[736] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[736] | 20 | ! Current revisions: |
---|
| 21 | ! ----------------- |
---|
[979] | 22 | ! |
---|
[1020] | 23 | ! |
---|
[979] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: prognostic_equations.f90 1037 2012-10-22 14:10:22Z hoffmann $ |
---|
| 27 | ! |
---|
[1037] | 28 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 29 | ! code put under GPL (PALM 3.9) |
---|
| 30 | ! |
---|
[1020] | 31 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
| 32 | ! non-optimized version of prognostic_equations removed |
---|
| 33 | ! |
---|
[1017] | 34 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 35 | ! new branch prognostic_equations_acc |
---|
| 36 | ! OpenACC statements added + code changes required for GPU optimization |
---|
| 37 | ! |
---|
[1002] | 38 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 39 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
| 40 | ! |
---|
[979] | 41 | ! 978 2012-08-09 08:28:32Z fricke |
---|
[978] | 42 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
| 43 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
| 44 | ! boundary in case of non-cyclic lateral boundaries |
---|
| 45 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
[736] | 46 | ! |
---|
[941] | 47 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 48 | ! temperature equation can be switched off |
---|
| 49 | ! |
---|
[786] | 50 | ! 785 2011-11-28 09:47:19Z raasch |
---|
| 51 | ! new factor rdf_sc allows separate Rayleigh damping of scalars |
---|
| 52 | ! |
---|
[737] | 53 | ! 736 2011-08-17 14:13:26Z suehring |
---|
| 54 | ! Bugfix: determination of first thread index i for WS-scheme |
---|
| 55 | ! |
---|
[736] | 56 | ! 709 2011-03-30 09:31:40Z raasch |
---|
| 57 | ! formatting adjustments |
---|
| 58 | ! |
---|
| 59 | ! 673 2011-01-18 16:19:48Z suehring |
---|
| 60 | ! Consideration of the pressure gradient (steered by tsc(4)) during the time |
---|
| 61 | ! integration removed. |
---|
| 62 | ! |
---|
| 63 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 64 | ! Calls of the advection routines with WS5 added. |
---|
| 65 | ! Calls of ws_statistics added to set the statistical arrays to zero after each |
---|
| 66 | ! time step. |
---|
| 67 | ! |
---|
| 68 | ! 531 2010-04-21 06:47:21Z heinze |
---|
| 69 | ! add call of subsidence in the equation for humidity / passive scalar |
---|
| 70 | ! |
---|
| 71 | ! 411 2009-12-11 14:15:58Z heinze |
---|
| 72 | ! add call of subsidence in the equation for potential temperature |
---|
| 73 | ! |
---|
| 74 | ! 388 2009-09-23 09:40:33Z raasch |
---|
| 75 | ! prho is used instead of rho in diffusion_e, |
---|
| 76 | ! external pressure gradient |
---|
| 77 | ! |
---|
| 78 | ! 153 2008-03-19 09:41:30Z steinfeld |
---|
| 79 | ! add call of plant_canopy_model in the prognostic equation for |
---|
| 80 | ! the potential temperature and for the passive scalar |
---|
| 81 | ! |
---|
| 82 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 83 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
| 84 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
| 85 | ! |
---|
| 86 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 87 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
| 88 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
| 89 | ! for non-cyclic boundary conditions) |
---|
| 90 | ! |
---|
| 91 | ! 97 2007-06-21 08:23:15Z raasch |
---|
| 92 | ! prognostic equation for salinity, density is calculated from equation of |
---|
| 93 | ! state for seawater and is used for calculation of buoyancy, |
---|
| 94 | ! +eqn_state_seawater_mod |
---|
| 95 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
| 96 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
| 97 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
| 98 | ! calc_mean_profile |
---|
| 99 | ! |
---|
| 100 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 101 | ! checking for negative q and limiting for positive values, |
---|
| 102 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
| 103 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
| 104 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
| 105 | ! _vector-version |
---|
| 106 | ! |
---|
| 107 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 108 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
| 109 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
| 110 | ! |
---|
| 111 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 112 | ! |
---|
| 113 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
| 114 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
| 115 | ! regardless of the timestep scheme used for the other quantities, |
---|
| 116 | ! new argument diss in call of diffusion_e |
---|
| 117 | ! |
---|
| 118 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 119 | ! Initial revision |
---|
| 120 | ! |
---|
| 121 | ! |
---|
| 122 | ! Description: |
---|
| 123 | ! ------------ |
---|
| 124 | ! Solving the prognostic equations. |
---|
| 125 | !------------------------------------------------------------------------------! |
---|
| 126 | |
---|
| 127 | USE arrays_3d |
---|
| 128 | USE control_parameters |
---|
| 129 | USE cpulog |
---|
| 130 | USE eqn_state_seawater_mod |
---|
| 131 | USE grid_variables |
---|
| 132 | USE indices |
---|
| 133 | USE interfaces |
---|
| 134 | USE pegrid |
---|
| 135 | USE pointer_interfaces |
---|
| 136 | USE statistics |
---|
| 137 | USE advec_ws |
---|
| 138 | USE advec_s_pw_mod |
---|
| 139 | USE advec_s_up_mod |
---|
| 140 | USE advec_u_pw_mod |
---|
| 141 | USE advec_u_up_mod |
---|
| 142 | USE advec_v_pw_mod |
---|
| 143 | USE advec_v_up_mod |
---|
| 144 | USE advec_w_pw_mod |
---|
| 145 | USE advec_w_up_mod |
---|
| 146 | USE buoyancy_mod |
---|
| 147 | USE calc_precipitation_mod |
---|
| 148 | USE calc_radiation_mod |
---|
| 149 | USE coriolis_mod |
---|
| 150 | USE diffusion_e_mod |
---|
| 151 | USE diffusion_s_mod |
---|
| 152 | USE diffusion_u_mod |
---|
| 153 | USE diffusion_v_mod |
---|
| 154 | USE diffusion_w_mod |
---|
| 155 | USE impact_of_latent_heat_mod |
---|
| 156 | USE plant_canopy_model_mod |
---|
| 157 | USE production_e_mod |
---|
| 158 | USE subsidence_mod |
---|
| 159 | USE user_actions_mod |
---|
| 160 | |
---|
| 161 | |
---|
| 162 | PRIVATE |
---|
[1019] | 163 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
| 164 | prognostic_equations_acc |
---|
[736] | 165 | |
---|
| 166 | INTERFACE prognostic_equations_cache |
---|
| 167 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 168 | END INTERFACE prognostic_equations_cache |
---|
| 169 | |
---|
| 170 | INTERFACE prognostic_equations_vector |
---|
| 171 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 172 | END INTERFACE prognostic_equations_vector |
---|
| 173 | |
---|
[1015] | 174 | INTERFACE prognostic_equations_acc |
---|
| 175 | MODULE PROCEDURE prognostic_equations_acc |
---|
| 176 | END INTERFACE prognostic_equations_acc |
---|
[736] | 177 | |
---|
[1015] | 178 | |
---|
[736] | 179 | CONTAINS |
---|
| 180 | |
---|
| 181 | |
---|
| 182 | SUBROUTINE prognostic_equations_cache |
---|
| 183 | |
---|
| 184 | !------------------------------------------------------------------------------! |
---|
| 185 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 186 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
| 187 | ! |
---|
| 188 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 189 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 190 | ! these loops. |
---|
| 191 | ! |
---|
| 192 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 193 | !------------------------------------------------------------------------------! |
---|
| 194 | |
---|
| 195 | IMPLICIT NONE |
---|
| 196 | |
---|
| 197 | CHARACTER (LEN=9) :: time_to_string |
---|
| 198 | INTEGER :: i, i_omp_start, j, k, omp_get_thread_num, tn = 0 |
---|
| 199 | LOGICAL :: loop_start |
---|
| 200 | |
---|
| 201 | |
---|
| 202 | ! |
---|
| 203 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 204 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 205 | |
---|
| 206 | |
---|
| 207 | ! |
---|
| 208 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 209 | !-- global communication |
---|
[940] | 210 | IF ( .NOT. neutral ) CALL calc_mean_profile( pt, 4 ) |
---|
| 211 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 212 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[736] | 213 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
| 214 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
| 215 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
| 216 | |
---|
| 217 | ! |
---|
| 218 | !-- Loop over all prognostic equations |
---|
| 219 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
| 220 | |
---|
| 221 | !$ tn = omp_get_thread_num() |
---|
| 222 | loop_start = .TRUE. |
---|
| 223 | !$OMP DO |
---|
| 224 | DO i = nxl, nxr |
---|
| 225 | |
---|
| 226 | ! |
