1 | MODULE production_e_mod |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Actual revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: production_e.f90 4 2007-02-13 11:33:16Z raasch $ |
---|
11 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
12 | ! |
---|
13 | ! Revision 1.21 2006/04/26 12:45:35 raasch |
---|
14 | ! OpenMP parallelization of production_e_init |
---|
15 | ! |
---|
16 | ! Revision 1.1 1997/09/19 07:45:35 raasch |
---|
17 | ! Initial revision |
---|
18 | ! |
---|
19 | ! |
---|
20 | ! Description: |
---|
21 | ! ------------ |
---|
22 | ! Production terms (shear + buoyancy) of the TKE |
---|
23 | !------------------------------------------------------------------------------! |
---|
24 | |
---|
25 | PRIVATE |
---|
26 | PUBLIC production_e, production_e_init |
---|
27 | |
---|
28 | LOGICAL, SAVE :: first_call = .TRUE. |
---|
29 | |
---|
30 | REAL, DIMENSION(:,:), ALLOCATABLE, SAVE :: u_0, v_0 |
---|
31 | |
---|
32 | INTERFACE production_e |
---|
33 | MODULE PROCEDURE production_e |
---|
34 | MODULE PROCEDURE production_e_ij |
---|
35 | END INTERFACE production_e |
---|
36 | |
---|
37 | INTERFACE production_e_init |
---|
38 | MODULE PROCEDURE production_e_init |
---|
39 | END INTERFACE production_e_init |
---|
40 | |
---|
41 | CONTAINS |
---|
42 | |
---|
43 | |
---|
44 | !------------------------------------------------------------------------------! |
---|
45 | ! Call for all grid points |
---|
46 | !------------------------------------------------------------------------------! |
---|
47 | SUBROUTINE production_e |
---|
48 | |
---|
49 | USE arrays_3d |
---|
50 | USE cloud_parameters |
---|
51 | USE control_parameters |
---|
52 | USE grid_variables |
---|
53 | USE indices |
---|
54 | USE statistics |
---|
55 | |
---|
56 | IMPLICIT NONE |
---|
57 | |
---|
58 | INTEGER :: i, j, k |
---|
59 | |
---|
60 | REAL :: def, dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz, & |
---|
61 | k1, k2, theta, temp, usvs, vsus, wsus, wsvs |
---|
62 | |
---|
63 | |
---|
64 | ! |
---|
65 | !-- Calculate TKE production by shear |
---|
66 | DO i = nxl, nxr |
---|
67 | |
---|
68 | DO j = nys, nyn |
---|
69 | DO k = nzb_diff_s_outer(j,i), nzt-1 |
---|
70 | |
---|
71 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
72 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
73 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
74 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
75 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
76 | |
---|
77 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
78 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
79 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
80 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
81 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
82 | |
---|
83 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
84 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
85 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
86 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
87 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
88 | |
---|
89 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
90 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
91 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
92 | |
---|
93 | IF ( def < 0.0 ) def = 0.0 |
---|
94 | |
---|
95 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
96 | |
---|
97 | ENDDO |
---|
98 | ENDDO |
---|
99 | |
---|
100 | IF ( use_surface_fluxes ) THEN |
---|
101 | |
---|
102 | ! |
---|
103 | !-- Position neben Gebaeudewand |
---|
104 | !-- 2 - Wird immer ausgefuehrt. 'Boden und Wand: |
---|
105 | !-- u_0,v_0 und Wall functions' |
---|
106 | DO j = nys, nyn |
---|
107 | |
---|
108 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) & |
---|
109 | THEN |
---|
110 | |
---|
111 | k = nzb_diff_s_inner(j,i) - 1 |
---|
112 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
113 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
114 | usvs = kappa * 0.5 * ( u(k,j,i) + u(k,j,i+1) ) & |
---|
115 | / LOG( 0.5 * dy / z0(j,i) ) |
---|
116 | usvs = usvs * ABS( usvs ) |
---|
117 | dudy = wall_e_y(j,i) * usvs / km(k,j,i) |
---|
118 | ELSE |
---|
119 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
120 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
121 | ENDIF |
---|
122 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
123 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
124 | |
---|
125 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
126 | vsus = kappa * 0.5 * ( v(k,j,i) + v(k,j+1,i) ) & |
---|
127 | / LOG( 0.5 * dx / z0(j,i)) |
---|
128 | vsus = vsus * ABS( vsus ) |
---|
129 | dvdx = wall_e_x(j,i) * vsus / km(k,j,i) |
---|
130 | ELSE |
---|
131 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
132 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
133 | ENDIF |
---|
134 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
135 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
136 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
137 | |
---|
138 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
139 | wsus = kappa * 0.5 * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
140 | / LOG( 0.5 * dx / z0(j,i)) |
---|
