |
---|
| 1926 | |
---|
| 1927 | ! |
---|
| 1928 | !-- Prognostic equation for total water content / scalar |
---|
| 1929 | DO i = nxl, nxr |
---|
| 1930 | DO j = nys, nyn |
---|
| 1931 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1932 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1933 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1934 | - tsc(5) * rdf_sc(k) * & |
---|
| 1935 | ( q(k,j,i) - q_init(k) ) |
---|
| 1936 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 1937 | ! |
---|
| 1938 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1939 | IF ( runge_step == 1 ) THEN |
---|
| 1940 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1941 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1942 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1943 | ENDIF |
---|
| 1944 | ENDDO |
---|
| 1945 | ENDDO |
---|
| 1946 | ENDDO |
---|
| 1947 | |
---|
| 1948 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1949 | |
---|
| 1950 | ENDIF |
---|
| 1951 | |
---|
| 1952 | ! |
---|
| 1953 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1954 | !-- energy (TKE) |
---|
| 1955 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1956 | |
---|
| 1957 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1958 | |
---|
| 1959 | ! |
---|
| 1960 | !-- TKE-tendency terms with communication |
---|
| 1961 | CALL production_e_init |
---|
| 1962 | |
---|
| 1963 | sbt = tsc(2) |
---|
| 1964 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1965 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1966 | |
---|
| 1967 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1968 | ! |
---|
| 1969 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1970 | sbt = 1.0 |
---|
| 1971 | ENDIF |
---|
| 1972 | tend = 0.0 |
---|
| 1973 | CALL advec_s_bc( e, 'e' ) |
---|
| 1974 | |
---|
| 1975 | ENDIF |
---|
| 1976 | ENDIF |
---|
| 1977 | |
---|
| 1978 | ! |
---|
| 1979 | !-- TKE-tendency terms with no communication |
---|
| 1980 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 1981 | IF ( use_upstream_for_tke ) THEN |
---|
| 1982 | tend = 0.0 |
---|
| 1983 | CALL advec_s_up( e ) |
---|
| 1984 | ELSE |
---|
| 1985 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1986 | IF ( ws_scheme_sca ) THEN |
---|
| 1987 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 1988 | ELSE |
---|
| 1989 | tend = 0.0 ! to be removed later?? |
---|
| 1990 | CALL advec_s_pw( e ) |
---|
| 1991 | ENDIF |
---|
| 1992 | ELSE |
---|
| 1993 | tend = 0.0 ! to be removed later?? |
---|
| 1994 | CALL advec_s_up( e ) |
---|
| 1995 | ENDIF |
---|
| 1996 | ENDIF |
---|
| 1997 | ENDIF |
---|
| 1998 | |
---|
| 1999 | IF ( .NOT. humidity ) THEN |
---|
| 2000 | IF ( ocean ) THEN |
---|
| 2001 | CALL diffusion_e( prho, prho_reference ) |
---|
| 2002 | ELSE |
---|
| 2003 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 2004 | ENDIF |
---|
| 2005 | ELSE |
---|
| 2006 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 2007 | ENDIF |
---|
| 2008 | |
---|
| 2009 | CALL production_e_acc |
---|
| 2010 | |
---|
| 2011 | ! |
---|
| 2012 | !-- Additional sink term for flows through plant canopies |
---|
| 2013 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 2014 | CALL user_actions( 'e-tendency' ) |
---|
| 2015 | |
---|
| 2016 | ! |
---|
| 2017 | !-- Prognostic equation for TKE. |
---|
| 2018 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 2019 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 2020 | !-- value is reduced by 90%. |
---|
| 2021 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
| 2022 | !$acc loop |
---|
| 2023 | DO i = nxl, nxr |
---|
| 2024 | DO j = nys, nyn |
---|
| 2025 | !$acc loop vector( 32 ) |
---|
| 2026 | DO k = 1, nzt |
---|
| 2027 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 2028 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 2029 | tsc(3) * te_m(k,j,i) ) |
---|
| 2030 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 2031 | ! |
---|
| 2032 | !-- Tendencies for the next Runge-Kutta step |
---|
| 2033 | IF ( runge_step == 1 ) THEN |
---|
| 2034 | te_m(k,j,i) = tend(k,j,i) |
---|
| 2035 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 2036 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 2037 | ENDIF |
---|
| 2038 | ENDIF |
---|
| 2039 | ENDDO |
---|
| 2040 | ENDDO |
---|
| 2041 | ENDDO |
---|
| 2042 | !$acc end kernels |
---|
| 2043 | |
---|
| 2044 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 2045 | !$acc update host( e_p ) |
---|
| 2046 | |
---|
| 2047 | ENDIF |
---|
| 2048 | |
---|
| 2049 | |
---|
| 2050 | END SUBROUTINE prognostic_equations_acc |
---|
| 2051 | |
---|
| 2052 | |
---|
[736] | 2053 | END MODULE prognostic_equations_mod |
---|