---|
| 227 | !-- Store the first loop index. It differs for each thread and is required |
---|
| 228 | !-- later in advec_ws |
---|
| 229 | IF ( loop_start ) THEN |
---|
| 230 | loop_start = .FALSE. |
---|
| 231 | i_omp_start = i |
---|
| 232 | ENDIF |
---|
| 233 | |
---|
| 234 | DO j = nys, nyn |
---|
| 235 | ! |
---|
| 236 | !-- Tendency terms for u-velocity component |
---|
| 237 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
| 238 | |
---|
| 239 | tend(:,j,i) = 0.0 |
---|
[1001] | 240 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 241 | IF ( ws_scheme_mom ) THEN |
---|
[978] | 242 | IF ( ( inflow_l .OR. outflow_l ) .AND. i_omp_start == nxl ) THEN |
---|
[736] | 243 | CALL advec_u_ws( i, j, i_omp_start + 1, tn ) |
---|
| 244 | ELSE |
---|
| 245 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
| 246 | ENDIF |
---|
| 247 | ELSE |
---|
| 248 | CALL advec_u_pw( i, j ) |
---|
| 249 | ENDIF |
---|
| 250 | ELSE |
---|
| 251 | CALL advec_u_up( i, j ) |
---|
| 252 | ENDIF |
---|
[1001] | 253 | CALL diffusion_u( i, j ) |
---|
[736] | 254 | CALL coriolis( i, j, 1 ) |
---|
[940] | 255 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
| 256 | CALL buoyancy( i, j, pt, pt_reference, 1, 4 ) |
---|
| 257 | ENDIF |
---|
[736] | 258 | |
---|
| 259 | ! |
---|
| 260 | !-- Drag by plant canopy |
---|
| 261 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
| 262 | |
---|
| 263 | ! |
---|
| 264 | !-- External pressure gradient |
---|
| 265 | IF ( dp_external ) THEN |
---|
| 266 | DO k = dp_level_ind_b+1, nzt |
---|
| 267 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 268 | ENDDO |
---|
| 269 | ENDIF |
---|
| 270 | |
---|
| 271 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 272 | |
---|
| 273 | ! |
---|
| 274 | !-- Prognostic equation for u-velocity component |
---|
| 275 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 276 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 277 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 278 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 279 | ENDDO |
---|
| 280 | |
---|
| 281 | ! |
---|
| 282 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 283 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 284 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 285 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 286 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 287 | ENDDO |
---|
| 288 | ELSEIF ( intermediate_timestep_count < & |
---|
| 289 | intermediate_timestep_count_max ) THEN |
---|
| 290 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 291 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 292 | ENDDO |
---|
| 293 | ENDIF |
---|
| 294 | ENDIF |
---|
| 295 | |
---|
| 296 | ENDIF |
---|
| 297 | |
---|
| 298 | ! |
---|
| 299 | !-- Tendency terms for v-velocity component |
---|
| 300 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
| 301 | |
---|
| 302 | tend(:,j,i) = 0.0 |
---|
[1001] | 303 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 304 | IF ( ws_scheme_mom ) THEN |
---|
| 305 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
| 306 | ELSE |
---|
| 307 | CALL advec_v_pw( i, j ) |
---|
| 308 | ENDIF |
---|
| 309 | ELSE |
---|
| 310 | CALL advec_v_up( i, j ) |
---|
| 311 | ENDIF |
---|
[1001] | 312 | CALL diffusion_v( i, j ) |
---|
[736] | 313 | CALL coriolis( i, j, 2 ) |
---|
| 314 | |
---|
| 315 | ! |
---|
| 316 | !-- Drag by plant canopy |
---|
| 317 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
| 318 | |
---|
| 319 | ! |
---|
| 320 | !-- External pressure gradient |
---|
| 321 | IF ( dp_external ) THEN |
---|
| 322 | DO k = dp_level_ind_b+1, nzt |
---|
| 323 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 324 | ENDDO |
---|
| 325 | ENDIF |
---|
| 326 | |
---|
| 327 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 328 | |
---|
| 329 | ! |
---|
| 330 | !-- Prognostic equation for v-velocity component |
---|
| 331 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 332 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 333 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 334 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 335 | ENDDO |
---|
| 336 | |
---|
| 337 | ! |
---|
| 338 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 339 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 340 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 341 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 342 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 343 | ENDDO |
---|
| 344 | ELSEIF ( intermediate_timestep_count < & |
---|
| 345 | intermediate_timestep_count_max ) THEN |
---|
| 346 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 347 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 348 | ENDDO |
---|
| 349 | ENDIF |
---|
| 350 | ENDIF |
---|
| 351 | |
---|
| 352 | ENDIF |
---|
| 353 | |
---|
| 354 | ! |
---|
| 355 | !-- Tendency terms for w-velocity component |
---|
| 356 | tend(:,j,i) = 0.0 |
---|
[1001] | 357 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 358 | IF ( ws_scheme_mom ) THEN |
---|
| 359 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
| 360 | ELSE |
---|
| 361 | CALL advec_w_pw( i, j ) |
---|
| 362 | END IF |
---|
| 363 | ELSE |
---|
| 364 | CALL advec_w_up( i, j ) |
---|
| 365 | ENDIF |
---|
[1001] | 366 | CALL diffusion_w( i, j ) |
---|
[736] | 367 | CALL coriolis( i, j, 3 ) |
---|
[940] | 368 | |
---|
| 369 | IF ( .NOT. neutral ) THEN |
---|
| 370 | IF ( ocean ) THEN |
---|
| 371 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
[736] | 372 | ELSE |
---|
[940] | 373 | IF ( .NOT. humidity ) THEN |
---|
| 374 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
| 375 | ELSE |
---|
| 376 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
| 377 | ENDIF |
---|
[736] | 378 | ENDIF |
---|
| 379 | ENDIF |
---|
| 380 | |
---|
| 381 | ! |
---|
| 382 | !-- Drag by plant canopy |
---|
| 383 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
| 384 | |
---|
| 385 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 386 | |
---|
| 387 | ! |
---|
| 388 | !-- Prognostic equation for w-velocity component |
---|
| 389 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 390 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 391 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 392 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 393 | ENDDO |
---|
| 394 | |
---|
| 395 | ! |
---|
| 396 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 397 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 398 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 399 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 400 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 401 | ENDDO |
---|
| 402 | ELSEIF ( intermediate_timestep_count < & |
---|
| 403 | intermediate_timestep_count_max ) THEN |
---|
| 404 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 405 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 406 | ENDDO |
---|
| 407 | ENDIF |
---|
| 408 | ENDIF |
---|
| 409 | |
---|
| 410 | ! |
---|
[940] | 411 | !-- If required, compute prognostic equation for potential temperature |
---|
| 412 | IF ( .NOT. neutral ) THEN |
---|
| 413 | ! |
---|
| 414 | !-- Tendency terms for potential temperature |
---|
| 415 | tend(:,j,i) = 0.0 |
---|
[1001] | 416 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 417 | IF ( ws_scheme_sca ) THEN |
---|
| 418 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
| 419 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
| 420 | ELSE |
---|
| 421 | CALL advec_s_pw( i, j, pt ) |
---|
| 422 | ENDIF |
---|
| 423 | ELSE |
---|
| 424 | CALL advec_s_up( i, j, pt ) |
---|
| 425 | ENDIF |
---|
[1001] | 426 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
[736] | 427 | |
---|
| 428 | ! |
---|
[940] | 429 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 430 | !-- processes |
---|
| 431 | IF ( radiation ) THEN |
---|
| 432 | CALL calc_radiation( i, j ) |
---|
| 433 | ENDIF |
---|
[736] | 434 | |
---|
| 435 | ! |
---|
[940] | 436 | !-- If required compute impact of latent heat due to precipitation |
---|
| 437 | IF ( precipitation ) THEN |
---|
| 438 | CALL impact_of_latent_heat( i, j ) |
---|
| 439 | ENDIF |
---|
[736] | 440 | |
---|
| 441 | ! |
---|
[940] | 442 | !-- Consideration of heat sources within the plant canopy |
---|
| 443 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 444 | CALL plant_canopy_model( i, j, 4 ) |
---|
| 445 | ENDIF |
---|
[736] | 446 | |
---|
[940] | 447 | ! |
---|
| 448 | !-- If required, compute influence of large-scale subsidence/ascent |
---|
| 449 | IF ( large_scale_subsidence ) THEN |
---|
| 450 | CALL subsidence( i, j, tend, pt, pt_init ) |
---|
| 451 | ENDIF |
---|
[736] | 452 | |
---|
| 453 | |
---|
[940] | 454 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
[736] | 455 | |
---|
| 456 | ! |
---|
[940] | 457 | !-- Prognostic equation for potential temperature |