141 | wsus = wsus * ABS( wsus ) |
---|
142 | dwdx = wall_e_x(j,i) * wsus / km(k,j,i) |
---|
143 | ELSE |
---|
144 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
145 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
146 | ENDIF |
---|
147 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
148 | wsvs = kappa * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
149 | / LOG( 0.5 * dy / z0(j,i)) |
---|
150 | wsvs = wsvs * ABS( wsvs ) |
---|
151 | dwdy = wall_e_y(j,i) * wsvs / km(k,j,i) |
---|
152 | ELSE |
---|
153 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
154 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
155 | ENDIF |
---|
156 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
157 | |
---|
158 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
159 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
160 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
161 | |
---|
162 | IF ( def < 0.0 ) def = 0.0 |
---|
163 | |
---|
164 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
165 | |
---|
166 | ENDIF |
---|
167 | |
---|
168 | ENDDO |
---|
169 | |
---|
170 | ! |
---|
171 | !-- 3 - Wird nur ausgefuehrt, wenn mindestens ein Niveau |
---|
172 | !-- zwischen 2 und 4 liegt, d.h. ab einer Gebaeudemindest- |
---|
173 | !-- hoehe von 2 dz. 'Nur Wand: Wall functions' |
---|
174 | DO j = nys, nyn |
---|
175 | |
---|
176 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) & |
---|
177 | THEN |
---|
178 | |
---|
179 | DO k = nzb_diff_s_inner(j,i), nzb_diff_s_outer(j,i)-2 |
---|
180 | |
---|
181 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
182 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
183 | usvs = kappa * 0.5 * ( u(k,j,i) + u(k,j,i+1) ) & |
---|
184 | / LOG( 0.5 * dy / z0(j,i) ) |
---|
185 | usvs = usvs * ABS( usvs ) |
---|
186 | dudy = wall_e_y(j,i) * usvs / km(k,j,i) |
---|
187 | ELSE |
---|
188 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
189 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
190 | ENDIF |
---|
191 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
192 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
193 | |
---|
194 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
195 | vsus = kappa * 0.5 * ( v(k,j,i) + v(k,j+1,i) ) & |
---|
196 | / LOG( 0.5 * dx / z0(j,i)) |
---|
197 | vsus = vsus * ABS( vsus ) |
---|
198 | dvdx = wall_e_x(j,i) * vsus / km(k,j,i) |
---|
199 | ELSE |
---|
200 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
201 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
202 | ENDIF |
---|
203 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
204 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
205 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
206 | |
---|
207 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
208 | wsus = kappa * 0.5 * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
209 | / LOG( 0.5 * dx / z0(j,i)) |
---|
210 | wsus = wsus * ABS( wsus ) |
---|
211 | dwdx = wall_e_x(j,i) * wsus / km(k,j,i) |
---|
212 | ELSE |
---|
213 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
214 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
215 | ENDIF |
---|
216 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
217 | wsvs = kappa * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
218 | / LOG( 0.5 * dy / z0(j,i)) |
---|
219 | wsvs = wsvs * ABS( wsvs ) |
---|
220 | dwdy = wall_e_y(j,i) * wsvs / km(k,j,i) |
---|
221 | ELSE |
---|
222 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
223 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
224 | ENDIF |
---|
225 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
226 | |
---|
227 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
228 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
229 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
230 | |
---|
231 | IF ( def < 0.0 ) def = 0.0 |
---|
232 | |
---|
233 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
234 | |
---|
235 | ENDDO |
---|
236 | |
---|
237 | ENDIF |
---|
238 | |
---|
239 | ENDDO |
---|
240 | |
---|
241 | ! |
---|
242 | !-- 4 - Wird immer ausgefuehrt. |
---|
243 | !-- 'Sonderfall: Freie Atmosphaere' (wie bei 0) |
---|
244 | DO j = nys, nyn |
---|
245 | |
---|
246 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) & |
---|
247 | THEN |
---|
248 | |
---|
249 | k = nzb_diff_s_outer(j,i)-1 |
---|
250 | |
---|
251 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
252 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
253 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
254 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
255 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
256 | |
---|
257 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
258 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
259 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
260 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
261 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
262 | |
---|
263 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
264 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
265 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
266 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
267 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