---|
| 458 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 459 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 460 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 461 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 462 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 463 | ENDDO |
---|
[736] | 464 | |
---|
| 465 | ! |
---|
[940] | 466 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 467 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 468 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 469 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 470 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 471 | ENDDO |
---|
| 472 | ELSEIF ( intermediate_timestep_count < & |
---|
| 473 | intermediate_timestep_count_max ) THEN |
---|
| 474 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 475 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 476 | 5.3125 * tpt_m(k,j,i) |
---|
| 477 | ENDDO |
---|
| 478 | ENDIF |
---|
[736] | 479 | ENDIF |
---|
[940] | 480 | |
---|
[736] | 481 | ENDIF |
---|
| 482 | |
---|
| 483 | ! |
---|
| 484 | !-- If required, compute prognostic equation for salinity |
---|
| 485 | IF ( ocean ) THEN |
---|
| 486 | |
---|
| 487 | ! |
---|
| 488 | !-- Tendency-terms for salinity |
---|
| 489 | tend(:,j,i) = 0.0 |
---|
[1001] | 490 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 491 | THEN |
---|
| 492 | IF ( ws_scheme_sca ) THEN |
---|
| 493 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
| 494 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
| 495 | ELSE |
---|
| 496 | CALL advec_s_pw( i, j, sa ) |
---|
| 497 | ENDIF |
---|
| 498 | ELSE |
---|
| 499 | CALL advec_s_up( i, j, sa ) |
---|
| 500 | ENDIF |
---|
[1001] | 501 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 502 | |
---|
| 503 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 504 | |
---|
| 505 | ! |
---|
| 506 | !-- Prognostic equation for salinity |
---|
| 507 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 508 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 509 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 510 | - tsc(5) * rdf_sc(k) * & |
---|
| 511 | ( sa(k,j,i) - sa_init(k) ) |
---|
[736] | 512 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 513 | ENDDO |
---|
| 514 | |
---|
| 515 | ! |
---|
| 516 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 517 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 518 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 519 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 520 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 521 | ENDDO |
---|
| 522 | ELSEIF ( intermediate_timestep_count < & |
---|
| 523 | intermediate_timestep_count_max ) THEN |
---|
| 524 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 525 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 526 | 5.3125 * tsa_m(k,j,i) |
---|
| 527 | ENDDO |
---|
| 528 | ENDIF |
---|
| 529 | ENDIF |
---|
| 530 | |
---|
| 531 | ! |
---|
| 532 | !-- Calculate density by the equation of state for seawater |
---|
| 533 | CALL eqn_state_seawater( i, j ) |
---|
| 534 | |
---|
| 535 | ENDIF |
---|
| 536 | |
---|
| 537 | ! |
---|
| 538 | !-- If required, compute prognostic equation for total water content / |
---|
| 539 | !-- scalar |
---|
| 540 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 541 | |
---|
| 542 | ! |
---|
| 543 | !-- Tendency-terms for total water content / scalar |
---|
| 544 | tend(:,j,i) = 0.0 |
---|
[1001] | 545 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
[736] | 546 | THEN |
---|
| 547 | IF ( ws_scheme_sca ) THEN |
---|
| 548 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
| 549 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
| 550 | ELSE |
---|
| 551 | CALL advec_s_pw( i, j, q ) |
---|
| 552 | ENDIF |
---|
| 553 | ELSE |
---|
| 554 | CALL advec_s_up( i, j, q ) |
---|
| 555 | ENDIF |
---|
[1001] | 556 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
[736] | 557 | |
---|
| 558 | ! |
---|
| 559 | !-- If required compute decrease of total water content due to |
---|
| 560 | !-- precipitation |
---|
| 561 | IF ( precipitation ) THEN |
---|
| 562 | CALL calc_precipitation( i, j ) |
---|
| 563 | ENDIF |
---|
| 564 | |
---|
| 565 | ! |
---|
| 566 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 567 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
| 568 | |
---|
| 569 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[940] | 570 | IF ( large_scale_subsidence ) THEN |
---|
| 571 | CALL subsidence( i, j, tend, q, q_init ) |
---|
[736] | 572 | ENDIF |
---|
| 573 | |
---|
| 574 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 575 | |
---|
| 576 | ! |
---|
| 577 | !-- Prognostic equation for total water content / scalar |
---|
| 578 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 579 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 580 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 581 | - tsc(5) * rdf_sc(k) * & |
---|
| 582 | ( q(k,j,i) - q_init(k) ) |
---|
[736] | 583 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 584 | ENDDO |
---|
| 585 | |
---|
| 586 | ! |
---|
| 587 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 588 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 589 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 590 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 591 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 592 | ENDDO |
---|
| 593 | ELSEIF ( intermediate_timestep_count < & |
---|
| 594 | intermediate_timestep_count_max ) THEN |
---|
| 595 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 596 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 597 | 5.3125 * tq_m(k,j,i) |
---|
| 598 | ENDDO |
---|
| 599 | ENDIF |
---|
| 600 | ENDIF |
---|
| 601 | |
---|
| 602 | ENDIF |
---|
| 603 | |
---|
| 604 | ! |
---|
| 605 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 606 | !-- energy (TKE) |
---|
| 607 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 608 | |
---|
| 609 | ! |
---|
| 610 | !-- Tendency-terms for TKE |
---|
| 611 | tend(:,j,i) = 0.0 |
---|
[1001] | 612 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
[736] | 613 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
| 614 | IF ( ws_scheme_sca ) THEN |
---|
[1001] | 615 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
| 616 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
[736] | 617 | ELSE |
---|
| 618 | CALL advec_s_pw( i, j, e ) |
---|
| 619 | ENDIF |
---|
| 620 | ELSE |
---|
| 621 | CALL advec_s_up( i, j, e ) |
---|
| 622 | ENDIF |
---|
[1001] | 623 | IF ( .NOT. humidity ) THEN |
---|
| 624 | IF ( ocean ) THEN |
---|
| 625 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
[736] | 626 | ELSE |
---|
[1001] | 627 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
[736] | 628 | ENDIF |
---|
| 629 | ELSE |
---|
[1001] | 630 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
[736] | 631 | ENDIF |
---|
| 632 | CALL production_e( i, j ) |
---|
| 633 | |
---|
| 634 | ! |
---|
| 635 | !-- Additional sink term for flows through plant canopies |
---|
| 636 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
| 637 | |
---|
| 638 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 639 | |
---|
| 640 | ! |
---|
| 641 | !-- Prognostic equation for TKE. |
---|
| 642 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 643 | !-- reasons in the course of the integration. In such cases the old |
---|
| 644 | !-- TKE value is reduced by 90%. |
---|
| 645 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 646 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 647 | tsc(3) * te_m(k,j,i) ) |
---|
[736] | 648 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 649 | ENDDO |
---|
| 650 | |
---|
| 651 | ! |
---|
| 652 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 653 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 654 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 655 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 656 | te_m(k,j,i) = tend(k,j,i) |
---|
| 657 | ENDDO |
---|
| 658 | ELSEIF ( intermediate_timestep_count < & |
---|
| 659 | intermediate_timestep_count_max ) THEN |
---|
| 660 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 661 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 662 | 5.3125 * te_m(k,j,i) |
---|
| 663 | ENDDO |
---|
| 664 | ENDIF |
---|
| 665 | ENDIF |
---|
| 666 | |
---|
| 667 | ENDIF ! TKE equation |
---|
| 668 | |
---|
| 669 | ENDDO |
---|
| 670 | ENDDO |
---|
| 671 | !$OMP END PARALLEL |
---|
| 672 | |
---|
| 673 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 674 | |
---|
| 675 | |
---|
| 676 | END SUBROUTINE prognostic_equations_cache |
---|
| 677 | |
---|
| 678 | |
---|
| 679 | SUBROUTINE prognostic_equations_vector |
---|
| 680 | |
---|
| 681 | !------------------------------------------------------------------------------! |
---|
| 682 | ! Version for vector machines |
---|
| 683 | !------------------------------------------------------------------------------! |
---|
| 684 | |
---|
| 685 | IMPLICIT NONE |
---|
| 686 | |
---|
| 687 | CHARACTER (LEN=9) :: time_to_string |
---|
| 688 | INTEGER :: i, j, k |
---|
[1001] | 689 | REAL :: sbt |
---|
[736] | 690 | |
---|
| 691 | ! |
---|
| 692 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 693 | !-- global communication |
---|
[940] | 694 | IF ( .NOT. neutral ) CALL calc_mean_profile( pt, 4 ) |
---|
| 695 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 696 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[736] | 697 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
| 698 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
| 699 | |
---|
| 700 | ! |
---|
| 701 | !-- u-velocity component |
---|
| 702 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 703 | |
---|
[1001] | 704 | tend = 0.0 |
---|
| 705 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 706 | IF ( ws_scheme_mom ) THEN |
---|
| 707 | CALL advec_u_ws |
---|
| 708 | ELSE |
---|
| 709 | CALL advec_u_pw |
---|
| 710 | ENDIF |
---|
| 711 | ELSE |
---|
[1001] | 712 | CALL advec_u_up |
---|
[736] | 713 | ENDIF |
---|
[1001] | 714 | CALL diffusion_u |
---|
[736] | 715 | CALL coriolis( 1 ) |
---|
[940] | 716 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
| 717 | CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
| 718 | ENDIF |
---|
[736] | 719 | |
---|
| 720 | ! |
---|
| 721 | !-- Drag by plant canopy |
---|
| 722 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 723 | |
---|
| 724 | ! |
---|
| 725 | !-- External pressure gradient |
---|
| 726 | IF ( dp_external ) THEN |
---|
| 727 | DO i = nxlu, nxr |
---|
| 728 | DO j = nys, nyn |
---|
| 729 | DO k = dp_level_ind_b+1, nzt |
---|
| 730 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 731 | ENDDO |
---|
| 732 | ENDDO |
---|
| 733 | ENDDO |
---|
| 734 | ENDIF |
---|
| 735 | |
---|
| 736 | CALL user_actions( 'u-tendency' ) |
---|
| 737 | |
---|
| 738 | ! |
---|
| 739 | !-- Prognostic equation for u-velocity component |
---|
| 740 | DO i = nxlu, nxr |
---|
| 741 | DO j = nys, nyn |
---|
| 742 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[1001] | 743 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 744 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 745 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
[736] | 746 | ENDDO |
---|
| 747 | ENDDO |
---|
| 748 | ENDDO |
---|
| 749 | |
---|
| 750 | ! |
---|
| 751 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 752 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 753 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 754 | DO i = nxlu, nxr |
---|
| 755 | DO j = nys, nyn |
---|
| 756 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 757 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 758 | ENDDO |
---|
| 759 | ENDDO |
---|
| 760 | ENDDO |
---|
| 761 | ELSEIF ( intermediate_timestep_count < & |
---|
| 762 | intermediate_timestep_count_max ) THEN |
---|
| 763 | DO i = nxlu, nxr |
---|
| 764 | DO j = nys, nyn |
---|
| 765 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 766 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 767 | ENDDO |
---|
| 768 | ENDDO |
---|
| 769 | ENDDO |
---|
| 770 | ENDIF |
---|
| 771 | ENDIF |
---|
| 772 | |
---|
| 773 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 774 | |
---|
| 775 | ! |
---|
| 776 | !-- v-velocity component |
---|
| 777 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 778 | |
---|
[1001] | 779 | tend = 0.0 |
---|
| 780 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 781 | IF ( ws_scheme_mom ) THEN |
---|
| 782 | CALL advec_v_ws |
---|
| 783 | ELSE |
---|
| 784 | CALL advec_v_pw |
---|
| 785 | END IF |
---|
| 786 | ELSE |
---|
[1001] | 787 | CALL advec_v_up |
---|
[736] | 788 | ENDIF |
---|
[1001] | 789 | CALL diffusion_v |
---|
[736] | 790 | CALL coriolis( 2 ) |
---|
| 791 | |
---|
| 792 | ! |
---|
| 793 | !-- Drag by plant canopy |
---|
| 794 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 795 | |
---|
| 796 | ! |
---|
| 797 | !-- External pressure gradient |
---|
| 798 | IF ( dp_external ) THEN |
---|
| 799 | DO i = nxl, nxr |
---|
| 800 | DO j = nysv, nyn |
---|
| 801 | DO k = dp_level_ind_b+1, nzt |
---|
| 802 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 803 | ENDDO |
---|
| 804 | ENDDO |
---|
| 805 | ENDDO |
---|
| 806 | ENDIF |
---|
| 807 | |
---|
| 808 | CALL user_actions( 'v-tendency' ) |
---|
| 809 | |
---|
| 810 | ! |
---|
| 811 | !-- Prognostic equation for v-velocity component |
---|
| 812 | DO i = nxl, nxr |
---|
| 813 | DO j = nysv, nyn |
---|
| 814 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[1001] | 815 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 816 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 817 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
[736] | 818 | ENDDO |
---|
| 819 | ENDDO |
---|
| 820 | ENDDO |
---|
| 821 | |
---|
| 822 | ! |
---|
| 823 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 824 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 825 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 826 | DO i = nxl, nxr |
---|
| 827 | DO j = nysv, nyn |
---|
| 828 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 829 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 830 | ENDDO |
---|
| 831 | ENDDO |
---|
| 832 | ENDDO |
---|
| 833 | ELSEIF ( intermediate_timestep_count < & |
---|
| 834 | intermediate_timestep_count_max ) THEN |
---|
| 835 | DO i = nxl, nxr |
---|
| 836 | DO j = nysv, nyn |
---|
| 837 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 838 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 839 | ENDDO |
---|
| 840 | ENDDO |
---|
| 841 | ENDDO |
---|
| 842 | ENDIF |
---|
| 843 | ENDIF |
---|
| 844 | |
---|
| 845 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 846 | |
---|
| 847 | ! |
---|
| 848 | !-- w-velocity component |
---|
| 849 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 850 | |
---|
[1001] | 851 | tend = 0.0 |
---|
| 852 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 853 | IF ( ws_scheme_mom ) THEN |
---|
| 854 | CALL advec_w_ws |
---|
| 855 | ELSE |
---|
| 856 | CALL advec_w_pw |
---|
| 857 | ENDIF |
---|
| 858 | ELSE |
---|
[1001] | 859 | CALL advec_w_up |
---|
[736] | 860 | ENDIF |
---|
[1001] | 861 | CALL diffusion_w |
---|
[736] | 862 | CALL coriolis( 3 ) |
---|
[940] | 863 | |
---|
| 864 | IF ( .NOT. neutral ) THEN |
---|
| 865 | IF ( ocean ) THEN |
---|
| 866 | CALL buoyancy( rho, rho_reference, 3, 64 ) |
---|
[736] | 867 | ELSE |
---|
[940] | 868 | IF ( .NOT. humidity ) THEN |
---|
| 869 | CALL buoyancy( pt, pt_reference, 3, 4 ) |
---|
| 870 | ELSE |
---|
| 871 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
| 872 | ENDIF |
---|
[736] | 873 | ENDIF |
---|
| 874 | ENDIF |
---|
| 875 | |
---|
| 876 | ! |
---|
| 877 | !-- Drag by plant canopy |
---|
| 878 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 879 | |
---|
| 880 | CALL user_actions( 'w-tendency' ) |
---|
| 881 | |
---|
| 882 | ! |
---|
| 883 | !-- Prognostic equation for w-velocity component |
---|
| 884 | DO i = nxl, nxr |
---|
| 885 | DO j = nys, nyn |
---|
| 886 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
[1001] | 887 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 888 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 889 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
[736] | 890 | ENDDO |
---|
| 891 | ENDDO |
---|
| 892 | ENDDO |
---|
| 893 | |
---|
| 894 | ! |
---|
| 895 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 896 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 897 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 898 | DO i = nxl, nxr |
---|
| 899 | DO j = nys, nyn |
---|
| 900 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 901 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 902 | ENDDO |
---|
| 903 | ENDDO |
---|
| 904 | ENDDO |
---|
| 905 | ELSEIF ( intermediate_timestep_count < & |
---|
| 906 | intermediate_timestep_count_max ) THEN |
---|
| 907 | DO i = nxl, nxr |
---|
| 908 | DO j = nys, nyn |
---|
| 909 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 910 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 911 | ENDDO |
---|
| 912 | ENDDO |
---|
| 913 | ENDDO |
---|
| 914 | ENDIF |
---|
| 915 | ENDIF |
---|
| 916 | |
---|
| 917 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 918 | |
---|
[940] | 919 | |
---|
[736] | 920 | ! |
---|
[940] | 921 | !-- If required, compute prognostic equation for potential temperature |
---|
| 922 | IF ( .NOT. neutral ) THEN |
---|
[736] | 923 | |
---|
[940] | 924 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 925 | |
---|
[736] | 926 | ! |
---|
[940] | 927 | !-- pt-tendency terms with communication |
---|
| 928 | sbt = tsc(2) |
---|
| 929 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[736] | 930 | |
---|