268 | |
---|
269 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
270 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
271 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
272 | |
---|
273 | IF ( def < 0.0 ) def = 0.0 |
---|
274 | |
---|
275 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
276 | |
---|
277 | ENDIF |
---|
278 | |
---|
279 | ENDDO |
---|
280 | |
---|
281 | ! |
---|
282 | !-- Position ohne angrenzende Gebaeudewand |
---|
283 | !-- 1 - Wird immer ausgefuehrt. 'Nur Boden: u_0,v_0' |
---|
284 | DO j = nys, nyn |
---|
285 | |
---|
286 | IF ( ( wall_e_x(j,i) == 0.0 ) .AND. ( wall_e_y(j,i) == 0.0 ) ) & |
---|
287 | THEN |
---|
288 | |
---|
289 | k = nzb_diff_s_inner(j,i)-1 |
---|
290 | |
---|
291 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
292 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
293 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
294 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
295 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
296 | |
---|
297 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
298 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
299 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
300 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
301 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
302 | |
---|
303 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
304 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
305 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
306 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
307 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
308 | |
---|
309 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
310 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
311 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
312 | |
---|
313 | IF ( def < 0.0 ) def = 0.0 |
---|
314 | |
---|
315 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
316 | |
---|
317 | ENDIF |
---|
318 | |
---|
319 | ENDDO |
---|
320 | |
---|
321 | ENDIF |
---|
322 | |
---|
323 | ! |
---|
324 | !-- Calculate TKE production by buoyancy |
---|
325 | IF ( .NOT. moisture ) THEN |
---|
326 | |
---|
327 | DO j = nys, nyn |
---|
328 | |
---|
329 | DO k = nzb_diff_s_inner(j,i), nzt-1 |
---|
330 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / pt(k,j,i) * & |
---|
331 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
332 | ENDDO |
---|
333 | IF ( use_surface_fluxes ) THEN |
---|
334 | k = nzb_diff_s_inner(j,i)-1 |
---|
335 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * shf(j,i) |
---|
336 | ENDIF |
---|
337 | |
---|
338 | ENDDO |
---|
339 | |
---|
340 | ELSE |
---|
341 | |
---|
342 | DO j = nys, nyn |
---|
343 | |
---|
344 | DO k = nzb_diff_s_inner(j,i), nzt-1 |
---|
345 | |
---|
346 | IF ( .NOT. cloud_physics ) THEN |
---|
347 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
348 | k2 = 0.61 * pt(k,j,i) |
---|
349 | ELSE |
---|
350 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
351 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
352 | k2 = 0.61 * pt(k,j,i) |
---|
353 | ELSE |
---|
354 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
355 | temp = theta * t_d_pt(k) |
---|
356 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
357 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
358 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
359 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
360 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
361 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
362 | ENDIF |
---|
363 | ENDIF |
---|
364 | |
---|
365 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
366 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
367 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
368 | ) * dd2zu(k) |
---|
369 | ENDDO |
---|
370 | |
---|
371 | ENDDO |
---|
372 | |
---|
373 | IF ( use_surface_fluxes ) THEN |
---|
374 | |
---|
375 | DO j = nys, nyn |
---|
376 | |
---|
377 | k = nzb_diff_s_inner(j,i)-1 |
---|
378 | |
---|
379 | IF ( .NOT. cloud_physics ) THEN |
---|
380 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
381 | k2 = 0.61 * pt(k,j,i) |
---|
382 | ELSE |
---|
383 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
384 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
385 | k2 = 0.61 * pt(k,j,i) |
---|
386 | ELSE |
---|
387 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
388 | temp = theta * t_d_pt(k) |
---|
389 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
390 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
391 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
392 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
393 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
394 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
395 | ENDIF |
---|
396 | ENDIF |
---|
397 | |
---|
398 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
399 | ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
400 | ENDDO |
---|
401 | |
---|
402 | ENDIF |
---|
403 | |
---|
404 | ENDIF |
---|
405 | |
---|
406 | ENDDO |
---|
407 | |
---|
408 | END SUBROUTINE production_e |
---|
409 | |
---|
410 | |
---|
411 | !------------------------------------------------------------------------------! |