[940] | 931 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[736] | 932 | ! |
---|
[1001] | 933 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[940] | 934 | sbt = 1.0 |
---|
| 935 | ENDIF |
---|
[736] | 936 | tend = 0.0 |
---|
[940] | 937 | CALL advec_s_bc( pt, 'pt' ) |
---|
[1001] | 938 | |
---|
[736] | 939 | ENDIF |
---|
[940] | 940 | |
---|
| 941 | ! |
---|
| 942 | !-- pt-tendency terms with no communication |
---|
[1001] | 943 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 944 | tend = 0.0 |
---|
| 945 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[940] | 946 | IF ( ws_scheme_sca ) THEN |
---|
| 947 | CALL advec_s_ws( pt, 'pt' ) |
---|
| 948 | ELSE |
---|
| 949 | CALL advec_s_pw( pt ) |
---|
| 950 | ENDIF |
---|
| 951 | ELSE |
---|
[1001] | 952 | CALL advec_s_up( pt ) |
---|
[940] | 953 | ENDIF |
---|
[736] | 954 | ENDIF |
---|
| 955 | |
---|
[1001] | 956 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
| 957 | |
---|
[736] | 958 | ! |
---|
[940] | 959 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 960 | IF ( radiation ) THEN |
---|
| 961 | CALL calc_radiation |
---|
| 962 | ENDIF |
---|
[736] | 963 | |
---|
| 964 | ! |
---|
[940] | 965 | !-- If required compute impact of latent heat due to precipitation |
---|
| 966 | IF ( precipitation ) THEN |
---|
| 967 | CALL impact_of_latent_heat |
---|
| 968 | ENDIF |
---|
[736] | 969 | |
---|
| 970 | ! |
---|
[940] | 971 | !-- Consideration of heat sources within the plant canopy |
---|
| 972 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 973 | CALL plant_canopy_model( 4 ) |
---|
| 974 | ENDIF |
---|
[736] | 975 | |
---|
[940] | 976 | ! |
---|
| 977 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 978 | IF ( large_scale_subsidence ) THEN |
---|
| 979 | CALL subsidence( tend, pt, pt_init ) |
---|
| 980 | ENDIF |
---|
[736] | 981 | |
---|
[940] | 982 | CALL user_actions( 'pt-tendency' ) |
---|
[736] | 983 | |
---|
| 984 | ! |
---|
[940] | 985 | !-- Prognostic equation for potential temperature |
---|
| 986 | DO i = nxl, nxr |
---|
| 987 | DO j = nys, nyn |
---|
| 988 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 989 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 990 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 991 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 992 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
[940] | 993 | ENDDO |
---|
[736] | 994 | ENDDO |
---|
| 995 | ENDDO |
---|
| 996 | |
---|
| 997 | ! |
---|
[940] | 998 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 999 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1000 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1001 | DO i = nxl, nxr |
---|
| 1002 | DO j = nys, nyn |
---|
| 1003 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1004 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1005 | ENDDO |
---|
[736] | 1006 | ENDDO |
---|
| 1007 | ENDDO |
---|
[940] | 1008 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1009 | intermediate_timestep_count_max ) THEN |
---|
| 1010 | DO i = nxl, nxr |
---|
| 1011 | DO j = nys, nyn |
---|
| 1012 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1013 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1014 | 5.3125 * tpt_m(k,j,i) |
---|
| 1015 | ENDDO |
---|
[736] | 1016 | ENDDO |
---|
| 1017 | ENDDO |
---|
[940] | 1018 | ENDIF |
---|
[736] | 1019 | ENDIF |
---|
[940] | 1020 | |
---|
| 1021 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1022 | |
---|
[736] | 1023 | ENDIF |
---|
| 1024 | |
---|
| 1025 | ! |
---|
| 1026 | !-- If required, compute prognostic equation for salinity |
---|
| 1027 | IF ( ocean ) THEN |
---|
| 1028 | |
---|
| 1029 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1030 | |
---|
| 1031 | ! |
---|
| 1032 | !-- sa-tendency terms with communication |
---|
| 1033 | sbt = tsc(2) |
---|
| 1034 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1035 | |
---|
| 1036 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1037 | ! |
---|
[1001] | 1038 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[736] | 1039 | sbt = 1.0 |
---|
| 1040 | ENDIF |
---|
| 1041 | tend = 0.0 |
---|
| 1042 | CALL advec_s_bc( sa, 'sa' ) |
---|
[1001] | 1043 | |
---|
[736] | 1044 | ENDIF |
---|
| 1045 | |
---|
| 1046 | ! |
---|
| 1047 | !-- sa-tendency terms with no communication |
---|
[1001] | 1048 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1049 | tend = 0.0 |
---|
| 1050 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1051 | IF ( ws_scheme_sca ) THEN |
---|
| 1052 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1053 | ELSE |
---|
| 1054 | CALL advec_s_pw( sa ) |
---|
| 1055 | ENDIF |
---|
| 1056 | ELSE |
---|
[1001] | 1057 | CALL advec_s_up( sa ) |
---|
[736] | 1058 | ENDIF |
---|
| 1059 | ENDIF |
---|
[1001] | 1060 | |
---|
| 1061 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
[736] | 1062 | |
---|
| 1063 | CALL user_actions( 'sa-tendency' ) |
---|
| 1064 | |
---|
| 1065 | ! |
---|
| 1066 | !-- Prognostic equation for salinity |
---|
| 1067 | DO i = nxl, nxr |
---|
| 1068 | DO j = nys, nyn |
---|
| 1069 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1070 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1071 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1072 | - tsc(5) * rdf_sc(k) * & |
---|
| 1073 | ( sa(k,j,i) - sa_init(k) ) |
---|
[736] | 1074 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1075 | ENDDO |
---|
| 1076 | ENDDO |
---|
| 1077 | ENDDO |
---|
| 1078 | |
---|
| 1079 | ! |
---|
| 1080 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1081 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1082 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1083 | DO i = nxl, nxr |
---|
| 1084 | DO j = nys, nyn |
---|
| 1085 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1086 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1087 | ENDDO |
---|
| 1088 | ENDDO |
---|
| 1089 | ENDDO |
---|
| 1090 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1091 | intermediate_timestep_count_max ) THEN |
---|
| 1092 | DO i = nxl, nxr |
---|
| 1093 | DO j = nys, nyn |
---|
| 1094 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1095 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1096 | 5.3125 * tsa_m(k,j,i) |
---|
| 1097 | ENDDO |
---|
| 1098 | ENDDO |
---|
| 1099 | ENDDO |
---|
| 1100 | ENDIF |
---|
| 1101 | ENDIF |
---|
| 1102 | |
---|
| 1103 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1104 | |
---|
| 1105 | ! |
---|
| 1106 | !-- Calculate density by the equation of state for seawater |
---|
| 1107 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1108 | CALL eqn_state_seawater |
---|
| 1109 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1110 | |
---|
| 1111 | ENDIF |
---|
| 1112 | |
---|
| 1113 | ! |
---|
| 1114 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1115 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1116 | |
---|
| 1117 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1118 | |
---|
| 1119 | ! |
---|
| 1120 | !-- Scalar/q-tendency terms with communication |
---|
| 1121 | sbt = tsc(2) |
---|
| 1122 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1123 | |
---|
| 1124 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1125 | ! |
---|
[1001] | 1126 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[736] | 1127 | sbt = 1.0 |
---|
| 1128 | ENDIF |
---|
| 1129 | tend = 0.0 |
---|
| 1130 | CALL advec_s_bc( q, 'q' ) |
---|
[1001] | 1131 | |
---|
[736] | 1132 | ENDIF |
---|
| 1133 | |
---|
| 1134 | ! |
---|
| 1135 | !-- Scalar/q-tendency terms with no communication |
---|
[1001] | 1136 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1137 | tend = 0.0 |
---|
| 1138 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1139 | IF ( ws_scheme_sca ) THEN |
---|
| 1140 | CALL advec_s_ws( q, 'q' ) |
---|
| 1141 | ELSE |
---|
| 1142 | CALL advec_s_pw( q ) |
---|
| 1143 | ENDIF |
---|
| 1144 | ELSE |
---|
[1001] | 1145 | CALL advec_s_up( q ) |
---|
[736] | 1146 | ENDIF |
---|
| 1147 | ENDIF |
---|
[1001] | 1148 | |
---|
| 1149 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
[736] | 1150 | |
---|
| 1151 | ! |
---|
| 1152 | !-- If required compute decrease of total water content due to |
---|
| 1153 | !-- precipitation |
---|
| 1154 | IF ( precipitation ) THEN |
---|
| 1155 | CALL calc_precipitation |
---|
| 1156 | ENDIF |
---|
| 1157 | |
---|
| 1158 | ! |
---|
| 1159 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1160 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1161 | |
---|
| 1162 | ! |
---|
| 1163 | !-- If required compute influence of large-scale subsidence/ascent |
---|
[940] | 1164 | IF ( large_scale_subsidence ) THEN |
---|
| 1165 | CALL subsidence( tend, q, q_init ) |
---|
[736] | 1166 | ENDIF |
---|
| 1167 | |
---|
| 1168 | CALL user_actions( 'q-tendency' ) |
---|
| 1169 | |
---|
| 1170 | ! |
---|
| 1171 | !-- Prognostic equation for total water content / scalar |
---|
| 1172 | DO i = nxl, nxr |
---|
| 1173 | DO j = nys, nyn |
---|
| 1174 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1175 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1176 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1177 | - tsc(5) * rdf_sc(k) * & |
---|
| 1178 | ( q(k,j,i) - q_init(k) ) |
---|
[736] | 1179 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 1180 | ENDDO |
---|
| 1181 | ENDDO |
---|
| 1182 | ENDDO |
---|
| 1183 | |
---|
| 1184 | ! |
---|
| 1185 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1186 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1187 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1188 | DO i = nxl, nxr |
---|
| 1189 | DO j = nys, nyn |
---|
| 1190 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1191 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1192 | ENDDO |
---|
| 1193 | ENDDO |
---|
| 1194 | ENDDO |
---|
| 1195 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1196 | intermediate_timestep_count_max ) THEN |
---|
| 1197 | DO i = nxl, nxr |
---|
| 1198 | DO j = nys, nyn |
---|
| 1199 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1200 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1201 | ENDDO |
---|
| 1202 | ENDDO |
---|
| 1203 | ENDDO |
---|
| 1204 | ENDIF |
---|
| 1205 | ENDIF |
---|
| 1206 | |
---|
| 1207 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1208 | |
---|
| 1209 | ENDIF |
---|
| 1210 | |
---|
| 1211 | ! |
---|
| 1212 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1213 | !-- energy (TKE) |
---|
| 1214 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1215 | |
---|
| 1216 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1217 | |
---|
| 1218 | ! |
---|
| 1219 | !-- TKE-tendency terms with communication |
---|
| 1220 | CALL production_e_init |
---|
| 1221 | |
---|
| 1222 | sbt = tsc(2) |
---|
| 1223 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1224 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1225 | |
---|
| 1226 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1227 | ! |
---|
[1001] | 1228 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
[736] | 1229 | sbt = 1.0 |
---|
| 1230 | ENDIF |
---|
| 1231 | tend = 0.0 |
---|
| 1232 | CALL advec_s_bc( e, 'e' ) |
---|
[1001] | 1233 | |
---|
[736] | 1234 | ENDIF |
---|
| 1235 | ENDIF |
---|
| 1236 | |
---|
| 1237 | ! |
---|
| 1238 | !-- TKE-tendency terms with no communication |
---|
[1001] | 1239 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
[736] | 1240 | IF ( use_upstream_for_tke ) THEN |
---|
| 1241 | tend = 0.0 |
---|
| 1242 | CALL advec_s_up( e ) |
---|
| 1243 | ELSE |
---|
[1001] | 1244 | tend = 0.0 |
---|
| 1245 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
[736] | 1246 | IF ( ws_scheme_sca ) THEN |
---|
| 1247 | CALL advec_s_ws( e, 'e' ) |
---|
| 1248 | ELSE |
---|
| 1249 | CALL advec_s_pw( e ) |
---|
| 1250 | ENDIF |
---|
| 1251 | ELSE |
---|
[1001] | 1252 | CALL advec_s_up( e ) |
---|
[736] | 1253 | ENDIF |
---|
| 1254 | ENDIF |
---|
[1001] | 1255 | ENDIF |
---|
| 1256 | |
---|
| 1257 | IF ( .NOT. humidity ) THEN |
---|
| 1258 | IF ( ocean ) THEN |
---|
| 1259 | CALL diffusion_e( prho, prho_reference ) |
---|
[736] | 1260 | ELSE |
---|
[1001] | 1261 | CALL diffusion_e( pt, pt_reference ) |
---|
[736] | 1262 | ENDIF |
---|
[1001] | 1263 | ELSE |
---|
| 1264 | CALL diffusion_e( vpt, pt_reference ) |
---|
[736] | 1265 | ENDIF |
---|
[1001] | 1266 | |
---|
[736] | 1267 | CALL production_e |
---|
| 1268 | |
---|
| 1269 | ! |
---|
| 1270 | !-- Additional sink term for flows through plant canopies |
---|
| 1271 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1272 | CALL user_actions( 'e-tendency' ) |
---|
| 1273 | |
---|
| 1274 | ! |
---|
| 1275 | !-- Prognostic equation for TKE. |
---|
| 1276 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1277 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1278 | !-- value is reduced by 90%. |
---|
| 1279 | DO i = nxl, nxr |
---|
| 1280 | DO j = nys, nyn |
---|
| 1281 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1001] | 1282 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1283 | tsc(3) * te_m(k,j,i) ) |
---|
[736] | 1284 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1285 | ENDDO |
---|
| 1286 | ENDDO |
---|
| 1287 | ENDDO |
---|
| 1288 | |
---|
| 1289 | ! |
---|
| 1290 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1291 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1292 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1293 | DO i = nxl, nxr |
---|
| 1294 | DO j = nys, nyn |
---|
| 1295 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1296 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1297 | ENDDO |
---|
| 1298 | ENDDO |
---|
| 1299 | ENDDO |
---|
| 1300 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1301 | intermediate_timestep_count_max ) THEN |
---|
| 1302 | DO i = nxl, nxr |
---|
| 1303 | DO j = nys, nyn |
---|
| 1304 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1305 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 1306 | ENDDO |
---|
| 1307 | ENDDO |
---|
| 1308 | ENDDO |
---|
| 1309 | ENDIF |
---|
| 1310 | ENDIF |
---|
| 1311 | |
---|
| 1312 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1313 | |
---|
| 1314 | ENDIF |
---|
| 1315 | |
---|
| 1316 | |
---|
| 1317 | END SUBROUTINE prognostic_equations_vector |
---|
| 1318 | |
---|
| 1319 | |
---|
[1015] | 1320 | SUBROUTINE prognostic_equations_acc |
---|
| 1321 | |
---|
| 1322 | !------------------------------------------------------------------------------! |
---|
| 1323 | ! Version for accelerator boards |
---|
| 1324 | !------------------------------------------------------------------------------! |
---|
| 1325 | |
---|
| 1326 | IMPLICIT NONE |
---|
| 1327 | |
---|
| 1328 | CHARACTER (LEN=9) :: time_to_string |
---|
| 1329 | INTEGER :: i, j, k, runge_step |
---|
| 1330 | REAL :: sbt |
---|
| 1331 | |
---|
| 1332 | ! |
---|
| 1333 | !-- Set switch for intermediate Runge-Kutta step |
---|
| 1334 | runge_step = 0 |
---|
| 1335 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1336 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1337 | runge_step = 1 |
---|
| 1338 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1339 | intermediate_timestep_count_max ) THEN |
---|
| 1340 | runge_step = 2 |
---|
| 1341 | ENDIF |
---|
| 1342 | ENDIF |
---|
| 1343 | |
---|
| 1344 | ! |
---|
| 1345 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 1346 | !-- global communication |
---|
| 1347 | IF ( .NOT. neutral ) CALL calc_mean_profile( pt, 4 ) |
---|
| 1348 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 1349 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
| 1350 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
| 1351 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
| 1352 | |
---|
| 1353 | ! |
---|
| 1354 | !-- u-velocity component |
---|
| 1355 | !++ Statistics still not ported to accelerators |
---|
| 1356 | !$acc update device( hom ) |
---|
| 1357 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1358 | |
---|
| 1359 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1360 | IF ( ws_scheme_mom ) THEN |
---|
| 1361 | CALL advec_u_ws_acc |
---|
| 1362 | ELSE |
---|
| 1363 | tend = 0.0 ! to be removed later?? |
---|
| 1364 | CALL advec_u_pw |
---|
| 1365 | ENDIF |
---|
| 1366 | ELSE |
---|
| 1367 | CALL advec_u_up |
---|
| 1368 | ENDIF |
---|
| 1369 | CALL diffusion_u_acc |
---|
| 1370 | CALL coriolis_acc( 1 ) |
---|
| 1371 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
| 1372 | CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
| 1373 | ENDIF |
---|
| 1374 | |
---|
| 1375 | ! |
---|
| 1376 | !-- Drag by plant canopy |
---|
| 1377 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
| 1378 | |
---|
| 1379 | ! |
---|
| 1380 | !-- External pressure gradient |
---|
| 1381 | IF ( dp_external ) THEN |
---|
| 1382 | DO i = nxlu, nxr |
---|
| 1383 | DO j = nys, nyn |
---|
| 1384 | DO k = dp_level_ind_b+1, nzt |
---|
| 1385 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
| 1386 | ENDDO |
---|
| 1387 | ENDDO |
---|
| 1388 | ENDDO |
---|
| 1389 | ENDIF |
---|
| 1390 | |
---|
| 1391 | CALL user_actions( 'u-tendency' ) |
---|
| 1392 | |
---|
| 1393 | ! |
---|
| 1394 | !-- Prognostic equation for u-velocity component |
---|
| 1395 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, ug, u_p ) |
---|
| 1396 | !$acc loop |
---|
| 1397 | DO i = nxlu, nxr |
---|
| 1398 | DO j = nys, nyn |
---|
| 1399 | !$acc loop vector( 32 ) |
---|
| 1400 | DO k = 1, nzt |
---|
| 1401 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
| 1402 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1403 | tsc(3) * tu_m(k,j,i) ) & |
---|
| 1404 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1405 | ! |
---|
| 1406 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1407 | IF ( runge_step == 1 ) THEN |
---|