---|
412 | ! Call for grid point i,j |
---|
413 | !------------------------------------------------------------------------------! |
---|
414 | SUBROUTINE production_e_ij( i, j ) |
---|
415 | |
---|
416 | USE arrays_3d |
---|
417 | USE cloud_parameters |
---|
418 | USE control_parameters |
---|
419 | USE grid_variables |
---|
420 | USE indices |
---|
421 | USE statistics |
---|
422 | |
---|
423 | IMPLICIT NONE |
---|
424 | |
---|
425 | INTEGER :: i, j, k |
---|
426 | |
---|
427 | REAL :: def, dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz, & |
---|
428 | k1, k2, theta, temp, usvs, vsus, wsus,wsvs |
---|
429 | |
---|
430 | ! |
---|
431 | !-- Calculate TKE production by shear |
---|
432 | DO k = nzb_diff_s_outer(j,i), nzt-1 |
---|
433 | |
---|
434 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
435 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
436 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
437 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
438 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
439 | |
---|
440 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
441 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
442 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
443 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
444 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
445 | |
---|
446 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
447 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
448 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
449 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
450 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
451 | |
---|
452 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) & |
---|
453 | + dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + dvdz**2 & |
---|
454 | + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
455 | |
---|
456 | IF ( def < 0.0 ) def = 0.0 |
---|
457 | |
---|
458 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
459 | |
---|
460 | ENDDO |
---|
461 | |
---|
462 | IF ( use_surface_fluxes ) THEN |
---|
463 | |
---|
464 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) THEN |
---|
465 | ! |
---|
466 | !-- Position neben Gebaeudewand |
---|
467 | !-- 2 - Wird immer ausgefuehrt. 'Boden und Wand: |
---|
468 | !-- u_0,v_0 und Wall functions' |
---|
469 | k = nzb_diff_s_inner(j,i)-1 |
---|
470 | |
---|
471 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
472 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
473 | usvs = kappa * 0.5 * ( u(k,j,i) + u(k,j,i+1) ) & |
---|
474 | / LOG( 0.5 * dy / z0(j,i) ) |
---|
475 | usvs = usvs * ABS( usvs ) |
---|
476 | dudy = wall_e_y(j,i) * usvs / km(k,j,i) |
---|
477 | ELSE |
---|
478 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
479 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
480 | ENDIF |
---|
481 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
482 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
483 | |
---|
484 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
485 | vsus = kappa * 0.5 * ( v(k,j,i) + v(k,j+1,i) ) & |
---|
486 | / LOG( 0.5 * dx / z0(j,i)) |
---|
487 | vsus = vsus * ABS( vsus ) |
---|
488 | dvdx = wall_e_x(j,i) * vsus / km(k,j,i) |
---|
489 | ELSE |
---|
490 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
491 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
492 | ENDIF |
---|
493 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
494 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
495 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
496 | |
---|
497 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
498 | wsus = kappa * 0.5 * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
499 | / LOG( 0.5 * dx / z0(j,i)) |
---|
500 | wsus = wsus * ABS( wsus ) |
---|
501 | dwdx = wall_e_x(j,i) * wsus / km(k,j,i) |
---|
502 | ELSE |
---|
503 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
504 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
505 | ENDIF |
---|
506 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
507 | wsvs = kappa * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
508 | / LOG( 0.5 * dy / z0(j,i)) |
---|
509 | wsvs = wsvs * ABS( wsvs ) |
---|
510 | dwdy = wall_e_y(j,i) * wsvs / km(k,j,i) |
---|
511 | ELSE |
---|
512 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
513 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
514 | ENDIF |
---|
515 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
516 | |
---|
517 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
518 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
519 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
520 | |
---|
521 | IF ( def < 0.0 ) def = 0.0 |
---|
522 | |
---|
523 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
524 | |
---|
525 | ! |
---|
526 | !-- 3 - Wird nur ausgefuehrt, wenn mindestens ein Niveau |
---|
527 | !-- zwischen 2 und 4 liegt, d.h. ab einer Gebaeudemindest- |
---|
528 | !-- hoehe von 2 dz. 'Nur Wand: Wall functions' |
---|
529 | DO k = nzb_diff_s_inner(j,i), nzb_diff_s_outer(j,i)-2 |
---|
530 | |
---|
531 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
532 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