| 1408 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1409 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1410 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 1411 | ENDIF |
---|
| 1412 | ENDIF |
---|
| 1413 | ENDDO |
---|
| 1414 | ENDDO |
---|
| 1415 | ENDDO |
---|
| 1416 | !$acc end kernels |
---|
| 1417 | |
---|
| 1418 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1419 | !$acc update host( u_p ) |
---|
| 1420 | |
---|
| 1421 | ! |
---|
| 1422 | !-- v-velocity component |
---|
| 1423 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1424 | |
---|
| 1425 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1426 | IF ( ws_scheme_mom ) THEN |
---|
| 1427 | CALL advec_v_ws_acc |
---|
| 1428 | ELSE |
---|
| 1429 | tend = 0.0 ! to be removed later?? |
---|
| 1430 | CALL advec_v_pw |
---|
| 1431 | END IF |
---|
| 1432 | ELSE |
---|
| 1433 | CALL advec_v_up |
---|
| 1434 | ENDIF |
---|
| 1435 | CALL diffusion_v_acc |
---|
| 1436 | CALL coriolis_acc( 2 ) |
---|
| 1437 | |
---|
| 1438 | ! |
---|
| 1439 | !-- Drag by plant canopy |
---|
| 1440 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
| 1441 | |
---|
| 1442 | ! |
---|
| 1443 | !-- External pressure gradient |
---|
| 1444 | IF ( dp_external ) THEN |
---|
| 1445 | DO i = nxl, nxr |
---|
| 1446 | DO j = nysv, nyn |
---|
| 1447 | DO k = dp_level_ind_b+1, nzt |
---|
| 1448 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
| 1449 | ENDDO |
---|
| 1450 | ENDDO |
---|
| 1451 | ENDDO |
---|
| 1452 | ENDIF |
---|
| 1453 | |
---|
| 1454 | CALL user_actions( 'v-tendency' ) |
---|
| 1455 | |
---|
| 1456 | ! |
---|
| 1457 | !-- Prognostic equation for v-velocity component |
---|
| 1458 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, vg, v_p ) |
---|
| 1459 | !$acc loop |
---|
| 1460 | DO i = nxl, nxr |
---|
| 1461 | DO j = nysv, nyn |
---|
| 1462 | !$acc loop vector( 32 ) |
---|
| 1463 | DO k = 1, nzt |
---|
| 1464 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
| 1465 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1466 | tsc(3) * tv_m(k,j,i) ) & |
---|
| 1467 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1468 | ! |
---|
| 1469 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1470 | IF ( runge_step == 1 ) THEN |
---|
| 1471 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1472 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1473 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1474 | ENDIF |
---|
| 1475 | ENDIF |
---|
| 1476 | ENDDO |
---|
| 1477 | ENDDO |
---|
| 1478 | ENDDO |
---|
| 1479 | !$acc end kernels |
---|
| 1480 | |
---|
| 1481 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1482 | !$acc update host( v_p ) |
---|
| 1483 | |
---|
| 1484 | ! |
---|
| 1485 | !-- w-velocity component |
---|
| 1486 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1487 | |
---|
| 1488 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1489 | IF ( ws_scheme_mom ) THEN |
---|
| 1490 | CALL advec_w_ws_acc |
---|
| 1491 | ELSE |
---|
| 1492 | tend = 0.0 ! to be removed later?? |
---|
| 1493 | CALL advec_w_pw |
---|
| 1494 | ENDIF |
---|
| 1495 | ELSE |
---|
| 1496 | CALL advec_w_up |
---|
| 1497 | ENDIF |
---|
| 1498 | CALL diffusion_w_acc |
---|
| 1499 | CALL coriolis_acc( 3 ) |
---|
| 1500 | |
---|
| 1501 | IF ( .NOT. neutral ) THEN |
---|
| 1502 | IF ( ocean ) THEN |
---|
| 1503 | CALL buoyancy( rho, rho_reference, 3, 64 ) |
---|
| 1504 | ELSE |
---|
| 1505 | IF ( .NOT. humidity ) THEN |
---|
| 1506 | CALL buoyancy_acc( pt, pt_reference, 3, 4 ) |
---|
| 1507 | ELSE |
---|
| 1508 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
| 1509 | ENDIF |
---|
| 1510 | ENDIF |
---|
| 1511 | ENDIF |
---|
| 1512 | |
---|
| 1513 | ! |
---|
| 1514 | !-- Drag by plant canopy |
---|
| 1515 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
| 1516 | |
---|
| 1517 | CALL user_actions( 'w-tendency' ) |
---|
| 1518 | |
---|
| 1519 | ! |
---|
| 1520 | !-- Prognostic equation for w-velocity component |
---|
| 1521 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
| 1522 | !$acc loop |
---|
| 1523 | DO i = nxl, nxr |
---|
| 1524 | DO j = nys, nyn |
---|
| 1525 | !$acc loop vector( 32 ) |
---|
| 1526 | DO k = 1, nzt-1 |
---|
| 1527 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
| 1528 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
| 1529 | tsc(3) * tw_m(k,j,i) ) & |
---|
| 1530 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1531 | ! |
---|
| 1532 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1533 | IF ( runge_step == 1 ) THEN |
---|
| 1534 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1535 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1536 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1537 | ENDIF |
---|
| 1538 | ENDIF |
---|
| 1539 | ENDDO |
---|
| 1540 | ENDDO |
---|
| 1541 | ENDDO |
---|
| 1542 | !$acc end kernels |
---|
| 1543 | |
---|
| 1544 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1545 | !$acc update host( w_p ) |
---|
| 1546 | |
---|
| 1547 | |
---|
| 1548 | ! |
---|
| 1549 | !-- If required, compute prognostic equation for potential temperature |
---|
| 1550 | IF ( .NOT. neutral ) THEN |
---|
| 1551 | |
---|
| 1552 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1553 | |
---|
| 1554 | ! |
---|
| 1555 | !-- pt-tendency terms with communication |
---|
| 1556 | sbt = tsc(2) |
---|
| 1557 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1558 | |
---|
| 1559 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1560 | ! |
---|
| 1561 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1562 | sbt = 1.0 |
---|
| 1563 | ENDIF |
---|
| 1564 | tend = 0.0 |
---|
| 1565 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1566 | |
---|
| 1567 | ENDIF |
---|
| 1568 | |
---|
| 1569 | ! |
---|
| 1570 | !-- pt-tendency terms with no communication |
---|
| 1571 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1572 | tend = 0.0 |
---|
| 1573 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1574 | IF ( ws_scheme_sca ) THEN |
---|
| 1575 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
| 1576 | ELSE |
---|
| 1577 | tend = 0.0 ! to be removed later?? |
---|
| 1578 | CALL advec_s_pw( pt ) |
---|
| 1579 | ENDIF |
---|
| 1580 | ELSE |
---|
| 1581 | CALL advec_s_up( pt ) |
---|
| 1582 | ENDIF |
---|
| 1583 | ENDIF |
---|
| 1584 | |
---|
| 1585 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
| 1586 | |
---|
| 1587 | ! |
---|
| 1588 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
| 1589 | IF ( radiation ) THEN |
---|
| 1590 | CALL calc_radiation |
---|
| 1591 | ENDIF |
---|
| 1592 | |
---|
| 1593 | ! |
---|
| 1594 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1595 | IF ( precipitation ) THEN |
---|
| 1596 | CALL impact_of_latent_heat |
---|
| 1597 | ENDIF |
---|
| 1598 | |
---|
| 1599 | ! |
---|
| 1600 | !-- Consideration of heat sources within the plant canopy |
---|
| 1601 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
| 1602 | CALL plant_canopy_model( 4 ) |
---|
| 1603 | ENDIF |
---|
| 1604 | |
---|
| 1605 | ! |
---|
| 1606 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1607 | IF ( large_scale_subsidence ) THEN |
---|
| 1608 | CALL subsidence( tend, pt, pt_init ) |
---|
| 1609 | ENDIF |
---|
| 1610 | |
---|
| 1611 | CALL user_actions( 'pt-tendency' ) |
---|
| 1612 | |
---|
| 1613 | ! |
---|
| 1614 | !-- Prognostic equation for potential temperature |
---|
| 1615 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
| 1616 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
| 1617 | !$acc loop |
---|
| 1618 | DO i = nxl, nxr |
---|
| 1619 | DO j = nys, nyn |
---|
| 1620 | !$acc loop vector( 32 ) |
---|
| 1621 | DO k = 1, nzt |
---|
| 1622 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 1623 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1624 | tsc(3) * tpt_m(k,j,i) ) & |
---|
| 1625 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
| 1626 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
| 1627 | ! |
---|
| 1628 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1629 | IF ( runge_step == 1 ) THEN |
---|
| 1630 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1631 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1632 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 1633 | ENDIF |
---|
| 1634 | ENDIF |
---|
| 1635 | ENDDO |
---|
| 1636 | ENDDO |
---|
| 1637 | ENDDO |
---|
| 1638 | !$acc end kernels |
---|
| 1639 | |
---|
| 1640 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1641 | !$acc update host( pt_p ) |
---|
| 1642 | |
---|
| 1643 | ENDIF |
---|
| 1644 | |
---|
| 1645 | ! |
---|
| 1646 | !-- If required, compute prognostic equation for salinity |
---|
| 1647 | IF ( ocean ) THEN |
---|
| 1648 | |
---|
| 1649 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1650 | |
---|
| 1651 | ! |
---|
| 1652 | !-- sa-tendency terms with communication |
---|
| 1653 | sbt = tsc(2) |
---|
| 1654 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1655 | |
---|
| 1656 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1657 | ! |
---|
| 1658 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1659 | sbt = 1.0 |
---|
| 1660 | ENDIF |
---|
| 1661 | tend = 0.0 |
---|
| 1662 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 1663 | |
---|
| 1664 | ENDIF |
---|
| 1665 | |
---|
| 1666 | ! |
---|
| 1667 | !-- sa-tendency terms with no communication |
---|
| 1668 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1669 | tend = 0.0 |
---|
| 1670 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1671 | IF ( ws_scheme_sca ) THEN |
---|
| 1672 | CALL advec_s_ws( sa, 'sa' ) |
---|
| 1673 | ELSE |
---|
| 1674 | CALL advec_s_pw( sa ) |
---|
| 1675 | ENDIF |
---|
| 1676 | ELSE |
---|
| 1677 | CALL advec_s_up( sa ) |
---|
| 1678 | ENDIF |
---|
| 1679 | ENDIF |
---|
| 1680 | |
---|
| 1681 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
| 1682 | |
---|
| 1683 | CALL user_actions( 'sa-tendency' ) |
---|
| 1684 | |
---|
| 1685 | ! |
---|
| 1686 | !-- Prognostic equation for salinity |
---|
| 1687 | DO i = nxl, nxr |
---|
| 1688 | DO j = nys, nyn |
---|
| 1689 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1690 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1691 | tsc(3) * tsa_m(k,j,i) ) & |
---|
| 1692 | - tsc(5) * rdf_sc(k) * & |
---|
| 1693 | ( sa(k,j,i) - sa_init(k) ) |
---|
| 1694 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1695 | ! |
---|
| 1696 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1697 | IF ( runge_step == 1 ) THEN |
---|
| 1698 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1699 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1700 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tsa_m(k,j,i) |
---|
| 1701 | ENDIF |
---|
| 1702 | ENDDO |
---|
| 1703 | ENDDO |
---|
| 1704 | ENDDO |
---|
| 1705 | |
---|
| 1706 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1707 | |
---|
| 1708 | ! |
---|
| 1709 | !-- Calculate density by the equation of state for seawater |
---|
| 1710 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1711 | CALL eqn_state_seawater |
---|
| 1712 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1713 | |
---|
| 1714 | ENDIF |
---|
| 1715 | |
---|
| 1716 | ! |
---|
| 1717 | !-- If required, compute prognostic equation for total water content / scalar |
---|
| 1718 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1719 | |
---|
| 1720 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1721 | |
---|
| 1722 | ! |
---|
| 1723 | !-- Scalar/q-tendency terms with communication |
---|
| 1724 | sbt = tsc(2) |
---|
| 1725 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1726 | |
---|
| 1727 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1728 | ! |
---|
| 1729 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1730 | sbt = 1.0 |
---|
| 1731 | ENDIF |
---|
| 1732 | tend = 0.0 |
---|
| 1733 | CALL advec_s_bc( q, 'q' ) |
---|
| 1734 | |
---|
| 1735 | ENDIF |
---|
| 1736 | |
---|
| 1737 | ! |
---|
| 1738 | !-- Scalar/q-tendency terms with no communication |
---|
| 1739 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
| 1740 | tend = 0.0 |
---|
| 1741 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1742 | IF ( ws_scheme_sca ) THEN |
---|
| 1743 | CALL advec_s_ws( q, 'q' ) |
---|
| 1744 | ELSE |
---|
| 1745 | CALL advec_s_pw( q ) |
---|
| 1746 | ENDIF |
---|
| 1747 | ELSE |
---|
| 1748 | CALL advec_s_up( q ) |
---|
| 1749 | ENDIF |
---|
| 1750 | ENDIF |
---|
| 1751 | |
---|
| 1752 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
| 1753 | |
---|
| 1754 | ! |
---|
| 1755 | !-- If required compute decrease of total water content due to |
---|
| 1756 | !-- precipitation |
---|
| 1757 | IF ( precipitation ) THEN |
---|
| 1758 | CALL calc_precipitation |
---|
| 1759 | ENDIF |
---|
| 1760 | |
---|
| 1761 | ! |
---|
| 1762 | !-- Sink or source of scalar concentration due to canopy elements |
---|
| 1763 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
| 1764 | |
---|
| 1765 | ! |
---|
| 1766 | !-- If required compute influence of large-scale subsidence/ascent |
---|
| 1767 | IF ( large_scale_subsidence ) THEN |
---|
| 1768 | CALL subsidence( tend, q, q_init ) |
---|
| 1769 | ENDIF |
---|
| 1770 | |
---|
| 1771 | CALL user_actions( 'q-tendency' ) |
---|
| 1772 | |
---|
| 1773 | ! |
---|
| 1774 | !-- Prognostic equation for total water content / scalar |
---|
| 1775 | DO i = nxl, nxr |
---|
| 1776 | DO j = nys, nyn |
---|
| 1777 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1778 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1779 | tsc(3) * tq_m(k,j,i) ) & |
---|
| 1780 | - tsc(5) * rdf_sc(k) * & |
---|
| 1781 | ( q(k,j,i) - q_init(k) ) |
---|
| 1782 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
| 1783 | ! |
---|
| 1784 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1785 | IF ( runge_step == 1 ) THEN |
---|
| 1786 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1787 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1788 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1789 | ENDIF |
---|
| 1790 | ENDDO |
---|
| 1791 | ENDDO |
---|
| 1792 | ENDDO |
---|
| 1793 | |
---|
| 1794 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1795 | |
---|
| 1796 | ENDIF |
---|
| 1797 | |
---|
| 1798 | ! |
---|
| 1799 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1800 | !-- energy (TKE) |
---|
| 1801 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1802 | |
---|
| 1803 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1804 | |
---|
| 1805 | ! |
---|
| 1806 | !-- TKE-tendency terms with communication |
---|
| 1807 | CALL production_e_init |
---|
| 1808 | |
---|
| 1809 | sbt = tsc(2) |
---|
| 1810 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1811 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1812 | |
---|
| 1813 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1814 | ! |
---|
| 1815 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
| 1816 | sbt = 1.0 |
---|
| 1817 | ENDIF |
---|
| 1818 | tend = 0.0 |
---|
| 1819 | CALL advec_s_bc( e, 'e' ) |
---|
| 1820 | |
---|
| 1821 | ENDIF |
---|
| 1822 | ENDIF |
---|
| 1823 | |
---|
| 1824 | ! |
---|
| 1825 | !-- TKE-tendency terms with no communication |
---|
| 1826 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
| 1827 | IF ( use_upstream_for_tke ) THEN |
---|
| 1828 | tend = 0.0 |
---|
| 1829 | CALL advec_s_up( e ) |
---|
| 1830 | ELSE |
---|
| 1831 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1832 | IF ( ws_scheme_sca ) THEN |
---|
| 1833 | CALL advec_s_ws_acc( e, 'e' ) |
---|
| 1834 | ELSE |
---|
| 1835 | tend = 0.0 ! to be removed later?? |
---|
| 1836 | CALL advec_s_pw( e ) |
---|
| 1837 | ENDIF |
---|
| 1838 | ELSE |
---|
| 1839 | tend = 0.0 ! to be removed later?? |
---|
| 1840 | CALL advec_s_up( e ) |
---|
| 1841 | ENDIF |
---|
| 1842 | ENDIF |
---|
| 1843 | ENDIF |
---|
| 1844 | |
---|
| 1845 | IF ( .NOT. humidity ) THEN |
---|
| 1846 | IF ( ocean ) THEN |
---|
| 1847 | CALL diffusion_e( prho, prho_reference ) |
---|
| 1848 | ELSE |
---|
| 1849 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
| 1850 | ENDIF |
---|
| 1851 | ELSE |
---|
| 1852 | CALL diffusion_e( vpt, pt_reference ) |
---|
| 1853 | ENDIF |
---|
| 1854 | |
---|
| 1855 | CALL production_e_acc |
---|
| 1856 | |
---|
| 1857 | ! |
---|
| 1858 | !-- Additional sink term for flows through plant canopies |
---|
| 1859 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
| 1860 | CALL user_actions( 'e-tendency' ) |
---|
| 1861 | |
---|
| 1862 | ! |
---|
| 1863 | !-- Prognostic equation for TKE. |
---|
| 1864 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1865 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1866 | !-- value is reduced by 90%. |
---|
| 1867 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
| 1868 | !$acc loop |
---|
| 1869 | DO i = nxl, nxr |
---|
| 1870 | DO j = nys, nyn |
---|
| 1871 | !$acc loop vector( 32 ) |
---|
| 1872 | DO k = 1, nzt |
---|
| 1873 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
| 1874 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
| 1875 | tsc(3) * te_m(k,j,i) ) |
---|
| 1876 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1877 | ! |
---|
| 1878 | !-- Tendencies for the next Runge-Kutta step |
---|
| 1879 | IF ( runge_step == 1 ) THEN |
---|
| 1880 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1881 | ELSEIF ( runge_step == 2 ) THEN |
---|
| 1882 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 1883 | ENDIF |
---|
| 1884 | ENDIF |
---|
| 1885 | ENDDO |
---|
| 1886 | ENDDO |
---|
| 1887 | ENDDO |
---|
| 1888 | !$acc end kernels |
---|
| 1889 | |
---|
| 1890 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1891 | !$acc update host( e_p ) |
---|
| 1892 | |
---|
| 1893 | ENDIF |
---|
| 1894 | |
---|
| 1895 | |
---|
| 1896 | END SUBROUTINE prognostic_equations_acc |
---|
| 1897 | |
---|
| 1898 | |
---|
[736] | 1899 | END MODULE prognostic_equations_mod |
---|