533 | usvs = kappa * 0.5 * ( u(k,j,i) + u(k,j,i+1) ) & |
---|
534 | / LOG( 0.5 * dy / z0(j,i) ) |
---|
535 | usvs = usvs * ABS( usvs ) |
---|
536 | dudy = wall_e_y(j,i) * usvs / km(k,j,i) |
---|
537 | ELSE |
---|
538 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
539 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
540 | ENDIF |
---|
541 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
542 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
543 | |
---|
544 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
545 | vsus = kappa * 0.5 * ( v(k,j,i) + v(k,j+1,i) ) & |
---|
546 | / LOG( 0.5 * dx / z0(j,i)) |
---|
547 | vsus = vsus * ABS( vsus ) |
---|
548 | dvdx = wall_e_x(j,i) * vsus / km(k,j,i) |
---|
549 | ELSE |
---|
550 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
551 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
552 | ENDIF |
---|
553 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
554 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
555 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
556 | |
---|
557 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
558 | wsus = kappa * 0.5 * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
559 | / LOG( 0.5 * dx / z0(j,i)) |
---|
560 | wsus = wsus * ABS( wsus ) |
---|
561 | dwdx = wall_e_x(j,i) * wsus / km(k,j,i) |
---|
562 | ELSE |
---|
563 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
564 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
565 | ENDIF |
---|
566 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
567 | wsvs = kappa * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
568 | / LOG( 0.5 * dy / z0(j,i)) |
---|
569 | wsvs = wsvs * ABS( wsvs ) |
---|
570 | dwdy = wall_e_y(j,i) * wsvs / km(k,j,i) |
---|
571 | ELSE |
---|
572 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
573 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
574 | ENDIF |
---|
575 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
576 | |
---|
577 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
578 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
579 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
580 | |
---|
581 | IF ( def < 0.0 ) def = 0.0 |
---|
582 | |
---|
583 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
584 | |
---|
585 | ENDDO |
---|
586 | |
---|
587 | ! |
---|
588 | !-- 4 - Wird immer ausgefuehrt. |
---|
589 | !-- 'Sonderfall: Freie Atmosphaere' (wie bei 0) |
---|
590 | k = nzb_diff_s_outer(j,i)-1 |
---|
591 | |
---|
592 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
593 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
594 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
595 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
596 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
597 | |
---|
598 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
599 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
600 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
601 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
602 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
603 | |
---|
604 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
605 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
606 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
607 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
608 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
609 | |
---|
610 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
611 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
612 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
613 | |
---|
614 | IF ( def < 0.0 ) def = 0.0 |
---|
615 | |
---|
616 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
617 | |
---|
618 | ELSE |
---|
619 | |
---|
620 | ! |
---|
621 | !-- Position ohne angrenzende Gebaeudewand |
---|
622 | !-- 1 - Wird immer ausgefuehrt. 'Nur Boden: u_0,v_0' |
---|
623 | k = nzb_diff_s_inner(j,i)-1 |
---|
624 | |
---|
625 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
626 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
627 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
628 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
629 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
630 | |
---|
631 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
632 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
633 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
634 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
635 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
636 | |
---|
637 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
638 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
639 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
640 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
641 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
642 | |
---|
643 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) & |
---|
644 | + dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + dvdz**2 & |
---|
645 | + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
646 | |
---|
647 | IF ( def < 0.0 ) def = 0.0 |
---|
648 | |
---|
649 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
650 | |
---|
651 | ENDIF |
---|
652 | |
---|
653 | ENDIF |
---|
654 | |
---|
655 | ! |
---|
656 | !-- Calculate TKE production by buoyancy |
---|
657 | IF ( .NOT. moisture ) THEN |
---|
658 | |
---|
659 | DO k = nzb_diff_s_inner(j,i), nzt-1 |
---|
660 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / pt(k,j,i) * & |
---|
661 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
662 | ENDDO |
---|
663 | IF ( use_surface_fluxes ) THEN |
---|
664 | k = nzb_diff_s_inner(j,i)-1 |
---|
665 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * shf(j,i) |
---|
666 | ENDIF |
---|
667 | |
---|
668 | ELSE |
---|
669 | |
---|
670 | DO k = nzb_diff_s_inner(j,i), nzt-1 |
---|
671 | |
---|
672 | IF ( .NOT. cloud_physics ) THEN |
---|
673 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
674 | k2 = 0.61 * pt(k,j,i) |
---|
675 | ELSE |
---|
676 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
677 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
678 | k2 = 0.61 * pt(k,j,i) |
---|
679 | ELSE |
---|
680 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
681 | temp = theta * t_d_pt(k) |
---|
682 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
683 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
684 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
685 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
686 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
687 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
688 | ENDIF |
---|
689 | ENDIF |
---|
690 | |
---|
691 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
692 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
693 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
694 | ) * dd2zu(k) |
---|
695 | ENDDO |
---|
696 | IF ( use_surface_fluxes ) THEN |
---|
697 | k = nzb_diff_s_inner(j,i)-1 |
---|
698 | |
---|
699 | IF ( .NOT. cloud_physics ) THEN |
---|
700 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
701 | k2 = 0.61 * pt(k,j,i) |
---|
702 | ELSE |
---|
703 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
704 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
705 | k2 = 0.61 * pt(k,j,i) |
---|
706 | ELSE |
---|
707 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
708 | temp = theta * t_d_pt(k) |
---|
709 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
710 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
711 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
712 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
713 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
714 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
715 | ENDIF |
---|
716 | ENDIF |
---|
717 | |
---|
718 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
719 | ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
720 | ENDIF |
---|
721 | |
---|
722 | ENDIF |
---|
723 | |
---|
724 | END SUBROUTINE production_e_ij |
---|
725 | |
---|
726 | |
---|
727 | SUBROUTINE production_e_init |
---|
728 | |
---|
729 | USE arrays_3d |
---|
730 | USE control_parameters |
---|
731 | USE grid_variables |
---|
732 | USE indices |
---|
733 | |
---|
734 | IMPLICIT NONE |
---|
735 | |
---|
736 | INTEGER :: i, j, ku, kv |
---|
737 | |
---|
738 | IF ( use_surface_fluxes ) THEN |
---|
739 | |
---|
740 | IF ( first_call ) THEN |
---|
741 | ALLOCATE( u_0(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
742 | v_0(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
743 | first_call = .FALSE. |
---|
744 | ENDIF |
---|
745 | |
---|
746 | ! |
---|
747 | !-- Calculate a virtual velocity at the surface in a way that the |
---|
748 | !-- vertical velocity gradient at k = 1 (u(k+1)-u_0) matches the |
---|
749 | !-- Prandtl law (-w'u'/km). This gradient is used in the TKE shear |
---|
750 | !-- production term at k=1 (see production_e_ij). |
---|
751 | !-- The velocity gradient has to be limited in case of too small km |
---|
752 | !-- (otherwise the timestep may be significantly reduced by large |
---|
753 | !-- surface winds). |
---|
754 | !-- WARNING: the exact analytical solution would require the determination |
---|
755 | !-- of the eddy diffusivity by km = u* * kappa * zp / phi_m. |
---|
756 | !$OMP PARALLEL DO PRIVATE( ku, kv ) |
---|
757 | DO i = nxl, nxr |
---|
758 | DO j = nys, nyn |
---|
759 | |
---|
760 | ku = nzb_u_inner(j,i)+1 |
---|
761 | kv = nzb_v_inner(j,i)+1 |
---|
762 | |
---|
763 | u_0(j,i) = u(ku+1,j,i) + usws(j,i) * ( zu(ku+1) - zu(ku-1) ) / & |
---|
764 | ( 0.5 * ( km(ku,j,i) + km(ku,j,i-1) ) + & |
---|
765 | 1.0E-20 ) |
---|
766 | ! ( us(j,i) * kappa * zu(1) ) |
---|
767 | v_0(j,i) = v(kv+1,j,i) + vsws(j,i) * ( zu(kv+1) - zu(kv-1) ) / & |
---|
768 | ( 0.5 * ( km(kv,j,i) + km(kv,j-1,i) ) + & |
---|
769 | 1.0E-20 ) |
---|
770 | ! ( us(j,i) * kappa * zu(1) ) |
---|
771 | |
---|
772 | IF ( ABS( u(ku+1,j,i) - u_0(j,i) ) > & |
---|
773 | ABS( u(ku+1,j,i) - u(ku-1,j,i) ) ) u_0(j,i) = u(ku-1,j,i) |
---|
774 | IF ( ABS( v(kv+1,j,i) - v_0(j,i) ) > & |
---|
775 | ABS( v(kv+1,j,i) - v(kv-1,j,i) ) ) v_0(j,i) = v(kv-1,j,i) |
---|
776 | |
---|
777 | ENDDO |
---|
778 | ENDDO |
---|
779 | |
---|
780 | CALL exchange_horiz_2d( u_0 ) |
---|
781 | CALL exchange_horiz_2d( v_0 ) |
---|
782 | |
---|
783 | ENDIF |
---|
784 | |
---|
785 | END SUBROUTINE production_e_init |
---|
786 | |
---|
787 | END MODULE production_e_mod |
---|